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ABSTRACT

Deep learning architectures for supervised learning on tabular data range from
simple multilayer perceptrons (MLP) to sophisticated Transformers and retrieval-
augmented methods. This study highlights a major, yet so far overlooked opportu-
nity for designing substantially better MLP-based tabular architectures. Namely,
our new model TabM relies on efficient ensembling, where one TabM efficiently imi-
tates an ensemble of MLPs and produces multiple predictions per object. Compared
to a traditional deep ensemble, in TabM, the underlying implicit MLPs are trained
simultaneously, and (by default) share most of their parameters, which results in
significantly better performance and efficiency. Using TabM as a new baseline, we
perform a large-scale evaluation of tabular DL architectures on public benchmarks
in terms of both task performance and efficiency, which renders the landscape of
tabular DL in a new light. Generally, we show that MLPs, including TabM, form
a line of stronger and more practical models compared to attention- and retrieval-
based architectures. In particular, we find that TabM demonstrates the best perfor-
mance among tabular DL models. Then, we conduct an empirical analysis on the
ensemble-like nature of TabM. We observe that the multiple predictions of TabM
are weak individually, but powerful collectively. Overall, our work brings an im-
pactful technique to tabular DL and advances the performance-efficiency trade-off
with TabM — a simple and powerful baseline for researchers and practitioners. The
code is available at: https://github.com/yandex—research/tabm.

1 INTRODUCTION

Supervised learning on tabular data is a ubiquitous machine learning (ML) scenario in a wide range
of industrial applications. Among classic non-deep-learning methods, the state-of-the-art solution
for such tasks is gradient-boosted decision trees (GBDT) (Prokhorenkova et al., 2018; Chen &
Guestrin, 2016; Ke et al., 2017). Deep learning (DL) models for tabular data, in turn, are reportedly
improving, and the most recent works claim to perform on par or even outperform GBDT on academic
benchmarks (Hollmann et al., 2023; Chen et al., 2023b;a; Gorishniy et al., 2024).

However, from the practical perspective, it is unclear if tabular DL offers any obvious go-to baselines
beyond simple architectures in the spirit of a multilayer perceptron (MLP). First, the scale and
consistency of performance improvements of new methods w.r.t. simple MLP-like baselines are not
always explicitly analyzed in the literature. Thus, one has to infer those statistics from numerous
per-dataset performance scores, which makes it hard to reason about the progress. At the same
time, due to the extreme diversity of tabular datasets, consistency is an especially valuable and
hard-to-achieve property for a hypothetical go-to baseline. Second, efficiency-related properties,
such as training time, and especially inference throughput, sometimes receive less attention. While
methods are usually equally affordable on small-to-medium datasets (e.g. <100K objects), their
applicability to larger datasets remains uncertain. Third, some recent work generally suggests that the
progress on academic benchmarks may not transfer that well to real-world tasks (Rubachev et al.,
2024). With all the above in mind, in this work, we thoroughly evaluate existing tabular DL methods
and find that non-MLP models do not yet offer a convincing replacement for MLPs.

At the same time, we identify a previously overlooked path towards more powerful, reliable, and
reasonably efficient tabular DL models. In a nutshell, we find that the parameter-efficient approach to
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deep ensembling, where most weights are shared between ensemble members, allow one to make
simple and strong tabular models out of plain MLPs. For example, MLP coupled with BatchEnsemble
(Wen et al., 2020) — a long-existing method — right away outperforms popular attention-based
models, such as FT-Transformer (Gorishniy et al., 2021), while being simpler and more efficient.
This result alone suggests that efficient ensembling is a low-hanging fruit for tabular DL.

Our work builds on the above observations and offers TabM — a new powerful and practical model
for researchers and practitioners. Drawing an informal parallel with GBDT (an ensemble of decision
trees), TabM can also be viewed as a simple base model (MLP) combined with an ensembling-like
technique, providing high performance and simple implementation at the same time.

Main contributions. We summarize our main contributions as follows:

1. We present TabM — a simple DL architecture for supervised learning on tabular data. TabM is
based on MLP and parameter-efficient ensembling techniques closely related to BatchEnsemble
(Wen et al., 2020). In particular, TabM produces Multiple predictions per object. TabM easily
competes with GBDT and outperforms prior tabular DL models, while being more efficient than
attention- and retrieval-based DL architectures.

2. We provide a fresh perspective on tabular DL models in a large-scale evaluation along four
dimensions: performance ranks, performance score distributions, training time, and inference
throughput. One of our findings is that MLPs, including TabM, hit an appealing performance-
efficiency tradeoff, which is not the case for attention- and retrieval-based models.

3. We show that the two key reasons for TabM’s high performance are the collective training of the
underlying implicit MLPs and the weight sharing. We also show that the multiple predictions of
TabM are weak and overfitted individually, while their average is strong and generalizable.

2 RELATED WORK

Decision-tree-based models. Gradient-boosted decision trees (GBDT) (Chen & Guestrin, 2016; Ke
et al., 2017; Prokhorenkova et al., 2018) is a strong and efficient baseline for tabular tasks. GBDT is
a classic machine learning model, specifically, an ensemble of decision trees. Our model TabM is a
deep learning model, specifically, a parameter-efficient ensemble of MLPs.

Tabular deep learning architectures. A large number of deep learning architectures for tabular
data have been proposed over the recent years. That includes attention-based architectures (Song
et al., 2019; Gorishniy et al., 2021; Somepalli et al., 2021; Kossen et al., 2021; Yan et al., 2023),
retrieval-augmented architectures (Somepalli et al., 2021; Kossen et al., 2021; Gorishniy et al., 2024;
Ye et al., 2024), MLP-like models (Gorishniy et al., 2021; Klambauer et al., 2017; Wang et al., 2020)
and others (Arik & Pfister, 2020; Popov et al., 2020; Chen et al., 2023b; Marton et al., 2024; Hollmann
et al., 2023). Compared to prior work, the key difference of our model TabM is its computation
flow, where one TabM imitates an ensemble of MLPs by producing multiple independently trained
predictions. Prior attempts to bring ensemble-like elements to tabular DL (Badirli et al., 2020; Popov
et al., 2020) were not found promising (Gorishniy et al., 2021). Also, being a simple feed-forward
MLP-based model, TabM is significantly more efficient than some of the prior work. Compared to
attention-based models, TabM does not suffer from quadratic computational complexity w.r.t. the
dataset dimensions. Compared to retrieval-based models, TabM is easily applicable to large datasets.

Improving tabular MLP-like models. Multiple recent studies achieved competitive performance
with MLP-like architectures on tabular tasks by applying architectural modifications (Gorishniy et al.,
2022), regularizations (Kadra et al., 2021; Jeffares et al., 2023a; Holzmiiller et al., 2024), custom
training techniques (Bahri et al., 2021; Rubacheyv et al., 2022). Thus, it seems that tabular MLPs have
good potential, but one has to deal with overfitting and optimization issues to reveal that potential.
Our model TabM achieves high performance with MLP in a different way, namely, by using it as the
base backbone in a parameter-efficient ensemble in the spirit of BatchEsnsemble (Wen et al., 2020).
Our approach is orthogonal to the aforementioned training techniques and architectural advances.

Deep ensembles. In this paper, by a deep ensemble, we imply multiple DL models of the same
architecture trained independently (Jeffares et al., 2023b) for the same task under different random
seeds (i.e. with different initializations, training batch sequences, etc.). The prediction of a deep
ensemble is the mean prediction of its members. Deep ensembles often significantly outperform single
DL models of the same architecture (Fort et al., 2020) and can excel in other tasks like uncertainty
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estimation or out-of-distribution detection (Lakshminarayanan et al., 2017). It was observed that
individual members of deep ensembles can learn to extract diverse information from the input, and
the power of deep ensembles depends on this diversity (Allen-Zhu & Li, 2023). The main drawback
of deep ensembles is the cost and inconvenience of training and using multiple models.

Parameter-efficient deep “ensembles”. To achieve the performance of deep ensembles at a lower
cost, multiple studies proposed architectures that imitate ensembles by producing multiple predictions
with one model (Lee et al., 2015; Zhang et al., 2020; Wen et al., 2020; Havasi et al., 2021; Antoran
et al., 2020; Turkoglu et al., 2022). Such models can be viewed as “ensembles” where the implicit
ensemble members share a large amount of their weights. There are also non-architectural approaches
to efficient ensembling, e.g. FGE (Garipov et al., 2018), but we do not explore them, because we
are interested specifically in architectural techniques. In this paper, we highlight parameter-efficient
ensembling as an impactful paradigm for tabular DL. In particular, we describe two simple variations
of BatchEnsemble (Wen et al., 2020) that are highly effective for tabular MLPs. One variation uses a
more efficient parametrization, and another one uses an improved initialization.

3 TABM
In this section, we present TabM — a Tabular DL model that makes Multiple predictions.

3.1 PRELIMINARIES

Notation. We consider classification and regression tasks on tabular data. 2 and y denote the features
and a label, respectively, of one object from a given dataset. A machine learning model takes x as
input and produces g as a prediction of y. N € N and d € N respectively denote the “depth” (e.g. the
number of blocks) and “width” (e.g. the size of the latent representation) of a given neural network.
d, € Nis the output representation size (e.g. d, = 1 for regression tasks, and d, equals the number
of classes for classification tasks).

Datasets. Our benchmark consists of 46 publicly available datasets used in prior work, including
Grinsztajn et al. (2022); Gorishniy et al. (2024); Rubachev et al. (2024). The main properties of our
benchmark are summarized in Table 1, and more details are provided in Appendix C.

Table 1: The overview of our benchmark. The “Split type” property is explained in the text.

#Datasets Train size #Features Task type Split type
Min. Q50 Mean Max. Min. Q50 Mean Max. #Regr. #Classif. Random Domain-aware
46 1.8K 12K 76K 723K 3 20 108 986 28 18 37 9

Domain-aware splits. We pay extra attention to datasets with what we call “domain-aware” splits,
including the eight datasets from the TabReD benchmark (Rubachev et al., 2024) and the Microsoft
dataset (Qin & Liu, 2013). For these datasets, their original real-world splits are available, e.g.
time-aware splits as in TabReD. Such datasets were shown to be challenging for some methods
because they naturally exhibit a certain degree of distribution shift between training and test parts
(Rubachev et al., 2024). The random splits of the remaining 37 datasets are inherited from prior work.

Experiment setup. We use the setup from Gorishniy et al. (2024), and describe it in detail in
subsection D.2. Most importantly, on each dataset, a given model undergoes hyperparameter tuning
on the validation set, then the tuned model is trained from scratch under multiple random seeds, and
the test metric averaged over the random seeds becomes the final score of the model on the dataset.

Metrics. We use RMSE (the root mean square error) for regression tasks, and accuracy or ROC-AUC
for classification tasks depending on the dataset source. See subsection D.3 for details.

Also, throughout the paper, we often use the relative performance of models w.r.t. MLP as the key
metric. This metric gives a unified perspective on all tasks and allows reasoning about the scale of
improvements w.r.t. to a simple baseline (MLP). Formally, on a given dataset, the metric is defined

as (b;f;rifle - 1) - 100%, where “score” is the metric of a given model, and “baseline” is the metric

of MLP. In this computation, for regression tasks, we convert the raw metrics from RMSE to R? to
better align the scales of classification and regression metrics.
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3.2 A QUICK INTRODUCTION TO BATCHENSEMBLE.

For a given architecture, let’s consider any linear layer [ in it: I(z) = Wax + b, where © € R,
W e Ré2xd1_p e R To simplify the notation, let d; = dy = d. In a traditional deep ensemble, the
i-th member has its own set of weights W;, b; for this linear layer: I;(x;) = W;x; + b;, where x; is the
object representation within the ¢-th member. By contrast, in BatchEnsemble, this linear layer is either
(1) fully shared between all members, or (2) mostly shared: I;(z;) = s; @ (W(r; ® z;)) + b;, where
©® is the elementwise multiplication, W € R94*4 is shared between all members, and r;, s;, b; € R?
are not shared between the members. This is equivalent to defining the ¢-th weight matrix as
W, =Wao (szrzT) To ensure diversity of the ensemble members, r; and s; of all members are ini-
tialized randomly with 1. All other layers are fully shared between the members of BatchEnsemble.

The described parametrization allows packing all ensemble members in one model that simultaneously
takes k objects as input, and applies all k£ implicit members in parallel, without explicitly materializing
each member. This is achieved by replacing one or more linear layers of the original neural network
with their BatchEnsemble versions: lgg(X) = (X ©® R)W) ® S + B, where X € R¥*4 stores k
object representations (one per member), and R, S, B € R4 store the non-shared weights (5, s;, b;)
of the members, as shown at the lower left part of Figure 1.

Terminology. In this paper, we call ;, s;, b;, R, S and B adapters, and the implicit members of
parameter-efficient emsembles (e.g. BatchEnsemble) — implicit submodels or simply submodels.
Overhead to the model size. With BatchEnsemble, adding a new ensemble member means adding
only one row to each of the matrices R, S, and B, which results in 3d new parameters per layer. For
typical values of d, this is a negligible overhead to the original layer size d? + d.

Overhead to the runtime. Thanks to the modern hardware, the large number of shared weights
and the parallel execution of the k£ forward passes, the runtime overhead of BatchEnsemble can be
(significantly) lower than x k (Wen et al., 2020). Intuitively, if the original workload underutilizes the
hardware, there are more chances to pay less than x k overhead.

3.3 ARCHITECTURE

TabM is one model representing an ensemble of £k MLPs. Contrary to conventional deep ensembles,
in TabM, the & MLPs are trained in parallel and share most of their weights by default, which
leads to better performance and efficiency. We present multiple variants of TabM that differ in their
weight-sharing strategies, where TabM and TabMpy,; are the most effective variants, and TabMpckeq
is a conceptually important variant potentially useful in some cases. We obtain our models in several
steps, starting from essential baselines. We always use the ensemble size k¥ = 32 and analyze this
hyperparameter in subsection 5.3. In subsection A.1, we explain that using MLP as the base model is
crucial because of its excellent efficiency.

MLP. We define MLP as a sequence of N simple blocks followed by a linear prediction head:
MLP(z) = Linear(Blocky (. .. (Blocky (z))), where Block;(z) = Dropout(ReLU(Linear((z))).

MLP** = MLP + Deep Ensemble. We denote the traditional deep ensemble of k independently
trained MLPs as MLP** To clarify, this means tuning hyperparameters of one MLP, then indepen-
dently training k tuned MLPs under different random seeds, and then averaging their predictions.
The performance of MLP* is reported in Figure 2. Notably, the results are already better and more
stable than those of FT-Transformer (Gorishniy et al., 2021) — the popular attention-based baseline.

Although the described approach is a somewhat default way to implement an ensemble, it is not
optimized for the task performance of the ensemble. First, for each of the £ MLPs, the training is
stopped based on the individual validation score, which is optimal for each individual MLP, but can
be suboptimal for their ensemble. Second, the hyperparameters are also tuned for one MLP without
knowing about the subsequent ensembling. All TabM variants are free from these issues.

TabMpackea = MLP + Packed-Ensemble. As the first step towards better and more efficient en-
sembles of MLPs, we implement £k MLPs as one large model using Packed-Ensemble (Laurent
et al., 2023). This results in TabMp,ckeq illustrated in Figure 1. As an architecture, TabMpycked 1S
equivalent to MLP** and stores k independent MLPs without any weight sharing. However, the
critical difference is that TabM processes k inputs in parallel, which means that one training step
of TabM consists of k parallel training steps of the individual MLPs. This allows monitoring the
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performance of the ensemble during the training and stopping the training when it is optimal for the
whole ensemble, not for individual MLPs. As a consequence, this also allows tuning hyperparameters
for TabMpackea as for one model. As shown in Figure 2, TabM,ckeq delivers significantly better
performance compared to MLP*”. Efficiency-wise, for typical depth and width of MLPs, the runtime
overhead of TabMpckeq is noticeably less than x & due to the parallel execution of the k forward
passes on the modern hardware. Nevertheless, the xk overhead of TabMp,cied to the model size
motivates further exploration.

TabMaive = MLP + BatchEnsemble. To reduce the size of TabMpacked, We now turn to weight
sharing between the MLPs, and naively apply BatchEnsemble (Wen et al., 2020) instead of Packed-
Ensemble, as described in subsection 3.2. This gives us TabM,j,.— a preliminary version of TabM.
In fact, the architecture (but not the initialization) of TabM,,;e is already equivalent to that of TabM,
so Figure 1 is applicable. Interestingly, Figure 2 reports higher performance of TabM,,ive compared
to TabMpcked- Thus, constraining the ensemble with weight sharing turns out to be a highly effective
regularization on tabular tasks. The alternatives to BatchEnsemble are discussed in subsection A.1.

D Shared

[ Not shared
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Figure 1: (Upper left) A high-level illustration of TabM. One TabM represents an ensemble of £k MLPs
processing k inputs in parallel. The remaining parts of the figure are three different parametrizations of
the k MLP backbones. (Upper right) TabMp,cieq consists of & fully independent MLPs. (Lower left)
TabM is obtained by injecting three non-shared adapters R, S, B in each of the IV linear layers of
one MLP (* the initialization differs from Wen et al. (2020)). (Lower right) TabMpp; is obtained
by keeping only the very first adapter R of TabM and removing the remaining 3N — 1 adapters.
(Details) Input transformations such as one-hot-encoding or feature embeddings (Gorishniy et al.,
2022) are omitted for simplicity. Drop denotes dropout (Srivastava et al., 2014).
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Figure 2: The performance of models described in subsection 3.3 on 46 datasets from Table 1; plus
several baselines on the left. For a given model, one dot on a jitter plot describes the performance
score on one of the 46 datasets. The box plots describe the percentiles of the jitter plots: the boxes
describe the 25th, 50th, and 75th percentiles, and the whiskers describe the 10th and 90th percentiles.
Outliers are clipped. The numbers at the bottom are the mean and standard deviations over the jitter

plots. For each model, hyperparameters are tuned. “Model*” denotes an ensemble of & models.
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TabM,ini = MLP + MiniEnsemble. By construction, the just discussed TabM,,ye (illustrated as
“TabM” in Figure 1) has 3V adapters: R, S and B in each of the N blocks. Let’s consider the very
first adapter, i.e. the first adapter R in the first linear layer. Informally, its role can be described as
mapping the k inputs living in the same representation space to k different representation spaces
before the tabular features are mixed with QW for the first time. A simple experiment reveals that
this adapter is critical. First, we remove it from TabM,,;. and keep the remaining 3N — 1 adapters
untouched, which gives us TabMy,q with worse performance, as shown in Figure 2. Then, we do the
opposite: we keep only the very first adapter of TabM,,aive and remove the remaining 3N — 1 adapters,
which gives us TabM,in;i — the minimal version of TabM. TabM,y;y; is illustrated in Figure 1, where
we call the described approach “MiniEnsemble”. Figure 2 shows that TabM,y;; performs even slightly
better than TabM,,aive, despite having only one adapter instead of 3N adapters.

TabM = MLP + BatchEnsemble + Better initialization. The just obtained results motivate the next
step. We go back to the architecture of TabM,,;y. With all 3N adapters, but initialize all multiplicative
adapters R and S, except for the very first one, deterministically with 1. As such, at initialization, the
deterministically initialized adapters have no effect, and the model behaves like TabM,y;,;, but these
adapters are free to add more expressivity during training. This gives us TabM, illustrated in Figure 1.
Figure 2 shows that TabM is the best variation so far.

Hyperparameters. Compared to MLP, the only new hyperparameter of TabM is k& — the number of
implicit submodels. We heuristically set £ = 32 and do not tune this value. We analyze the influence
of k in subsection 5.3. We also share additional observations on the learning rate in subsection A.3.

Limitations and practical considerations are commented in subsection A.4.

3.4 IMPORTANT PRACTICAL MODIFICATIONS OF TABM

# ~ Shared training batches. Recall that the order of training objects usually varies between
ensemble members, because of the random shuffling with different seeds. For TabM, in terms of
Figure 1, that corresponds to X storing k different training objects {x; }¥_,. We observed that reusing
the training batches between the TabM’s submodels results in only minor performance loss on average
(depending on a dataset), as illustrated with TabM* in Figure 2. In practice, due to the simpler
implementation and better efficiency, sharing training batches can be a reasonable starting point.

1 ~ Non-linear feature embeddings. In Figure 2, TabMilini denotes TabM,,;,; with non-linear

feature embeddings from (Gorishniy et al., 2022), which demonstrates the high utility of feature
embeddings for TabM. Specifically, we use a slightly modified version of the piecewise-linear
embeddings (see subsection D.8 for details).

X5

xN ~ Deep ensemble. In Figure 2, TabM;rm“i denotes an ensemble of five independent TabM

models, showing that TabM itself can benefit from the conventional deep ensembling.

t

mini

3.5 SUMMARY

The story behind TabM shows that technical details of ~ow to construct and train an ensemble have
a major impact on task performance. Most importantly, we highlight simultaneous training of the
(implicit) ensemble members and weight sharing between them. The former is responsible for the
ensemble-aware stopping of the training, and the latter apparently serves as a form of regularization.

4 EVALUATING TABULAR DEEP LEARNING ARCHITECTURES
Now, we perform an empirical comparison of many tabular models, including TabM.

4.1 BASELINES

In the main text, we use the following baselines: MLP (defined in subsection 3.3), FT-Transformer
denoted as “FT-T” (the attention-based model from Gorishniy et al. (2021)), SAINT (the attention-
and retrieval-based model from Somepalli et al. (2021)), T2G-Former denoted as “T2G” (the attention-
based model from Yan et al. (2023)), ExcelFormer denoted as “Excel” (the attention-based model
from Chen et al. (2023a)), TabR (the retrieval-based model from Gorishniy et al. (2024)), ModernNCA
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denoted as “MNCA” (the retrieval-based model from Ye et al. (2024)) and GBDT, including XGBoost
(Chen & Guestrin, 2016), LightGBM (Ke et al., 2017) and CatBoost (Prokhorenkova et al., 2018).

The models with non-linear feature embeddings from Gorishniy et al. (2022) are marked with | or I
depending on the embedding type (see subsection D.8 for details on feature embeddings):

e MLP' and TabM:rnini use a modified version of the piecewise-linear embeddings.

. TabRi, MNCAi, and MLP? (also known as MLP-PLR) use various periodic embeddings.

More baselines are evaluated in Appendix B. Implementation details are provided in Appendix D.

4.2 TASK PERFORMANCE

We evaluate all models following the protocol announced in subsection 3.1 and report the results in
Figure 3 (see also the critical difference diagram in Figure 9). We make the following observations:

1. The performance ranks render TabM as the top-tier DL model.

2. The middle and right parts of Figure 3 provide a fresh perspective on the per-dataset metrics.
TabM holds its leadership among the DL models. Meanwhile, many DL methods turn out to be
no better or even worse than MLP on a non-negligible number of datasets, which shows them as
less reliable solutions, and changes the ranking, especially on the domain-aware splits (right).

3. One important characteristic of a model is the weakest part of its performance profile (e.g.
the 10th or 25th percentiles in the middle plot) since it shows how reliable the model is on
“inconvenient” datasets. From that perspective, MLP' seems to be a decent practical option
between the plain MLP and TabM, especially given its simplicity and efficiency compared to
retrieval-based alternatives, such as TabR and ModernNCA.

Summary. TabM confidently demonstrates the best performance among tabular DL models, and can
serve as a reliable go-to DL baseline. This is not the case for attention- and retrieval-based models.
Overall, MLP-like models, including TabM, form a representative set of tabular DL baselines.

Performance ranks Performance scores Performance scores
On 46 datasets On 37 datasets with random split On 9 datasets with domain-aware split
Sorted by the mean rank Sorted by the mean score Sorted by the mean score
O Mean
MLP{ 5.5+3.2] Excel* 4—=<{¢[ - h TabRp % oad ©
Excel*] 52429 MLP{ ¢ SAINT?  ©¢» ax © o
SAINT o ooy SAINT [} Excel*| © o (¥
FT-T{ 4639 FT-T{ +Kp TabRH{ 00 e o
T2C e aEed) TabR{ = HOTF— MNCA{®  {do o
MNCA{ 39Z2q TG <O MLP 6
TabR{_ 1| 89=3]| MLPT{ < W FT-T{ o o & o
MLPT {38 Ead] MNCA { {1 — MNCA*{ © o¢{yo o
LightGBM{___ 84%20] LightGBM {4 = [:)——i : T2G{ o o bl o
XGBoost{___ 83%21] TabR* H [ O— CatBoost bR © °
CatBoost{____ 82%£20| XGBoost {4 = fidy=—=—1 MLPf 00 if) °
MNCAI{— 30£23] TabM+ HapoQ =1 LightGBM{ o adp o o
TabRI{__ 29+23 CatBoost 1 m—i TabM ° 0% oo
TabM{ERER =R MNCAH o XCBoost{ ©  bed o
T'dbMImm’E = :;;]I:v(‘g]“m Tabl\ljumj’ = o §d— L TszNIjmm 00 1° aef) ° ¢
1 2 3 1 5 2% 0% 2% 4% 6% 8% 5% 0% 5% 10%
Rank (1) Relative improvement over MLP (1) Relative improvement over MLP (1)

Figure 3: The task performance of tabular models on the 46 datasets from Table 1. (Left) The mean
and standard deviations of the performance ranks over all datasets summarize the head-to-head
comparison between the models on all datasets. (Middle & Right) The relative performance w.r.t. the
plain multilayer perceptron (MLP) allows reasoning about the scale and consistency of improvements
over this simple baseline. One dot of a jitter plot corresponds to the performance of a model on one
of the 46 datasets. The box plots visualize the 10th, 25th, 50th, 75th, and 90th percentiles of the jitter
plots. Outliers are clipped. The separation in random and domain-aware dataset splits is explained in
subsection 3.1. (*Evaluated under the common protocol without data augmentations)
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4.3 EFFICIENCY

Now, we evaluate tabular models in terms of training and inference efficiency, which becomes
a serious reality check for some of the methods. We benchmark exactly those hyperparameter
configurations of models that are presented in Figure 3 (see subsection B.3 for the motivation).
TabM!* . & TabM/**. Additionally, in this section, we mark with the asterisk (*) the versions of
TabM enhanced with two efficiency-related plugins available out-of-the-box in PyTorch (Paszke
et al., 2019): the automatic mixed precision (AMP) and torch.compile (Ansel et al., 2024). The
purpose of those TabM variants is to showcase the potential of the modern hardware and software
for a powerful tabular DL model, and they should not be directly compared to other DL models.
However, the implementation simplicity of TabM plays an important role, because it facilitates the
seamless integration of the aforementioned PyTorch plugins.

Training time. We focus on training times on larger datasets, because on small datasets, all methods
become almost equally affordable, regardless of the formal relative difference. Nevertheless, in
Figure 10, we provide measurements on small datasets as well. The left side of Figure 4 reveals
that TabM offers practical training times. By contrast, the long training times of attention- and
retrieval-based models become one more limitation of these methods.

Inference throughput. The right side of Figure 4 tells essentially the same story as the left side. In
subsection B.3, we also report the inference throughput on GPU with large batch sizes.

Applicability to large datasets. In Table 2, we report metrics on two large datasets. As expected,
attention- and retrieval-based models struggle, yielding extremely long training times, or being simply
inapplicable without additional effort. See subsection D.4 for implementation details.

Parameter count. Most tabular networks are overall compact. This, in particular, applies to TabM,
because its size is by design comparable to MLP. We report model sizes in subsection B.3.

Summary. Simple MLPs are the fastest DL. models, with TabM being the runner-up. The attention-
and retrieval-based models are significantly slower. Overall, MLP-like models, including TabM, form
a representative set of practical and accessible tabular DL baselines.

Training time on datasets with > 100K objects Inference throughput with batch size 1
Device: GPU NVIDIA A100 Device: CPU Intel i7-7800X, single thread
MLP A ° o0 o @ © == MLP, GBDT MLPA 0 000 o ©@ O oo ®
MLP' °® 00 %K) o0 = I:i:::t:?\il XGBoost{ o ©0@0 g0 © (o o oo
XCGBoost @ ooyao =3 MLP (Ours) MLP'{ oe% © 0&) @ oo
Tal)MKmi’ °  ®h® Q. Mean TabM{ o ©® 00&) oo ® o
TabM! 1 ° o oxfoo TabM| | 0®dp® eo o
TabM ° oo 0 o0 fo & TabR{® (P00 ©
TabR A 000 @%) o o FT-T {e®@ () og»
MNCA 4 o 00 () o T2G {po
MNCA* 0000 po o TabR* &) @0
TabR*{ oo PN @ MNCA {(
T2G 0 o 00000 0 0 MNCA!{Qpo
FT-T oo o oo SAINT 10
SAINT 4 oo o &Qo @ 1
T0s om ~15m ~1heah 0 1000 2000 3000 4000 5000 6000
Time (}) Objects per second (1)

Figure 4: Training times (left) and inference throughput (right) of the models from Figure 3. One dot
represents a measurement on one dataset. Taij;ni is the optimized TabM:rnini (see subsection 4.3).

Table 2: RMSE (upper rows) and training times (lower rows) on two large datasets. The best values
are in bold. The meaning of model colors follows Figure 3.
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5 ANALYSIS

5.1 PERFORMANCE AND TRAINING DYNAMICS OF THE INDIVIDUAL SUBMODELS

Recall that the prediction of TabM is defined as the mean prediction of its k implicit submodels that
share most of their weights. In this section, we take a closer look at these submodels.

For the next experiment, we intentionally simplify the setup as described in detail in subsection D.5.
Most importantly, all models have the same depth 3 and width 512, and are trained without early
stopping, i.e. the training goes beyond the optimal epochs. We use TabM,; from Figure 1 with
k = 32 denoted as TabeE‘?Q. We use Tabef;il (i.e. essentially one plain MLP) as a natural baseline
for the submodels of TabM’;;fQ, because each of the 32 submodels has the architecture of TabM’nﬁil.
We visualize the training profiles on four diverse datasets (two classification and two regression
problems of different sizes) in Figure 5. As a reminder, the mean of the & individual losses is what
is explicitly optimized during the training of TabMyiy;, the loss of the collective mean prediction

corresponds to how TabM,;,; makes predictions on inference, and TabM*=1 is just a baseline.

mini

Churn House Otto Microsoft
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Figure 5: The training profiles of TabM"?? and TabM*S! as described in subsection 5.1. (Upper)
The training curves. k = 32[i] represents the mean individual loss over the 32 submodels. (Lower)
Same as the first row, but in the train-test coordinates: each dot represents some epoch from the first
row, and the training generally goes from left to right. This allows reasoning about overfitting by

comparing test loss values for a given train loss value.

In the upper row of Figure 5, the collective mean prediction of the submodels is superior to their
individual predictions in terms of both training and test losses. After the initial epochs, the training
loss of the baseline MLP is lower than that of the collective and individual predictions.

In the lower row of Figure 5, we see a stark contrast between the individual and collective performance
of the submodels. Compared to the baseline MLP, the submodels look overfitted individually, while
their collective prediction exhibits substantially better generalization. This result is strict evidence
of a non-trivial diversity of the submodels: without that, their collective test performance would be
similar to their individual test performance. Additionally, we report the performance of the Best
submodel of TabM across many datasets under the name TabM|[B] in Figure 6. As such, individually,
even the best submodel of TabM is no better than a simple MLP.

Summary. TabM draws its power from the collective prediction of weak, but diverse submodels.

5.2 SELECTING SUBMODELS AFTER TRAINING

The design of TabM allows selecting only a subset of submodels after training based on any criteria,
simply by pruning extra prediction heads and the corresponding rows of the adapter matrices. To
showcase this mechanics, after the training, we Greedily construct a subset of TabM’s submodels with
the best collective performance on the validation set, and denote this “pruned” TabM as TabM|[G].
The performance reported in Figure 6 shows that TabM[G] is slightly behind the vanilla TabM. On
average over 46 datasets, the greedy submodel selection results in 8.8 4= 6.6 submodels out of the
initial £ = 32, which can result in faster inference. See subsection D.6 for implementation details.
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Figure 6: The performance on the 46 datasets Figure 7: The average performance of TabM
from Table 1. TabM[B] and TabM[G] are de- with n layers of the width d across 17 datasets
scribed in subsection 5.1 and subsection 5.2. as a function of k.

5.3 HOW DOES THE PERFORMANCE OF TABM DEPEND ON k?

To answer the question in the title, we consider TabM with n layers of the size d and different values
of k, and report the average performance over multiple datasets in Figure 7 (the implementation
details are provided in subsection D.7). The solid curves correspond to n = 3, and the dark green
curves correspond to d = 512. Our main observations are as follows. First, it seems that the “larger”
TabM is (i.e. when n and d increase), the more submodels it can accommodate effectively. For
example, note how the solid curves corresponding to different d diverge at k = 2 and k = 4. Second,
too high values of £ can be detrimental. Perhaps, weight sharing limits the number of submodels that
can productively “coexist” in one network, despite the presence of non-shared adapters. Third, too
narrow (d = 64) or too shallow (n = 1) configurations of TabM can lead to suboptimal performance,
at least in the scope of middle-to-large datasets considered in this work.

5.4 PARAMETER-EFFICIENT ENSEMBLING REDUCES THE NUMBER OF DEAD NEURONS

Here, we show empirically that the design of TabM naturally leads to higher utilization of the
backbone’s weights. Even without technical definitions, this sounds intuitive, since TabM has to
implement £ (diverse) computations using the amount of weights close to that of one MLP.

Let’s consider TabMyy; as illustrated in Figure 1. By design, each of the shared neurons of TabM i
is used k times per forward pass, where “neuron” refers to the combination of the linear transformation
and the subsequent nonlinearity (e.g. ReLU). By contrast, in plain MLP (or in TabMy;p; with & = 1),
each neuron is used only once per forward pass. Thus, technically, a neuron in TabM,;,; has more
chances to be activated, which overall may lead to lower portion of dead neurons in TabMn;
compared to MLP (a dead neuron is a neuron that never activates, and thus has no impact on the
prediction). Using the experiment setup from subsection 5.1, we compute the portion of dead neurons
in TabM,;n; using its best validation checkpoint. On average across 46 datasets, for £ = 1 and
k =32, we get 0.29 4 0.17 and 0.14 +£ 0.09 portion of dead neurons, respectively, which is in line
with the described intuition. Technically, on a given dataset, this metric is computed as the percentage
of neurons that never activate on a fixed set of 2048 training objects.

6 CONCLUSION & FUTURE WORK

In this work, we have demonstrated that tabular multilayer perceptrons (MLPs) greatly benefit from
parameter-efficient ensembling. Using this insight, we have developed TabM — a simple MLP-
based model with state-of-the-art performance. In a large-scale comparison with many tabular DL
models, we have demonstrated that TabM is ready to serve as a new powerful and efficient tabular DL
baseline. Along the way, we highlighted the important technical details behind TabM and discussed
the individual performance of the implicit submodels underlying TabM.

One idea for future work is to bring the power of (parameter-)efficient ensembles to other, non-tabular,
domains with optimization-related challenges and, ideally, lightweight base models. Another idea is
to evaluate TabM for uncertainty estimation and out-of-distribution (OOD) detection on tabular data,
which is inspired by works like Lakshminarayanan et al. (2017).
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Reproducibility statement. The code is provided in the following repository: link. It contains the
implementation of TabM, hyperparameter tuning scripts, evaluation scripts, configuration files with
hyperparameters (the TOML files in the exp/ directory), and the report files with the main metrics
(the JSON files in the exp/ directory). In the paper, the model is described in section 3, and the
implementation details are provided in Appendix D.
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A ADDITIONAL DISCUSSION ON TABM

A.1 MOTIVATION

Why BatchEnsemble? Among relatively ease-to-use “efficient ensembling” methods, beyond
BatchEnsemble, there are examples such as dropout ensembles (Lakshminarayanan et al., 2017),
naive multi-head architectures, TreeNet (Lee et al., 2015). However, in the literature, they were
consistently outperformed by more advanced methods, including BatchEnsemble (Wen et al., 2020),
MIMO (Havasi et al., 2021), FILM-Ensemble (Turkoglu et al., 2022).

Among advanced methods, BatchEnsemble seems to be one of the simplest and most flexible options.
For example, FILM-Ensemble (Turkoglu et al., 2022) requires normalization layers to be presented in
the original architecture, which is not always the case for tabular MLPs. MIMO (Havasi et al., 2021),
in turn, imposes additional limitations compared to BatchEnsemble. First, it requires concatenating
(not stacking, as with BatchEnsemble) all k input representations, which increases the input size of
the first linear layer. With the relatively high number of submodels £ = 32 used in our paper, this
can be an issue on datasets with a large number of features, especially when feature embeddings
(Gorishniy et al., 2022) are used. For example, for £ = 32, the number of features m = 1000, and the
feature embedding size [ = 32, the input size approaches one million resulting in an extremely large
first linear layer of MLP. Second, with BatchEnsemble, it is easy to explicitly materialize, analyze,
and prune individual submodels. By contrast, in MIMO, all submodels are implicitly entangled
within one MLP, and there is no easy way to access individual submodels.

Why MLPs? Despite the applicability of BatchEnsemble (Wen et al., 2020) to almost any architecture,
we focus specifically on MLPs. The key reason is efficiency. First, to achieve high performance,
throughout the paper, we use the relatively large number of submodels & = 32. However, the desired
less-than- x k runtime overhead of BatchEnsemble typically happens only when the original model
underutilizes the power of parallel computations of a given hardware. This will not be the case for
attention-based models on datasets with a large number of features, as well as for retrieval-based
models on datasets with a large number of objects. Second, as we show in subsection 4.3, attention-
and retrieval-based models are already slow as-is. By contrast, MLPs are exceptionally efficient, to
the extent that slowing them down even by an order of magnitude will still result in practical models.

Also, generally speaking, the definition of MLP suggested in subsection 3.3 and used in TabM is not
special, and more advanced MLP-like backbones can be used. However, in preliminary experiments,
we did not observe the benefits of more advanced backbones. Perhaps, small technical differences
between backbones become less impactful in the context of parameter-efficient ensembling, at least
in the scope of middle-to-large-sized datasets.

A.2 TABM WITH FEATURE EMBEDDINGS

Notation. In this paper, we use 1 to mark TabM variants with the piecewise-linear embeddings (e.g.
TabM' . TabM', etc.).

Implementation details. In fact, there are no changes in the usage of feature embeddings compared
to plain MLPs: feature embeddings are applied, and the result is flattened, before being passed to
the backbones in terms of Figure 1. For example, if a dataset has m continuous features and all of
them are embedded, the very first adapter R will have the shape & x md., where d. is the feature
embedding size. For TabMITnini and TabM', we initialize the first multiplicative adapter R of the first
linear layer from the standard normal distribution A/(0, 1). The remaining details are best understood
from the source code.

Efficiency. When feature embeddings are used, the simplified batching strategy from subsec-
tion 3.4 allows for more efficient implementation, when the feature embeddings are applied to the
original batch_size objects, and the result is simply cloned £ times (compared to embedding
k X batch_size objects with the original batching strategy).

A.3 HYPERPARAMETERS

We noticed that the typical optimal learning rate for TabM is higher than for MLP (note that, on
each dataset, the batch size is the same for all DL models). We hypothesize that the reason is the
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effectively larger batch size for TabM because of how the training batches are constructed (even if
the simplified batching strategy from subsection 3.4 is used).

A.4 LIMITATIONS AND PRACTICAL CONSIDERATIONS

TabM does not introduce any new limitations compared to BatchEnsemble (Wen et al., 2020).
Nevertheless, we note the following:

* The MLP backbone used in TabM is one of the simplest possible, and generally, more advanced
backbones can be used. That said, some backbones may require additional care when used in
TabM. For example, we did not explore backbones with normalization layers. For such layers, it
is possible to allocate non-shared trainable affine transformations for each implicit submodel
by adding one multiplicative and one additive adapter after the normalization layer (i.e. like in
FiLM-Ensemble (Turkoglu et al., 2022)). Additional experiments are required to find the best
strategy.

 For ensemble-like models, such as TabM, the notion of “the final object embedding* changes:
now, it is not a single vector, but a set of k£ vectors. If exactly one object embedding is required,
then additional experiments may be needed to find the best way to combine k& embeddings into
one. The presence of multiple object embeddings can also be important for scenarios when
TabM is used for solving more than one task, in particular when it is pretrained as a generic
feature extractor and then reused for other tasks. The main practical guideline is that the %k
prediction branches should not interact with each other (e.g. through attention, pooling, etc.)
and should always be trained separately.

B EXTENDED RESULTS
This section complements section 4.

B.1 ADDITIONAL BASELINES

In addition to the models from subsection 4.1, we consider the following baselines:

e MLP-PLR Gorishniy et al. (2022), that is, an MLP with periodic embeddings.

¢ ResNet (Gorishniy et al., 2021)

¢ SNN (Klambauer et al., 2017)

* DCNv2 (Wang et al., 2020)

e Autolnt (Song et al., 2019)

* MLP-Mixer is our adaptation of Tolstikhin et al. (2021) for tabular data.

» Trompt (Chen et al., 2023b) (our reimplementation, since there is no official implementation)

We also evaluated TabPFN (Hollmann et al., 2023), where possible. The results for this model are
available only in Appendix E because this model is by design not applicable to regression tasks,
which is a considerable number of our datasets. Overall, TabPFN specializes in small datasets. In
line with that, the performance of TabPFN on our benchmark was not competitive.

B.2 TASK PERFORMANCE

Figure 8 is a different version of Figure 3 with additional baselines. Overall, none of the additional
baselines affect our main story.

Figure 9 is the critical difference diagram (CDD) computed over exactly the same results that were
used for building Figure 3.
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Figure 8: An extended comparison of tabular models as in Figure 3. Note that the ranks (left) are
computed only over the 37 datasets with random splits because ResNet, AutoInt, and MLP-Mixer
were evaluated only on one 1 out of 9 datasets with domain-aware splits.
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Figure 9: Critical difference diagram. The computation method is taken from the Kim et al. (2024).

B.3 EFFICIENCY

This section complements subsection 4.3.

Additional results.

Figure 10 complements Figure 4 by providing the training times on smaller datasets and the inference
throughput on GPU with large batch sizes.

Table 3 provide the number of trainable parameters for some of the models from Figure 3.

Motivation for the benchmark setup. Comparing models under all possible kinds of budgets (task
performance, the number of parameters, training time, etc.) on all possible hardware (GPU, CPU,
etc.) with all possible batch sizes is rather infeasible. As such, we set a narrow goal of providing a
high-level intuition on the efficiency in a transparent setting. Thus, benchmarking the transparently
obtained tuned hyperparameter configurations works well for our goal. Yet, this choice also has
a limitation: the hyperparameter tuning process is not aware of the efficiency budget, so it can
prefer much heavier configurations even if they lead to tiny performance improvements, which will
negatively affect efficiency without a good reason. Overall, we hope that the large number of datasets
compensates for potentially imperfect per-dataset measurements.
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Motivation for the two setups for measuring inference throughput.

 The setup on the right side of Figure 4 simulates the online per-object predictions.
* The setup on the right side of Figure 10 simulates the offline batched computations.

Training time on datasets with < 100K objects Inference throughput with maximum batch size
Device: GPU NVIDIA A100 Device: GPU NVIDIA 2080Ti
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Figure 10: (Left) Training time on datasets with less than 100K objects. (Right) Inference throughput
on GPU with maximum possible batch size (i.e. the batch size depends on a model).

Table 3: Mean number of parameters with std. dev. for 7 different tuned models across all 46 datasets.

TabM MLP FI-T T2G TabR ModernNCA SAINT
1.4M £13M 1.0M £1.0M 12M £12M 21M £1.6M 858K +1.4M 1.0M £1.1M 175.4M =+ 565.4M

C DATASETS

In total, we use 46 datasets:

1. 38 datasets are taken from Gorishniy et al. (2024), which includes:
(a) 28 datasets from Grinsztajn et al. (2022). See the original paper for the precise dataset
information.
(b) 10 datasets from other sources. Their properties are provided in Table 4.
2. 8 datasets from the TabReD benchmark (Rubachev et al., 2024). Their properties are provided
in Table 5.

In fact, the aforementioned 38 datasets from Gorishniy et al. (2024) is only a subset of the datasets
used in Gorishniy et al. (2024). Namely, we did not include the following of the remaining datasets:

e The datasets that, according to Rubachev et al. (2024), have incorrect splits
and/or label leakage, including: Bike_Sharing Demand, compass, electricity,
SGEMM _GPU kernel_performance, sulfur, visualizing soil, and the weather forecast-
ing dataset (it is replaced by the correct weather forecasting dataset from TabReD (Rubachev
et al., 2024)).

¢ 1l from (Grinsztajn et al., 2022). We observed abnormal results on these datasets. This is an
anonymous dataset, which made the investigation impossible, so we removed this dataset to
avoid confusion.

e yprop-4_1 from (Grinsztajn et al., 2022). Strictly speaking, this dataset was omitted due to a
mistake on our side. For future work, we note that the typical performance gaps on this dataset
have low absolute values in terms of RMSE. Perhaps, ?? may be a more appropriate metric for
this dataset.
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Table 4: Properties of those datasets from Gorishniy et al. (2024) that are not part of Grinsztajn et al.
(2022) or TabReD Rubachev et al. (2024). “# Num”, “# Bin”, and “# Cat” denote the number of
numerical, binary, and categorical features, respectively. The table is taken from (Gorishniy et al.,
2024).

Name # Train # Validation # Test # Num # Bin # Cat Task type Batch size
Churn Modelling 6400 1600 2000 7 3 1 Binclass 128
California Housing 13 209 3303 4128 8 0 0 Regression 256
House 16H 14581 3646 4557 16 0 0  Regression 256
Adult 26048 6513 16 281 6 1 8  Binclass 256
Diamond 34521 8631 10788 6 0 3 Regression 512
Otto Group Products 39601 9901 12376 93 0 0 Multiclass 512
Higgs Small 62751 15688 19610 28 0 0  Binclass 512
Black Friday 106764 26692 33365 4 1 4 Regression 512
Covertype 371847 92962 116203 10 4 1 Multiclass 1024
Microsoft 723412 235259 241521 131 5 0 Regression 1024

Table 5: Properties of the datasets from the TabReD benchmark (Rubachev et al., 2024). “# Num”,
“# Bin”, and “# Cat” denote the number of numerical, binary, and categorical features, respectively.

Name # Train # Validation # Test # Num # Bin # Cat Task type Batch size
Sberbank Housing 18 847 4827 4647 365 17 10 Regression 256

Ecom Offers 109341 24261 26455 113 6 0  Binclass 1024
Maps Routing 160019 59975 59951 984 0 2 Regression 1024
Homesite Insurance 224320 20138 16295 253 23 23  Binclass 1024
Cooking Time 227087 51251 41648 186 3 3 Regression 1024
Homecredit Default 267645 58018 56001 612 2 82  Binclass 1024
Delivery ETA 279415 34174 36927 221 1 1 Regression 1024
Weather 340596 42359 40840 100 3 0 Regression 1024

D IMPLEMENTATION DETAILS

D.1 HARDWARE

Most of the experiments were conducted on a single NVIDIA A100 GPU. In rare exceptions, we used
a machine with a single NVIDIA 2080 Ti GPU and Intel(R) Core(TM) 17-7800X CPU @ 3.50GHz.

D.2 EXPERIMENT SETUP

We mostly follow the experiment setup from Gorishniy et al. (2024). As such, some of the text below
is copied from (Gorishniy et al., 2024).

Data preprocessing. For each dataset, for all DL-based solutions, the same preprocessing was used
for fair comparison. For numerical features, by default, we used a slightly modified version of the
quantile normalization from the Scikit-learn package (Pedregosa et al., 2011) (see the source code),
with rare exceptions when it turned out to be detrimental (for such datasets, we used the standard
normalization or no normalization). For categorical features, we used one-hot encoding. Binary
features (i.e. the ones that take only two distinct values) are mapped to {0, 1} without any further
preprocessing. We completely follow Rubachev et al. (2024) on Table 5 datasets.

Training neural networks. For DL-based algorithms, we minimize cross-entropy for classification
problems and mean squared error for regression problems. We use the AdamW optimizer (Loshchilov
& Hutter, 2019). We do not apply learning rate schedules. We do not use data augmentations. We
apply global gradient clipping to 1.0. For each dataset, we used a predefined dataset-specific batch
size. We continue training until there are pat ience consecutive epochs without improvements on
the validation set; we set patience = 16 for the DL models.

Hyperparameter tuning. In most cases, hyperparameter tuning is performed with the TPE sampler
(typically, 50-100 iterations) from the Optuna package (Akiba et al., 2019). Hyperparameter tuning
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spaces for most models are provided in individual sections below (example for TabM: subsection D.9).
We follow Rubachev et al. (2024) and use 25 iterations on some datasets from Table 5.

Evaluation. On a given dataset, for a given model, the tuned hyperparameters are evaluated under
multiple (in most cases, 15) random seeds. The mean test metric and its standard deviation over these
random seeds are then used to compare algorithms as described in subsection D.3.

D.3 METRICS

We use Root Mean Squared Error for regression tasks, ROC-AUC for classification datasets from
Table 5 (following Rubachev et al. (2024)), and accuracy for the rest of datasets (following Gorishniy
et al. (2024)). We also tried computing ROC-AUC for all classification datasets, but did not observe
any significant changes (see Figure 11), so we stuck to prior work. By default, the mean test score
and its standard deviation are obtained by training a given model with tuned hyperparameters from
scratch on a given dataset under 15 different random seeds.

How we compute ranks. Our method of computing ranks used in Figure 3 does not count small
improvements as wins, hence the reduced range of ranks compared to other studies. Intuitively, our
ranks can be considered as “tiers”.

Recall that, on a given dataset, the performance of a given model A is expressed with the mean A pean
and the standard deviation Ay of the performance score computed after the evaluation under multiple
random seeds. Assuming the higher score the better, we define that the model A is better than the
model B if: Ajean — Asid > Bmean. In other words, a model is considered better if it has a better mean
score and the margin is larger than the standard deviation.

On a given dataset, when there are many models, we sort them in descending score order. Starting
from the best model (with a rank equal to 1) we iterate over models and assign the rank 1 to all models
that are no worse than the best model according to the above rule. The first model in descending
order that is worse than the best model is assigned rank 2 and becomes the new reference model. We
continue the process until all models are ranked. Ranks are computed independently for each dataset.

D.4 IMPLEMENTATION DETAILS OF SUBSECTION 4.3

bl

Applicability to large datasets. The two datasets used in Table 2 are the full versions of the “Weather’
and “Maps Routing” datasets from the TabReD benchmark Rubachev et al. (2024). Their smaller
versions with subsampled training set were already included in Table 1 and were used when building
Figure 3. The validation and test sets are the same for the small and large versions of these datasets,
so the task metrics are comparable between the two versions. When running models on the large
versions of the datasets, we reused the hyperparameters tuned for their small versions. Thus, this
experiment can be seen as a quick assessment of the applicability of several tabular DL to large
datasets without a strong focus on the task performance. All models, except for FT-Transformer,
were evaluated under 3 random seeds. FT-Transformer was evaluated under 1 random seed.

D.5 IMPLEMENTATION DETAILS OF SUBSECTION 5.1

Experiment setup. This paragraph complements the description of the experiment setup in subsec-
tion 5.1. Namely, in addition to what is mentioned in the main text:

* Dropout and weight decay are turned off.

* To get representative training profiles for all models, the learning rates are tuned
separately for TabMﬁ;fﬂl and TabM]’fjf’2 on validation sets using the usual metrics
(i.e. RMSE or accuracy) as the guidance. The grid for learning rate tuning was:

numpy . logspace (numpy.loglO (le-5), numpy.loglO (5e-3), num=25).

D.6 IMPLEMENTATION DETAILS OF SUBSECTION 5.2
TabM|G]. Here, we clarify the implementation details for TabM[G] described in subsection 5.2.

TabM|G] is obtained from a trained TabM by greedily selecting submodels from TabM starting from
the best one and stopping when two conditions are simultaneously true for the first time: (1) adding
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Figure 11: Same as Figure 3, but ROC-AUC is used as the metric for all classification datasets. The
two multiclass datasets presented in our benchmark are not taken into account.

any new submodel does not improve the validation metric of the collective prediction; (2) the current
validation metric is already better than that of the initial model with all £ submodels. To clarify,
during the greedy selection, the ¢-th submodel is considered to be better than the j-th submodel if
adding the ¢-th submodel to the aggregated prediction leads to better validation metrics (i.e. it is not
the same as adding the submodel in the order of their individual validation metrics).

D.7 IMPLEMENTATION DETAILS OF SUBSECTION 5.3

Figure 7 shows the mean percentage improvements (see subsection D.3) over MLP across 17 datasets:
all datasets except for Covertype from Table 4, and all datasets from TabReD (Rubachev et al., 2024).
We have used the dropout rate 0.1 and tuned the learning rate separately for each value of k. The
score on each dataset is averaged over 5 seeds.

D.8 NON-LINEAR EMBEDDINGS FOR CONTINUOUS FEATURES

Notation. We use the notation based on { and I only for brevity. Any other unambiguous notation
can be used in future work.

Updated piecewise-linear embeddings. We use a slightly different implementation of the piecewise-
linear embeddings compared to Gorishniy et al. (2022). Architecture-wise, our implementation
corresponds to the “Q-L” and “T-L” variations from Table 2 in Gorishniy et al. (2022) (we use the
quantile-based bins for simplicity). In practice, our implementation is significantly faster and uses a
different parametrization and initialization. See the source code for details.

Other models. Since it is not feasible to test all combinations of backbones and embeddings, for
baselines, we stick to the embeddings used in the original papers (applies to TabR (Gorishniy et al.,
2024), ExcelFormer (Chen et al., 2023a) and ModernNCA (Ye et al., 2024)). For all models with
feature embeddings (including TabM, MLP, TabR, ModernNCA, ExcelFormer), the embeddings-
related details are commented in the corresponding sections below.
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D.9 TaBM

Feature embeddings. Taijnini and TabM' are the versions of TabM with non-linear feature

embeddings. TaerTnini and TabM' use the updated piecewise-linear feature embeddings mentioned
in subsection D.8.

Table 6 provides the hyperparameter tuning spaces for TabM and TabM,;,;. Table 7 provides the
hyperparameter tuning spaces for TabM' and TabM!

mini*

Table 6: The hyperparameter tuning space for TabM and TabMy,n;. Here, (B) = {Covertype, Mi-
crosoft, Table 5} and (A) contains all other datasets.

Parameter Distribution or Value

k 32

# layers UniformInt[1, 5]

Width (hidden size)  UniformInt[64, 1024]
Dropout rate {0.0, Uniform[0.0, 0.5] }
Learning rate LogUniform[le-4, 5e-3]
Weight decay {0, LogUniform[1le-4, le-1]}

# Tuning iterations  (A) 100 (B) 50

Table 7: The hyperparameter tuning space for TabMITnini and TabM'. Here, (B) = {Covertype,

Microsoft, Table 5} and (A) contains all other datasets.

Parameter Distribution or Value

k 32

# layers UniformInt[1, 4]

Width (hidden size)  UniformInt[64, 1024]
Dropout rate {0.0, Uniform[0.0, 0.5]}

# PLE bins UniformInt[8, 32]

Learning rate LogUniform[5e-5, 3e-3]
Weight decay {0, LogUniform|[le-4, le-1]}

# Tuning iterations  (A) 100 (B) 50

D.10 MLP

Feature embeddings. MLP' and MLP? are the versions of MLP with non-linear feature embeddings.
MLP' uses the updated piecewise-linear embeddings mentioned in subsection D.8. MLP?* (also
known as MLP-PLR) uses the periodic embeddings (Gorishniy et al., 2022). Technically, it is the
PeriodicEmbeddings class from the rtd1l_num_embeddings Python package. We tested
two variations: with 1ite=False and 1ite=True. In the paper, only the former one is reported,
but in the source code, the results for both are available.

Table 8, Table 9, Table 10 provide the hyperparameter tuning spaces for MLP, MLP' and MLP#,
respectively.

D.11 TaBR

Feature embeddings. TabR* is the version of TabR with non-linear feature em-
beddings. TabR! uses the periodic embeddings (Gorishniy et al., 2022), specifi-
cally, PeriodicEmbeddings (lite=True) from the rtdl_num_embeddings
Python package on most datasets. On the datasets from Table 5, TabR* uses the
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Table 8: The hyperparameter tuning space for MLP.

Parameter

Distribution

# layers

Width (hidden size)
Dropout rate
Learning rate
Weight decay

UniformInt[1, 6]
UniformInt[64, 1024]

{0.0, Uniform[0.0, 0.5]}
LogUniform[3e-5, 1e-3]

{0, LogUniform[1le-4, le-1]}

# Tuning iterations

100

Table 9: The hyperparameter tuning space for MLP'.

Parameter

Distribution

# layers

Width (hidden size)
Dropout rate
Learning rate
Weight decay

UniformInt[1, 5]
UniformInt[64, 1024]

{0.0, Uniform[0.0, 0.5]}
LogUniform|3e-5, 1e-3]

{0, LogUniform[le-4, le-1]}

d_embedding
n_bins
# Tuning iterations

UniformInt[8, 32]
UniformInt[2, 128]
100

Table 10: The hyperparameter tuning space for MLP¥.

Parameter Distribution
# layers UniformInt[1, 5]
Width (hidden size) ~ UniformInt[64, 1024]

Dropout rate
Learning rate
Weight decay

{0.0, Uniform[0.0, 0.5]}
LogUniform[3e-5, 1e-3]
{0, LogUniform[le-4, le-1]}

n_frequencies
d_embedding
frequency_init_scale
# Tuning iterations

UniformInt[16, 96]
UniformInt[16, 32
LogUniform[le-2, lel]
100

PeriodicEmbeddings (lite=True) embeddings on the Sberbank Housing and Ecom
Offers datasets, and LinearReLUEmbeddings on the rest (to fit the computations into the GPU
memory, following the original TabR paper).

Since we follow the training and evaluation protocols from Gorishniy et al. (2024), and TabR was
proposed in Gorishniy et al. (2024), we simply reuse the results for TabR. More details can be found
in Appendix.D from Gorishniy et al. (2024). When tuning TabR* on the datasets from Table 5, we
have used 25 tuning iterations and the same tuning space as for TabR from Rubachev et al. (2024).
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D.12 FT-TRANSFORMER

We used the implementation from the "rtdl_revisiting.models” Python package. The results
on datasets from Table 5 were copied from Rubachev et al. (2024), because the experiment setups are
compatible.

Table 11: The hyperparameter tuning space for FT-Transformer Gorishniy et al. (2021). Here, (B) =
{Covertype, Microsoft} and (A) contains all other datasets (except Table 5).

Parameter Distribution or Value

# blocks UniformInt[1, 4]

dioken UniformInt[16, 384]
Attention dropout rate Uniform[0.0, 0.5]

FFN hidden dimension expansion rate ~ Uniform|2/3, 8/3]

FEN dropout rate Uniform[0.0, 0.5]

Residual dropout rate {0.0, Uniform[0.0, 0.2]}
Learning rate LogUniform[3e-5, 1e-3]
Weight decay {0, LogUniform[le-4, le-1]}
# Tuning iterations (A) 100 (B) 50

D.13 MODERNNCA

Feature embeddings. We adapted the official implementation of Ye et al. (2024). We used periodic
embeddings Gorishniy et al. (2022) (specifically, PeriodicEmbeddings (lite=True) from
the rt d1_num_embeddings Python package) for ModernNCA* and no embeddings for Modern-
NCA. Table 12 and Table 13 provides hyperparameter tuning spaces for each ModernNCA and
ModernNCA¥.

Table 12: The hyperparameter tuning space for ModernNCA. Here, (C) = {Table 5}, (B) = {Covertype,
Microsoft} and (A) contains all other datasets.

Parameter Distribution

# blocks UniformInt[0, 2]

dpiock UniformInt[64, 1024]

dim UniformInt[64, 1024]
Dropout rate Uniform[0.0, 0.5]

Sample rate Uniform][0.05, 0.6]

Learning rate LogUniform[le-5, le-1]
Weight decay {0, LogUniform[1e-6, 1e-3]}

# Tuning iterations  (A) 100 (B, C) 50

D.14 T2G-FORMER

We adapted the implementation and hyperparameters of Yan et al. (2023) from the official repository'.
Table 14 provides hyperparameter tuning space.

D.15 SAINT

We completely adapted hyperparameters and protocol from Gorishniy et al. (2024) to evaluate SAINT
on Grinsztajn et al. (2022) benchmark. Results on datasets from Table 4 were directly taken from

'https://github.com/jyansir/t2g-former
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Table 13: The hyperparameter tuning space for ModernNCA*. Here, (C) = {Table 5}, (B) =
{Covertype, Microsoft} and (A) contains all other datasets.

Parameter Distribution

# blocks UniformInt[0, 2]

dplock UniformInt[64, 1024]

dim UniformInt[64, 1024]
Dropout rate Uniform[0.0, 0.5]

Sample rate Uniform|[0.05, 0.6]

Learning rate LogUniform[le-5, le-1]
Weight decay {0, LogUniform[le-6, le-3]}
n_frequencies UniformInt[16, 96]
d_embedding UniformInt[16, 32

frequency_init_scale  LogUniform[0.01, 10]

# Tuning iterations (A) 100 (B, C) 50

Table 14: The hyperparameter tuning space for T2G-Former Yan et al. (2023). Here, (C) = {Table 5},
(B) = {Covertype, Microsoft} and (A) contains all other datasets. Also, we used 50 tuning iterations
on some datasets from Grinsztajn et al. (2022).

Parameter Distribution or Value

# blocks (A) UniformInt[3, 4] (B, C) UniformInt|1, 3]
dioken UniformInt[64, 512]

Attention dropout rate Uniform][0.0, 0.5]

FFN hidden dimension expansion rate (A, B) Uniform|2/3,8/3] (C) 4/3
FEN dropout rate Uniform|[0.0, 0.5]

Residual dropout rate {0.0, Uniform[0.0, 0.2]}
Learning rate LogUniform|3e-5, 1e-3|

Col. Learning rate LogUniform[5e-3, 5e-2]

Weight decay {0, LogUniform[1e-6, le-1]}

# Tuning iterations (A) 100 (B) 50 (C) 25

Gorishniy et al. (2024). Additional details can be found in Appendix.D from Gorishniy et al. (2024).
We have used a default configuration on big datasets due to the very high cost of tuning (see Table 15).

D.16 EXCELFORMER

Feature embeddings. ExcelFormer (Chen et al., 2023a) uses custom non-linear feature embeddings
based on a GLU-style activation, see the original paper for details.

We adapted the implementation and hyperparameters of Chen et al. (2023a) from the official reposi-
tory”. For a fair comparison with other models, we did not use the augmentation techniques from the
paper in our experiments. See Table 16.

D.17 CATB0OOST, XGB0OOST AND LIGHTGBM

Since our setup is directly taken from Gorishniy et al. (2024), we simply reused their results for
GBDTs from the official repository’. Importantly, in a series of preliminary experiments, we

>https://github.com/What AShot/ExcelFormer
3https://github.com/yandex-research/tabular-dl-tabr
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Table 15: The default hyperparameters for SAINT (Somepalli et al., 2021) on datasets from Rubachev
et al. (2024).

Parameter Value
depth 2
dtoken 32
Nheads 4
dhead 3
Attention dropout rate 0.1
FFN hidden dimension expansion rate 1
FFN dropout rate 0.8
Learning rate le-4
Weight decay le-2

Table 16: The hyperparameter tuning space for Excelformer Chen et al. (2023a). Here, (D) =
{Homecredit, Maps Routing}, (C) = {Table 5 w/o (D)}, (B) = {Covertype, Microsoft} and (A)
contains all other datasets.

Parameter Distribution or Value

# blocks (A, B) UniformInt[2, 5] (C) UniformInt[2, 4] (D) UniformInt[1, 3]
dioken (A, B) {32,64, 128,256} (C) {16,32, 64} (D) {4,8, 16,32}

Rheads (AB) {4,8,16,32} (C) {4,8,16} (D) 4

Attention dropout rate 0.3

FFN dropout rate 0.0

Residual dropout rate ~ Uniform][0.0, 0.5]

Learning rate LogUniform|3e-5, 1e-3]

Weight decay {0, LogUniform[le-4, le-1]}

# Tuning iterations (A) 100 (B) 50 (C, D) 25

confirmed that those results are reproducible in our instance of their setup. The details can be found
in Appendix.D from Gorishniy et al. (2024). Results on datasets from Table 5 were copied from the
paper (Rubacheyv et al., 2024).

D.18 AUTOINT
We used an implementation from Gorishniy et al. (2021) which is an adapted official implementation®.

D.18.1 TABPFN

Since TabPFN accepts only less than 10K training samples we use different subsamples of size 10K
for different random seeds. Also, TabPFN is not applicable to regressions and datasets with more
than 100 features.

*https://github.com/shichence/Autolnt

25



Published as a conference paper at ICLR 2025

Table 17: The hyperparameter tuning space for Autolnt (Song et al., 2019). Here, (B) = {Covertype,
Microsoft} and (A) contains all other datasets.

Parameter Distribution

# blocks UniformInt[1, 6]
dioken UniformInt[8, 64]
Nheads 2

Attention dropout rate {0, Uniform[0.0,0.5]}
Embedding dropout rate {0, Uniform[0.0, 0.5]}

Learning rate LogUniform|[3e-5, le-3]
Weight decay {0, LogUniform[le-4, le-1]}
# Tuning iterations (A) 100 (B) 50

E PER-DATASET RESULTS WITH STANDARD DEVIATIONS

Table 18: Extended results for the main benchmark. Results are grouped by datasets. One ensemble
consists of five models trained independently under different random seeds.

churn T california |
Method Single model Ensemble Method Single model Ensemble
MLP 0.8553 4+ 0.0029 0.8582 + 0.0008 MLP 0.4948 £ 0.0058 0.4880 % 0.0022
TabPFN - 0.8624 4+ 0.0008 TabPFN - —
ResNet 0.8545 4+ 0.0044 0.8565 + 0.0035 ResNet 0.4915 4+ 0.0031 0.4862 + 0.0017
DCN2 0.8567 +0.0020 0.8570 £ 0.0017 DCN2 0.4971 £ 0.0122 0.4779 % 0.0022
SNN 0.8506 4+ 0.0051 0.8533 + 0.0033 SNN 0.5033 4+ 0.0075 0.4933 + 0.0035
Trompt 0.8600 &= nan  — Trompt 0.4579 £ nan  —
Autolnt 0.8607 4+ 0.0047 0.8622 + 0.0003 Autolnt 0.4682 4+ 0.0063 0.4490 + 0.0028
MLP-Mixer 0.8592 + 0.0036 0.8630 £ 0.0005 MLP-Mixer 0.4746 £ 0.0056 0.4509 £ 0.0029
Excel” 0.8618 4+ 0.0023 0.8625 + nan FExcel” 0.4544 4+ 0.0048 0.4350 + nan
SAINT 0.8603 4+ 0.0029 — SAINT 0.4680 4 0.0048 —
FT-T 0.8593 4+ 0.0028 0.8598 + 0.0025 FT-T 0.4635 4 0.0048 0.4515 + 0.0016
T2G 0.8613 +0.0015 — T2G 0.4640 4+ 0.0100 0.4462 £ nan
MLP#~1te 0.8624 4 0.0010 0.8638 £ 0.0012 MLP!=1e0.4652 4 0.0045 0.4549 + 0.0006
MLP* 0.8624 4+ 0.0026 0.8640 + 0.0010 MLP? 0.4597 4+ 0.0058 0.4482 + 0.0026
MLPT 0.8580 4+ 0.0028 0.8605 + 0.0018 MLPT 0.4530 4+ 0.0029 0.4491 + 0.0010

XGBoost 0.8605 + 0.0022 0.8608 £ 0.0013 XGBoost 0.4327 £ 0.0016 0.4316 £ 0.0007
LightGBM  0.8600 £ 0.0008 0.8600 =+ 0.0000 LightGBM  0.4352 4+ 0.0019 0.4339 £ 0.0008
CatBoost 0.8582 1+ 0.0017 0.8588 £ 0.0008 CatBoost 0.4294 +0.0012 0.4265 £ 0.0003

TabR 0.8599 £+ 0.0025 0.8620 £ 0.0023 TabR 0.4030 4 0.0023 0.3964 £ 0.0013
TabR* 0.8625 + 0.0021 — TabR* 0.3998 + 0.0033 —

MNCA 0.8595 + 0.0028 0.8615 £ 0.0013 MNCA 0.4239 £ 0.0012 0.4231 £ 0.0005
MNCA* 0.8606 £ 0.0032 0.8607 & 0.0008 MNCA* 0.4142 £+ 0.0031 0.4071 £ 0.0029
TabM* 0.8613 £ 0.0025 0.8615 % 0.0005 TabM* 0.4509 £ 0.0032 0.4490 £ 0.0018
TabM 0.8605 £ 0.0016 0.8612 4 0.0008 TabM 0.4414 £ 0.0012 0.4402 £ 0.0001

TabM[G] 0.8609 £ 0.0024 — TabM[G] 0.4413 £ 0.0020 —
TabMmini 0.8633 £ 0.0018 0.8638 £ 0.0012 TabMmini 0.4479 £ 0.0022 0.4461 £ 0.0011

TabM! 0.8606 + 0.0023 0.8630 £ 0.0030 TabM! 0.4275 £ 0.0024 0.4244 £ 0.0006

mini mini
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house | adult T

Method Single model Ensemble Method Single model Ensemble
MLP 3.1117 £ 0.0294 3.0706 £ 0.0140 MLP 0.8540 4+ 0.0018 0.8559 + 0.0011
TabPFN - - TabPFN - -
ResNet 3.1143 4+ 0.0258 3.0706 + 0.0098 ResNet 0.8554 4+ 0.0011 0.8562 + 0.0006
DCN2 3.3327 £ 0.0878 3.1303 £ 0.0410 DCN2 0.8582 4+ 0.0011 0.8593 % 0.0002
SNN 3.2176 +0.0376 3.1320 + 0.0155 SNN 0.8582 4 0.0009 0.8603 + 0.0012
Trompt 3.0638 = nan  — Trompt 0.8590 = nan  —
Autolnt 3.2157 +0.0436 3.1261 + 0.0095 Autolnt 0.8592 4+ 0.0016 0.8612 + 0.0004
MLP-Mixer 3.1871+ 0.0519 3.0184 £ 0.0086 MLP-Mixer 0.8598 + 0.0013 0.8617 £ 0.0002
Excel” 3.2460 4+ 0.0685 3.1097 + nan FExcel” 0.8613 4+ 0.0024 0.8641 + nan
SAINT 3.2424 +0.0595 — SAINT 0.8601 4+ 0.0019 —
FT-T 3.1823 +0.0460 3.0974 + 0.0334 FT-T 0.8588 +0.0015 0.8608 + 0.0011
T2G 3.1613 +0.0320 3.0982 + nan T2G 0.8601 4+ 0.0011 0.8622 + nan
ML p#-lite 3.0633 +0.0248 3.0170 + 0.0070 MLp#-lite 0.8693 £ 0.0007 0.8702 + 0.0006
MLP# 3.0775 +0.0336 3.0268 + 0.0170 MLP# 0.8694 4+ 0.0011 0.8704 + 0.0008
MLP? 3.0999 4+ 0.0351 3.0401 + 0.0071 MLPT 0.8603 &+ 0.0009 0.8616 =+ 0.0006
XGBoost 3.1773 £ 0.0102 3.1644 £ 0.0068 XGBoost 0.8720 £ 0.0006 0.8723 % 0.0002
LightGBM  3.1774 4+ 0.0087 3.1672 =+ 0.0050 LightGBM  0.8713 + 0.0007 0.8721 £ 0.0004
CatBoost 3.1172 4 0.0125 3.1058 + 0.0022 CatBoost 0.8714 4+ 0.0012 0.8723 + 0.0007
TabR 3.0667 4+ 0.0403 2.9958 + 0.0270 TabR 0.8646 4+ 0.0022 0.8680 + 0.0019
TabR* 3.1048 +0.0410 — TabR* 0.8699 4+ 0.0011 —
MNCA 3.0884 4+ 0.0286 3.0538 £ 0.0072 MNCA 0.8677 £ 0.0018 0.8696 £ 0.0003
MNCA# 3.0704 4+ 0.0388 3.0149 + 0.0308 MNCA# 0.8717 4+ 0.0008 0.8742 + 0.0006
TabM* 3.0002 4+ 0.0182 2.9796 + 0.0024 TabM* 0.8582 4+ 0.0011 0.8588 + 0.0003
TabM 3.0038 4+ 0.0097 2.9906 + 0.0026 TabM 0.8575 + 0.0008 0.8583 =+ 0.0004
TabM[G] 3.0082 +0.0184 — TabM[G] 0.8572 +0.0010 —
TabMmini 3.0394 4+ 0.0139 3.0206 £ 0.0128 TabMmini 0.8598 +0.0011 0.8604 = 0.0000
Taijnini 2.9976 + 0.0196 2.9854 + 0.0076 Tabenini 0.8700 £ 0.0007 0.8701 +£ 0.0003

diamond | otto T
Method Single model Ensemble Method Single model Ensemble
MLP 0.1404 4+ 0.0012 0.1362 + 0.0003 MLP 0.8175 4+ 0.0022 0.8222 + 0.0007
TabPFN - - TabPFN - 0.7408 4 0.0028
ResNet 0.1396 + 0.0029 0.1361 £ 0.0011 ResNet 0.8174 +0.0021 0.8198 £ 0.0006
DCN2 0.1420 4+ 0.0032 0.1374 + 0.0020 DCN2 0.8064 4+ 0.0021 0.8208 + 0.0023
SNN 0.1473 4 0.0057 0.1424 + 0.0008 SNN 0.8087 4+ 0.0020 0.8156 + 0.0013
Trompt 0.1391 £ nan  — Trompt 0.8093 £ nan  —
Autolnt 0.1392 4+ 0.0014 0.1361 £ 0.0004 Autolnt 0.8050 £+ 0.0034 0.8111 % 0.0020
MLP-Mixer 0.1400 + 0.0025 0.1378 £ 0.0008 MLP-Mixer 0.8092 + 0.0040 0.8136 £ 0.0010
Excel* 0.1766 4+ 0.0023 0.1712 &+ nan Excel” 0.8102 4 0.0022 0.8220 4+ nan
SAINT 0.1369 +0.0019 — SAINT 0.8119 +0.0018 —
FT-T 0.1376 +0.0013 0.1360 £ 0.0002 FT-T 0.8133 £ 0.0033 0.8221 + 0.0013
T2G 0.1372 +0.0011 0.1346 + nan T2G 0.8161 4+ 0.0019 0.8272 + nan
MLP#1te  (.1342 + 0.0008 0.1325 4 0.0004 MLP*!*  0.8190 £ 0.0021 0.8271 %+ 0.0015
MLP# 0.1337 +0.0010 0.1317 + 0.0003 MLP# 0.8189 £+ 0.0015 0.8253 + 0.0000
MLP* 0.1323 +0.0010 0.1301 + 0.0005 MLP! 0.8205 4 0.0021 0.8290 % 0.0006
XGBoost 0.1368 4+ 0.0004 0.1363 =+ 0.0001 XGBoost 0.8297 4+ 0.0011 0.8316 % 0.0008
LightGBM  0.1359 4+ 0.0002 0.1358 + 0.0001 LightGBM  0.8302 4+ 0.0009 0.8316 + 0.0013
CatBoost 0.1335 4+ 0.0006 0.1327 £ 0.0004 CatBoost 0.8250 £ 0.0013 0.8268 + 0.0002
TabR 0.1327 +0.0010 0.1311 + 0.0005 TabR 0.8179 4+ 0.0022 0.8236 + 0.0009
TabR* 0.1333 £ 0.0013 — TabR* 0.8246 + 0.0018 —
MNCA 0.1370 +0.0018 0.1348 + 0.0005 MNCA 0.8275 4+ 0.0012 0.8313 % 0.0006
MNCA* 0.1327 +0.0012 0.1315 + 0.0006 MNCA* 0.8265 4+ 0.0015 0.8304 + 0.0006
TabM* 0.1342 +0.0017 0.1327 £ 0.0004 TabM* 0.8268 4+ 0.0014 0.8300 + 0.0007
TabM 0.1310 4+ 0.0007 0.1307 + 0.0002 TabM 0.8275 4+ 0.0014 0.8284 + 0.0005
TabM[G] 0.1309 4+ 0.0008 — TabM|[G] 0.8254 4+ 0.0022 —
TabMmini 0.1323 4+ 0.0007 0.1317 + 0.0002 TabMmmini 0.8282 4+ 0.0014 0.8299 + 0.0005
TabM! 0.1315 4+ 0.0006 0.1312 + 0.0001 TabM! 0.8342 4+ 0.0012 0.8356 + 0.0004

mini

mini
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higgs-small 1

black-friday |

Method

Single model

Ensemble

Method

Single model

Ensemble

MLP
TabPFN
ResNet
DCN2
SNN
Trompt
Autolnt
MLP-Mixer
Excel*
SAINT
FT-T
T2G
MLPi*litc
MLP#
MLP?
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tamemi
TabM! .

mini

0.7180 4+ 0.0027
0.7256 4 0.0020
0.7164 4+ 0.0030
0.7142 4+ 0.0024
0.7262 4+ nan

0.7240 4 0.0028
0.7248 4+ 0.0023
0.7262 4+ 0.0017

0.7192 £ 0.0005
0.6727 + 0.0034
0.7307 £ 0.0001
0.7237 £ 0.0011
0.7171 £ 0.0020

0.7287 4+ 0.0008
0.7334 4+ 0.0007
0.7329 4+ nan

0.7236 £ 0.0019 —

0.7281 + 0.0016
0.7352 £ 0.0037
0.7260 + 0.0017
0.7261 + 0.0010
0.7210 £ 0.0016
0.7246 £ 0.0015
0.7256 + 0.0009
0.7260 £ 0.0011
0.7223 £ 0.0010
0.7294 + 0.0014
0.7263 £ 0.0023
0.7300 £ 0.0020
0.7383 + 0.0028
0.7394 £ 0.0018

0.7334 4+ 0.0013
0.7400 4 nan

0.7304 4+ 0.0008
0.7270 4+ 0.0003
0.7252 4+ 0.0005
0.7264 4+ 0.0013
0.7263 4 0.0007
0.7273 4+ 0.0010
0.7257 4+ 0.0008
0.7292 4+ 0.0006
0.7348 4+ 0.0008
0.7409 4+ 0.0010
0.7409 4+ 0.0008

0.7392 £ 0.0016 —

0.7338 £ 0.0011
0.7361 £ 0.0011

0.7345 £ 0.0008
0.7383 £ 0.0008

MLP
TabPFN
ResNet
DCN2
SNN
Trompt
Autolnt
MLP-Mixer
Excel”
SAINT
FT-T
T2G
MLPi*litC
MLP#
MLPT
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tamemi
TabM! .

mini

0.6955 4+ 0.0004
0.6929 4+ 0.0008
0.6968 £ 0.0013
0.6996 4+ 0.0013
0.6983 4 nan

0.6994 4 0.0082
0.6905 4+ 0.0021
0.6947 4+ 0.0016

0.6942 + 0.0002

0.6907 £ 0.0002
0.6936 + 0.0007
0.6978 £+ 0.0004

0.6927 4+ 0.0021
0.6851 4+ 0.0011
0.6908 4+ nan

0.6934 + 0.0009 —

0.6987 + 0.0192
0.6887 + 0.0046
0.6849 £ 0.0006
0.6857 = 0.0004
0.6836 £+ 0.0006
0.6806 + 0.0001
0.6799 £+ 0.0003
0.6822 £+ 0.0003
0.6899 £ 0.0004

0.6879 4+ 0.0023
0.6832 4 nan

0.6824 4+ 0.0002
0.6838 4+ 0.0002
0.6812 4+ 0.0002
0.6805 4 0.0000
0.6795 £ 0.0001
0.6813 4+ 0.0002
0.6883 4+ 0.0002

0.6761 = 0.0009 —

0.6893 + 0.0004
0.6885 £ 0.0007

0.6875 4+ 0.0015
0.6869 4 0.0004

0.6883 + 0.0000
0.6863 £ 0.0003

0.6866 £+ 0.0003
0.6865 4= 0.0001

0.6865 4= 0.0005 —

0.6863 + 0.0006
0.6781 £ 0.0004

0.6856 + 0.0003
0.6773 £ 0.0001

covtype2 T

microsoft |

Method

Single model

Ensemble

Method

Single model

Ensemble

MLP
TabPFN
ResNet
DCN2
SNN
Trompt
Autolnt
MLP-Mixer
Excel”
SAINT
FT-T
T2G

M, pi-lite
MLP#
MLP*
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tamemi
TabM! .

mini

0.9630 4+ 0.0012
0.9638 4 0.0005
0.9622 4+ 0.0019
0.9636 4 0.0010
0.9286 4+ nan

0.9614 4+ 0.0016
0.9663 4+ 0.0019
0.9606 4 0.0018

0.9664 + 0.0004
0.7606 £ 0.0022
0.9685 £+ 0.0003
0.9673 +0.0011
0.9677 + 0.0002

0.9696 4 0.0005
0.9699 4+ 0.0014
0.9670 4+ nan

0.9669 + 0.0010 —

0.9698 + 0.0008
0.9668 £+ 0.0008

0.9690 £ 0.0008
0.9713 £+ 0.0006

0.9697 + 0.0008
0.9710 £ 0.0002

0.9731 4 0.0006
0.9708 &+ nan

0.9721 £+ 0.0006
0.9758 + 0.0000

0.9721 + 0.0005
0.9713 £ 0.0000

0.9709 £ 0.0003 —

0.9670 + 0.0003
0.9737 £ 0.0005

0.9680 £ 0.0002
0.9745 £+ 0.0006

0.9752 £ 0.0003 —

0.9724 £+ 0.0003
0.9747 £+ 0.0002

0.9712 £+ 0.0008
0.9735 £+ 0.0004
0.9730 £ 0.0005 —
0.9710 £+ 0.0007

0.9755 £+ 0.0003

0.9729 £+ 0.0001
0.9747 £+ 0.0002

0.9729 £+ 0.0003
0.9743 £+ 0.0001

0.9727 £+ 0.0002
0.9762 £+ 0.0001

MLP
TabPFN
ResNet
DCN2
SNN
Trompt
Autolnt
MLP-Mixer
Excel”
SAINT
FT-T
T2G

M, pi-lite
MLP#
MLPT
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM|[G]
Tarmemi
TabM! .

mini

0.7475 4+ 0.0003
0.7472 4+ 0.0004
0.7499 4+ 0.0003
0.7488 4 0.0004
0.7476 & nan

0.7482 £ 0.0005
0.7482 4+ 0.0008
0.7479 4+ 0.0007
0.7625 4+ 0.0066 —
0.7460 4 0.0007
0.7460 4+ 0.0006
0.7446 4+ 0.0002
0.7444 4+ 0.0003
0.7465 4 0.0005
0.7413 4+ 0.0001
0.7417 4+ 0.0001
0.7412 4 0.0001
0.7503 4 0.0006

0.7460 £ 0.0003

0.7452 £+ 0.0004
0.7477 4+ 0.0001
0.7470 £+ 0.0001

0.7455 4 0.0002
0.7436 4+ 0.0001
0.7442 4+ nan

0.7422 4 0.0004
0.7427 &+ nan

0.7434 4+ 0.0002
0.7429 4+ 0.0001
0.7448 4 0.0001
0.7410 4 0.0000
0.7413 4+ 0.0000
0.7406 4 0.0000
0.7485 4 0.0002

0.7501 £ 0.0005 —

0.7458 1 0.0003
0.7460 £ 0.0008

0.7434 £+ 0.0003
0.7432 £+ 0.0004
0.7432 +0.0004 —
0.7436 £+ 0.0002

0.7423 4 0.0002

0.7448 1 0.0002
0.7435 £ 0.0004

0.7424 £+ 0.0001
0.7426 £ 0.0001

0.7430 £ 0.0002
0.7416 4= 0.0001
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Table 19: Extended results for Grinsztajn et al. (2022) benchmark. Results are grouped by datasets.
One ensemble consists of five models trained independently with different random seeds.

wine T phoneme 7

Method Single model Ensemble Method Single model Ensemble

MLP 0.7778 +0.0153 0.7907 & 0.0117 MLP 0.8525 4+ 0.0126 0.8635 4 0.0099
TabPFN - 0.7908 4 0.0063 TabPFN - 0.8684 4 0.0050
ResNet 0.7710 4 0.0137 0.7839 4+ 0.0083 ResNet 0.8456 4+ 0.0121 0.8504 4+ 0.0066
DCN2 0.7492 4 0.0147 0.7764 & 0.0095 DCN2 0.8342 4+ 0.0151 0.8543 4+ 0.0118
SNN 0.7818 +0.0143 0.7994 + 0.0097 SNN 0.8596 4+ 0.0124 0.8687 4+ 0.0080
Trompt 0.7818 4+ 0.0081 — Trompt 0.8465 4 0.0205 —

Autolnt 0.7745 4+ 0.0144 0.7909 4+ 0.0160 Autolnt 0.8623 4+ 0.0138 0.8754 4+ 0.0095
MLP-Mixer 0.7769 & 0.0149 0.7950 =+ 0.0087 MLP-Mixer 0.8629 4 0.0123 0.8757 = 0.0095
Excel” 0.7631 +0.0171 0.7765 + 0.0121 Excel” 0.8551 +0.0092 0.8711 + 0.0081
SAINT 0.7684 +0.0144 — SAINT 0.8657 = 0.0130 —

FT-T 0.7755 4+ 0.0133 0.7894 4+ 0.0083 FT-T 0.8667 4+ 0.0127 0.8795 4+ 0.0093
T2G 0.7733 +0.0118 0.7933 + 0.0137 T2G 0.8672 4+ 0.0166 0.8765 + 0.0141
MLPp#-tite 0.7803 + 0.0157 0.7964 4+ 0.0146 MLPp#-tite 0.8742 4+ 0.0120 0.8861 + 0.0071
MLP?# 0.7733 £ 0.0185 0.7856 4+ 0.0160 MLP# 0.8757 £ 0.0118 0.8856 4+ 0.0065
MLPf 0.7814 4+ 0.0132 0.7919 4+ 0.0098 MLP' 0.8647 4+ 0.0098 0.8761 4+ 0.0076
XGBoost 0.7949 4+ 0.0178 0.8010 & 0.0186 XGBoost 0.8682 4+ 0.0174 0.8771 4+ 0.0156
LightGBM  0.7890 + 0.0160 0.7929 + 0.0106 LightGBM  0.8702 +0.0129 0.8733 4+ 0.0126
CatBoost 0.7994 4+ 0.0131 0.8057 4 0.0098 CatBoost 0.8827 +0.0117 0.8897 4+ 0.0055
TabR 0.7936 +0.0114 0.8055 + 0.0057 TabR 0.8781 4+ 0.0096 0.8840 4+ 0.0054
TabR* 0.7804 +0.0148 — TabR? 0.8772 4+ 0.0087 —

MNCA 0.7911 4+ 0.0135 0.8005 + 0.0121 MNCA 0.8835 4 0.0079 0.8861 4 0.0057
MNCA? 0.7867 +0.0113 0.7953 +0.0114 MNCA¥ 0.8828 £ 0.0082 0.8925 4 0.0056
TabM* 0.7961 + 0.0136 0.8011 4 0.0084 TabM* 0.8701 +0.0167 0.8766 4+ 0.0128
TabM 0.7943 +0.0124 0.7985 4+ 0.0139 TabM 0.8831 +0.0121 0.8880 4+ 0.0108
TabM[G] 0.7879 £ 0.0161 — TabM[G] 0.8762 +0.0144 —

TabMini 0.7890 4 0.0130 0.7937 &+ 0.0103 TabMini 0.8803 £ 0.0098 0.8842 4 0.0067
Tabenim 0.7839 4+ 0.0169 0.7917 4+ 0.0143 Tabenini 0.8780 +0.0119 0.8817 + 0.0101

analcatdata_supreme | Mercedes_Benz_Greener_Manufacturing |

Method Single model Ensemble Method Single model Ensemble

MLP 0.0782 4+ 0.0081 0.0766 % 0.0090 MLP 8.3045 4+ 0.8708 8.2682 4+ 0.8992
TabPFN - - TabPFN - -

ResNet 0.0852 4+ 0.0076 0.0823 4 0.0078 ResNet 8.4434 4+ 0.7982 8.3178 4 0.8482
DCN2 0.0811 4+ 0.0137 0.0759 4 0.0086 DCN2 8.3540 4+ 0.8314 8.3021 4+ 0.8579
SNN 0.0826 4 0.0096 0.0779 4 0.0098 SNN 8.2718 4+ 0.8152 8.2236 4 0.8479
Trompt 0.0782 4+ 0.0095 — Trompt 8.3409 4+ 0.9840 —

Autolnt 0.0783 4+ 0.0078 0.0768 4 0.0083 Autolnt 8.4001 4 0.9256 8.3237 4 0.9658
MLP-Mixer 0.0770 4+ 0.0082 0.0759 + 0.0081 MLP-Mixer 8.2860 4+ 0.8656 8.2398 + 0.9023
Excel” 0.0796 4+ 0.0101 0.0776 £ 0.0101 Excel” 8.2244 4+ 0.8514 8.1918 4+ 0.9387
SAINT 0.0773 £ 0.0078 — SAINT 8.3556 4+ 0.9566 —

FT-T 0.0787 4+ 0.0086 0.0775 =+ 0.0091 FT-T 8.2252 4+ 0.8617 8.1616 4 0.8834
T2G 0.0775 4+ 0.0081 0.0763 4+ 0.0084 T2G 8.2120 4+ 0.8485 8.1654 4+ 0.9339
MLP*=%t 0.0798 £ 0.0088 0.0769 % 0.0092 MLP*lte 83045 + 0.8708 8.2682 4 0.8992
MLP#* 0.0786 4+ 0.0073 0.0720 4 0.0053 MLP? 8.3045 4+ 0.8708 8.2682 4 0.8992
MLPf 0.0774 4+ 0.0064 0.0759 4 0.0063 MLPf 8.3045 4 0.8708 8.2682 4 0.8992
XGBoost 0.0801 +0.0126 0.0774 + 0.0107 XGBoost 8.2177 £ 0.8175 8.2092 4+ 0.8458
LightGBM  0.0778 £ 0.0115 0.0767 £ 0.0110 LightGBM  8.2078 + 0.8231 8.1618 £ 0.8566
CatBoost 0.0780 4 0.0067 0.0734 4 0.0022 CatBoost 8.1629 4+ 0.8193 8.1554 4 0.8439
TabR 0.0803 4+ 0.0066 0.0759 4+ 0.0046 TabR 8.3506 4+ 0.8149 8.2694 4+ 0.8399
TabR* 0.0807 4 0.0088 — TabR* 8.3187 £ 0.8186 —

MNCA 0.0809 4+ 0.0072 0.0784 4+ 0.0062 MNCA 8.2557 +0.8602 8.1771 4+ 0.8710
MNCA¥ 0.0825 4+ 0.0090 0.0793 4+ 0.0072 MNCA* 8.2557 + 0.8602 8.1771 4+ 0.8710
TabM* 0.0777 4 0.0099 0.0769 4+ 0.0105 TabM* 8.2215 4+ 0.8940 8.1995 4+ 0.9130
TabM 0.0786 4+ 0.0055 0.0781 4 0.0054 TabM 8.2052 4+ 0.9043 8.1965 4+ 0.9306
TabM[G] 0.0808 4+ 0.0063 — TabM|[G] 8.2235 4+ 0.8867 —

TabMmini 0.0773 &£ 0.0077 0.0763 &+ 0.0077 TabMmini 8.2075 4+ 0.9185 8.1986 4 0.9442
TabM' 0.0764 4+ 0.0071 0.0749 4+ 0.0076 TabM/! 8.2075 4+ 0.9185 8.1986 4+ 0.9442

mini

mini
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KDDCup09_upselling 1

kdd_ipums_la_97-small 1

Method

Single model

Ensemble

Method

Single model

Ensemble

MLP
TabPFN
ResNet
DCN2

SNN
Trompt
Autolnt
MLP-Mixer
Excel*
SAINT
FT-T

T2G
MLPi*litc
MLP#
MLP?
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tameini
TabM!

mini

0.7759 £ 0.0137
0.7811 £ 0.0124
0.7850 £ 0.0161
0.7884 £ 0.0122
0.7994 £ 0.0055
0.8004 + 0.0075
0.7979 £ 0.0105
0.7903 + 0.0074
0.7942 £ 0.0112
0.7957 £ 0.0127
0.8037 £ 0.0100
0.7962 £+ 0.0093
0.8005 £+ 0.0097
0.7925 + 0.0123
0.7930 £ 0.0108
0.7932 £+ 0.0119
0.7992 + 0.0117
0.7838 +0.0136
0.7908 + 0.0123
0.7939 £ 0.0097

0.7960 £ 0.0131

0.8002 + 0.0103
0.8024 £+ 0.0111
0.7988 £ 0.0118
0.7971 £0.0117

0.8024 £ 0.0075

0.7806 £ 0.0125

0.7861 + 0.0109
0.7884 + 0.0135
0.7940 £ 0.0116

0.8037 + 0.0063
0.8010 £ 0.0094
0.7939 £+ 0.0099

0.7960 + 0.0139
0.7988 £ 0.0084

0.7995 + 0.0105
0.8032 £ 0.0117

0.7963 = 0.0089
0.7950 £ 0.0102
0.7969 + 0.0115
0.8010 £ 0.0121
0.7859 + 0.0167

0.7989 £ 0.0115
0.8008 £ 0.0110

0.8021 + 0.0074
0.8054 £ 0.0123

0.7982 £ 0.0107
0.8035 £ 0.0088

MLP
TabPFN
ResNet
DCN2

SNN
Trompt
Autolnt
MLP-Mixer
Excel”
SAINT
FT-T

T2G
MLPi*litC
MLP#
MLPT
XGBoost
Light GBM
CatBoost
TabR
TabR*¥
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tameini
TabM!

mini

0.8828 + 0.0061
0.8823 +0.0070
0.8770 + 0.0072
0.8722 £+ 0.0093
0.8847 £ 0.0070
0.8808 + 0.0083
0.8762 £ 0.0100
0.8803 £ 0.0054
0.8837 + 0.0055
0.8795 + 0.0077
0.8833 £ 0.0054
0.8765 + 0.0108
0.8816 + 0.0057
0.8757 + 0.0101
0.8825 + 0.0089
0.8792 £+ 0.0075
0.8793 £+ 0.0088
0.8798 £ 0.0081
0.8831 £+ 0.0050
0.8819 + 0.0054

0.8837 £ 0.0062

0.8845 4 0.0063
0.8823 4+ 0.0079
0.8818 4 0.0082
0.8784 +0.0123

0.8779 £ 0.0094

0.8845 + 0.0055
0.8578 + 0.0046
0.8824 £+ 0.0060
0.8824 £+ 0.0068
0.8733 + 0.0083
0.8830 £ 0.0081
0.8770 £ 0.0088
0.8823 + 0.0071
0.8792 £+ 0.0062
0.8841 + 0.0062

0.8765 = 0.0108
0.8818 - 0.0048

0.8756 + 0.0104
0.8835 £ 0.0085
0.8802 £+ 0.0067
0.8803 + 0.0100
0.8819 + 0.0078

0.8832 £ 0.0048
0.8860 = 0.0059

0.8848 +0.0070
0.8825 4 0.0071

0.8786 + 0.0133
0.8784 £ 0.0108

wine_quality |

isolet |

Method

Single model

Ensemble

Method

Single model

Ensemble

MLP
TabPFN
ResNet
DCN2

SNN
Trompt
Autolnt
MLP-Mixer
Excel”
SAINT
FT-T

T2G

M, pi-lite
MLP#
MLP*
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tameini
TabM!

mini

0.6707 £ 0.0178
0.6687 + 0.0166
0.7010 £ 0.0171
0.6604 + 0.0174
0.6605 + 0.0153
0.6840 + 0.0126
0.6672 + 0.0263
0.6881 +0.0182
0.6797 + 0.0161
0.6787 +0.0149
0.6783 +=0.0170
0.6569 + 0.0167
0.6532 + 0.0133
0.6721 £ 0.0180
0.6039 + 0.0134
0.6135 £ 0.0138
0.6088 +0.0132
0.6315 + 0.0097
0.6412 + 0.0105
0.6154 £+ 0.0083

0.6099 £+ 0.0144

0.6169 + 0.0123
0.6328 +0.0172
0.6369 = 0.0179
0.6314 +0.0142

0.6294 £+ 0.0120

0.6530 + 0.0152

0.6543 £ 0.0170
0.6699 + 0.0139
0.6245 + 0.0140

0.6478 + 0.0146
0.6294 £+ 0.0200
0.6664 + 0.0179

0.6564 + 0.0250
0.6570 + 0.0273

0.6328 + 0.0155
0.6336 + 0.0140

0.6463 + 0.0262
0.6025 + 0.0139
0.6122 £+ 0.0144
0.6060 + 0.0137
0.6197 + 0.0096

0.6058 +0.0149
0.6028 + 0.0157

0.6131 +0.0126
0.6297 + 0.0180

0.6272 £+ 0.0146
0.6241 £+ 0.0118

MLP
TabPFN
ResNet
DCN2

SNN
Trompt
Autolnt
MLP-Mixer
Excel”
SAINT
FT-T

T2G

M, pi-lite
MLP#

MLPT
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM|[G]
Tarmeini
TabM!

mini

2.2744 £ 0.2203
2.2077 £ 0.2248
2.2449 +0.1579
2.4269 £+ 0.2382
2.6219 + 0.0315
2.6130 £ 0.1658
2.3344 +£0.2073
2.8691 £+ 0.0882
2.7696 = 0.0200
2.4879 + 0.2524
2.2867 +0.2489
2.2719 £+ 0.1006
2.1832 +£0.1124
2.0979 £ 0.1779
2.7567 +0.0470
2.7005 £ 0.0296
2.8847 £ 0.0227
1.9760 £ 0.1738
1.9919 £ 0.1813
1.7905 £ 0.1594

1.8912 £ 0.1851

1.8831 +0.1194
1.8433 £0.1196
1.9091 £ 0.1345
1.9421 £ 0.0971

1.7799 £ 0.0859

2.0018 £0.1111

1.9206 £ 0.1478
2.0176 +0.0770
2.1142 4+ 0.1262
2.3308 +0.1088
2.0915 +0.1159
2.5989 + 0.0664
2.1501 £+ 0.1506
1.9179 £ 0.1530

2.1026 +0.1088
2.0775 £ 0.0805

1.9283 £ 0.1334
2.7294 + 0.0366
2.6903 £ 0.0290
2.8574 +£0.0148
1.7627 £ 0.1520

1.6205 £ 0.1676
1.7147 £ 0.1348

1.8578 £ 0.1088
1.8230 £ 0.1197

1.9013 £ 0.0813
1.7560 £ 0.0795
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cpu.act | bank-marketing 1

Method Single model Ensemble Method Single model Ensemble

MLP 2.6814 +0.2291 2.4953 £ 0.1150 MLP 0.7860 £+ 0.0057 0.7887 £ 0.0052
TabPFN - - TabPFN - 0.7894 + 0.0091
ResNet 2.3933 + 0.0641 2.3005 £ 0.0397 ResNet 0.7921 +0.0076 0.7932 +£ 0.0066
DCN2 2.7868 £ 0.1999 2.4884 + 0.0327 DCN2 0.7859 + 0.0068 0.7917 4 0.0078
SNN 2.5811 +0.1480 2.3863 £ 0.0324 SNN 0.7836 + 0.0074 0.7882 +£ 0.0054
Trompt 2.2133 £0.0221 — Trompt 0.7975 + 0.0080 —

Autolnt 2.2537 +0.0536 2.1708 £ 0.0349 Autolnt 0.7917 + 0.0071 0.7956 £ 0.0058
MLP-Mixer 2.3079 4+ 0.0829 2.1831 +£ 0.0470 MLP-Mixer 0.7954 4+ 0.0059 0.8001 =+ 0.0048
Excel” 2.3094 + 0.2401 2.1411 £ 0.0767 Excel” 0.7957 +0.0090 0.7985 + 0.0106
SAINT 2.2781 £ 0.0630 — SAINT 0.7953 + 0.0058 —

FT-T 2.2394 + 0.0508 2.1494 + 0.0268 FT-T 0.7918 + 0.0076 0.7951 £ 0.0071
T2G 2.2111 +£0.0413 2.1330 £ 0.0316 T2G 0.7918 + 0.0058 0.7955 £ 0.0047
MLP#=1te 22730 4+ 0.0457 2.1899 + 0.0419 MLP*" 0.7947 £0.0101 0.7977 £ 0.0117
MLP* 2.2671 +0.0383 2.1940 £ 0.0433 MLP? 0.7988 + 0.0092 0.8024 + 0.0093
MLPT 2.3309 + 0.0719 2.2516 £ 0.0574 MLPT 0.7981 4+ 0.0065 0.8008 £ 0.0057
XGBoost 2.5237 £ 0.3530 2.4723 £ 0.3789 XGBoost 0.8013 £+ 0.0081 0.8030 =+ 0.0076
LightGBM  2.2223 £ 0.0894 2.2067 £ 0.0916 LightGBM  0.8006 4 0.0078 0.8013 £ 0.0072
CatBoost 2.1239 + 0.0489 2.1092 + 0.0499 CatBoost 0.8026 4+ 0.0068 0.8056 £ 0.0082
TabR 2.2980 + 0.0529 2.2228 £ 0.0501 TabR 0.7995 4+ 0.0054 0.8015 =+ 0.0037
TabR*} 2.1278 +0.0783 — TabR} 0.8023 + 0.0088 —

MNCA 2.2603 £ 0.0479 2.2339 £ 0.0508 MNCA 0.7961 £+ 0.0065 0.8003 £ 0.0077
MNCA? 2.2105 £ 0.0483 2.1396 £ 0.0474 MNCA? 0.7977 £ 0.0081 0.8010 =+ 0.0084
TabM* 2.1940 + 0.0523 2.1677 £ 0.0487 TabM* 0.7908 £+ 0.0068 0.7915 =+ 0.0068
TabM 2.1402 + 0.0588 2.1265 £ 0.0580 TabM 0.7944 £+ 0.0060 0.7944 + 0.0052
TabM[G] 2.1549 + 0.0626 — TabM[G] 0.7935 + 0.0064 —

TabMmini 2.1638 +0.0420 2.1508 £ 0.0416 TabMmini 0.7941 £ 0.0055 0.7943 £ 0.0045
Taijnini 2.1391 £ 0.0542 2.1221 £ 0.0570 Tabenini 0.7989 £+ 0.0086 0.8002 +£ 0.0074
Brazilian_houses | MagicTelescope 1

Method Single model Ensemble Method Single model Ensemble

MLP 0.0473 £ 0.0179 0.0440 £ 0.0207 MLP 0.8539 4 0.0060 0.8566 + 0.0061
TabPFN - - TabPFN - 0.8579 + 0.0064
ResNet 0.0505 + 0.0181 0.0458 £ 0.0207 ResNet 0.8589 + 0.0068 0.8651 £ 0.0049
DCN2 0.0477 +£0.0172 0.0427 £ 0.0207 DCN2 0.8432 +0.0074 0.8490 + 0.0046
SNN 0.0630 + 0.0162 0.0556 £ 0.0175 SNN 0.8536 + 0.0052 0.8567 £ 0.0047
Trompt 0.0404 £+ 0.0266 — Trompt 0.8605 £+ 0.0102 —

Autolnt 0.0470 £ 0.0192 0.0437 +0.0217 Autolnt 0.8522 + 0.0056 0.8560 £ 0.0034
MLP-Mixer 0.0513 4 0.0234 0.0484 £ 0.0262 MLP-Mixer 0.8571 4 0.0080 0.8624 + 0.0044
Excel” 0.0450 + 0.0156 0.0418 £ 0.0190 Excel” 0.8480 4+ 0.0090 0.8543 £ 0.0075
SAINT 0.0479 + 0.0205 — SAINT 0.8595 + 0.0060 —

FT-T 0.0438 £ 0.0181 0.0412 4+ 0.0204 FT-T 0.8588 + 0.0046 0.8643 4 0.0037
T2G 0.0468 +0.0165 0.0436 £ 0.0211 T2G 0.8553 4+ 0.0055 0.8595 + 0.0051
MLp#-lite 0.0426 + 0.0180 0.0397 £ 0.0206 MLp#-lite 0.8591 + 0.0061 0.8626 £ 0.0044
MLP* 0.0437 + 0.0203 0.0407 £ 0.0230 MLP? 0.8575 4+ 0.0056 0.8605 + 0.0051
MLPf 0.0421 + 0.0209 0.0409 £ 0.0226 MLPT 0.8593 + 0.0054 0.8621 £ 0.0037
XGBoost 0.0541 +0.0270 0.0535 £ 0.0287 XGBoost 0.8550 + 0.0094 0.8589 £ 0.0110
LightGBM  0.0603 £ 0.0249 0.0589 + 0.0271 LightGBM  0.8547 £ 0.0085 0.8556 %+ 0.0086
CatBoost 0.0468 + 0.0312 0.0456 £ 0.0332 CatBoost 0.8586 + 0.0070 0.8588 £ 0.0077
TabR 0.0490 + 0.0152 0.0454 £ 0.0170 TabR 0.8682 4+ 0.0058 0.8729 £ 0.0038
TabR* 0.0451 £0.0163 — TabR* 0.8641 £ 0.0052 —

MNCA 0.0527 +0.0157 0.0509 =+ 0.0180 MNCA 0.8602 4+ 0.0061 0.8628 £ 0.0041
MNCA? 0.0553 +0.0192 0.0511 £ 0.0191 MNCA? 0.8622 4+ 0.0085 0.8681 + 0.0064
TabM* 0.0443 +0.0213 0.0431 £ 0.0233 TabM* 0.8607 = 0.0058 0.8622 =+ 0.0050
TabM 0.0417 4+ 0.0208 0.0413 £ 0.0222 TabM 0.8622 4+ 0.0049 0.8631 +£ 0.0046
TabM[G] 0.0424 +0.0201 — TabM|[G] 0.8600 + 0.0055 —

TabMmnini 0.0433 +0.0232 0.0428 £ 0.0247 TabMmini 0.8606 + 0.0055 0.8618 £ 0.0049
TabM! 0.0416 + 0.0215 0.0406 =+ 0.0230 TabM! 0.8644 £+ 0.0088 0.8673 £ 0.0075

mini

mini
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Ailerons | MiamiHousing2016 |

Method Single model Ensemble Method Single model Ensemble

MLP 0.0002 £ 0.0000 0.0002 =+ 0.0000 MLP 0.1614 £ 0.0033 0.1574 £ 0.0043
TabPFN — - TabPFN - -

ResNet 0.0002 + 0.0000 0.0002 =+ 0.0000 ResNet 0.1548 +0.0030 0.1511 +£ 0.0027
DCN2 0.0002 4 0.0000 0.0002 £ 0.0000 DCN2 0.1683 4+ 0.0099 0.1575 % 0.0047
SNN 0.0002 + 0.0000 0.0002 =+ 0.0000 SNN 0.1618 4+ 0.0029 0.1557 £ 0.0021
Trompt 0.0002 4+ 0.0000 — Trompt 0.1478 +0.0028 —

Autolnt 0.0002 + 0.0000 0.0002 +£ 0.0000 Autolnt 0.1537 +0.0035 0.1478 £ 0.0027
MLP-Mixer 0.0002 £ 0.0000 0.0002 =+ 0.0000 MLP-Mixer 0.1527 +0.0037 0.1479 £ 0.0033
Excel” 0.0002 + 0.0000 0.0002 =+ 0.0000 Excel” 0.1519 4+ 0.0038 0.1442 + 0.0022
SAINT 0.0002 £+ 0.0000 — SAINT 0.1507 £ 0.0022 —

FT-T 0.0002 + 0.0000 0.0002 =+ 0.0000 FT-T 0.1514 4+ 0.0029 0.1462 + 0.0031
T2G 0.0002 £ 0.0000 0.0002 = 0.0000 T2G 0.1523 +0.0023 0.1478 £ 0.0024
MLPp#-lite 0.0002 £ 0.0000 0.0002 =+ 0.0000 MLPp#-lite 0.1514 +0.0025 0.1479 £ 0.0017
MLP? 0.0002 + 0.0000 0.0002 = 0.0000 MLP* 0.1512 +0.0019 0.1470 = 0.0024
MLPT 0.0002 + 0.0000 0.0002 =+ 0.0000 MLPT 0.1461 +0.0015 0.1433 £ 0.0022
XGBoost 0.0002 £ 0.0000 0.0002 = 0.0000 XGBoost 0.1440 £ 0.0029 0.1434 £ 0.0029
LightGBM  0.0002 4+ 0.0000 0.0002 + 0.0000 LightGBM  0.1461 + 0.0025 0.1455 4 0.0030
CatBoost 0.0002 + 0.0000 0.0002 = 0.0000 CatBoost 0.1417 +0.0021 0.1408 £ 0.0026
TabR 0.0002 £ 0.0000 0.0002 =+ 0.0000 TabR 0.1417 4+ 0.0025 0.1390 =+ 0.0020
TabR*} 0.0002 + 0.0000 — TabR} 0.1392 +0.0023 —

MNCA 0.0002 £ 0.0000 0.0002 = 0.0000 MNCA 0.1503 +0.0040 0.1477 £ 0.0032
MNCA? 0.0002 £ 0.0000 0.0002 =+ 0.0000 MNCA? 0.1475 £ 0.0031 0.1438 £ 0.0024
TabM* 0.0002 £ 0.0000 0.0002 =+ 0.0000 TabM* 0.1483 +0.0030 0.1465 =+ 0.0029
TabM 0.0002 £ 0.0000 0.0002 =£ 0.0000 TabM 0.1478 +0.0012 0.1471 £ 0.0011
TabM[G] 0.0002 £+ 0.0000 — TabM[G] 0.1482 +0.0012 —

TabMuini 0.0002 £ 0.0000 0.0002 = 0.0000 TabMmini 0.1481 +0.0021 0.1471 +£ 0.0020
Taijnini 0.0002 £ 0.0000 0.0002 = 0.0000 Tabenini 0.1408 £ 0.0019 0.1399 £ 0.0018

OnlineNewsPopularity | credit T

Method Single model Ensemble Method Single model Ensemble

MLP 0.8643 + 0.0007 0.8632 =+ 0.0005 MLP 0.7735 +0.0042 0.7729 £ 0.0047
TabPFN - - TabPFN - 0.7636 + 0.0045
ResNet 0.8665 + 0.0011 0.8639 £ 0.0000 ResNet 0.7721 +0.0033 0.7738 £ 0.0027
DCN2 0.8714 +0.0013 0.8648 £ 0.0004 DCN2 0.7703 +0.0034 0.7746 £ 0.0026
SNN 0.8692 + 0.0015 0.8665 £ 0.0005 SNN 0.7712 +0.0045 0.7716 £ 0.0059
Trompt 0.8623 = nan  — Trompt 0.7740 £ 0.0006 —

Autolnt 0.8636 + 0.0022 0.8596 £ 0.0008 Autolnt 0.7737 £ 0.0050 0.7765 % 0.0058
MLP-Mixer 0.8615 4 0.0008 0.8598 £ 0.0004 MLP-Mixer 0.7748 4+ 0.0038 0.7768 £ 0.0059
Excel” 0.8605 + 0.0024 0.8556 £ nan Excel” 0.7724 + 0.0038 0.7740 £ 0.0069
SAINT 0.8600 + 0.0007 — SAINT 0.7739 + 0.0052 —

FT-T 0.8629 + 0.0019 0.8603 £ 0.0000 FT-T 0.7745 £ 0.0041 0.7767 £ 0.0040
T2G 0.8632 + 0.0009 0.8572 £ nan T2G 0.7744 +0.0046 0.7762 £ 0.0057
MLp#-lite 0.8604 + 0.0009 0.8591 =+ 0.0004 MLp#-lite 0.7749 + 0.0055 0.7767 £ 0.0075
MLP* 0.8594 + 0.0004 0.8585 =+ 0.0001 MLP? 0.7734 +0.0034 0.7747 £ 0.0043
MLPT 0.8585 4+ 0.0003 0.8581 + 0.0001 MLPT 0.7758 + 0.0040 0.7772 £ 0.0055
XGBoost 0.8545 + 0.0002 0.8543 =+ 0.0000 XGBoost 0.7698 + 0.0027 0.7706 £ 0.0029
LightGBM  0.8546 £ 0.0002 0.8544 + 0.0000 LightGBM  0.7686 £ 0.0028 0.7726 + 0.0034
CatBoost 0.8532 4+ 0.0003 0.8527 £ 0.0001 CatBoost 0.7734 +0.0035 0.7752 £ 0.0038
TabR 0.8677 +0.0013 0.8633 £ 0.0009 TabR 0.7730 4+ 0.0043 0.7740 £ 0.0040
TabR* 0.8624 +0.0011 — TabR* 0.7723 +0.0037 —

MNCA 0.8651 + 0.0003 0.8650 =+ 0.0002 MNCA 0.7739 + 0.0032 0.7757 £ 0.0026
MNCA? 0.8647 + 0.0010 0.8624 =+ 0.0006 MNCA? 0.7734 +0.0045 0.7754 £ 0.0040
TabM* 0.8584 4+ 0.0003 0.8581 + 0.0001 TabM* 0.7751 +0.0042 0.7755 £ 0.0049
TabM 0.8579 4+ 0.0003 0.8575 £ 0.0001 TabM 0.7760 + 0.0043 0.7771 £ 0.0044
TabM[G] 0.8579 + 0.0004 — TabM|[G] 0.7754 +0.0045 —

TabMmnini 0.8588 +0.0004 0.8581 =+ 0.0003 TabMuini 0.7752 +0.0047 0.7754 £ 0.0048
TabM! 0.8563 + 0.0004 0.8558 £ 0.0002 TabM! 0.7761 + 0.0033 0.7760 £ 0.0028

mini

mini
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elevators | fifa |

Method Single model Ensemble Method Single model Ensemble
MLP 0.0020 4+ 0.0001 0.0019 4 0.0000 MLP 0.8038 +0.0124 0.8011 4+ 0.0143
TabPFN - - TabPFN - -
ResNet 0.0019 4 0.0000 0.0019 4 0.0000 ResNet 0.8025 4+ 0.0140 0.7985 4+ 0.0149
DCN2 0.0019 4 0.0000 0.0019 + 0.0000 DCN2 0.8046 4+ 0.0135 0.7993 + 0.0129
SNN 0.0020 4 0.0001 0.0019 4 0.0000 SNN 0.8074 +0.0140 0.8031 4+ 0.0147
Trompt 0.0018 4+ 0.0000 — Trompt 0.7880 4+ 0.0180 —
Autolnt 0.0019 4 0.0000 0.0018 4 0.0000 Autolnt 0.7923 +0.0128 0.7886 4+ 0.0127
MLP-Mixer 0.0019 4+ 0.0000 0.0018 £ 0.0000 MLP-Mixer 0.7936 +0.0119 0.7903 + 0.0133
Excel” 0.0019 4 0.0000 0.0018 4= 0.0000 Excel” 0.7909 4+ 0.0111 0.7862 + 0.0161
SAINT 0.0018 4+ 0.0000 — SAINT 0.7901 £ 0.0118 —
FT-T 0.0019 4 0.0000 0.0018 4 0.0000 FT-T 0.7928 4+ 0.0132 0.7888 4+ 0.0130
T2G 0.0019 4 0.0000 0.0018 4 0.0000 T2G 0.7928 +0.0139 0.7904 4+ 0.0183
MLPp#-tite 0.0019 4 0.0000 0.0018 4 0.0000 MLPp#-tite 0.7940 + 0.0118 0.7898 + 0.0141
MLP#* 0.0018 4+ 0.0000 0.0018 4 0.0000 MLP? 0.7907 4+ 0.0092 0.7870 4+ 0.0096
MLPf 0.0018 4 0.0000 0.0018 4 0.0000 MLP' 0.7806 4+ 0.0104 0.7800 4+ 0.0114
XGBoost 0.0020 £ 0.0000 0.0020 4 0.0000 XGBoost 0.7800 4+ 0.0108 0.7795 4+ 0.0114
LightGBM  0.0020 + 0.0000 0.0020 = 0.0000 Light GBM  0.7806 £+ 0.0120 0.7787 4+ 0.0122
CatBoost 0.0020 4 0.0000 0.0019 4 0.0000 CatBoost 0.7835 4+ 0.0116 0.7817 +0.0114
TabR 0.0049 4+ 0.0000 0.0049 4+ 0.0000 TabR 0.7902 4+ 0.0119 0.7863 4+ 0.0120
TabR* 0.0019 4+ 0.0001 — TabR*¥ 0.7914 +0.0136 —
MNCA 0.0019 4 0.0000 0.0019 4 0.0000 MNCA 0.7967 +0.0138 0.7933 + 0.0145
MNCA* 0.0018 4+ 0.0000 0.0018 4 0.0000 MNCA* 0.7909 4+ 0.0107 0.7866 4+ 0.0106
TabM* 0.0019 4+ 0.0000 0.0018 4 0.0000 TabM* 0.7974 +0.0144 0.7954 4+ 0.0160
TabM 0.0018 4+ 0.0000 0.0018 4 0.0000 TabM 0.7953 +0.0135 0.7942 4+ 0.0148
TabM[G] 0.0018 4+ 0.0000 — TabM[G] 0.7948 +0.0135 —
TabMmini 0.0018 4+ 0.0000 0.0018 4 0.0000 TabMmini 0.7938 +0.0156 0.7920 4+ 0.0176
Taijnini 0.0018 4+ 0.0000 0.0018 4 0.0000 Tabenini 0.7771 £ 0.0107 0.7761 +0.0117

house_sales | medical_charges |
Method Single model Ensemble Method Single model Ensemble
MLP 0.1790 4+ 0.0009 0.1763 4+ 0.0003 MLP 0.0816 4+ 0.0001 0.0814 4+ 0.0000
TabPFN - - TabPFN - -
ResNet 0.1755 4+ 0.0014 0.1738 4 0.0006 ResNet 0.0824 4 0.0003 0.0817 & 0.0001
DCN2 0.1862 4+ 0.0032 0.1778 4+ 0.0015 DCN2 0.0818 4+ 0.0003 0.0815 + 0.0001
SNN 0.1800 4 0.0008 0.1770 4 0.0004 SNN 0.0827 4 0.0006 0.0817 & 0.0001
Trompt 0.1667 = nan  — Trompt 0.0812 £ nan  —
Autolnt 0.1700 4+ 0.0014 0.1670 + 0.0008 Autolnt 0.0822 4+ 0.0007 0.0814 + 0.0001
MLP-Mixer 0.1704 4+ 0.0007 0.1690 + 0.0005 MLP-Mixer 0.0814 4+ 0.0002 0.0811 + 0.0000
Excel” 0.1713 £ 0.0010 0.1668 *+ nan Excel® 0.0817 4 0.0004 0.0813 + nan
SAINT 0.1713 £ 0.0015 — SAINT 0.0814 4+ 0.0002 —
FT-T 0.1690 4+ 0.0010 0.1659 + 0.0004 FT-T 0.0814 4+ 0.0002 0.0812 + 0.0000
T2G 0.1689 4+ 0.0010 0.1664 + nan T2G 0.0813 4+ 0.0002 0.0811 4+ nan
MLP#=1e 0.1699 4 0.0008 0.1687 + 0.0007 MLP#7He 0,0812 4 0.0002 0.0810 4 0.0000
MLP* 0.1690 4 0.0005 0.1676 4 0.0003 MLP? 0.0812 4 0.0001 0.0809 + 0.0001
MLP' 0.1687 4+ 0.0004 0.1681 = 0.0001 MLPf 0.0812 4 0.0000 0.0811 4= 0.0000
XGBoost 0.1694 4+ 0.0003 0.1689 + 0.0001 XGBoost 0.0825 4+ 0.0001 0.0825 4+ 0.0000
LightGBM  0.1692 4+ 0.0004 0.1686 + 0.0001 LightGBM  0.0820 4+ 0.0000 0.0820 + 0.0000
CatBoost 0.1669 4 0.0001 0.1667 & 0.0000 CatBoost 0.0816 4 0.0000 0.0815 4= 0.0000
TabR 0.1689 4 0.0009 0.1657 4 0.0003 TabR 0.0815 4 0.0002 0.0812 4 0.0000
TabR* 0.1636 =+ 0.0009 — TabR# 0.0811 % 0.0001 —
MNCA 0.1737 4+ 0.0013 0.1714 4+ 0.0005 MNCA 0.0811 4+ 0.0001 0.0810 4 0.0000
MNCA¥ 0.1694 4+ 0.0007 0.1670 4 0.0003 MNCA¥ 0.0809 4 0.0000 0.0808 4+ 0.0000
TabM* 0.1692 4+ 0.0011 0.1680 4 0.0005 TabM* 0.0813 4 0.0001 0.0812 4 0.0000
TabM 0.1666 4+ 0.0003 0.1662 4+ 0.0002 TabM 0.0812 4+ 0.0000 0.0812 4 0.0000
TabM[G] 0.1667 4+ 0.0003 — TabM|[G] 0.0812 4 0.0000 —
TabMmini 0.1673 4+ 0.0004 0.1668 + 0.0001 TabMmini 0.0813 4 0.0000 0.0813 4+ 0.0000
TabM' 0.1652 4+ 0.0003 0.1644 + 0.0001 TabM! 0.0811 4+ 0.0001 0.0811 4 0.0000

mini

mini
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pol | superconduct |
Method Single model Ensemble Method Single model Ensemble
MLP 5.5244 £ 0.5768 4.9945 £ 0.5923 MLP 10.8740 £ 0.0868 10.4118 £ 0.0429
TabPFN - - TabPFN - -
ResNet 6.3739 + 0.6286 5.8181 + 0.6054 ResNet 10.7711 4+ 0.1454 10.3495 £ 0.0168
DCN2 6.5374 +0.9479 5.1814 £ 0.7775 DCN2 10.8108 4+ 0.0957 10.4342 £ 0.0179
SNN 6.1816 + 0.7366 5.5959 £ 0.8243 SNN 10.8562 £+ 0.1300 10.3342 £ 0.0509
Trompt 3.2337 £ 0.0605 — Trompt 10.4442 = nan -
Autolnt 3.3295 + 0.3379 2.7999 + 0.1776 Autolnt 11.0019 £+ 0.1391 10.4469 £ 0.0521
MLP-Mixer 3.2011 4 0.2921 2.8698 £ 0.2577 MLP-Mixer 10.7502 + 0.0800 10.3281 + 0.0450
Excel” 3.0682 + 0.2389 2.5816 £ 0.0368 Excel” 11.0879 4+ 0.1571 10.4094 £ nan
SAINT 2.7203 £ 0.1858 — SAINT 10.7807 £ 0.1074 —
FT-T 2.6974 +0.1666 2.3718 £ 0.0724 FT-T 10.8256 +0.1692 10.3391 £ 0.0794
T2G 2.9539 +£0.1994 2.6282 £ 0.0730 T2G 10.8310 £ 0.1406 10.3017 £ nan
MLPp#-lite 2.8239 +0.2173 2.5266 £ 0.0605 MLPp#-lite 10.5058 £+ 0.0758 10.2322 £ 0.0463
MLP* 2.5452 +0.1221 2.3700 £ 0.0867 MLP? 10.5061 4 0.0330 10.2440 £ 0.0127
MLPT 2.4958 +0.1292 2.3651 £ 0.1223 MLPT 10.7220 £ 0.0757 10.3758 £ 0.0606
XGBoost 4.2963 £ 0.0644 4.2548 £ 0.0488 XGBoost 10.1610 £ 0.0201 10.1413 £ 0.0025
LightGBM  4.2320 4+ 0.3369 4.1880 + 0.3110 LightGBM  10.1634 £ 0.0118 10.1552 + 0.0050
CatBoost 3.6320 £ 0.1006 3.5505 + 0.0896 CatBoost 10.2422 4+ 0.0222 10.2116 £ 0.0058
TabR 6.0708 £ 0.5368 5.5578 + 0.4036 TabR 10.8842 4+ 0.1073 10.4800 =+ 0.0280
TabR*} 2.5770 £ 0.1689 — TabR} 10.3835 £ 0.0562 —
MNCA 5.7878 £ 0.4884 5.3773 £ 0.5463 MNCA 10.4419 £ 0.0640 10.2926 £ 0.0261
MNCA? 2.9083 +0.1364 2.6717 £ 0.0530 MNCA? 10.5651 £ 0.0616 10.3155 £ 0.0253
TabM* 3.3595 +0.4017 3.2130 £ 0.3979 TabM* 10.3379 £ 0.0338 10.1943 £ 0.0291
TabM 3.0198 £ 0.2975 2.9595 £ 0.3107 TabM 10.2628 £+ 0.0275 10.2300 £ 0.0108
TabM[G] 3.0358 £ 0.3077 — TabM[G] 10.2572 £ 0.0463 —

TabMuini 3.1351 +£0.1952 3.0478 £ 0.2061 TabMmini 10.2472 £+ 0.0208 10.2094 £ 0.0057
Taijnini 2.2808 +0.0343 2.2383 £ 0.0111 Tabenini 10.1326 £ 0.0186 10.0866 £ 0.0070
jannis T MiniBooNE 1

Method Single model Ensemble Method Single model Ensemble

MLP 0.7840 + 0.0018 0.7872 =£ 0.0007 MLP 0.9480 £ 0.0007 0.9498 + 0.0001
TabPFN - 0.7419 + 0.0018 TabPFN - 0.9266 + 0.0012
ResNet 0.7923 4+ 0.0024 0.7958 £ 0.0010 ResNet 0.9488 +0.0011 0.9504 % 0.0005
DCN2 0.7712 + 0.0029 0.7825 £ 0.0009 DCN2 0.9433 £ 0.0011 0.9470 + 0.0010
SNN 0.7818 +0.0025 0.7859 + 0.0011 SNN 0.9476 4+ 0.0013 0.9491 + 0.0010
Trompt 0.8027 £ nan  — Trompt 0.9473 £ nan  —

Autolnt 0.7933 £ 0.0018 0.7983 £ 0.0013 Autolnt 0.9447 4+ 0.0014 0.9473 £ 0.0010
MLP-Mixer 0.7927 4+ 0.0025 0.8019 £ 0.0012 MLP-Mixer 0.9446 4+ 0.0014 0.9483 +£ 0.0002
Excel” 0.7954 + 0.0015 0.8021 £ nan Excel” 0.9430 4+ 0.0015 0.9451 + nan
SAINT 0.7971 + 0.0028 — SAINT 0.9471 +0.0009 —

FT-T 0.7940 4+ 0.0028 0.7998 + 0.0006 FT-T 0.9467 4+ 0.0014 0.9486 + 0.0010
T2G 0.7998 + 0.0024 0.8052 £ nan T2G 0.9475 + 0.0014 0.9508 £ nan
MLp#-lite 0.7923 + 0.0018 0.7945 £ 0.0010 MLp#-lite 0.9466 £+ 0.0009 0.9478 + 0.0004
MLP* 0.7947 +0.0017 0.7967 £ 0.0011 MLP? 0.9473 4+ 0.0010 0.9493 + 0.0004
MLPf 0.7891 4+ 0.0013 0.7900 + 0.0006 MLPT 0.9482 4+ 0.0008 0.9492 + 0.0001
XGBoost 0.7967 + 0.0019 0.7998 £ 0.0007 XGBoost 0.9436 £ 0.0006 0.9452 + 0.0003
LightGBM  0.7956 £+ 0.0017 0.7968 + 0.0005 LightGBM  0.9422 £ 0.0009 0.9427 + 0.0003
CatBoost 0.7985 4+ 0.0018 0.8009 + 0.0012 CatBoost 0.9453 4+ 0.0008 0.9459 + 0.0005
TabR 0.7983 4+ 0.0022 0.8023 £ 0.0018 TabR 0.9487 £+ 0.0008 0.9500 % 0.0002
TabR* 0.8051 £ 0.0023 — TabR* 0.9475 £ 0.0007 —

MNCA 0.7993 + 0.0019 0.8042 +£ 0.0013 MNCA 0.9488 £ 0.0010 0.9505 + 0.0001
MNCA? 0.8068 + 0.0021 0.8128 £ 0.0007 MNCA? 0.9493 £ 0.0012 0.9501 + 0.0008
TabM* 0.8066 + 0.0015 0.8075 + 0.0004 TabM* 0.9500 £ 0.0005 0.9505 + 0.0002
TabM 0.8080 £+ 0.0019 0.8102 + 0.0017 TabM 0.9503 £ 0.0006 0.9501 + 0.0002
TabM[G] 0.8064 £ 0.0018 — TabM|[G] 0.9496 £+ 0.0010 —

TabMmnini 0.8053 £ 0.0012 0.8066 + 0.0001 TabMmmini 0.9495 £ 0.0005 0.9500 + 0.0002
TabM! 0.8078 £ 0.0008 0.8086 + 0.0005 TabM! 0.9490 £ 0.0004 0.9492 + 0.0002

mini

mini
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nyc-taxi-green-dec-2016 |

particulate-matter-ukair-2017 |

Method

Single model

Ensemble

Method

Single model

Ensemble

MLP
TabPFN
ResNet
DCN2

SNN
Trompt
Autolnt
MLP-Mixer
Excel*
SAINT
FT-T

T2G
MLPi*litc
MLP#
MLP?
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tameini
TabM!

mini

0.3951 4+ 0.0009
0.3899 4+ 0.0016
0.3919 4 0.0009
0.3933 4+ 0.0013
0.3979 4+ nan

0.4084 4+ 0.0256
0.3914 4+ 0.0026
0.3969 4+ 0.0036
0.3905 4+ 0.0013
0.3937 4+ 0.0064
0.3908 4+ 0.0045
0.3812 4+ 0.0018
0.3795 4+ 0.0016
0.3680 4+ 0.0006
0.3792 4+ 0.0002
0.3688 4 0.0002
0.3647 4+ 0.0005
0.3577 4+ 0.0222
0.3725 4+ 0.0091
0.3728 +0.0012

0.3536 £ 0.0052

0.3866 + 0.0006
0.3849 £ 0.0005
0.3848 £ 0.0005
0.3853 £ 0.0005

0.3485 £ 0.0038

0.3921 £ 0.0003

0.3873 £ 0.0009
0.3889 + 0.0003
0.3899 £+ 0.0004

0.3967 4+ 0.0059
0.3861 4+ 0.0013
0.3897 4+ nan

0.3889 4+ 0.0018
0.3858 4+ nan

0.3761 = 0.0016
0.3733 £ 0.0013

0.3653 = 0.0005
0.3787 £ 0.0000
0.3684 + 0.0000
0.3632 = 0.0003
0.3380 + 0.0027

0.3720 £ 0.0010
0.3407 £ 0.0009

0.3855 £+ 0.0003
0.3843 £ 0.0002

0.3845 £ 0.0003
0.3448 £ 0.0020

MLP
TabPFN
ResNet
DCN2

SNN
Trompt
Autolnt
MLP-Mixer
Excel”
SAINT
FT-T

T2G
MLPi*litC
MLP#
MLPT
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tameim
TabM/!

mini

0.3759 4+ 0.0004
0.3743 £+ 0.0007
0.3759 £+ 0.0012
0.3790 £ 0.0007
0.3700 & nan

0.3723 +0.0011
0.3741 4+ 0.0010
0.3699 4 0.0014
0.3704 4+ 0.0014
0.3735 4+ 0.0012
0.3676 4+ 0.0024
0.3665 4 0.0008
0.3657 4 0.0007
0.3649 £ 0.0011
0.3641 4+ 0.0001
0.3637 4= 0.0001
0.3647 £ 0.0004
0.3613 4 0.0005
0.3596 4 0.0004
0.3670 4 0.0004

0.3646 £ 0.0001

0.3686 £+ 0.0006
0.3671 £ 0.0007
0.3667 £ 0.0009
0.3664 + 0.0006

0.3593 + 0.0004

0.3729 £ 0.0003

0.3718 £+ 0.0005
0.3738 + 0.0004
0.3744 £+ 0.0002

0.3692 4 0.0010
0.3698 4+ 0.0004
0.3652 4+ nan

0.3686 4 0.0004
0.3631 &= nan

0.3642 1 0.0003
0.3629 £ 0.0002

0.3637 = 0.0008
0.3640 =+ 0.0000
0.3635 £ 0.0000
0.3637 = 0.0002
0.3590 £ 0.0002

0.3649 £+ 0.0002
0.3643 + 0.0000

0.3679 £ 0.0003
0.3665 £ 0.0002

0.3655 + 0.0002
0.3589 =+ 0.0000

road-safety T

year |

Method

Single model

Ensemble

Method

Single model

Ensemble

MLP
TabPFN
ResNet
DCN2

SNN
Trompt
Autolnt
MLP-Mixer
Excel”
SAINT
FT-T

T2G
MLpi-lite
MLP#
MLP*
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tameini
TabM!

mini

0.7857 + 0.0019
0.7875 4 0.0007
0.7781 + 0.0014
0.7847 4+ 0.0010
0.7804 4+ nan

0.7826 4 0.0030
0.7878 4+ 0.0032
0.7864 4 0.0053
0.7584 4+ 0.0584
0.7907 4 0.0012
0.7912 4+ 0.0026
0.7867 4+ 0.0018
0.7853 4+ 0.0014
0.7899 4 0.0009
0.8101 4+ 0.0017
0.7982 4+ 0.0012
0.8012 4 0.0009
0.8403 4+ 0.0014
0.8374 4+ 0.0013
0.8080 4+ 0.0013

0.8232 + 0.0017

0.7946 + 0.0013
0.7958 + 0.0011
0.7954 + 0.0016
0.7933 = 0.0030

0.7999 + 0.0023

0.7873 + 0.0004
0.7338 £ 0.0032
0.7898 + 0.0008
0.7823 +0.0012
0.7865 + 0.0002

0.7883 4+ 0.0013
0.7919 4+ 0.0015
0.7907 + nan

0.7943 4 0.0007
0.7961 &+ nan

0.7903 £ 0.0002
0.7881 £+ 0.0007

0.7935 + 0.0003
0.8129 + 0.0004
0.7996 £ 0.0005
0.8022 £+ 0.0002
0.8441 £+ 0.0005

0.8121 £ 0.0006
0.8287 £+ 0.0008

0.7961 £ 0.0005
0.7968 £+ 0.0004

0.7970 £ 0.0006
0.8059 £+ 0.0012

MLP
TabPFN
ResNet
DCN2

SNN
Trompt
Autolnt
MLP-Mixer
Excel”
SAINT
FT-T

T2G

ML pi-lite
MLP#

MLP!
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM|[G]
Tarmeini
TabM!

mini

8.9628 4+ 0.0232
8.9658 4 0.0239
9.2761 4 0.0401
9.0054 4 0.0256
8.9707 & nan

9.0430 £ 0.0280
8.9589 4+ 0.0182
9.0395 £ 0.0266
9.0248 4 0.0225
9.0005 £ 0.0215
8.9775 4+ 0.0138
8.9355 4+ 0.0103
8.9455 4+ 0.0173
8.9379 £ 0.0206
9.0307 4+ 0.0028
9.0200 £+ 0.0025
9.0370 4+ 0.0073
9.0069 4 0.0152
8.9721 £ 0.0105
8.9476 4+ 0.0152

8.8973 + 0.0082

8.8701 +0.0110
8.8705 £ 0.0043
8.8723 £+ 0.0080
8.9164 £+ 0.0089

8.8737 +£0.0119

8.8931 £ 0.0066

8.8755 4 0.0066
9.0640 4+ 0.0156
8.9351 4+ 0.0073
8.9619 £ 0.0092
8.9086 4+ 0.0177
8.9551 4+ nan

8.9360 £ 0.0013
8.8979 & nan

8.9063 £+ 0.0030
8.9083 £+ 0.0046

8.8753 + 0.0038
9.0245 £+ 0.0015
9.0128 4 0.0015
9.0054 + 0.0028
8.9132 £+ 0.0088

8.8977 + 0.0037
8.8550 = 0.0031

8.8517 £ 0.0022
8.8642 1+ 0.0028

8.9021 £ 0.0036
8.8564 £ 0.0054
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Table 20: Extended results for TabReD Rubachev et al. (2024) benchmark. Results are grouped by
datasets. One ensemble consists of five models trained independently under different random seeds.

sberbank-housing |

ecom-offers T

Method

Single model

Ensemble

Method

Single model

Ensemble

MLP
TabPFN
ResNet
DCN2
SNN
Trompt
Autolnt
MLP-Mixer
Excel*
SAINT
FT-T
T2G
MLPi*lite
MLP#
MLPT
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tamelni
TabM! .

mini

0.2529 + 0.0078

0.2533 = 0.0046

0.2474 + 0.0052

0.2506 + 0.0015
0.2555 + 0.0033

0.2485 4+ nan

0.2467 £ 0.0019 —

0.2440 £+ 0.0038
0.2416 + 0.0025
0.2528 £ 0.0055
0.2412 £+ 0.0031
0.2383 + 0.0032
0.2419 + 0.0012
0.2468 £+ 0.0009
0.2482 + 0.0034
0.2820 £ 0.0323

0.2367 4+ 0.0010
0.2343 4+ nan

0.2503 4+ 0.0029
0.2355 4+ 0.0006
0.2327 4+ 0.0009
0.2416 4 0.0007
0.2467 4 0.0002
0.2473 4+ 0.0016
0.2603 4+ 0.0048

0.2542 £ 0.0101 —

0.2593 + 0.0053
0.2448 + 0.0039

0.2469 £ 0.0035
0.2439 £ 0.0021

0.2520 + 0.0032
0.2404 + 0.0025

0.2440 £ 0.0026
0.2428 £ 0.0006

0.2436 + 0.0027 —

0.2433 £ 0.0017
0.2334 + 0.0018

0.2422 £+ 0.0004
0.2324 £+ 0.0009

MLP
TabPFN
ResNet
DCN2
SNN
Trompt
Autolnt
MLP-Mixer
Excel”
SAINT
FT-T
T2G
MLPI*lite
MLP?
MLPT
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tamemi
TabM! .

mini

0.5989 + 0.0017

.5996 + 0.0043
5912 £ 0. 0()56
.5803 £ na

| oo |

0.5759 £ 0.0066
0.5812 £+ 0.0098
0.5775 + 0.0063
0.5791 + 0.0056
0.5800 = 0.0029
0.5846 £ 0.0048
0.5949 £+ 0.0013
0.5763 = 0.0072
0.5758 £+ 0.0006
0.5596 + 0.0068
0.5943 + 0.0019
0.5762 + 0.0052
0.5765 + 0.0087

0.5758 + 0.0050

0.5948 + 0.0006
0.5941 + 0.0003
0.5970 + 0.0010
0.5942 £+ 0.0003

0.5910 £+ 0.0012

0.5995 + 0.0011

0.6039 £ 0.0028
0.5961 4 0.0033

0.5759 & nan

0.5817 4+ 0.0021
0.5824 4+ nan

0.5819 + 0.0011
0.5872 1+ 0.0018

0.5953 £ 0.0006
0.5917 £+ 0.0035
0.5758 + 0.0003
0.5067 = 0.0011
0.5977 4+ 0.0009

0.5820 £+ 0.0047
0.5796 + 0.0009

0.5952 + 0.0004
0.5941 £+ 0.0000

0.5943 £+ 0.0001
0.5913 £ 0.0002

maps-routing |

homesite-insurance T

Method

Single model

Ensemble

Method

Single model

Ensemble

MLP
TabPFN
ResNet
DCN2
SNN
Trompt
Autolnt
MLP-Mixer
Excel*
SAINT
FT-T
T2G
MLPi—lite
MLP#
MLP?
XGBoost
Light GBM
CatBoost
TabR
TabR*
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tamemi
TabM!

mini

0.1625 £ 0.0001

0.1656 4+ 0.0004
0.1634 4 0.0002
0.1624 4+ nan

0.1628 4+ 0.0001
0.1634 4+ nan

0.1625 4 0.0003
0.1616 4+ 0.0001
0.1618 4+ 0.0002
0.1618 4+ 0.0002
0.1620 4 0.0002
0.1616 4+ 0.0001
0.1618 4+ 0.0000
0.1619 4+ 0.0001
0.1639 4+ 0.0003

0.1621 £ 0.0000

0.1636 £ 0.0001
0.1625 £+ 0.0000

0.1621 &+ nan

0.1619 4 0.0001
0.1608 & nan

0.1613 4+ 0.0000
0.1613 4+ 0.0001
0.1614 4 0.0000
0.1614 4+ 0.0000
0.1616 4+ 0.0000
0.1615 4 0.0000
0.1622 4 0.0002

0.1622 + 0.0002 —

0.1625 £ 0.0001
0.1627 = 0.0002

0.1612 £ 0.0001
0.1612 4 0.0001

0.1621 £ 0.0001
0.1623 £+ 0.0001

0.1609 £ 0.0000
0.1610 £ 0.0001

0.1611 +0.0001 —

0.1612 £ 0.0001
0.1610 £ 0.0001

0.1610 £ 0.0000
0.1609 £ 0.0000

MLP
TabPFN
ResNet
DCN2
SNN
Trompt
Autolnt
MLP-Mixer
Excel”
SAINT
FT-T
T2G
MLPi—lite
MLP#
MLP'
XGBoost
Light GBM
CatBoost
TabR
TabR*}
MNCA
MNCA?
TabM*
TabM
TabM[G]
Tarmemi
TabM!

mini

0.9506 + 0.0005

0.9398 4+ 0.0053
0.9473 4+ 0.0013
0.9588 &+ nan

0.9622 4 0.0004
0.9613 &= nan

0.9622 4 0.0006
0.9624 4+ 0.0006
0.9609 4+ 0.0009
0.9617 4+ 0.0004
0.9582 4+ 0.0014
0.9601 4+ 0.0002
0.9603 £+ 0.0002
0.9606 4 0.0003
0.9487 4+ 0.0014

0.9514 + 0.0001

0.9432 £ 0.0018
0.9484 £+ 0.0007

0.9635 4+ nan

0.9633 4 0.0001
0.9637 & nan

0.9626 4+ 0.0003
0.9630 4+ 0.0002
0.9599 4 0.0002
0.9602 4+ 0.0000
0.9604 4+ 0.0001
0.9609 4 0.0001
0.9505 4+ 0.0001

0.9556 + 0.0021 —

0.9514 + 0.0038
0.9620 £ 0.0006

0.9641 £+ 0.0004
0.9640 £ 0.0002

0.9522 + 0.0027
0.9635 £ 0.0002

0.9644 £+ 0.0003
0.9642 4 0.0001

0.9641 4+ 0.0003 —

0.9643 £+ 0.0003
0.9631 £ 0.0003

0.9645 4= 0.0001
0.9634 + 0.0001
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cooking-time |

homecredit-default 7

Method Single model Ensemble Method Single model Ensemble

MLP 0.4828 4+ 0.0002 0.4822 4+ 0.0000 MLP 0.8538 +0.0014 0.8566 + 0.0005

TabPFN — — TabPFN — —

ResNet — — ResNet — —

DCN2 0.4834 4+ 0.0003 0.4822 + 0.0001 DCN2 0.8471 4 0.0019 0.8549 + 0.0002

SNN 0.4835 4+ 0.0006 0.4818 4+ 0.0002 SNN 0.8541 4+ 0.0016 0.8569 4+ 0.0010

Trompt 0.4809 = nan  — Trompt 0.8355 = nan  —

Autolnt - - Autolnt - -

MLP-Mixer — — MLP-Mixer — —

Excel” 0.4821 4+ 0.0005 0.4808 + nan Excel” 0.8513 4 0.0024 0.8564 4+ nan

SAINT 0.4840 = nan  — SAINT 0.8377 £ nan -

FT-T 0.4820 4 0.0008 0.4813 4 0.0005 FT-T 0.8571 4+ 0.0023 0.8611 4+ 0.0013

T2G 0.4809 4+ 0.0008 0.4797 + nan T2G 0.8597 4+ 0.0007 0.8629 4+ nan

MLPp#-tite 0.4811 4+ 0.0004 0.4805 + 0.0001 MLPp#-tite 0.8598 4 0.0009 0.8607 4 0.0003

MLP#* 0.4809 4+ 0.0006 0.4804 4+ 0.0003 MLP? 0.8572 4 0.0011 0.8590 4 0.0003

MLPf 0.4812 4+ 0.0004 0.4807 4+ 0.0002 MLP' 0.8568 4+ 0.0039 0.8614 4+ 0.0014

XGBoost 0.4823 4+ 0.0001 0.4821 4 0.0000 XGBoost 0.8670 4+ 0.0005 0.8674 + 0.0001

LightGBM  0.4826 + 0.0001 0.4825 4 0.0001 Light GBM  0.8664 + 0.0004 0.8667 4 0.0000

CatBoost 0.4823 4+ 0.0001 0.4820 + 0.0001 CatBoost 0.8627 = nan  —

TabR 0.4828 4+ 0.0008 0.4814 4+ 0.0004 TabR 0.8501 4 0.0027 0.8548 4+ 0.0003

TabR* 0.4818 4+ 0.0006 — TabR* 0.8547 +0.0021 —

MNCA 0.4825 4+ 0.0004 0.4819 4+ 0.0003 MNCA 0.8531 4+ 0.0018 0.8569 4+ 0.0004

MNCA* 0.4818 4+ 0.0005 0.4809 4+ 0.0003 MNCA* 0.8544 4+ 0.0033 0.8606 4+ 0.0024

TabM* 0.4803 4+ 0.0006 0.4797 4+ 0.0003 TabM* 0.8583 4+ 0.0010 0.8599 4 0.0006

TabM 0.4804 4+ 0.0002 0.4802 4 0.0000 TabM 0.8599 4+ 0.0010 0.8607 4+ 0.0002

TabM[G] 0.4800 4+ 0.0002 — TabM[G] 0.8588 +0.0013 —

TabMmini 0.4803 4+ 0.0001 0.4801 + 0.0001 TabMmini 0.8605 4+ 0.0010 0.8614 4+ 0.0007

Taijnini 0.4804 4+ 0.0001 0.4803 4 0.0000 TabM;rnini 0.8635 4 0.0008 0.8646 4+ 0.0004
delivery-eta | weather |

Method Single model Ensemble Method Single model Ensemble

MLP 0.5493 4+ 0.0007 0.5478 4+ 0.0006 MLP 1.5378 £+ 0.0054 1.5111 £ 0.0029

TabPFN — — TabPFN — —

ResNet — — ResNet — -

DCN2 0.5516 4+ 0.0014 0.5495 4+ 0.0004 DCN2 1.5606 + 0.0057 1.5292 + 0.0028

SNN 0.5495 4+ 0.0008 0.5479 + 0.0001 SNN 1.5280 + 0.0085 1.5013 £ 0.0034

Trompt 0.5519 = nan  — Trompt 1.5187 £+ nan

Autolnt - - Autolnt - -

MLP-Mixer — — MLP-Mixer — —

Excel” 0.5552 4+ 0.0030 0.5524 + nan Excel”® 1.5131 £ 0.0022 1.4707 £ nan

SAINT 0.5528 = nan  — SAINT 1.5097 + 0.0045 —

FT-T 0.5542 4+ 0.0026 0.5523 + 0.0018 FT-T 1.5104 + 0.0097 1.4719 £ 0.0040

T2G 0.5527 4 0.0016 0.5512 + nan T2G 1.4849 + 0.0087 1.4513 £ nan

MLP#=1e  0.5521 4 0.0014 0.5512 4 0.0005 MLP#71e  1.5170 4 0.0040 1.4953 4 0.0023

MLP* 0.5535 4+ 0.0019 0.5526 4 0.0009 MLP? 1.5139 + 0.0031 1.4978 £+ 0.0020

MLPf 0.5521 4+ 0.0019 0.5511 & 0.0007 MLPf 1.5162 + 0.0020 1.5066 =+ 0.0008

XGBoost 0.5468 4+ 0.0002 0.5463 + 0.0001 XGBoost 1.4671 £+ 0.0006 1.4629 £ 0.0002

LightGBM  0.5468 4+ 0.0001 0.5465 + 0.0000 LightGBM  1.4625 4+ 0.0008 1.4581 + 0.0003

CatBoost 0.5465 4+ 0.0001 0.5461 4+ 0.0000 CatBoost 1.4688 + 0.0019 —

TabR 0.5514 4+ 0.0024 0.5480 + 0.0005 TabR 1.4666 + 0.0039 1.4547 + 0.0008

TabR* 0.5520 + 0.0015 — TabR* 1.4458 4 0.0018 —

MNCA 0.5498 4+ 0.0007 0.5488 4+ 0.0002 MNCA 1.5062 + 0.0054 1.4822 £+ 0.0013

MNCA¥ 0.5507 4+ 0.0013 0.5494 4+ 0.0006 MNCA¥ 1.5008 + 0.0034 1.4782 + 0.0011

TabM* 0.5510 4+ 0.0015 0.5504 + 0.0004 TabM* 1.4786 + 0.0039 1.4715 =+ 0.0020

TabM 0.5494 4+ 0.0004 0.5492 + 0.0001 TabM 1.4722 +0.0024 1.4675 =+ 0.0009

TabM[G] 0.5509 4 0.0003 — TabM|[G] 1.4728 +0.0022 —

TabMmini 0.5497 4+ 0.0007 0.5495 4 0.0003 TabMumnini 1.4716 £+ 0.0016 1.4669 + 0.0010

TabM' 0.5510 4+ 0.0019 0.5502 4 0.0000 TabM! 1.4651 + 0.0020 1.4581 £ 0.0016

mini

mini
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