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HORIZON-FREE REGRET FOR
LINEAR MARKOV DECISION PROCESSES

Zihan Zhang∗ Jason D. Lee∗ Yuxin Chen† Simon S. Du‡

ABSTRACT

A recent line of works showed regret bounds in reinforcement learning (RL) can be
(nearly) independent of planning horizon, a.k.a. the horizon-free bounds. However,
these regret bounds only apply to settings where a polynomial dependency on the
size of transition model is allowed, such as tabular Markov Decision Process (MDP)
and linear mixture MDP. We give the first horizon-free bound for the popular linear
MDP setting where the size of the transition model can be exponentially large
or even uncountable. In contrast to prior works which explicitly estimate the
transition model and compute the inhomogeneous value functions at different time
steps, we directly estimate the value functions and confidence sets. We obtain the
horizon-free bound by: (1) maintaining multiple weighted least square estimators
for the value functions; and (2) a structural lemma which shows the maximal total
variation of the inhomogeneous value functions is bounded by a polynomial factor
of the feature dimension.

1 INTRODUCTION

In reinforcement learning (RL), an agent learns to interact with an unknown environment by ob-
serving the current states and taking actions sequentially. The goal of the agent is to maximize the
accumulative reward. In RL, the sample complexity describes the number of samples needed to learn
a near-optimal policy.

It has been shown that the sample complexity needs to scale with the state-action space for the tabular
Markov Decision Process (MDP) (Domingues et al., 2021). When the state-action space is large,
function approximation is often used to generalize across states and actions. One popular model is
linear MDP where the transition model is assumed to be low-rank (Yang & Wang, 2019; Jin et al.,
2020b). We denote by d the rank (or feature dimension) and the sample complexity will depend on d
instead of the size of the state-action space.

However, there remains a gap between our theoretical understanding of tabular MDPs and linear
MDPs. For tabular MDPs, a line of works give horizon-free bounds, i.e., the sample complexity
can be (nearly) independent of the planning horizon (Wang et al., 2020; Zhang et al., 2021a). More
recently, the horizon-free bounds were also obtained in linear mixture MDP where the underlying
MDP could be presented by a linear combination of d known MDPs (Ayoub et al., 2020; Modi et al.,
2020; Jia et al., 2020). A natural theoretical question is:

Can we obtain horizon-free regret bounds for linear MDPs?

One major technical challenge in obtaining horizon-free bounds is that the value function is inho-
mogeneous, i.e., for an MDP with planning horizon H , the optimal value functions for each time
step {V ∗

h }Hh=1 can vary across h = 1, . . . ,H . For tabular MDPs and linear mixture MDPs, one can
resolve this challenge by first estimating the transition kernel and then computing the value function
based on the learned model. The sample complexity will then scale with the size of the transition
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kernel, which is homogeneous and does not depend on H . For tabular MDPs and linear mixture
MDPs, the dependence on the model size is allowed.1 Unfortunately, this approach cannot be readily
applied to handle linear MDPs because the model size of a linear MDP scales with the size of the
state space, which can be exponentially large or even uncountable.

Contributions. In this paper, we answer the above question affirmatively by establishing a regret
bound of Õ(poly(d)

√
K) for linear MDPs. Formally we have the result below.

Theorem 1. Choose Reward− Confidence as VOFUL (see Algorithm 3). For any MDP satisfying
the total-bounded reward assumption (Assumption 1) and linear MDP assumption (see Assumption 2),
then with probability 1 − δ, the regret of Algorithm 1 is bounded by Õ(d5.5

√
K + d6.5), where

logarithmic factors of (d,K,H, 1/δ) are hidden by the Õ(·) parameter.

By virtue of Theorem 1, we show that linear MDP has a sample-complexity with only poly-logarithmic
dependence on H . Although the proposed algorithm (Algorithm 1) is inefficient in computation, we
believe our method provides intuitions to remove the horizon dependence in the view of statistical
efficiency.

In terms of technical innovations, we design a novel method to share the samples to solve different
linear bandit problems. Since the optimal value functions are not homogeneous, we need to learn H
different linear bandit problems using the same dataset. We first show that it suffices to bound the
regret for each single bandit problem, and then bound the maximal total variance by bounding the
variation of the optimal value function. See Section 3 for more details. Due to space limitation, we
postpone the full proof of Theorem 1 to Appendix B.

1.1 RELATED WORKS

Tabular MDPs. There has been a long list of algorithms proposed for episodic tabular MDPs (e.g.,
Kearns & Singh (2002); Brafman & Tennenholtz (2003); Kakade (2003); Agrawal & Jia (2017); Azar
et al. (2017); Jin et al. (2018); Zhang et al. (2020); Wang et al. (2020); Jin et al. (2020a); Zhang et al.
(2021a); Li et al. (2021b;c; 2023); Zhang et al. (2022)). For finite-horizon inhomogeneous MDPs with
the immediate reward at each step bounded by 1/H , Azar et al. (2017); Zhang et al. (2020); Zanette
& Brunskill (2019); Li et al. (2021b) achieved asymptotically minimax-optimal regret Θ̃(

√
SAHK)

(ignoring lower order terms), where SA is the size of state-action space, H is the planning horizon,
and K is the number of episodes. Motivated by a conjecture raised by Jiang & Agarwal (2018), Wang
et al. (2020) developed—for time-homogeneous MDPs with total rewards in any episode bounded
above by 1—the first sample complexity upper bound that exhibits only logarithmic dependence on
the horizon H , which was later on improved by Zhang et al. (2021a) to yield a near-optimal regret
bound of Õ(

√
SAK + S2A). Subsequently, Li et al. (2021c); Zhang et al. (2022) proved that even

the poly-logarithmic horizon dependency in the sample complexity can be removed, albeit at the
price of suboptimal scaling with SA.

Contextual linear bandits. The linear bandit problem has been extensively studied in past decades
(Auer, 2002; Dani et al., 2008; Chu et al., 2011; Abbasi-Yadkori et al., 2011). For linear bandits
with infinite arms, the minimax regret bound of Θ̃(

√
dK) is achieved by OFUL (Abbasi-Yadkori

et al., 2011), where d is the feature dimension and K the number of rounds. With regards to
variance-aware algorithms, Zhang et al. (2021b); Kim et al. (2022) proposed VOFUL (VOFUL+)

to achieve a variance-dependent regret bound of Õ
(
poly(d)

√∑K
k=1 σ

2
k + poly(d)

)
, in the absence

of the knowledge of {σk}Kk=1 (with σk the conditional variance of the noise in the k-th round). By
assuming prior knowledge of {σk}Kk=1, Zhou et al. (2021); Zhou & Gu (2022) obtained similar regret
bounds with improved dependence on d. Another work (Faury et al., 2020) proposed a Bernstein-style
confidence set for the logistic bandit problem, also assuming availability of the noise variances.

RL with linear function approximation. It has been an important problem in the RL community
to determine the generalization capability of linear function approximation (Jiang et al., 2017; Dann
et al., 2018; Yang & Wang, 2019; Jin et al., 2020b; Wang et al., 2019; Sun et al., 2019; Zanette

1For linear mixture MDP, the model size scales linearly with the feature dimension.
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et al., 2020; Weisz et al., 2020; Li et al., 2021a; Ayoub et al., 2020; Zhang et al., 2021b; Kim et al.,
2022; Zhou et al., 2021; Zhou & Gu, 2022; He et al., 2022). Several model assumptions have
been proposed and exploited to capture the underlying dynamics via linear functions. For example,
Jiang et al. (2017) investigated low Bellman-rank, which described the algebraic dimension between
the decision process and value-function approximator. Another setting proposed and studied by
Jia et al. (2020); Ayoub et al. (2020); Modi et al. (2020) is that of linear mixture MDPs, which
postulates that the underlying dynamics is a linear combination of d known environments. Focusing
on linear mixture MDPs, Zhang et al. (2021b) proposed the first sample-efficient algorithm to achieve
horizon-free Õ(poly(d)

√
K) regret, and later on Kim et al. (2022) obtained better d-dependency in

the regret bound; further, a recent study Zhou & Gu (2022) designed a variance- & uncertainty-aware
exploration bonus with weighted least-square regression, achieving near-optimal regret bounds with
computation efficiency. Another recent strand of research Yang & Wang (2019); Jin et al. (2020b);
He et al. (2022); Agarwal et al. (2022) studied the setting of linear MDPs, where the transition kernel
and reward function are assumed to be linear functions of several known low-dimensional feature
vectors. Take episodic inhomogeneous linear MDPs for example: when the feature dimension is d
and the immediate reward in each step is bounded above by 1/H , (Jin et al., 2020b) established the
regret bound of Õ(

√
d3H2K), whereas the follow-up works He et al. (2022); Agarwal et al. (2022)

improved the regret to Õ(d
√
HK). It remained unclear whether and when horizon-free solutions are

plausible in linear MDPs, in the hope of accommodating scenarios with exceedingly large H .

2 PRELIMINARIES

In this section, we present the basics of MDPs and the learning process, and introduce our key
assumptions. Throughout the paper, ∆(X) denotes the set of probability distributions over the set X .

Episodic MDPs. A finite-horizon episodic MDP can be represented by a tuple (S,A, R, P,K,H),
where S denotes the state space containing S states, A is the action space containing A different
actions, R : S ×A → ∆([0, 1]) indicates the reward distribution, P : S ×A → ∆(S) represents the
probability transition kernel, K stands for the total number of sample episodes that can be collected,
and H is the planning horizon. In particular, P is assumed throughout to be time-homogeneous,
which is necessary to enable nearly horizon-free regret bounds; in light of this assumption, we denote
by Ps,a := P (· | s, a) ∈ ∆(S) the transition probability from state s to state s′ while taking action a.
The reward distribution R is also assumed to be time-homogeneous, so that the immediate reweard
at a state-action pair (s, a) at any step h is drawn from R(s, a) with mean Er′∼R(s,a)[r

′] = r(s, a).
Moreover, a deterministic and possibly non-stationary policy π = {πh : S → A}Hh=1 describes an
action selection strategy, with πh(s) specifying the action chosen in state s at step h.

At each sample episode, the learner starts from an initial state s1; for each step h = 1, . . . ,H , the
learner observes the current state sh, takes action ah accordingly, receives an immediate reward
rh ∼ R(sh, ah), and then the environment transits to the next state sh+1 in accordance with
P (· | sh, ah). When the actions are selected based on policy π, we can define the Q-function and the
value function at step h respectively as follows:

Qπh(s, a) := Eπ

[
H∑

h′=h

rh′

∣∣∣ (sh, ah) = (s, a)

]
and V πh (s) := Eπ

[
H∑

h′=h

rh′

∣∣∣ sh = s

]
for any (s, a) ∈ S × A, where Eπ[·] denotes the expectation following π, i.e., we execute ah′ =
πh′(sh′) for all h < h′ ≤ H (resp. h ≤ h′ ≤ H) in the definition of Qπh (resp. V πh ). The optimal
Q-function and value function at step h can then be defined respectively as

Q∗
h(s, a) = max

π
Qπh(s, a) and V ∗

h (s) = max
π

V πh (s), ∀(s, a) ∈ S ×A.

These functions satisfy the Bellman optimality condition in the sense that V ∗
h (s) = maxaQ

∗
h(s, a),

∀s ∈ S, and Q∗
h(s, a) = r(s, a) + Es′∼P (·|s,a)[V

∗
h+1(s

′)], ∀(s, a) ∈ S ×A.

The learning process. The learning process entails collection of K sample episodes. At each
episode k = 1, 2, . . . ,K, a policy πk is selected carefully based on the samples collected in the
previous k− 1 episodes; the learner then starts from a given initial state sk1 and executes πk to collect
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the k-th episode {(skh, akh, rkh)}1≤h≤H , where skh, a
k
h and rkh denote respectively the state, action and

immediate reward at step h of this episode. The learning performance is measured by the total regret

Regret(K) :=

K∑
k=1

(
V ∗
1

(
sk1
)
− V π

k

1

(
sk1
))
, (1)

and our ultimate goal is to design a learning algorithm that minimizes the above regret (1).

Key assumptions. We now introduce two key assumptions imposed throughout this paper, which
play a crucial role in determining the minimal regret. The first assumption is imposed upon the
rewards, requiring the aggregate reward in any episode to be bounded above by 1 almost surely.

Assumption 1 (Bounded total rewards). In any episode, we assume that
∑H
h=1 rh ≤ 1 holds almost

surely regardless of the policy in use.

Compared to the common assumption where the immediate reward at each step is bounded by 1/H ,
Assumption 1 is much weaker in that it allows the rewards to be spiky (e.g., we allow the immediate
reward at one step to be on the order of 1 with the remaining ones being small). The interested reader
is referred to Jiang & Agarwal (2018) for more discussions about the above reward assumption.

The second assumption postulates that the transition kernel and the reward function reside within
some known low-dimensional subspace, a scenario commonly referred to as a linear MDP.
Assumption 2 (Linear MDP (Jin et al., 2020b)). Let B represent the unit ℓ2 ball in Rd, and let
{ϕ(s, a)}(s,a)∈S×A ⊂ B be a set of known feature vectors such that maxs,a ∥ϕs,a∥2 ≤ 1. Assume
that there exist a reward parameter θr ∈ Rd and a transition kernel parameter µ ∈ RS×d such that

r(s, a) =
〈
ϕ(s, a), θr

〉
∀(s, a) ∈ S ×A (2a)

P (· | s, a) = µϕ(s, a), ∀(s, a) ∈ S ×A (2b)

∥θr∥2 ≤
√
d, (2c)

∥µ⊤v∥2 ≤
√
d, ∀v ∈ RS obeying ∥v∥∞ ≤ 1. (2d)

In words, Assumption 2 requires both the reward function and the transition kernel to be linear
combinations of a set of d-dimensional feature vectors, which enables effective dimension reduction
as long as d≪ SA.

In comparison, another line of works Jia et al. (2020); Ayoub et al. (2020); Modi et al. (2020) focus
on the setting of linear mixture MDP below.
Assumption 3 (Linear Mixture MDP). Let {(ri, Pi)}di=1 be a group of known reward-transition
pairs. Assume that there exists a kernel parameter θ ∈ Rd such that

r(s, a) =

d∑
i=1

θiri(s, a) ∀(s, a) ∈ S ×A (3a)

P (· | s, a) =
d∑
i=1

θiPi(· | s, a), ∀(s, a) ∈ S ×A (3b)

∥θ∥1 ≤ 1. (3c)

Roughly speaking, Assumption 3 requires that the underlying reward-transition pair is a linear
combination of d known reward-transition pairs. Recent work Zhou & Gu (2022) achieved a near-
tight horizon-regret bound in this setting with a computational efficient algorithm. However, we
emphasize that learning a linear MDP is fundamentally harder than learning a linear mixture MDP.
The reason is that the only unknown parameter in a linear mixture MDP problem is the hidden kernel
θ, which has at most d dimensions. So it is possible to learn θ to fully express the transition model.
While in linear MDP, the dimension of unknown parameter µ scales linearly in the number of states,
where it is impossible to recover the transition model. To address this problem, previous works on
linear MDP try to learn the transition kernel in some certain direction, e.g., µ⊤v for some certain
v ∈ RS . This approach faces a fundamental problem in sharing samples among difference layers.
We refer to Section 3 for more discussion.
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Algorithm 1 Main Algorithm
1: Input: Number of episodes K, horizon H , feature dimension d, confidence parameter δ

2: Initialization: λ← 1/H2, ϵ← 1/(KH)4, α← 150d
√

log2((KH)/δ)

3: for k = 1, 2, . . . ,K do
4: Dk ← {sk′h′ , ak

′

h′ , sk
′

h′+1}h′∈[H],k′∈[k−1];
5: // Construct the confidence region for the transition kernel.
6: for v ∈ Wϵ do
7: (θ̂k(v), θ̃k(v),Λk(v))← HF− Estimator(Dk, v);
8: bk(v, ϕ)← α

√
ϕ⊤(Λk(v))−1ϕ+ 4ϵ;

9: end for
10: Uk ←

{
µ̃ ∈ U||ϕ⊤µ̃⊤v − ϕ⊤θ̂(v)| ≤ bk(v, ϕ),∀ϕ ∈ Φ, v ∈ Wϵ

}
11: // Construct the confidence region for the reward function.
12: Θk ← Reward− Confidence

(
{ϕk′h /

√
d}k′∈[k−1],h∈[H], {rk

′

h /
√
d}k′∈[k−1],h∈[H]

)
13: // Optimistic planning.
14: (µk, θk)← argmaxµ̃∈Uk,θ∈Θk maxπ Eπ[

∑H
h=1 rh|µ̃, θ];

15: πk be the optimal policy w.r.t. the reward parameter as θk and transition parameter as µk;
16: Play πk in the k-th episode;
17: end for

Algorithm 2 HF− Estimator

1: Input : A group of samples D := {si, ai, s′i}ni=1, value function v ∈ RS ;

2: Initialization: λ ← 1/H2, α ← 150d
√

log2((KH)/δ), ϕi ← ϕ(si, ai), 1 ≤ i ≤ n, ϵ ←
1/(KH)4;

3: σ2
1 ← 4;

4: for i = 2, 3, . . . , n+ 1 do
5: Λi−1 ← λI+

∑i−1
i′=1 ϕ

⊤
i′ϕi′/σ

2
i′ ;

6: b̃i−1 ←
∑i−1
i′=1

v2(s′
i′ )

σ2
i′

ϕi′ , θ̃i−1 ← Λ−1
i−1b̃i−1;

7: bi−1 ←
∑i−1
i′=1

v(s′
i′ )

σ2
i′
ϕi′ , θi−1 ← Λ−1

i−1bi−1;

8: σ2
i ← ϕ⊤i θ̃i−1 − (ϕ⊤i θi−1)

2 + 16α
√
ϕ⊤i (Λi−1)−1ϕi + 4ϵ,;

9: end for
10: θ ← Λ−1

n bn, θ̃ ← Λ−1
n b̃n, Λ← Λn;

11: Return: (θ, θ̃,Λ);

Notation. Let us introduce several notation to be used throughout. First, we use ι to abbreviate
log(2/δ). For any x ∈ Rd and Λ ∈ Rd×d, we define the weighted norm ∥x∥Λ :=

√
x⊤Λx. Let [N ]

denote the set {1, 2, . . . , N} for a positive integer N . Define B(x) := {θ ∈ Rd | ∥θ∥2 ≤ x} and let
B := B(1) be the unit ball. For two vectors u, v with the same dimension, we say u ≥ v (resp. u ≤ v)
iff u is elementwise no smaller (resp. larger) than v. For a random variable X , we use Var(X) to
denote its variance. For any probability vector p ∈ ∆(S) and any v = [vi]1≤i≤S ∈ RS , we denote by
V(p, v) := p⊤(v2)− (p⊤v)2 the associated variance, where v2 := [v2i ]1≤i≤S denotes the entrywise
square of v. Let ϕkh abbreviate ϕ(skh, a

k
h) for any proper (h, k). Also, we say (h′, k′) ≤ (h, k) iff

h′ + k′H ≤ h+ kH . Let Fkh denote the σ-algebra generated by {sk′h′ , ak
′

h′}(h′,k′)≤(h,k). We employ
E[· | µ̃, θ] to denote the expectation when the underlying linear MDP is generated by the transition
kernel parameter µ̃ and the reward parameter θ (cf. (2)). Moreover, let Φ denote the set of all possible
features. Without loss of generality, we assume Φ is a convex set.
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3 TECHNIQUE OVERVIEW

In this section, we first discuss the hardness of horizon-free bounds for linear MDP, and then introduce
the high-level ideas of our approach. To simplify presentation, we focus on the regret incurred by
learning the unknown transition dynamics.

3.1 TECHNICAL CHALLENGE

Least-square regression in the linear MDP problem. Jin et al. (2020c) proposed the first ef-
ficient algorithm (LSVI-UCB) for the linear MDP problem. In this method, for each h ∈ [H],
the learner maintains an estimation of Vh+1, and constructs optimistic estimators of Qh(s, a) :=
r(s, a) + P⊤

s,aVh+1. Since the reward r is assumed to be known, it suffices to estimate P⊤
s,aVh+1 =

(ϕ(s, a))⊤µ⊤Vh+1. By defining θh+1 := µ⊤Vh+1, we can estimate (ϕ(s, a))⊤θh+1 with least-square
regression because all state-action pairs share the same kernel θh+1. This task is basically the same
as a linear bandit problem, except for that additional factors are needed due to uniform bound over all
possible choices Vh+1.

To obtain horizon-free regret bound, a common approach is to design estimators for P⊤
s,aVh+1 with

smaller confidence intervals. In this way, we can choose a smaller bonus to keep the optimism, and
the regret is also reduced since the leading term in the regret is the sum of bonuses.

Recent work Zhou & Gu (2022) made progress in this direction by designing a variance-aware
estimators for the linear regression problem. Roughly speaking, given a groups of samples {ϕi, vi}ni=1

such that (i) vi = ϕ⊤i θ+ϵi, ∀i ∈ [n]; (ii) E[ϵi|{ϕj}ij=1, {ϵj}
i−1
j=1] = 0 and E[ϵ2i |{ϕj}ij=1, {ϵj}

i−1
j=1] =

σ2
i , ∀i ∈ [n], with the method in Zhou & Gu (2022), the width of the confidence interval of ϕ⊤θ is

roughly

Õ
(
poly(d)

√
ϕ⊤Λ−1ϕ

)
, (4)

where Λ = λI +
∑n
i=1

ϕiϕ
⊤
i

σ2
i

and λ is some proper regularization parameter (See Lemma 1 in
Appendix A).

Main technical challenge: Variance-aware estimators coupled with inhomogeneous value
functions. While the transition kernel is assumed to be time-homogeneous, the value function and
the policy can be time-inhomogeneous across different steps. Although the confidence width in (4)
seems nice, it poses additional difficulty to bound the sum of bonuses due to time-inhomogeneous
value functions.

Below we give more technical details to elucidate this technical challenge. To simplify the problem,
we assume that the learner is informed of both the reward function and the optimal value function
{V ∗

h }h∈[H]. Note that the arguments below can be extended to accommodate unknown {V ∗
h }h∈[H]

as well by means of proper exploitation of the linear MDP structure and a discretization method (i.e.,
applying a union bound over all possible optimal value functions over a suitably discretized set).

Let θ∗h = µ⊤V ∗
h+1. Then it reduces to learning H contextual bandit problems with hidden parameter

as {θ∗h}Hh=1. To remove the polynomial factors of H , it is natural to share samples over different
layers. That is, we need to use all the samples along the trajectory {sh′ , ah′ , sh′+1}Hh′=1 to estimate
the value of ϕ⊤θ∗h.

To solve the h-th linear bandit problem, following (4), we could get a regret bound of Regreth(K) :=

Õ
(∑K

k=1

√
(ϕkh)

⊤(Λk(V ∗
h+1))

−1ϕkh

)
. Here Λk(v) = λI +

∑k−1
k′=1

∑H
h′=1

ϕk
′
h′ (ϕ

k′
h′ )

⊤

(σk′h′ (v))
2 with(

σk
′

h′(v)
)2

as an upper bound for the variance V(Psk′
h′ ,a

k′
h′
, v) for v ∈ RS . Taking sum over h,

the resulting regret bound is roughly

K∑
k=1

min

{
H∑
h=1

√
(ϕkh)

⊤(Λk(V ∗
h+1))

−1ϕkh, 1

}
. (5)
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We remark that if V ∗
h is homogeneous in h, i.e., there exists V ∗ such that V ∗

h = V ∗ for any h ∈ [H],
we could use Cauchy’s inequality to bound (5) by2√√√√ K∑

k=1

min

{
H∑
h=1

(ϕkh/(σ
k
h(V

∗)))⊤(Λk(V ∗))−1(ϕkh/σ
k
h(V

∗)), 1

}
·

√√√√ K∑
k=1

H∑
h=1

(σkh(V
∗))2. (6)

Noting that

Λk+1(V ∗) = Λk(V ∗) +

H∑
h′=1

ϕkh′(ϕkh′)⊤(
σk

′
h′(V ∗)

)2 , (7)

we can further use the elliptical potential lemma (Lemma 6) to bound the first term in (6), and the
total variance lemma for MDPs to bound the second term in (6). As a result, we can easily bound (5)
by Õ(poly(d)

√
K).

However, the arguments above cannot work when V ∗
h depends on h. In such cases, the first term in

(5) would be √√√√ K∑
k=1

min

{
H∑
h=1

(ϕkh/σ
k
h(V

∗
h ))

⊤(Λk(V ∗
h+1))

−1(ϕkh/σ
k
h(V

∗
h )), 1

}
. (8)

To invoke elliptical potential lemma, we need Λk+1(V ∗
h+1) − Λk(V ∗

h+1) =
∑H
h′=1

ϕk
h′ (ϕ

k
h′ )

⊤

(σk
h′ (V

∗
h′+1

))2
,

which does not hold since σkh′(V ∗
h′+1) ̸= σkh′(V ∗

h+1).

In comparison, for tabular MDP, the variance aware bonus has a simple form of
√

V(Ps,a,V ∗
h+1)

N ,
so that one can invoke Cauchy’s inequality to bound the sum of bonuses; for linear mixture MDP,
because there is only one kernel parameter θ and one information matrix, it suffices to analyze like
(6) and (7).

3.2 OUR METHODS

In high-level idea, by noting that the main obstacle is the time-inhomogeneous value function, we
aim to prove that the value function {V ∗

h }Hh=1 could be divided into several groups such that in each
group, the value functions are similar to each other measured by the variance.

Technique 1: a uniform upper bound for the variances. We consider using a uniform upper
bound (σ̄k

′

h′)2 := maxh∈[H](σ
k′

h′(V ∗
h+1))

2 to replace (σk
′

h′(V ∗
h+1))

2 when computing Λk(V ∗
h+1). That

is, by setting Λ̄k = λI+
∑k−1
k′=1

∑H
h′=1

ϕk
′
h′ (ϕ

k′
h′ )

⊤

(σ̄k
′
h′ )

2
≼ Λk(V ∗

h+1) for any h ∈ [H], we can bound (5)

as below:
K∑
k=1

min

{
H∑
h=1

√
(ϕkh)

⊤(Λk(V ∗
h+1))

−1ϕkh, 1

}

≤
K∑
k=1

min

{
H∑
h=1

√
(ϕkh)

⊤(Λ̄k))−1ϕkh, 1

}

≈

√√√√ K∑
k=1

min

{
H∑
h=1

(ϕkh/σ̄
k
h)

⊤(Λ̄k)−1(ϕkh/σ̄
k
h), 1

}
·

√√√√ K∑
k=1

H∑
h=1

(σ̄kh)
2. (9)

With the elliptical potential lemma (Lemma 6), we have that
K∑
k=1

min

{
H∑
h=1

(ϕkh/σ̄
k
h)

⊤(Λ̄k)−1(ϕkh/σ̄
k
h), 1

}
= Õ(

√
d).

2Here we omit a lower order term.
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So it suffices to deal with
∑K
k=1

∑H
h=1 (σ̄

k
h)

2. For simplicity, we assume that (σkh(v))
2 is exactly

V(Pskh,akh , v) and consider to bound
∑K
k=1

∑H
h=1 maxh′∈[H] V(Pskh,akh , V

∗
h′+1).

Noting that V(Ps,a, v) could be written as ϕ(s, a)⊤(θ(v2)) − (ϕ(s, a)⊤θ(v))2, which

is a linear function of the matrix
[
ϕ(s, a)ϕ⊤(s, a) ϕ(s, a)

ϕ⊤(s, a) 1

]
, we can bound∑K

k=1

∑H
h=1 maxh′∈[H] V(Pskh,akh , V

∗
h′+1) by 2(d + 1)2 maxh′∈[H]

∑K
k=1

∑H
h=1 V(Pskh,akh , V

∗
h′+1)

with a useful technical lemma (See Lemma 5.)

As a result, it suffices to bound
∑K
k=1

∑H
h=1 V(Pskh,akh , V

∗
h′+1) for each h′ ∈ [H]. However, because

V ∗
h′+1 can vary significantly when h′ is closed to H ,

∑K
k=1

∑H
h=1 V(Pskh,akh , V

∗
h′+1) might be large

in the worst case. We consider the toy example below.
Example 1. Fix some ϵ > 0. Let S := {s1, s2, s3, z}, A = {a1, a2}. Let Ps1,a1 = Ps2,a1 =
[ 12 − ϵ,

1
2 − ϵ, ϵ, 0]

⊤, r(s1, a1) = r(s2, a1) = 0, Ps1,a2 = Ps2,a2 = [0, 0, 0, 1]⊤, r(s1, a2) = 1
2 ,

r(s2, a2) = 0, Ps3,a1 = Ps3,a2 = [0, 0, 0, 1]⊤, r(s3, a1) = r(s3, a2) = 1, Pz,a1 = Pz,a2 =
[0, 0, 0, 1]⊤, and r(z, a1) = r(z, a2) = 0.

In this toy example, we have two frequent states {s1, s2}, one transient state {s3} with reward 1 and
one ending state z with no reward. The transition dynamics at {s1, s2} is the same, but one can get
reward 1

2 in one step by taking action a2 at s1. Suppose H >> 1
ϵ and h ≤ H

2 , then the optimal action
for {s1, s2} at the h-th step should be a1, and V ∗

h (s1) ≈ V ∗
h (s2) ≈ 1. On the other hand, it is easy to

observe V ∗
H(s1) =

1
2 and V ∗

H(s2) = 0. Let the initial state be s1. Following the optimal policy, we

have E
[∑H

2

h=1 V(Pskh,akh , V
∗
H)
]
= Ω( 1ϵ ) >> 1 when choosing ϵ small enough.

Technique 2: bounding the total variation. Direct computation shows that for 1 ≤ h1 < h2 ≤
[H],

K∑
k=1

h2∑
h=h1

V(Pskh,akh , V
∗
h′+1) = Õ(K +K(h2 − h1 + 1)∥V ∗

h′ − V ∗
h′+1∥∞). (10)

Let lh = ∥V ∗
h − V ∗

h+1∥∞. It is easy to observe that lh ≤ lh+1 for 1 ≤ h ≤ H − 1 since the
Bellman operator Γ is a contraction , i.e., ∥Γ(v1 − v2)∥∞ ≤ ∥v1 − v2∥∞ for any v1, v2 ∈ RS .

So we can obtain lh ≤
∑H−1

h′=1
lh′

H−h+1 . For tabular MDP, it is easy to bound
∑H
h=1 lh ≤ S since

∥V ∗
h − V ∗

h+1∥∞ ≤
∑
s(Vh(s)− Vh+1(s)). As a generalization to linear MDP, by Lemma 5 we have

that
H−1∑
h=1

l∗h ≤
H−1∑
h=1

max
ϕ∈Φ

ϕ⊤µ⊤(Vh+1 − Vh+2) ≤ max
ϕ∈Φ

2dϕ⊤
H−1∑
h=1

µ⊤(Vh+1 − Vh+2) ≤ 2d. (11)

As a result, l∗h ≤ 2d
H−h+1 .

Technique 3: doubling segments. By choosing h1 = H
2 +1 and h2 = H in (10), for h′ ∈ [h1, h2],

K∑
k=1

h2∑
h=h1

V(Pskh,akh , V
∗
h′+1) = Õ(K +K(h2 − h1 + 1)∥V ∗

h′ − V ∗
h′+1∥∞) = Õ(Kd).

This inspires us to divide [H] several segments [H] = ∪iHi with Hi = {h|H − H
2i−1 + 1 ≤ h ≤

H − H
2i } andHlog2(H)+1 = {H}3. Consequently, for any i and h′ ∈ Hi, using (10) and the fact that

l∗h′ ≤ 2d
H−h′+1 ≤

2i+1d
H ,

∑K
k=1

∑
h∈Hi

V(Pskh,akh , V
∗
h′+1) = Õ(Kd).

Note that we only bound
∑K
k=1

∑log2(H)+1
i=1 maxh′∈Hi

∑
h∈Hi

V(Pskh,akh , V
∗
h′+1), which does not

imply any bound for maxh′∈[H]

∑K
k=1

∑H
h=1 V(Pskh,akh , V

∗
h′+1). Recall that our initial target is to

3We assume log2(H) is an integer without loss of generality.
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bound
∑K
k=1 min

{∑H
h=1

√
(ϕkh)

⊤(Λk(V ∗
h+1))

−1ϕkh, 1
}

. A natural idea is to group h ∈ Hi for

each i to avoid the term maxh′∈[H]

∑K
k=1

∑H
h=1 V(Pskh,akh , V

∗
h′+1). In other words, we turn to bound∑K

k=1 min
{∑

h∈Hi

√
(ϕkh)

⊤(Λk(V ∗
h+1))

−1ϕkh, 1
}

for each i separately. More precisely, for fixed

i, we let (σ̄k
′

h′)2 = maxh∈Hi
(σk

′

h′(V ∗
h+1))

2, and Λ̄k = λI +
∑k−1
k′=1

∑
h′∈Hi

ϕk
′
h′ (ϕ

k′
h′ )

⊤

(σ̄k
′
h′ )

2
. With the

arguments above, we have that
K∑
k=1

min

{∑
h∈Hi

√
(ϕkh)

⊤(Λk(V ∗
h+1))

−1ϕkh, 1

}

≤

√√√√ K∑
k=1

min

{∑
h∈Hi

(ϕkh/σ̄
k
h)(Λ̄

k)−1(ϕkh/σ̄
k
h), 1

}
·

√√√√ K∑
k=1

∑
h∈Hi

(σ̄kh)
2 + Õ(d)

= Õ(
√
Kd4). (12)

4 ALGORITHM

In this section, we introduce Algorithm 1. The algorithm is based on model-elimination. At each
episode k = 1, 2, . . . ,K, we maintain Uk as confidence region of µ and Θk as confidence region
for θr. Then we select the optimistic transition model and reward function from Uk ×Θk and then
execute the corresponding optimal policy. The key step is how to construct Uk. Inspired by recent
work Zhou & Gu (2022), we consider the weighted least square regression to estimate the value
function and corresponding variance, which is presented in Algorithm 2. We also borrow VOFUL in
Zhang et al. (2021b) to construct the confidence region for θr.

Recall that B(2
√
d) = {θ ∈ Rd|∥θ∥2 ≤ 2

√
d}. For fixed ϵ > 0, there exists an ϵ-net Bϵ(2

√
d) w.r.t.

L∞ for B(2
√
d) such that |Bϵ(2

√
d)| ≤ O((4

√
d/ϵ)d). By Assumption 2, for any v ∈ RS such that

∥v∥∞ ≤ 1, it holds that ∥µ⊤v∥2 ≤
√
d. Therefore, for any MDP such that Assumption 1 and 2 holds,

its optimal value function is in the set

W := {v ∈ RS |∃θ ∈ B(2
√
d), v(s) = max{min{max

a
ϕ⊤(s, a)θ, 1}, 0},∀s ∈ S}.

Define Wϵ =
{
v ∈ RS |∃θ ∈ Bϵ(2

√
d), v(s) = max{min{maxa ϕ

⊤(s, a)θ, 1}, 0},∀s ∈ S
}
. For

fixed θ ∈ B(2
√
d) and s ∈ S, the function max

{
min

{
maxa ϕ(s, a)

⊤θ, 1
}
, 0
}

is O(1)-Lipschtiz
continuous w.r.t L∞ norm. As a result,Wϵ is an ϵ-net w.r.t. L∞ norm ofW . Besides, the size ofWϵ

is bounded by |Wϵ| = O((4
√
d/ϵ)d).

Confidence region for the transition kernel. Fix a group of sequential samples {ϕi}ni=1 and a
value function v ∈ Wϵ. Fix ϕ ∈ Φ and let θ(v) = µ⊤v. We aim to construct a confidence interval
from ϕ⊤µ⊤v, and then eliminate all the transition kernels µ̃ which fails to satisfy the confidence
interval for some v and ϕ. To obtain variance-aware confidence interval, we need to compute the
variance to feed the weight least-square estimator in Zhou & Gu (2022). For this purpose, for the i-th
variance V(µϕi, v), we construct σ2

i such that σ2
i ≥ V(µϕi, v) and the error σ2

i − V(µϕi, v) is well
controlled. To compute σ2

i , we need to estimate ϕ⊤i θ(v
2) and ϕ⊤i θ(v) using the first i− 1-th samples,

which requires the knowledge of V(µϕi′ , v2) for i′ ≤ i− 1. To address this problem, Zhou & Gu
(2022) recursively estimated the 2m-th order momentum for m = 1, 2, . . . , log2(H). In comparison,
by the fact that V(µϕi′ , v2) ≤ 4V(µϕi′ , v) (see Lemma 2), we can use 4σ2

i′ as an upper bound for
V(µϕi′ , v2).

Confidence region for the reward parameter. To estimate the reward parameter θr, we invoke
VOFUL in Zhang et al. (2021b). We remark that the randomness in reward is independent of the
randomness in transition dynamics, so that learning the transition dynamic does not help to estimate
the variance of reward. More precisely, the variance of R(s, a) could be a non-linear function in
ϕ(s, a), while the variance of V ∗

h (s
′) with s′ ∼ P (·|s, a) must be a linear function in ϕ(s, a). In

Appendix C, we present VOFUL and summarize some useful properties to bound the error due to
uncertainty of reward parameter.
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A TECHNICAL LEMMAS

Lemma 1 (Theorem 4.3 in Zhou & Gu (2022)). Let {Fi}∞i=1 be a filtration, and {ψi, ζi}i≥1 be
a stochastic process such that ψi ∈ Rd is Fi-measurable and ϵi ∈ R is Fi+1 measurable. Let
L, σ,R, λ, c > 0, θ∗ ∈ Rd. For i ≥ 1, let yi = ⟨ψi, θ∗⟩+ ζi and suppose that

E[ζi|Fi] = 0, E[ζ2i |Fi] ≤ σ2, |ζi| ≤ R, ∥ψi∥2 ≤ L. (13)

For i ≥ 1, let Λi = λI+
∑i
i′=1 ψi′ψ

⊤
i′ and bi =

∑i
i′=1 yi′ψi′ , θi = Λ−1

i bi, and

κi = 12
√
σ2d log(1 + iL2/(dλ)) log(32(log(R/c) + 1)i2/δ)

+ 24 log(32(log(R/c) + 1)k2/δ) max
1≤i′≤i

{|ζi′ |min{1, ∥ψi′∥Λ−1

i′−1

}}+ 6 log(32(log(R/c) + 1)k2/δ)c.

Then, for any 0 < δ < 1, with probability 1− δ.

∀i ≥ 1,

∥∥∥∥∥
i∑

i′=1

ψi′ζi′

∥∥∥∥∥
Λ−1
i

≤ κi, ∥θi − θ∗∥Λi ≤ κi +
√
λ∥θ∗∥2.

Lemma 2 ( Chen et al. (2021)). LetX be a random variable taking value in [−C,C] for some C ≥ 0.
Let var(Y ) denote the variance of a random variable Y . It then holds that var(X2) ≤ 4C2var(X).

Lemma 3. [Lemma 10 in Zhang et al. (2020)] Let (Mn)n≥0 be a martingale such that M0 = 0 and
|Mn −Mn−1| ≤ c for some c > 0 and any n ≥ 1. Let Varn =

∑n
k=1 E[(Mk −Mk−1)

2|Fk−1] for
n ≥ 0, where Fk = σ(M1,M2, ...,Mk). Then for any positive integer n, and any ϵ, p > 0, we have
that

P
[
|Mn| ≥ 2

√
Varn log(

1

p
) + 2

√
ϵ log(

1

p
) + 2c log(

1

p
)

]
≤
(
2nc2

ϵ
+ 2

)
p. (14)

Lemma 4. Let Φ be a bounded convex closed subset of Rd. Let Φ∗ = {ψ ∈ Rd|ϕ⊤ψ ≥ 0,∀ϕ ∈ Φ}.
Then there exists ϕ̄ ∈ Φ satisfying that ϕ̄⊤ψ ≥ 1

2d maxϕ∈Φ ϕ
⊤ψ for any ψ ∈ Φ∗.

Proof. Without loss of generality, we assume that ∥ψ∥2 = 1. Let u be the standard measure of Rd.
Define ϕ̄ =

∫
Φ
ϕdu(ϕ)∫

Φ
du(ϕ)

be the geometry center of Φ. We will show that ϕ̄⊤ψ ≥ 1
2d maxϕ∈Φ ϕ

⊤ψ

for any ψ ∈ Φ∗. Fix ψ ∈ Φ∗ and define l = maxϕ∈Φ ϕ
⊤ψ. For 0 ≤ x ≤ l, we define

f(x) = limϵ→0

∫
ϕ∈Φ,ϕ⊤ψ∈[x,x+ϵ)

du(ϕ)

ϵ·
∫
ϕ
du(ϕ)

. Because Φ is a convex bounded set, f(x) is well defined and

continuous. By definition, it holds that
∫ l
0
f(x)dx = 1.

We claim that

f(l − y)
yd−1

≤ f(l − x)
xd−1

(15)

for 0 < x ≤ y ≤ l.

Proof of (15). Let V(w) := {ϕ ∈ Φ : ϕ⊤ψ = w} for 0 ≤ w ≤ l. V(l) is non-empty by definition.
Fix ϕ̃ ∈ V(l). By convexity of Φ, for any ϕ ∈ V(l−y), y−xy ϕ̃+ x

yϕ ∈ V(l−x) for any 0 < x ≤ y ≤ l.
As a result,

y − x
y

ϕ̃+
x

y
V(l − y) :=

{
y − x
y

ϕ̃+
x

y
ϕ | ϕ ∈ V(l − y)

}
⊂ V(l − x).

Let ũ be the standard measure of Rd−1. It then holds that

ũ(V(l − x)) ≥ ũ(V(l − y)) ·
(
x

y

)d−1

(16)
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for 0 < x ≤ y ≤ l. By definition of f , we have that

lim
ϵ→0

ϵminw′∈[w,w+ϵ) ũ(V(w′))

ϵ
∫
Φ
du(ϕ)

≤f(w) := lim
ϵ→0

∥ψ∥2
∫
ϕ∈Φ,ϕ⊤ψ∈[w,w+ϵ)

du(ϕ)

ϵ
∫
Φ
du(ϕ)

= lim
ϵ→0

ϵmaxw′∈[w,w+ϵ) ũ(V(w′))

ϵ
∫
Φ
du(ϕ)

.

In then follows that

lim
ϵ→0

minw′∈[w,w+ϵ) ũ(V(w′))∫
Φ
du(ϕ)

≤ f(w) ≤ lim
ϵ→0

maxw′∈[w,w+ϵ) ũ(V(w′))∫
Φ
du(ϕ)

.

As a result, we have that
f(l − y)
yd−1

≤ lim
ϵ→0

max
υ∈[0,ϵ)]

ũ(V(l − y + υ))

yd−1
∫
Φ
du(ϕ)

≤ lim
ϵ→0

max
υ∈[0,ϵ)

min
υ′∈[0,ϵ)

ũ(V(l − x+ υ′))

xd−1
∫
Φ
du(ϕ)

·
(
(y − υ)x
y(x− υ′)

)d−1

≤ f(l − x)
xd−1

.

The proof of (15) is finished.

Let z = ϕ̄⊤ψ and f(z) = b, we then have that f(x) ≥ b·(l−x)d−1

(l−z)d−1 for any x ∈ [z, l], and f(x) ≤
b(l−x)d−1

(l−z)d−1 for any x ∈ [z].

By definition, we have that

z =

∫
Φ
ϕ⊤ψdu(ϕ)∫
ϕ
du(ϕ)

= lim
ϵ→0

⌈l/ϵ⌉∑
i=0

∫
ϕ∈Φ,ϕ⊤ψ∈[iϵ,(i+1)ϵ)

ϕ⊤ψdu(ϕ)∫
Φ
du(ϕ)

= lim
ϵ→0

⌈l/ϵ⌉∑
i=0

∫
ϕ∈Φ,ϕ⊤ψ∈[iϵ,(i+1)ϵ)

iϵdu(ϕ)∫
Φ
du(ϕ)

= lim
ϵ→0

⌈l/ϵ⌉∑
i=0

f(iϵ)iϵ2

=

∫ l

0

f(x)xdx.

As a result, we have that∫
0≤x≤z

f(x) · (z − x)d(x) =
∫
z≤x≤l

f(x)(x− z)dx,

which implies∫
z≤x≤l

b(l − x)d−1(x− z)
(l − z)d−1

≤
∫
z≤x≤l

f(x)(x− z)dx =

∫
0≤x≤z

f(x) · (z − x)d(x) ≤
∫
0≤x≤z

b(l − x)d−1(z − x)
(l − z)d−1

.

Therefore,
∫
z≤x≤l(l − x)

d−1(x− z)dx ≤
∫
0≤x≤z(l − x)

d−1(z − x)dx, which means

(l − z)d+1

d(d+ 1)
≤ ld+1

d+ 1
− (l − z)ld

d
+

(l − z)d+1

d(d+ 1)
. (17)

Then it holds that z ≥ l
d+1 ≥

l
2d . The proof is completed.

14
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Lemma 5. Let l be a positive integer. Let Φ = {ϕi}ni=1 and Ψ = {ψj}mj=1 be two group of vectors
in Rl satisfying that ϕ⊤i ψj ≥ 0 for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. It then holds that

n∑
i=1

max
j
ϕ⊤i ψj ≤ 2lmax

j

n∑
i=1

ϕ⊤i ψj .

Proof. By Lemma 4, there exists ψ∗ ∈ Conv(Ψ) such that ϕ⊤i ψ
∗ ≥ 1

2l maxj ϕ
⊤
i ψj for any 1 ≤ i ≤

n. As a result, we have that
n∑
i=1

max
j
ϕ⊤i ψj ≤ 2l

n∑
i=1

ϕ⊤i ψ
∗ ≤ 2lmax

j

n∑
i=1

ϕ⊤i ψj .

The proof is completed.

Lemma 6. Let {ϕi}ni=1 be a group of vectors in Rd such that ∥ϕi∥2 ≤ L. Fix λ > 0 and let
Λi = λI+

∑i
i′=1 ϕiϕ

⊤
i . For any sequence 0 = i1 < i2 < . . . < ik = n,

k∑
j=1

min


ij+1∑
i=ij+1

ϕ⊤i Λ
−1
ij
ϕi, 1

 ≤ 6d log(nL/λ). (18)

Proof. Let J ⊂ [k − 1] be the indices j such that Λij+1
≼ 2Λij does not hold. Then we have

2|J | ≤ Πj∈J
det(Λij+1)

det(Λij )
≤ (nL2)d, (19)

which implies |J | ≤ 2d log2(nL/λ).

Continue the computation,

k∑
j=1

min


ij+1∑
i=ij+1

ϕ⊤i Λ
−1
ij
ϕi, 1

 ≤ |J |+∑
j /∈J

ij+1∑
i=ij+1

ϕ⊤i Λ
−1
ij
ϕi

≤ 2d log2(nL/λ) + 2

n∑
i=1

ϕ⊤i Λ
−1
i+1ϕi

≤ 6d log2(nL/λ). (20)

The proof is completed.

B REGRET ANALYSIS (PROOF OF THEOREM 1)

In this section, we present regret analysis for Algorithm 1, i.e., the proof of Theorem 1.

B.1 THE SUCCESSFUL EVENT

We first introduce the successful event G. Fix k ∈ [K]. For any v ∈ Wϵ, let (θ̂k(v), θ̃k(v),Λk(v)) be
the output of Algorithm 2 with input as {sk′h , ak

′

h , s
k′

h+1}k′∈[k−1],h∈[H] and v. Recall that θ(v) = µ⊤v.

Let κ = 13
√
6d2 log2(KH/δ) + 72 log(KH/δ). Define Gk(v) to be the event where

∥θ(v)− θ̂(v)∥Λk(v) ≤ κ, ∥θ(v2)− θ̃(v)∥Λk(v) ≤ 4κ. (21)

With Lemma 10, we have that Pr(Gk(v)) ≥ 1− 10KHδ/|Wϵ|.
Define Gk = ∩v∈Wϵ

Gk(v) and Gµ = ∩kGk. Then we have that Pr(Gµ) ≥ 1−10K2Hδ. On the other
hand, we define Gr = {θr ∈ Θk,∀1 ≤ k ≤ K}. By Lemma 13, we have that Pr(Gr) ≥ 1− 10KHδ.
Let G = Gµ ∩ Gr. It then holds that Pr(G) ≥ 1− 20KHδ. In the rest of this section, we continue
the proof conditioned on G.

15
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B.2 REGRET DECOMPOSITION

We start with showing that the maintained value function and Q-function are nearly optimistic.
Lemma 7. Conditioned on G, it holds that θr ∈ Θk and µ ∈ Uk for any k.

Proof. Recall that

Uk = {µ̃ ∈ U||ϕ⊤µ̃⊤v − ϕ⊤θ̂k(v)| ≤ bk(v, ϕ),∀ϕ ∈ Φ(ϵ), v ∈ Wϵ}

and bk(v, ϕ) = α∥ϕ∥(Λk(v))−1 + 4ϵ. By the definition of G, we have that for any ϕ ∈ Φ and v ∈ Wϵ,

|ϕ⊤µ⊤v − ϕ⊤θ̂k(v)| ≤ ∥ϕ∥(Λk(v))−1 · ∥θ(v)− θ̂k(v)∥Λk(v) ≤ κ∥ϕ∥(Λk(v))−1 ≤ bk(v, ϕ).

As a result, µ ∈ Uk. On the other hand, θr ∈ Θk by the definition of G.

For any proper s, h, k, we define V kh (s) := Eπk [
∑H
h′=h rh′ |sh = s, µ̃k, θk] to be the value function

w.r.t. the model (µk, θk).

By definition of regret, we have that

Regret(K)

=

K∑
k=1

min
{(
V ∗
1 (s

k
1)− V π

k

1 (sk1)
)
, 1
}

≤
K∑
k=1

min
{(
V k1 (sk1)− V π

k

1 (sk1)
)
, 1
}

≤
K∑
k=1

min

{
H∑
h=1

(
(ϕkh)

⊤θk − (ϕkh)
⊤θr + (ϕkh)

⊤(µk)⊤V kh+1 − (ϕkh)
⊤µ⊤V kh+1

)
, 1

}
︸ ︷︷ ︸

T1(k)

+

K∑
k=1

min

{
H∑
h=1

(
(ϕkh)

⊤µ⊤V kh+1 − V kh+1(s
k
h+1)

)
, 1

}
︸ ︷︷ ︸

T2(k)

+

K∑
k=1

(
H∑
h=1

rkh − V π
k

1 (sk1)

)
︸ ︷︷ ︸

T3(k)

(22)

Here the first inequality holds by the optimality of (µ̃k, θk). The right hand side of (22) consists of
three terms, where

∑
k T1(k) is the error due to inaccurate transition and reward model,

∑
k T2(k) is

the martingale difference due to state transition, and
∑
k T3(k) is the difference between the expected

accumulative reward and the empirical accumulative reward. We have the lemma below to bound
these terms.
Lemma 8. Conditioned on G, with probability 1− 10KHδ, it holds that

K∑
k=1

T1(k) ≤ Õ(d5.5
√
K + d6.5).

Lemma 9. Conditioned on G, with probability 1− 10KHδ, it holds that

K∑
k=1

(T2(k) + T3(k)) ≤ 8
√
Kι+ 21ι. (23)

The proofs of Lemma 8 and Lemma 9 are presented in Appendix B.4.1 and Appendix B.4.2 respec-
tively.
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B.3 PUTTING ALL PIECES TOGETHER

By (22), Lemma 8 and 9, we conclude that, with probability 1−50K2H2δ, it holds that Regret(K) =

Õ(d5.5
√
K + d6.5). The proof is completed by replacing δ with δ

50K2H2 .

B.4 MISSING PROOFS

B.4.1 BOUND OF TERM T1(k) (PROOF OF LEMMA 8)

Direct computation gives that

K∑
k=1

T1(k) =

K∑
k=1

min

{
H∑
h=1

(
(ϕkh)

⊤θk − (ϕkh)
⊤θr + (ϕkh)

⊤(µ̃k)⊤V kh+1 − (ϕkh)
⊤µ⊤V kh+1

)
, 1

}

≤
K∑
k=1

min

{
H∑
h=1

((ϕkh)
⊤θk − (ϕkh)

⊤θr), 1

}
+

K∑
k=1

min

{
H∑
h=1

((ϕkh)
⊤(µ̃k)⊤V kh+1 − (ϕkh)

⊤µ⊤V kh+1), 1

}
.

(24)

By Lemma 13, with probability 1− δ,

K∑
k=1

min

{
H∑
h=1

((ϕkh)
⊤θk − (ϕkh)

⊤θr), 1

}
= Õ

d6
√√√√ K∑
k=1

H∑
h=1

Var(R(skh, a
k
h)/
√
d) + d6.5


= Õ(d5.5

√
K + d6.5). (25)

Here we use the fact that
∑H
h=1 Var(R(s

k
h, a

k
h)) ≤

∑H
h=1 R̄

k
h ≤ 1 with R̄kh as the maximal possible

value of R(skh, a
k
h).

As for the second term in (24), noting that V kh+1,∈ W for any proper k, h, letting V̄ kh+1 ∈ Wϵ be
such that ∥V̄ kh+1 − V kh+1∥∞ ≤ ϵ, we have that

K∑
k=1

min

{
H∑
h=1

((ϕkh)
⊤(µ̃k)⊤V kh+1 − (ϕkh)

⊤µ⊤V kh+1), 1

}

≤
K∑
k=1

min

{
H∑
h=1

((ϕkh)
⊤(µ̃k)⊤V̄ kh+1 − (ϕkh)

⊤µ⊤V̄ kh+1), 1

}
+ 2KHϵ

≤
K∑
k=1

min

{
H∑
h=1

bk(V̄ kh+1, ϕ
k
h), 1

}
+ 2KHϵ

≤ α
K∑
k=1

min

{
H∑
h=1

√
(ϕkh)

⊤(Λk(V̄ kh+1))
−1ϕkh, 1

}
+ 6KHϵ. (26)

Define βkh =
√

(ϕkh)
⊤(Λk(V̄ kh+1))

−1ϕkh.

For v ∈ RS , let (θ̂(v), θ̃(v),Λk(v) be the output of Algorithm 2 with input as
{sk′h′ , ak

′

h′ , skh′+1, }k′∈[k−1],h′∈[H] and v. Define

(σkh(v))
2 = (ϕkh)

⊤θ̃(v)−
(
(ϕkh)

⊤θ̂(v)
)2

+ 16α
√

(ϕkh)
⊤(Λk(v))−1ϕkh + 4ϵ. (27)

In words, (σkh(v))
2 is the estimator for the variance V(Pskh,akh , v). By the definition of G and the fact

that V̄ k
′

h′ , (V̄ k
′

h′ )2 ∈ Wϵ, we have that σkh(V̄
k′

h′ ) ≥ V(Pskh,akh , V̄
k′

h′ ). Let imax = log2(H) + 1. Recall
Hi = {h|H − H

2i−1 + 1 ≤ h ≤ H − H
2i } for i = 1, 2, . . . , imax − 1andHimax = {H}. Then we let

Vi = {V̄ kh+1|1 ≤ k ≤ K,h ∈ Hi} for i = 1, 2, . . . , log2(H) and Vimax = {V̄ kH+1|1 ≤ k ≤ K}.
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Fix i. For h ∈ Hi, we define Λ̄k(i) as

Λ̄k(i) = λI+

k−1∑
k′=1

∑
h∈Hi

ϕk
′

h′(ϕk
′

h′)⊤

maxv∈Vi(σ
k′
h′(v))2

. (28)

By definition, it holds that Λ̄k(i) ≼ Λk(V̄ kh+1) for any k and h′ ∈ Hi. It then holds that
K∑
k=1

imax∑
i=1

min

{∑
h∈Hi

βkh, 1

}

=

K∑
k=1

imax∑
i=1

min

{∑
h∈Hi

√
(ϕkh)

⊤(Λk(V̄ kh+1))
−1ϕkh, 1

}
. (29)

Noting that Λ̄k(i) +
∑
h∈Hi

ϕkh(ϕ
k
h)

⊤

maxv∈Vi (σ
k
h(v))

2 = Λ̄k+1
(i) , by Lemma 6, we have that

K∑
k=1

min

{∑
h∈Hi

(ϕkh)
⊤(Λ̄k(i))

−1ϕkh

maxv∈Vi(σ
k
h(v))

2
, 1

}
≤ 16d log(KH), (30)

K∑
k=1

Iki ≤ 16d log(KH). (31)

where Iki = I
[∑

h∈Hi

(ϕkh)
⊤(Λ̄k(i))

−1ϕkh
maxv∈Vi (σ

k
h(v))

2 > 1

]
.

By Lemma 6, we have
K∑
k=1

(1− Iki )
∑
h∈Hi

√
(ϕkh)

⊤(Λ̄k(i))
−1ϕkh ≤

√√√√ K∑
k=1

∑
h∈Hi

(ϕkh)
⊤(Λ̄k(i))

−1ϕkh

maxv∈Vi(σ
k
h(v))

2
·

√√√√ K∑
k=1

(1− Iki )
∑
h∈Hi

max
v∈Vi

(σkh(v))
2

≤ 16d log(KH) ·

√√√√ K∑
k=1

(1− Iki )
∑
h∈Hi

max
v∈Vi

(σkh(v))
2.

(32)
By the successful event G, and noting that v ∈ Wϵ, we have that

(σkh(v))
2 ≤ V(Pskh,akh , v) + (ϕkh)

⊤(θ̃(v)− θ(v2))− 2|(ϕkh)⊤(θ̂(v)− θ(v))|+ 16α
√
(ϕkh)

⊤(Λk(v))−1ϕkh + 4ϵ

≤ V(Pskh,akh , v) + (6κ+ 16α)
√

(ϕkh)
⊤(Λk(v))−1ϕkh +

1

KH
(33)

≤ V(Pskh,akh , v) + (6κ+ 16α)
√
(ϕkh)

⊤(Λ̄k)−1ϕkh +
1

KH

≤ V(Pskh,akh , v) + 32α
√
(ϕkh)

⊤(Λ̄k)−1ϕkh +
1

KH
.

Therefore,
K∑
k=1

(1− Iki )
∑
h∈Hi

max
v∈Vi

(σkh(v))
2 ≤

K∑
k=1

∑
h∈Hi

max
v∈Vi

V(Pskh,akh , v) + 32α

K∑
k=1

(1− Iki )
∑
h∈Hi

√
(ϕkh)

⊤(Λ̄k(i))
−1ϕkh + 1.

(34)

By (32) and (34), we obtain that
K∑
k=1

(1− Iki )
∑
h∈Hi

√
(ϕkh)

⊤(Λ̄k(i))
−1ϕkh

≤ 16d log(KH) ·

√√√√ K∑
k=1

∑
h∈Hi

max
v∈Vi

V(Pskh,akh , v) + 32α

K∑
k=1

(1− Iki )
∑
h∈Hi

√
(ϕkh)

⊤(Λ̄k(i))
−1ϕkh + 1,

(35)
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which implies that

K∑
k=1

(1− Iki )
∑
h∈Hi

√
(ϕkh)

⊤(Λ̄k(i))
−1ϕkh ≤ 32 log(KH)

√√√√ K∑
k=1

∑
h∈Hi

max
v∈Vi

V(Pskh,akh , v) + 1 + 25000 log2(KH)α.

(36)

Using (29), (30), (31) and (36), we learn that

K∑
k=1

imax∑
i=1

min

{∑
h∈Hi

βkh, 1

}

=

K∑
k=1

imax∑
i=1

min

{∑
h∈Hi

√
(ϕkh)

⊤(Λk(V̄ kh+1))
−1ϕkh, 1

}

≤
imax∑
i=1

K∑
k=1

(1− Iki )
∑
h∈Hi

√
(ϕkh)

⊤(Λ̄k(i))
−1ϕkh +

imax∑
i=1

K∑
k=1

Iki (37)

≤ imaxγ +

imax∑
i=1

2γ

√√√√ K∑
k=1

∑
h∈Hi

max
v∈Vi

V(Pskh,akh , v) + 1 + 100γ2α+ 16KHϵ

 (38)

with γ = 16d log(KH).

Below we fix i and bound the total variance term
∑K
k=1

∑
h∈Hi

maxv∈Vi V(Pskh,akh , v). Let v ∈ Vi
be fixed.

Using Lemma 11, we have that: for any v ∈ Vi
K∑
k=1

∑
h∈Hi

V(Pskh,akh , v) ≤ 36Kd2 log(1/ϵ)ι, (39)

Let γ1 = 36d2 log(1/ϵ)ι. Noting that

V(Pskh,akh , v) = (ϕkh)
⊤µ⊤v2 −

(
(ϕkh)

⊤µ⊤v)
)2

= (ϕkh)
⊤θ(v2)− ((ϕkh)

⊤θ(v))2,

we have that for any v ∈ Vi,
K∑
k=1

∑
h∈Hi

(
(ϕkh)

⊤θ(v2)− ((ϕkh)
⊤θ(v))2

)
=

K∑
k=1

∑
h∈Hi

V(Pskh,akh , v) ≤ Kγ1. (40)

By regarding
[
ϕkh(ϕ

k
h)

⊤ ϕkh
(ϕkh)

⊤ 1

]
k∈[K],h∈Hi

and
[
−θ(v)θ(v)⊤ 1

2θ(v
2)

1
2θ(v

2)⊤ 0

]
v∈Vi

as two groups of

vectors with dimension (d+ 1)2 and applying Lemma 5, we obtain that

K∑
k=1

∑
h∈Hi

max
v∈Vi

V(Pskh,akh , v)

=

K∑
k=1

∑
h∈Hi

max
v∈Vi

(
(ϕkh)

⊤θ(v2)− ((ϕkh)
⊤θ(v))2

)
≤ 2(d+ 1)2 max

v∈Vi

K∑
k=1

∑
h∈Hi

(
(ϕkh)

⊤θ(v2)− ((ϕkh)
⊤θ(v))2

)
≤ 2(d+ 1)2Kγ1. (41)

By (38) and (41), we obtain that
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K∑
k=1

min

{∑
h∈Hi

βkh, 1

}
= Õ(γ

√
d2γ1K) = Õ(d3

√
K). (42)

Taking sum over i, putting (24), (25), (26) and (42) together, and noting that ϵ = 1
K4H4 , with

probability 1− 10KHδ, it holds that
K∑
k=1

T1(k) ≤ Õ(d5.5
√
K + d4

√
K + d6.5) = Õ(d5.5

√
K + d6.5). (43)

B.4.2 BOUND OF TERM T2(k) + T3(k) (PROOF OF LEMMA 9)

With a slight abuse of notation, here we use pv as shorthand of p⊤v for p ∈ ∆S and v ∈ RS .

Recall that

T2(k) : = min

{
H∑
h=1

(
(ϕkh)

⊤µ⊤V kh+1 − V kh+1(s
k
h+1)

)
, 1

}

= min

{
H∑
h=1

(
(Pskh,akhV

k
h+1 − V kh+1(s

k
h+1)

)
, 1

}
. (44)

Using Lemma 3, with probability 1− 4Khδ, it holds that

K∑
k=1

T2(k) ≤ 2
√
2

√√√√ K∑
k=1

H∑
h=1

V(Pskh,akh , V
k
h+1)ι+ 3ι

≤ 2
√
2

√√√√ K∑
k=1

H∑
h=1

V(Pskh,akh , V
k
h+1)ι+ 3ι.

Using Lemma 3 and Lemma 2, with probability 1− 4KHδ,
K∑
k=1

H∑
h=1

V(Pskh,akh , V
k
h+1) =

K∑
k=1

H∑
h=1

(Pskh,akh(V
k
h+1)

2 − (Pskh,akhV
k
h+1)

2)

≤
K∑
k=1

H∑
h=1

((V kh )
2(skh)− (Pskh,akhV

k
h+1)

2) +

K∑
k=1

H∑
h=1

(Pskh,akh − 1skh+1
(V kh+1)

2

≤ 2K + 4
√
2

√√√√ K∑
k=1

H∑
h=1

V(Pskh,akh , V
k
h+1)ι+ 3ι. (45)

Solving the equation above, we have that
∑K
k=1 T2(k) ≤

√
16K + 240ι+ 3ι.

Noting that E[
∑H
h=1 r

k
h] = V π

k

1 (sk1) and 0 ≤
∑H
h=1 r

k
h ≤ 1 for any k ∈ [K], with probability 1−2δ,

it holds that
∑K
k=1 T3(k) ≤ 2

√
2Kι+ 2ι. The proof is completed.

B.4.3 ADDITIONAL LEMMAS

Lemma 10. Fix v ∈ RS such that ∥v∥∞ ≤ 1. Define θ(v) = µ⊤
P v and θ(v2) = µ⊤

P v
2. Fix k ∈ [K].

Let (θ, θ̃,Λ) be the output of Algorithm 2 with input as {sk′h′ , ak
′

h′ , sk
′

h′+1)}h′∈[H],k′∈[k−1] and v. Recall

κ = 13

√
6d2 log2(KH/δ) + 72 log(KH/δ) ≤ α

For any 0 < δ < 1, with probability 1− 10KHδ/|Wϵ|, it holds that

∥θ(v)− θ∥Λ ≤ κ and ∥θ(v2)− θ̃∥Λ ≤ 4κ. (46)

20



Published as a conference paper at ICLR 2024

Proof of Lemma 10. For convenience, we regard the sample {sk′h′ , ak
′

h′ , sk
′

h′+1} as theH(k′−1)+h-th
sample and rewrite xk

′

h′ as xH(k′−1)+h where x can be any proper notations.

Recall that V(Ps,a, v) denote the variance of v(s′) where s′ is the reward function and next state by
taking (s, a). Let vari(v) be shorthand of V(Ps,a, v). Let v̄ari(v) denote the variance of v2(s′) by
taking state-action (si, ai). By Lemma 2, we have that v̄ari(v) ≤ 4vari(v).

Let {σi,Λi, b̃i, bi}i≥1 be the variables computed in Algorithm 2. We then have the following claim.

Claim 1. If it holds that

σ2
i ≥ vari(v) + 2α∥ϕi∥Λ−1

i−1
(47)

for each i ≤ (k − 1)H , then (46) holds with probability 1− 5δ/|Wϵ|.

Proof of Claim 1. Fix 1 ≤ i ≤ (k− 1)H . Recall the definition of Λi−1, bi−1, θi−1, b̃i−1 and θ̃i−1 in
Algorithm 2. Because v̄ari(v) ≤ 4vari(v), we have that

4σ2
i ≥ v̄ari(v) + 8α∥ϕi∥Λ−1

i−1
(48)

for each i ≤ (k − 1)H . Let ϵi = v(si+1) − E[v(si+1)|Fi]. Using Lemma 1 with {ψi, ζi}i≥1 as{
ϕi
σi
, ϵiσi

}(k−1)H

i=1
and parameters as σ2 = 1, R = H2, L = H2, c = 1/(KH)3, λ = 1/H2, with

probability 1− 5δ/|Wϵ|

∥θi−1 − θ(v)∥Λi−1

≤ 12

√
6d2 log2(KH/δ) + 72d log(KH/δ) max

1≤i′≤i
|ϵi′/σi′ | ·min{1, ∥ϕi′/σi′∥Λ−1

i′−1

}+ 1

H

≤ 12

√
6d2 log2(KH/δ) + 72d log(KH/δ) max

1≤i′≤i

|ϵi′ |∥ϕi′∥Λ−1

i′−1

σ2
i′

+
1

H

≤ 12

√
6d2 log2(KH/δ) + 72d

log(KH/δ)

α
+

1

H
≤ κ.

Here the second last inequality is by (47).

Let ϵ̄i = v2(si+1) − E[v2(si+1)|Fi]. By setting {ψi, ζi}i≥1 as
{
ϕi
2σi
, ϵ̄i
2σi

}(k−1)H

i=1
, by (48), with

probabbility 1− 5δ/|ϵ|,

∥θ̃i−1 − θ(v2)∥Λi−1/4

≤
(
12

√
12d2 log2(KH/δ) + 72d log(KH/δ) max

1≤i′≤i
|ϵ̄i′/(2σi′)| ·min{1, ∥ϕi′/(2σi′)∥4Λ−1

i′−1

}+ 1

H

)
≤

(
12

√
12d2 log2(KH/δ) + 72d log(KH/δ) max

1≤i′≤i

2∥ϕi′∥Λ−1

i′−1

4σ2
i′

+
1

H

)

≤
(
12

√
12d2 log2(KH/δ) + 72d log(KH/δ)/(2α) +

1

H

)
≤ 2κ, (49)

which implies that ∥θ̃i−1 − θ(v2)∥Λi−1
≤ 4κ.

So it suffices to prove that (47) holds for any 1 ≤ i ≤ (k − 1)H . To prove (47), we use induction on
i = 1, 2, . . . , n = (k − 1)H . By the update rule in Algorithm 2, we have that

σ2
i = ϕ⊤i b̃i − (ϕ⊤i bi)

2 + 16α
√
ϕ⊤i (Λi−1)−1ϕi + 4ϵ. (50)
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By assuming σ2
i′ ≥ vari′(v) + 2α∥ϕi′∥Λ−1

i′−1

holds for 1 ≤ i′ ≤ i− 1, using Claim 1 with samples

as {si′ , ai′ , si′+1, v(si′+1)}i−1
i′=1, with probability 1− 5δ/|Wϵ| it holds that

|ϕ⊤i θi−1 − ϕ⊤i θ(v)| ≤ ∥ϕi∥Λ−1
i−1
· ∥θi−1 − θ(v)∥Λi−1 ≤ κ

√
ϕ⊤i Λ

−1
i−1ϕi ≤ α

√
ϕ⊤i Λ

−1
i−1ϕi. (51)

Note that θ(v2) = µ⊤
P v

2. Using Claim 1 again, with probability 1− 5δ/|Wϵ|,

|ϕ⊤i θ̃i−1 − ϕ⊤i θ(v2)| ≤ 4α
√
ϕ⊤i (Λi−1)−1ϕi. (52)

By noting that vari(v) = ϕ⊤i θ̃(v)− (ϕ⊤i θ(v))
2, we have that

σ2
i ≥ vari(v) + 10α

√
ϕ⊤i (Λi−1)−1ϕi.

Also recalling that v̄ari(v) ≤ 4vari(v), we have that

4σ2
i ≥ v̄ari(v) + 8α∥ϕi∥Λ−1

i−1
. (53)

The proof is completed.

Lemma 11. With probability 1− 4K2H2δ, for any i ∈ [imax] and v ∈ Vi, it holds that

K∑
k=1

∑
h∈Hi

V(Pskh,akh , v) ≤ K(36ι+ 18d+ 10 log(KH))

Proof. With a slight abuse of notation, here we use pv as shorthand of p⊤v for p ∈ ∆S and v ∈ RS .
Define δ′ = δ/|Wϵ| and let ι′ = log(2/δ′). Fix v ∈ Wϵ and let v̄(s) = max{maxa Ps,av, v(s)}.
Fix 1 ≤ h1 ≤ h2 ≤ H + 1. With probability 1− δ′, it holds that

h2∑
h=h1

V(Pskh,akh , v) =
h2∑

h=h1

(
Pskh,akhv

2 − (Pskh,akhv)
2
)

=

h2∑
h=h1

(
Pskh,akhv

2 − v2(skh+1)
)
+

h2∑
h=h1

(
v2(skh+1)− (Pskh,akhv)

2
)

≤
(a)

2

√√√√ h2∑
h=h1

V(Pskh,akh , v)ι
′ +

h2∑
h=h1

(
v2(skh)− (Pskh,akhv)

2
)
+ 4ι′ + 2

≤
(b)

4

√√√√ h2∑
h=h1

V(Pskh,akh , v)ι
′ + 2

h2∑
h=h1

max{v(skh)− Pskh,akhv, 0}+ 4ι′ + 2

≤
(c)

4

√√√√ h2∑
h=h1

V(Pskh,akh , v)ι
′ + 2

h2∑
h=h1

(
v̄(skh)− Pskh,akhv

)
+ 4ι′ + 2

≤
(d)

4

√√√√ h2∑
h=h1

V(Pskh,akh , v)ι
′ + 2

h2∑
h=h1

(
v(skh)− Pskh,akhv

)
+ 4ι′ + 2(h2 − h1 + 1)∥v̄ − v∥∞ + 2

≤
(e)

4

√√√√ h2∑
h=h1

V(Pskh,akh , v)ι
′ + 4

√√√√ h2∑
h=h1

V(Pskh,akh , v) + 12ι′ + 2(h2 − h1 + 1)∥v̄ − v∥∞ + 2

= 8

√√√√ h2∑
h=h1

V(Pskh,akh , v)ι
′ + 12ι′ + 2(h2 − h1 + 1)∥v̄ − v∥∞ + 2,
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which further implies that

H∑
h=1

V(Pskh,akh , v) ≤ 36ι′ + 6(h2 − h1 + 1)∥v̄ − v∥∞ + 6. (54)

Here (a) and (e) hold by Lemma 3, (b) holds by Lemma 2, (c) holds by the fact that v̄(s) ≥ Ps,av
for any proper (s, a), and (d) holds because (v̄(skh)− v(skh)) ≤ ∥v̄ − v∥∞ for all proper (h, k).

Now we bound ∥v̄ − v∥∞. By definition of Vi, if v ∈ Vi, there then exists some k ∈ [K], h ∈ Hi,
such that ∥v−V kh+1∥∞ ≤ ϵ. It then follows that v̄(s) ≤ maxa Ps,aV

k
h+1+ ϵ ≤ Vh(s)+ ϵ. Therefore,

by Lemma 12, we have that ∥v̄− v∥∞ ≤ ϵ+ ∥V kh − V kh+1∥∞ ≤ ϵ+ 2i

H . By choosing [h1, h2] = Hi,
we have that with probability 1− δ′

I[v ∈ Vi]
h2∑

h=h1

V(Pskh,akh , v) ≤ 8

√√√√ h2∑
h=h1

V(Pskh,akh , v)ι
′ + 12ι′ + 2Hϵ+ 4,

which implies

I[v ∈ Vi]
H∑
h=1

V(Pskh,akh , v) ≤ 36ι′ + 12 + 6Hϵ (55)

with probability 1− δ′. With a union bound overWϵ and i ∈ [imax], we have that: with probability
1− 4K2H2δ,

K∑
k=1

∑
h∈Hi

V(Pskh,akh , v) ≤ K(36ι+ 18d+ 10 log(KH))

for any i and v ∈ Vi. The proof is completed.

Lemma 12. For any k ∈ [K], h ∈ [H], it holds that ∥V kh − V kh+1∥∞ ≤ 2d
H−h+1 .

Proof. Fix k. Let lh = ∥V kh − V kh+1∥∞. Let Γ denote the Bellman operator under transition kernel
µk. Since ∥Γ(v1 − v2)∥∞ ≤ ∥v1 − v2∥∞ for any v1, v2 ∈ RS , lh in non-decreasing in h. So it
suffices to bound

∑H
h=1 lh.

By Lemma 4, for any s,

Vh(s)− Vh+1(s)

≤ max
ϕ∈Φ

ϕ⊤(µk)⊤(Vh+1 − Vh+2)

≤ 2dϕ̄⊤(µk)⊤(Vh+1 − Vh+2). (56)

It then follows that
∑H
h=1 lh ≤ 2dϕ̄⊤(µk)⊤

∑H
h=1(Vh+1 − Vh+2) ≤ 2d. The proof is completed.

C DISCUSSION ABOUT VOFUL

We first introduce the VOFUL estimator in Zhang et al. (2021b). The Algorithm is presented in
Algorithm 3. Then we have the lemma to bound the error due to uncertainty of reward parameter.

Lemma 13. Let {ϕi}ni=1 be a group of feature vectors in Rd such that ∥ϕi∥2 ≤ 1, and ri =
ϕ⊤i θ

∗+ϵi ∈ [−1, 1] for some θ∗ ∈ Rd with ∥θ∗∥2 ≤ 1. Let F̄i be the σ-field of {ϕi′ , ri′}i′≤i. Assume
that E[ϵi|F̄i−1] = 0 and E[ϵ2i |F̄i−1] = σ2

i for any i ≥ 1. Let {Θi}ni=1 to be the confidence region for
the true parameter θ∗ in Line 5 Algorithm 3 with input as {ϕi}ni=1 and {ri}ni=1. It then holds that with
probability 1− 10nδ: (i) θr ∈ Θi for any i ∈ [n]; (ii) For any sequence 0 = i1 < i2 < · · · < iz = n,

it holds that
∑z−1
l=1 min

{∑il+1

i=il+1(maxθ∈Θil+1
ϕ⊤i (θ − θ∗), 1

}
= Õ(d5.5

√∑n
i=1 σ

2
i + d6.5).

23



Published as a conference paper at ICLR 2024

Proof. Now we proof Lemma 13. Firstly, (i) holds by the lemma below.

Lemma 14 (Lemma 18 in Zhang et al. (2021b)). With probability 1− 3 log(n)δ, θ∗ ∈ Θi for any
i ∈ [n].

To verify (ii), we define

L :=

{
l ∈ [z]|∃j ∈ [L2], u ∈ B′,

il+1∑
i=1

clip2j (ϕ
⊤
i u) + l2j ≥ 4(d+ 2)2

il∑
i=1

clip2j (ϕ
⊤
i u) + l2j

}
.

With Lemma 15 below, we have that |L| ≤ O(d log3(n)).

Lemma 15. [Lemma 14 in Zhang et al. (2021b)] Let f be a convex function. Let ϕ1, ϕ2, . . . , ϕt ∈ B
be a sequence of vectors. If there exists a sequence 0 = τ0 < τ1 < τ2 < . . . < τz = t such that for
each 1 ≤ ζ ≤ z, there exists µζ ∈ B such that

τζ∑
i=1

f(ϕiµζ) + ℓ2 > 4(d+ 2)2 ×

(τζ−1∑
i=1

f(ϕiµζ) + ℓ2

)
, (57)

then z ≤ O(d log2(dt/ℓ)).

Then we have that
z−1∑
l=1

min

{
il+1∑
i=il+1

( max
θ∈Θil+1

ϕ⊤i (θ − θ∗), 1

}

≤
∑
l/∈L

il+1∑
i=il+1

max
θ∈Θil+1

(ϕi)
⊤(θ − θ∗) +O(d log3(n))

≤ (d+ 2)
∑
l/∈L

il+1∑
i=il+1

max
θ∈Θil+1+1

(ϕi)
⊤(θ − θ∗) +O(d log3(n)) (58)

≤ (d+ 2)

n∑
i=1

max
θ∈Θi

(ϕi)
⊤(θ − θ∗) +O(d log3(n)) (59)

≤ Õ

d5.5
√√√√ n∑

i=1

σ2
i + d6

 .

Here (58) is by the definition of L, and the last inequality holds because Lemma 19 in Zhang et al.
(2021b), which states that

Lemma 16. [Lemma 19 in Zhang et al. (2021b)] Recall the definition of {Θi}ni=1 in Algorithm 3.
With probability 1− 5 log(n)δ, it holds that

n∑
i=1

max
θ∈Θi

ϕ⊤i (θ − θ∗) = Õ

d4.5
√√√√ n∑

i=1

σ2
i + d5

 .

The proof is completed.
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Algorithm 3 VOFUL: Variance-Aware Optimism in the Face of Uncertainty for Linear Bandits
1: Input : {ϕk}nk=1, {ri}nk=1

2: Initialize: L2 = ⌈log2 n⌉, ℓj = 22−j∀1 ≤ j ≤ L2+1, ι = 16d ln dn
δ ,Λ2 = {1, 2, . . . , L2+1},

Θ1 = B(2), Let B′ be an n−3-net of B with size not larger than ( 4n )
3d

3: Construct Confidence Set:
4: For each θ ∈ B, define ϵk(θ) = rk − (ϕk)

⊤θ, ηk(θ) = (ϵk(θ))
2.

5: Define confidence set Θk+1 =
(⋂

j∈Λ2
Θjk+1

)
∩Θk, where

Θjk+1 =

{
θ ∈ B :

∣∣∣∣∣
k∑
v=1

clipj((ϕv)
⊤µ)ϵv(θ)

∣∣∣∣∣ ≤
√√√√ k∑

v=1

clip2j ((ϕv)
⊤u)ηv(θ)ι+ ℓjι, ∀µ ∈ B′

}
(60)

and clipj(·) = clip(·, ℓj), clip(u, l) = min{|u|, l} u|u| .
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