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Abstract
Multiple instance learning (MIL) is often used
in medical imaging to classify high-resolution
2D images by processing patches or classify 3D
volumes by processing slices. However, conven-
tional MIL approaches treat instances separately,
ignoring contextual relationships such as the ap-
pearance of nearby patches or slices that can
be essential in real applications. We design a
synthetic classification task where accounting
for adjacent instance features is crucial for ac-
curate prediction. We demonstrate the limita-
tions of off-the-shelf MIL approaches by quanti-
fying their performance compared to the optimal
Bayes estimator for this task, which is available
in closed-form. We empirically show that newer
correlated MIL methods still do not achieve the
best possible performance when trained with
ten thousand training samples, each containing
many instances.

Data and Code Availability Synthetic data and
Python code are available at https://github.com/
tufts-ml/correlated-mil and have been integrated
into torchmil (Castro-Macías et al., 2025).

Institutional Review Board (IRB) Our study
uses synthetic data and does not require IRB approval.

1. Introduction
Many prediction tasks in medical imaging involve

visual data with varying cardinality, resolution, or
dimensionality. For example, inputs may consist of
high-resolution 2D images (e.g., histopathology im-
ages) or 3D image volumes (e.g., CT or MRI scans). In
these scenarios, a common approach is to divide each
image into smaller 2D patches or slices known as in-
stances, obtain per-instance representations, and then
aggregate scores or representations across instances to
make one prediction for the whole image (Ilse et al.,
2018; Han et al., 2020; Shao et al., 2021; Harvey et al.,

2023). Building predictors that aggregate one coher-
ent prediction from many instance representations is
known as multiple instance learning (MIL) (Quellec
et al., 2017; Dietterich et al., 1997; Maron and Lozano-
Pérez, 1997). MIL offers a practical framework for
handling weakly labeled data.

Conventional MIL approaches broadly treat in-
stances separately and independently. This assump-
tion ignores the spatial and contextual relationships
between adjacent patches or slices. Accounting for
these relationships can be critical for accurate predic-
tion in medical applications. To address this problem,
recent work has proposed correlated MIL (Shao et al.,
2021) to model dependencies between instances. Oth-
ers have built upon this direction (Castro-Macías et al.,
2024). Assessing the capabilities and limits of such
methods remains an open problem.

In this work, we take a synthetic data approach
to better understand the importance of spatial and
contextual relationships between adjacent instances
in multiple instance learning. Our contributions are:
• We design a novel synthetic dataset called Shifted

Mean MIL to represent key challenges in MIL for
medical imaging: (1) only some features are discrim-
inative, (2) only a few instances in each bag signal
whether it should be positive class, and (3) context
from nearby instances matters, as the information
from an individual instance may be statistically
ambiguous.

• We derive the optimal Bayes estimator for this
dataset and use its predictions as a gold standard
for comparing how well MIL methods perform.

• We demonstrate that even recent correlated MIL
methods designed to account for context do not
achieve the best possible performance on our toy
task, as shown in Fig. 1.

These contributions suggest concrete opportunities for
future work to improve correlated MIL, perhaps via
improved inductive biases or regularization strategies.

© E. Harvey, D.J. Loevlie & M.C. Hughes.
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Figure 1: Test AUROC as a function of training set size N . All data is drawn from our Shifted Mean MIL data-
generating process for binary classification, with R=3,∆=2. Conventional MIL approaches (Max, Mean, ABMIL)
cannot match the Bayes estimator p(yi = 1 | hi) as they do not account for dependencies between instances within a bag.
Surprisingly, even with N=10000, correlated MIL approaches (TransMIL (Shao et al., 2021), smAP (Castro-Macías
et al., 2024)) do not reach the ceiling set by the Bayes estimator. smAP comes close, but bootstrapping reveals the
Bayes estimator maintains a statistically significant advantage (mean of AUROC difference is 0.014, 95% confidence
interval of [0.007, 0.022] does not include zero or any negative values). Takeaway: Our work reveals a need for
data-efficient MIL that better accounts for context between instances.

2. Related Work
Multiple instance learning. MIL is a branch of
weakly supervised learning where a variable-sized set
of instances has a single label. Early MIL approaches
used simple, non-trainable operations such as max or
mean pooling to aggregate instance representations
(Pinheiro and Collobert, 2015; Zhu et al., 2017; Feng
and Zhou, 2017). Recent work has proposed attention-
based pooling (Ilse et al., 2018). Several works have
extended attention-based pooling while maintaining
permutation-invariance (Li et al., 2021; Lu et al., 2021;
Keshvarikhojasteh et al., 2024). Correlated MIL (Shao
et al., 2021) extends traditional MIL by modeling re-
lationships between instances within a bag, allowing
the pooling operation to capture morphological and
spatial information rather than treating instances as
independent. Castro-Macías et al. (2024) proposed a
smoothing operator to introduce local dependencies
among neighbors. Shao et al. (2025) showed that
transfer learning with MIL approaches improves gen-
eralization.

Most similar in spirit to our work are the algorith-
mic unit tests for MIL proposed by Raff and Holt
(2023). They suggest three synthetic classification
tasks designed to reveal whether learned models vio-
late key MIL assumptions, such as a bag is positive if
and only if one or more instances have a positive label.

Our new data focuses on cross-instance dependency,
which was not examined by Raff and Holt (2023).

Adjacent context in deep learning. Several
prior works have introduced architectural modifica-
tions to better capture dependencies between adjacent
patches in 2D images or slices in 3D images. Shifted
windows allow for cross-window connections in vision
transformers (ViT) (Liu et al., 2021). Weight inflation
transfers pre-trained weights from lower- to higher-
dimensional model (e.g., 2D to 3D CNNs) (Carreira
and Zisserman, 2017; Zhang et al., 2022).

3. Background
3.1. Multiple Instance Learning

To train MIL models, the training dataset D =
{(xi,1:Si

, yi)}Ni=1 consists of N labeled bags. Each
bag is a set of Si independent instance feature vec-
tors {xi,1, . . . , xi,Si} with a single label yi. Among
deep MIL pipelines, there are two broad paradigms:
embedding-aggregation and prediction-aggregation.
Both approaches have neural architectures consist-
ing of three parts: an encoder, a pooling operation,
and classifier. They differ in the ordering of these
components.

In the embedding-aggregation approach, the order
is encode, pool, then classify. First, each instance’s
B-channel raw image xi,j ∈ RB×W×H is encoded into
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Figure 2: Example data-generating distributions for a discriminative feature for negative (yi=0) and positive (yi=1)
“bags” of Si instances drawn from our Shifted Mean MIL synthetic data. Setting R=3 means context around modified
instances (in red) can help. In our experiments, we set R=3, Slow=15, Shigh=45, K=1, M=768, µ=0, and σ=1. We
study how prediction quality changes as we vary training set size N (Fig. 1) and class separation ∆ (Fig. A.1).

a representation vector hi,j = f(xi,j) ∈ RM . Second,
a pooling operation σ (e.g., max, mean, or attention-
based pooling) aggregates all Si instance represen-
tations {hi,1, . . . , hi,Si} into a single representation
vector zi = σ(hi,1:Si

) ∈ RM . Usually, this pooling is
permutation-invariant. Finally, the bag level represen-
tation vector zi is classified into a predicted probability
vector over C classes, c(zi) ∈ ∆C ⊂ RC . We can de-
note the ultimate prediction as ŷi = c(σ(f(xi,1:Si)).
In this notation, applying f to a set yields another
set containing a mapping of each instance.

In the prediction-aggregation approach, the order-
ing of c and σ is swapped. A separate prediction score
(e.g., a logit or probability vector) is produced for each
of the Si instances separately, and then pooling deter-
mines the final prediction, ŷi = σ(c(f(xi,1:Si))))).

Ultimately, in either approach, model parameters
for all three parts (encoder, pooling, and classifier) are
trained to minimize binary or multi-class cross entropy
averaged across all data: 1

N

∑N
i=1 ℓ

CE(yi, ŷi), where
ŷi is a function of input features and parameters.

3.2. Pooling Methods

The design of the pooling layer σ, which aggregates
across instances, is generally most important for un-
derstanding how spatial context is incorporated. We
describe several architectures below. We focus on
embedding-aggregation for concreteness; a translation
to prediction-aggregation is straightforward. Here, we
take as input a set of embeddings hi := hi,1:Si for bag

i. Each instance j in the bag is embedded as vector
hij ∈ RM .

Max and Mean. Two simple poolings find the
maximum or mean element-wise for M -dim. vectors:

zi = max
j=1,...,Si

hij , or zi = mean
j=1,...,Si

hij . (1)

Attention-based pooling. Attention-based pool-
ing (ABMIL) (Ilse et al., 2018) assigns an attention
weight aij to each instance, then forms bag-level em-
bedding vector zi via a weighted average:

zi =

Si∑
j=1

aijhij , aij =
exp

(
u⊤ tanh (Uhij)

)∑Si

k=1 exp (u
⊤ tanh (Uhik))

,

where the weights aij are non-negative and sum to
one:

∑
j aij = 1; aij≥0 for all j. Here, vector u ∈ RL

and matrix U ∈ RL×M are trainable parameters.
Smooth attention pooling. Smooth attention

pooling (smAP) (Castro-Macías et al., 2024) uses a
smoothing operation to add local interactions between
instance embeddings. The smoothed embeddings gi ∈
RSi×M for all Si instances are obtained by solving an
optimization problem

Sm(hi) = argmin
gi

αED(gi) + (1− α)∥hi − gi∥2F , (2)

where α ∈ [0, 1) controls the amount of smoothness,
∥ · ∥F denotes the Frobenius norm, and

ED(gi) =
1

2

Si∑
j=1

Si∑
k=1

Aijk∥gij − gik∥22. (3)
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Here, Ai ∈ RSi×Si is an adjacency matrix defining
local relationships between instances and ∥·∥22 denotes
the squared Euclidean norm aka “sum of squares”.

Correlated MIL pooling. Shao et al. (2021)’s
transformer-based correlated MIL (TransMIL) allows
instance interactions to inform pooling. First, Trans-
MIL uses convolutions over instances in a pyramidal
position encoding generator to model dependencies.
Second, interactions between all pairs of instances are
captured via multi-head self-attention. For layer ℓ
and head h, there’s a Si+1× Si+1 attention matrix,
where rows sum to one and weight j, k is:

a
(ℓ,h)
i,j,k ∝ exp

((
q
(ℓ,h)
i,j

)⊤
k
(ℓ,h)
i,k /

√
d

)
. (4)

Here, each instance j has L-dim. embeddings for
query q

(ℓ,h)
i,j =W

(ℓ,h)
Q hℓ−1

i,j , key k
(ℓ,h)
i,j =W

(ℓ,h)
K hℓ−1

i,j , and

value v(ℓ,h)i,j =W
(ℓ,h)
V hℓ−1

i,j . Propagating embeddings via
attention-weighted value averages over several layers
and heads allows instance features to interact flexibly
to inform the ultimate bag-level embedding.

4. Shifted Mean MIL Synthetic Data
We propose a new data-generating process designed

to mimic several key challenges in real-world multiple-
instance medical imaging tasks:
• Across the whole dataset, only a few features of

many are discriminative (K of M).
• For each positively-labeled bag, only a few instances

are relevant (R of Si) and they are adjacent in a
known 1D listing of all Si instances.

• Context matters. Adjacent instances together pro-
vide stronger statistical signal than any one relevant
instance’s discriminative feature value alone.

The generative process for bag i first draws the bag’s
binary label and the number of instances in the bag
yi ∼ Bern(q+), Si ∼ Unif({Slow, . . . , Shigh}). (5)

Next, for negative bags we sample all features m for all
instances j independently from a common Gaussian:

hi,j,k | yi=0 ∼ N (µ, σ2). (6)
For positive bags, most instances and features are
sampled from this same Gaussian. However, for the K
discriminative features, we select R adjacent instances
(using ui to denote the starting index) and sample
these from a Gaussian with shifted mean:

ui | yi=1 ∼ Unif({1, . . . , Si −R+ 1}), (7)

hijk | ui, yi=1 ∼


N (µ+∆, σ2), if j ∈ [ui, ui+R−1]

and k is discrim.
N (µ, σ2), otherwise.

Here ∆>0 indicates the magnitude of shift for discrim-
inative features. Setting R>1 indicates that context
helps. Given a fixed µ, bags drawn from this process
are more challenging to classify (even with knowledge
of the true process) when ∆ is smaller, R is smaller,
K
M is smaller, and σ is larger.

This data-generating process is illustrated in Fig. 2,
depicting only one feature that is discriminative. In
each positive bag, a different contiguous block of R= 3
instances draw from the shifted mean Gaussian. If
future work wanted to model correlations between fea-
tures within an instance, the sampling of vector hij in
Eq. (7) could be modified to draw from a multivariate
Gaussian with a non-diagonal covariance matrix.

5. Bayes Estimator
Given a data-generating process, a Bayes estimator

is a decision rule that minimizes the posterior expected
loss with respect to the data-generating distribution
(DeGroot, 1970; Murphy, 2022). It is an oracle upper
bound on performance. By comparing conventional
or recent MIL methods to the Bayes estimator for
our synthetic dataset, we can quantify how close they
come to the best possible performance.

Given a new bag hi containing Si instances and
assuming our data-generating process defined above,
a Bayes estimator for class label probability is:

p(yi = 1 | hi) =
p(hi | yi = 1)p(yi = 1)

p(hi)
. (8)

Each term on the right-hand side can be computed
in closed-form. For brevity we omit how random
variable Si cancels out here; see App. D for details.
The denominator term is given by the sum rule:
p(hi) = p(hi | yi=0)p(yi=0) + p(hi | yi=1)p(yi=1).

where we recall p(yi=1) is q+. The class-conditional
likelihood for the negative class factors over instances:
p(hi | yi = 0) =

∏Si

j=1

∏M
k=1 NormPDF(hijk | µ, σ2).

Each positive bag has a latent segment of R consec-
utive relevant instances. The class-conditional likeli-
hood marginalizes out the unknown index u:

p(hi | yi=1) =

Si−R+1∑
u=1

p(u | yi=1)

Si∏
j=1

M∏
k=1

p(hijk | u, yi=1)

 .

The two lines of Eq. (7) provide the necessary PDF
values to evaluate the right hand side.

6. Experimental Results
Setup. In our experiments, we sample bag labels

uniformly (q+=0.5) and the number of instances per
bag uniformly between Slow=15 and Shigh=45. We
use M=768 features to match the size of ViT-B/16
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embeddings (Dosovitskiy et al., 2021) and use only a
single discriminative feature (K=1). We set R=3 so
context matters, and fix µ=0, σ=1. For main results
in Fig. 1, we fix ∆=2. For results varying ∆, see the
Appendix.

For each train set size N , we draw a training dataset
of N bags from our data-generating process. We
further draw a separate dataset of 1

4N bags for a
validation set used to select hyperparameters. After
selecting a final model at each N , we report AUROC
performance on a common test set of 1000 bags.

For each MIL method, we try both prediction-
aggregation and embedding-aggregation approaches
when possible. We train models for 1000 epochs, with
potential for early stopping. We explore a range of
possible hyperparameters for each method, including
learning rate in {10−1, 10−2, 10−3, 10−4} and weight
decay in {100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 0}.
Both early stopping and hyperparameter selection
seek to maximize validation set AUROC.

Examining the results of our synthetic dataset ex-
periments in Fig. 1, key findings are:

• Conventional MIL cannot match the Bayes
estimator when context matters (R=3). Even
given N=10000 bags, conventional deep MIL ap-
proaches (Max, Mean, ABMIL (Ilse et al., 2018))
deliver test AUROC at least 0.04 below the Bayes
estimator in Fig. 1. Trends over N do not suggest
this gap will close with more data.

• TransMIL cannot match the Bayes estima-
tor when R=3. This is surprisingly, since Trans-
MIL purports to handle context between instances.
TransMIL’s AUROC is at least 0.03 below the Bayes
estimator at any tested N value.

• smAP cannot quite match the Bayes esti-
mator when R=3, though it is consistently
the best method at almost all N . At al-
most all tested N above 500, smAP (Castro-Macías
et al., 2024) scored within 0.02 AUROC of the
Bayes estimator. At the largest training set size
of N=10000 in Fig. 1, the prediction-aggregation
variant of smAP reached its highest test set AU-
ROC. To determine whether the AUROC difference
from our Bayes estimator to this best smAP model
was statistically significant, we performed bootstrap
analysis (see App. C). This analysis revealed that
the 95% confidence interval of the AUROC differ-
ence did not include zero or any negative values,
so we conclude that smAP remains inferior to the

Bayes estimator even at N=10000. We expect this
performance gap to increase for R>3 because the
chain graph adjacency matrix used in smAP limits
instance interaction to immediate neighbors.

• The ability to capture adjacent instance con-
text is a primary reason for the gap. To verify
that the context-dependent R=3 setting is what is
important, we verified that for data drawn from
a context-free R=1 version of our process, many
MIL methods including max pooling, ABMIL, and
TransMIL can all match the Bayes estimator with
handcrafted parameters (see App. B).

• The key limitation appears to be in the train-
ing process, though architecture changes may
help too. We were able to handcraft neural net-
work parameters for TransMIL that closely match
the Bayes estimator when R=3, as in Fig. B.3 in
the Appendix. However, the training of pooling and
classification layers yields consistently suboptimal
predictions, even when N=10000. We conjecture
that better regularization beyond simple weight
decay would help. Some architecture changes are
likely also beneficial if they introduce useful in-
ductive bias. To demonstrate this latter point, in
App. B, we show how adding context to ABMIL via
convolutions over instances can help when R=3.

7. Conclusion
We designed an easy-to-implement synthetic dataset

designed to mimic key challenges in MIL for medical
imaging, especially the need for context from nearby
instances. We then demonstrated the limited ability
of conventional MIL on such data, by quantifying the
performance gap between the optimal Bayes estimator.
Correlated MIL methods like TransMIL are still no-
tably worse than optimal even with a labeled dataset
of 10000 bags. Very recent methods like smAP come
closer, but still fall short.

Outlook. Our work reveals a key gap that must
be overcome for MIL to succeed on real medical data.
Many popular 3D brain scan datasets where MIL could
help contain labeled datasets far smaller than the
largest N tested here. For example, RSNA (Flanders
et al., 2020), as used in Castro-Macías et al. (2024),
has only 1150 scans for training and evaluation. We
hope our synthetic dataset enables the development of
correlated MIL methods that can be trained effectively
with limited labeled data and make a difference in
disease detection and treatment.
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Appendix A. Experiments Varying the Class Separation ∆
Here, we study how the prediction quality of various MIL methods varies with the class separation parameter

∆, which controls how similar the discriminative feature values are in the data-generating process for the
positive class (mean µ+∆, variance σ2) and negative class (mean µ, variance σ2).

Experiments here use R = 3, N = 400, and σ = 1. Given these settings, the chance of a positive
discriminative feature value landing closer to the negative mean (µ) than the positive mean (µ + ∆) is
Pr(hijm ≤ µ+ 1

2∆) = Φ(
(µ+ 1

2∆)−(µ+∆)

σ ) = Φ(− 1
2∆), where Φ is the standard Normal CDF. When ∆ = 2 as

in the main paper, this is 0.1587; when ∆ = 3, this is 0.0068; when ∆ = 4, this is 0.0228; when ∆ = 5, this is
0.0062. For ∆ ≥ 4, any individual discriminative feature has over 97% chance to correctly indicate the class
label without much need for its surrounding context.

Indeed, in the actual experimental results below, as ∆ increases, we see all methods improve and approach
near perfect classification, except for the Mean pooling baseline.

However, for modest ∆ values like 2 or below, there’s a noticeable gap between the ideal Bayes estimator
and the actual method performance. We expect the relatively small gap in AUROC between smAP at the
largest N and the Bayes estimator shown in Fig. 1 for ∆ = 2 would notably increase as ∆ gets smaller: note
below a gap of roughly 0.1 between smAP and the Bayes estimator at ∆ = 1.
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Figure A.1: Test AUROC as a function of separation ∆. All data drawn from our Shifted Mean MIL data-generating
process fro binary classification, with R=3 and N=400.

Appendix B. Handcrafted Parameters
We set classifier weights corresponding to each discriminative feature to one, all other weights to zero,

and the bias parameter to −∆
2 . For attention pooling, we use the linear part of the tanh function to create

attention weights proportional to each feature’s linear score. For instance convolutions, we set the center R
weights to one and all other weights and biases to zero to sum up each feature’s linear score over R instances.
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Figure B.1: Handcrafted parameters (prediction-aggregation approach).
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Figure B.2: Handcrafted parameters (embedding-aggregation approach).
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Figure B.3: Handcrafted parameters (prediction-aggregation approach).
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Appendix C. Bootstrap Analysis
We use bootstrapping (Foody, 2009) to access the statistical significance of the AUROC difference between

the Bayes estimator and smAP for the prediction-aggregation approach trained with N=10000. We report
the mean and 95% confidence interval over 500 subsamples of the test set.
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Figure C.1: Bootstrap analysis comparing the AUROC difference between the Bayes estimator and smAP for the
prediction-aggregation approach trained with N=10000.

Appendix D. Details Needed for Derivation of Bayes Estimator
One reviewer asked whether the generative process for the number of instances per bag Si needs to be

accounted for in the Bayes estimator derivation. We can show that because this distribution is uniform and
not dependent on class label, that is p(Si, yi) = p(yi)p(Si), the relevant term can be factored out of the
numerator and denominator in the label-given-features posterior and canceled

p(yi = 1 | hi, Si) =
p(hi | yi = 1, Si)p(yi = 1)�

��p(Si)

p(hi | yi = 0, Si)p(yi = 0)���p(Si) + p(hi | yi = 1, Si)p(yi = 1)���p(Si)
. (9)

For brevity, we omitted the dependence on Si in many statements in the main paper. The complete
class-conditional likelihood PDFs needed to evaluate the right-hand-side above are:

p(hi|yi = 0, Si) =

Si∏
j=1

M∏
k=1

NormPDF(hijk|µ, σ2) (10)

p(hi|yi = 1, Si) =

Si−R+1∑
u=1

 1

Si−R+1︸ ︷︷ ︸
p(u|yi=1,Si)

Si∏
j=1

M∏
k=1

NormPDF(hijk|µ+∆δu,j,k, σ
2)︸ ︷︷ ︸

p(hijk|u,yi=1,Si)

 (11)

where δu,j,k is 1 if j ∈ [u, u+R− 1] and k is a discriminative feature, and 0 otherwise.
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