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A.1 THEOREM2: Fy 1O f

While estimating true distribution f(z) : R? — R, the integrated mean square error (IMSE) for the
estimator fg (x) using regular histogram with width h and number of samples n, is

5 1 R(f) 1. h%

fy e Lo 1Y) 1y hod .
IMSE(fu) € — + =22 +o(=) + ““R(IV fl2)
Specifically, its
1 R(), 1
1V = — + ——= —
v nhd+ n +0(n)
and
h2d

158 < " LR(v 1)
where R(¢) is the roughness of the function ¢ defined as R(¢) = [ ¢(x)%dz

Proof. Let x € S . S is the support of the distribution. The estimator f;[(CL‘) is defined as, where
V(x) is volume of bin in which x lies. Equivalently, we can also use V(b) to denote volume of bin b.
For standard histogram, V (z) = h¢

1

Sfu(w) = WE?:J(% € bin(z)) oy

First let us consider the integrated variance.

IV = / . Var(fg(z))de = Ebebms(s)/
ze *

For a particular bin b, the variance is constant at all values of x. Also for a particular x in bin b, we
can write the following for Var(fg(x)) using independence of samples.

1

nV in(2))? Var(Z(z; € bin(x)) 3)
Also Var(Z(x; € b)) = pp(l — py) where py, is the probability of z; lying in bin b. That is,
Py = fggeb f(:l?)dl?

Using this in equation 2

Var(fu(x))dz )
€b

Var(fu(z))

IV = Ycpins(s)V (D) #@Qm * (1 —po) )
Simplifying,
IV = Ypcpins(s) %(b)l?b * (1 —pp) ®)
For standard histogram V(b) is same across bins,
IV = ;(Ebebins(s)pb — Shebins($)D) = ;(1 — Shebins($)P3) (6)
nV(b) nV (b)

Using mean value theorem, we can write, p, = V() f (&) for some point &, € b.
Ebebinspg = Ebebinsv(b)2f(£b)2 = V(b>2b€bznsv(b)f(£b)2 (7)

Using Rieman Integral approximation , we can write the following as the bin size reduces,

Shens VO @) = [ fa)de +o() ®)
T€S
fx cs/ 2(z)dz is also known as the roughness of the function. Let us denote it using R(f). Hence
1
4 nv(b)( V(b)(R(f) + o(1))) ©)
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1 R(f) 1
Putting V' (b) = h¢
1 R(f) 1
Keeping only the leading term in the above expression,
1
IV = O(— 12
Now let us look at the ISB for this estimator, I.5B(f), ()
ISB(u@) = [ (B(fulo) - f(@)’dz (13)
zes
Let us look at the estimator,
~ 1
fr(z) = —/ f(t)adt (14
= V@) e

Just to make it clear, z € R?, we will use it as a vector in the following. Using 2nd order multivariate
taylor series expansion of this f(t) around z, we get :

£(8) = $(@) + (6 — 2, V(@) + 5t~ ) THE@)(E -~ 2) (15)

Here H(f(t)) is the hessian of f at t. Without loss of generality let us look at the bin(z) = [0, h]?
that is the bin at the origin. Let us say it is bing

h
/ F(tydt = f@)h® + 15 = 2, V(@) + O(h*?) (16)
tEbing
where (%) is the j* component of x. Using eq 17 in eq 15, we get
- h
fu(@) = f(z) +((5 = 2), Vf(z)) + O(h) (17)
Hence, just keeping the leading term , we have
) ~ h
Bias(fr(2)) = (5 — 2). Vf(2)) (18)
Now,
; ~ h
| Biastfu)ds = [ (5 - ). Vi@)Pis (19)
x€bg z€bo
Using cauchy’s inequality, we get
. 3 2 h 2 2
Bias(fu(x)) dr < 15 = )21V F(2)l2dx (20)
xE€bo T€bo 2
As [h/2,h/2,...h/2] is a mid point of the bin. The max norm of 2 — //2 can be hv/d/2
) - 9 h2d 5
Bias(fu(x))’dr < == | | Vf(x)|3dx @)
z€bg r€bg
Now looking at ISB
) - 9 h2d 9
ISB = Ypcpins Bias(fu(x))*de < — IV f(z)]|5dx (22)
Jx€bg 4 JxeS
h2d
ISB < TR(HVfIIg) (23)
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A.2 THEOREM 3: F TO fy

While estimating true distribution f(z) : R? — R, the integrated mean square error (IMSE) for

the estimator f¢ («) using regular histogram with width h and number of samples n and countsketch
with parameters (R:range, K:repetitions) and average-recovery, is

#bins
KRnhd
where n,,,,, is the number of non-zero partitions. Specifically, its
#bins — 1

K Rnhd

IMSE(fc) = IMSE(fy) +

IV(fe) =1V (fu) +
and X X
ISB(fc) = 1SB(fn)

where n,,zp is the number of non-zero bins/partitions. O

Proof. Consider a Countsketch with range = R and just one repetition. Let it be parameterized by
the randomly drawn hash functions g : bin — {0,1,2,..., R — 1} and s : bin — {—1,+1}. The
estimate of density at point x can then be written as

fAC(KL) = m(c(bin(w))JrE?:lI(u ¢ bin(x)Ag(bin(x;)) == g(bin(z)))s(bin(x;))s(bin(x))
(24)
‘We can rewrite this as ,
fAc(bL) = f}{(JL)qu(Zf:lI(M ¢ bin(x)Ag(bin(x;)) == g(bin(x)))s(bin(z;))s(bin(x))
(25)
where c(.) is count and V(.) is volume of the bins. As E(s(b)) = 0, it can be clearly seen that.
E(fo(x)) = E(fu(x)) (26)
Hence, it follows that . .
ISB(fo(2)) = ISB(fu(x)) @7)

It can be checked that each of the terms in the summation for right hand side of equation 26 including

the terms in fg (2) are independent to each other . i.e. covariance between them is 0. Hence we can
write the variance of our estimator as,

Var(fo(z)) = Var(f};(m))—!—m‘/ar(l(mi ¢ bin(z)Ag(bin(z;)) == g(bin(x)))s(bin(z;))s(bin(x)))
(28)
Var(fo(z)) = Var(fu(x)) + mE(IW ¢ bin(z) A g(bin(z;)) == g(bin(z))))?
(29)
Var(fc(x)) = Var(f}{(x)) + m(l — pbin(m))%) (30)
Hence, IV is
. - ' 1 1
IV (fc(z)) —IV(fH(w))+L€SW(1—%M(I))§) (3D
) X 1
IV (fela)) = V(@) + Socns [ —ras=mp) ()
IV(fo(w) = IV (Fa (@) + Brcina s (1= 1) ) (33)
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Assuming standard partitions. V (b) = h for all b
1 (#bins — 1)

IV (fe = IV(f; _ 4
V(fe(x) =1V (fu(2)) + i 7 (34)
With average recovery, with K repetitions, the analysis can be easily extended to get IV as
- ; 1 (#bins —1)
V(fo@) = IV(fule) + e (35)
The ISB remains same in this case. O

A.3 THEOREM 4: fitofc

While estimating true distribution f(z) : R? — R, the integrated mean square error

(IMSE) for the estimator fé (x) using regular histogram with width h and number of samples n and
countsketch with parameters (R:range, K:repetitions), is related to the estimator fo(x) as follows

IMSE(fo(x)) — e(N +2M) < IMSE(f4(x)) < IMSE(fo(x)) + (N + 2M)
Specifically,

IV (fe(x)) —2eM < IV(fE(x)) < IV (fo(x)) + 2eM
and

ISB(fc(x)) —eN < ISB(f¢(x)) < ISB(fc(z)) 4+ eN
where

M < IV (fol@)) + 2RU) + T RAVS) 2V [ (1@)96])
N = (14 ISB(fo(x)))
with probability (1 — &) where § = £

e2nR

Proof. Letus look at the estimator

gy clin@) o on
elo) = e~ 2 g (36)
where 7t = Yyc(b) and n = Sye(b) O

n and its relation to n  Let us first analyse 72 and how it is related to n.

i = Sye(b) = SpS7, I(x; € b) + T(xi & b A g(bin(z;)) == g(b))s(bin(z:))s(b) (37

=%, I(x; €b) +L(x; ¢ bA g(bin(z;)) == g(b))s(bin(x;))s(b) (38)
Note that E(72) = n. For varaince, observe that most of the terms in the summation have covariance
0, except the terms Cov(Z(z; € b1),Z(x; € b2)) which are negatively correlated. Hence

Var(n) =X ;Var(Z(z; € b)) + Var(Z(z; ¢ bA g(bin(z;))! = g(b))s(bin(z;))s(b))+
2% b1 by b0, COV(Z(x; € b1), Z(z; € b))
‘We know that
Var(Z(z; € b)) = pp(1 —pp)
Var(Z(a: ¢ b A gbin(z) == g(b))s(bin(r)s(8)) = B(Z(r: ¢ bA g(bin(z))! = g(b)?) =+
Cov(Z(xz; € b1),Z(z; € ba)) = —pb, Db,y

Hence, we pluggin in the values in previous equation ,

(39)

1—py

VCLT(’ﬁ) = nszb(l — pb) + ndy — 2n2b1’b2’b1¢52pblpb2 (40)
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1—py

Var(n) = n(1 — Zyp?) +n¥y, — 2054, 1, Db, Dby

1-—
Var(n) = n{(1 + £ —2

1—pyp

Var(d) =n{(1+ X, — (Zomp)?}

I —pp
R }
n(#bins — 1) - n(#bins)
R R

Var(n) =n{%

Var(h) =

Using Chebyshev’s inequality , we have

Var(n)

P(Jfi —n| > en) < 2

#bins
enRi

, 1 is within e multiplicative error.

P(|n —n| > en) <

Hence with probability (1 — J), § = ffﬁ;

relation of pointwise Bias and ISB  With probability 1 — 4,
fo@) _ iy o fol)

< fo(x) <

As expectations respect inequalities

BUele)) ¢ gy < 2l

E(fo(x)) . E(fc(x))

——— — f(&) < Bias(f&(x)) < ——— — f(x)

1+e€ 1—c¢

Bias(fo(x)) — ef (x) oy < Bias(fo(z)) + ef(x)

< Bias(f¢(x)) <

— (Zop) — 205y, 4, D0, Db ) }

1—c¢

1+e

Bias(fo(x)) — ef (x) (N Bias(fc(x)) + ef (x)

< Bias(fz(x)) <

1+e 1—¢

Integrating expressions again respects inequalities

ISB(fc(x)) — ¢ [ f(x) o)) < ISB(fc(x)) + € [ f(x)

< ISB(f&(x))

1+e 1—c¢

ISB(fc(x)) + €
1—c¢

% < ISB(f(@)) <

Using first order taylor expansion of 1%5 and ignore square terms

(1— OISB(fo () — e < ISB(f&(x)) < (1 + ISB(fc(x)) + ¢

ISB(fo(x)) —e(L+ISB(fo(x)) < ISB(f&(x)) < ISB(fo(x)) + e(1+ ISB(fo(x)))

Hence,

ISB(fe(x)) — eN < ISB(f&(2)) < ISB(fo(x)) + eN

where 3
N = (1+ISB(fc(x)))
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Point wise variance and IV  Using the similar arguments

E(fe" (@)  F2(fo())
< Var(fg(z) < (1i€)2 - +C€)2 (58)

Blfo’ (@)  E*fo()
(1+e? (1-ep

Again making first order taylor expansions of denominator and ignoring square terms

Var(fo(z))—2e(B(fo" (2)+B(fo(2))) < Var(f3(z)) < Var(fo(x))+2(E(f};2(x)+E2(.(1;cg()z)))

Since, Var(fo(2)) = E(fo («)) — E*(fo(x))
Var(fo(z))—2¢(Var(fo(2)+2E%(fo(2))) < Var(fa(z)) < Var(fo(z))+2¢(Var(fo(z)+2E%(fo(z)))

. (60)
IV (fo(e))-2e1V (felw)+2 | BHfel)) < IV (o)) < IV (o) 4261V (ol +2 / L Efe@)
61
Let us now figure out the [, _¢ E2(fo(x))
/ E*(fe(x / E*(fu(z)) (62)
From equation 18, E(fy (2))2 = f(x)? + (% — ), Vf(2)))? + 2 (£){(2 — x), V()
/ | E(fula) < RO+ h RV fI12) + / )|V f2) 63)
Hence, )
IV(fC(;L')) —2eM < IV(fC< )) < IV(fC( )) + 2eM (64)
‘Where
M < IV(fe(a) + 2R(F) + 2ROV f112) + h/d / DIV 65)
A.4 LEMMA 1

Estimators fs(z) and f (), obtained from the Density Sketch with parameters(R,K,H) using his-
togram of width h built over n i.i.d samples drawn from true distribution have a relation

/|fcv z)|dx = 2(1 — ratiop,)

where ratiop, is the capture ratio as defined in section 3

/ Fa(@) — Fs(@)lde = Shepins / |fela) = fstaldo (66)
xTrE

/\fo |dT—2bebzns(H)/ b|.fé($)—fs(m)|d-77+2b¢bms(f1)/ b|fAE(37)—fS($)\dﬂ7
S re
(67)

we know that for = € b, b ¢ bins(H), fs(z) = 0. Hence,

/|fc z)|dx = Zbebms(H)/ fé(x) — fs(x)\derzbgbms(H)/ f&(x)dx (68)

zE

fx b fc x)dz is the probability of a data point lying in that bucket according to fC( )

18
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o o ¢y
/|fC |d$ - Z:belnn,s(H) / |f(‘($) - fS(x)‘d‘T + Ebgbins(H)ﬁ

z€b
For points « € b,b € bins(H), fé(az) xf = f(x) = i, Hence, fg(x) = %fé(x)

~

/|fc fS |d$ = ZbGln'n,s(H) / fC )(n_ - 1)d$ + Eb¢b7,ns(H) Ab

h

/|fc — fs()|da = Ebebms(H)/ & )(n_h = 1)dz + Spgvins(m) Ab

S I fL 65 Cp
/|fc(35) — fs(z)|dz = (E - 1)Eb€bins(H)T + Bogpins (i)

[172@) - fo(ldo = (- - n(2) + 20
[ feta) = Gstaa = @ - 2y 22

[ 1e@ - Fs@ldz =20~ 2
/ \fe(x) — fs(@)|dz = 2(1 — ratiop)

A.5 THEOREM 5

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

The IMSE of estimator fs(x) obtained from the Density Sketch with parameters(R,K,H) using

histogram of width h built over n i.i.d samples drawn from true distribution f(x) is
IMSE(fs(z)) < 12(1 — ration)? + 3IMSE(f%(x))

where ratiop, is the capture ratio as defined in

Proof. Giving a very loose relation between fs and f. We can write
Jtfsta) = s@)de = [ (fsta) = feo) = (Fola) = Fla))Pdo
/kfs(x) — fe))dn <3 /(fscr) - fel@)fdo +3 [ (@)~ f(0)dn
[ st = s <3 [ 1Fste) = feNlde? +3 [ (feo) - 7(e)ds
[(fsta) = f()dn <1201~ ration)? + 3 / (foa) — f(@)2de

IMSE = MISE(fs(x)) < 12(1 — ratio,)? + 3IMSE(fz(x))

B THEOREM 1 (MAIN THEOREM) COMBINES ALL OTHER THEOREMS

This theorem directly relates the distribution fg( ) to the true distribution. f(x)

IMSE(fs(x)) < 12(1 — ratioy)? + 3IMSE(f%(x))

IMSE(fs(z)) <12(1 — ration)? + 3(IMSE(fo(x) + e(N + 2M)))
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#bins — 1

IMSE(fs(x)) < 12(1 — ration)* + 3IMSE(fu) + *oop

+e(N +2M))) (84)

R(f) 1, h2d #bins — 1

IMSE(fs(LU)) S 12(1—7"ati0h) +3( hd+T+0(E)+TR(||Vf||2)+m+€<N+2M)))
(85)
N = (1+1ISB(f¢))
N <1+ 2R (v )
M<IV(fc)+2R(f)+MR(HVfH +h\/_/ )|V £l2))
~ #bins — 1
M <IV(fg)+ KR +2R(f) + ——R([Vfl2) +h\/_/ )|V £2))
1 R(f) #bins —
M<W+T+ (n) W+2R(f) R(IVfll2) +h\/_/ z)[[Vfll2))
A~ 2 ) f—
IMSE(fs(x)) < 12(1—ratios)*+3( 2(, @jt (711)“”) R(IVfl2)+ %+26M—0—6)
(86)
IMSE(fs(z)) <12(1 — ratiop,)?+
3(1+ 26)(% + @ +o0 (n) + %H

3(1 +3€)—R(||Vf||2)+

3¢(1+ 2R(f) + hVd / DIVFI2)

C OTHER BASE LINES

Coresets: We considered a comparison with sophisticated data summaries such as coresets. Briefly,
a coreset is a collection of (possibly weighted) points that can be used to estimate functions over
the dataset. To use coresets to generate a synthetic dataset, we would need to estimate the KDE.
Unfortunately, coresets for the KDE suffer from practical issues such as a large memory cost to
construct the point set. Despite recent progress toward coresets in the streaming environment Phillips
& Tai (2020), coresets remain difficult to implement for real-world KDE problems Charikar &
Siminelakis (2017).

Clustering and Importance Sampling: Another reasonable strategy is to represent the dataset as a
collection of weighted cluster centers, which may be used to compute the KDE and sample synthetic
points. Unfortunately, algorithms such as k-means clustering are inappropriate for large streaming
datasets and do not have the same mergeability properties as our sketch. Furthermore, such tech-
niques are unlikely to substantially improve over random sampling when the samples is spread
sufficiently well over the support of the distribution. An alternative approach is to select points
from the dataset based on importance sampling Charikar & Siminelakis (2017), geometric prop-
erties Cortes & Scott (2016), and other sampling techniques Chen et al. (2012). However, recent
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experiments show that for many real-world datasets, random samples have competitive performance
when compared to point sets obtained via importance sampling and cluster-based approaches Cole-
man & Shrivastava (2020).

Dimensionality Reduction: One can also apply sketching algorithms to compress a dataset by re-
ducing the dimension of each data point via feature hashing, random projections or similar meth-
ods Achlioptas (2003). However, this is unlikely to perform well in our evaluation since our datasets
are already relatively low-dimensional. Such algorithms also fail to address the streaming setting,
where IV can grow very large, because the size of the compressed representation is linear in V.
Finally, most dimensionality reduction algorithms do not easily permit the generation of more syn-
thetic data in the original metric space.

D DIFFERENTIALLY PRIVATE DENSITY SKETCHES

In order to make the density sketch differentially private, we add noise to the distribution stored by
density sketch. This is achieved by adding noise to the underlying count sketch array (K x R matrix
of integers). Let the function mapping histogram of the data to the density sketch (before the heap
construction) be denoted as f : NIXI — ZKE where X is the set of all partitions. We fill first
define an discrete analog of laplacian noise.

Definition 1 (Double geometric distribution). The double geometric distribution parameterized by
p € (0,1) is defined as follows on the support of all integers.

1
P(zlp) = m(l —p)Flp (87)

Algorithm to make Density Sketches private: Each cell of sketch (K X R) matrix is added an
ii.d noise drawn from the double geometric distribution. We will prove that this noise addition
makes the function M = f + noise differentially private. Heap construction can be considered as
an post processing operation on the density sketch matrix. Hence, the sampling distribution is then
differentially private. (Note that heap construction algorithm also needs to be modified in practical
settings to ensure that it carries the differential privacy properties. But this is achievable)

Theorem 2 (Differential privacy). The density sketches constructed with addition of double geomet-
ric noise withp = 1 —e~/¥ where K is the number of repetitions in the sketch is (€, 0) differentially
private.

Proof. Consider the 11 metric for computing the distance between datasets. Consider any arbitrary
pair x,y which satisfy ||« —y||; = 1. In the histogram view of data, it is easy to check that a distance
of 1 can exist if and only if there is an additional row in either x or y and all other data points
are same. Without loss of generality we can write 2 = y U {d} where d is the extra data point.
As the constructed count sketch does not depend on the order of insertion, we can say that count
sketch for x, i.e. f(x), is obtained from count sketch for y by sketching additional data point into it.
Also, because of countsketch’s mergeable property, we can write f(x) = f(y) + f({d}). Hence
lf(x)— f(y)l1 = |If({d})]|1. As sketching a single entry changes exactly one element of each row
of countsketch by 1. || f({d})|ls = K. Hence sensitivity of the function fis Af = K

We use the double geometric distribution as defined above for noise.

1
P(zlp) = 5—(1 - p)"lp (88)

p

Now Let us consider the privacy achieved with this error. Let M be the final randomized algorithm
with computation of f and adding noise. We are interested in the following quantity with x,y such
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that ||z — y|l; = 1.
PM(z)=2) ILiP(M(x); = z)
PM(y)==2)  TLP(M(y)i = =)
IT; (1 — p)lf®)i—=l
I1;(1 — p)lF @)=l
=1I;(1 _p>\f(93)i*zi\*|f(y)ﬁ21|

=(1 ,p)l\f(r)*?:lll*Hf(y)*ZIh

As 11-norm is a distance metric we can write

PM(x) =2) _ (i@ —zli—l )=l
PMGy) =2 ~ 7P
> (1 — p)lf@=FWI
_(1—p)AD)
Ifweputp =1— e~ /)
PM(z)=2) _ _,
PM(y) =2) = °
PM(y) =z) _ .
P(M(@)=2) ®9)

Hence M (z) is (e, 0)- differentially private. Hence we have that the countsketch produced by the
sketching algorithm with added double geometric noise is (e, 0)- differentially private when we have
p=1—c"</K

why heaps are differentially private? If the data is bounded in R? (d is the dimension of the
data), then it is easy to check that there is a cell in R?, which contains all the data, It follows
that the number of partitions inside this cell is finite. So we can consider heap construction as
iteratively going through each partition and noting down its count. Once we do that, we sort all
the partitions according to the counts and keep top H elements. In this sense, we can consider
heap construction as a post processing over count sketch. From the proposition 2.1 [Dwork, Roth],
we know that post processing maintains differential privacy. Hence the heap we create is (¢, 0)
differentially private O
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