
A APPENDIX

A.1 OBSERVATION FOR BINOMIAL CONFIDENCE INTERVAL METHODS

In this section, we show the plots for the number of samples required to estimate an unknown binomial
proportion parameter through two popular estimation techniques - the Wilson (Wilson, 1927) and
Agresti-Coull method (Agresti and Coull, 1998). For this experiment, we use three different values
of the target error χ = 0.5 %, 0.75 %, and 1.0 % and a fixed confidence value (1−α) = 0.99 for both
estimation methods. As shown in Fig 4, for a fixed target error χ, confidence (1− α), and estimation
technique, the number of samples required for estimation peaks, when the actual parameter value
is around 0.5 and is the smallest around the boundaries. This is consistent with the observation
described in Section 3.1.

(a) Agresti-Coull method (b) Wilson method

Figure 4: The number of samples for the Agresti-Coull and Wilson method to achieve a target error χ
with confidence (1− α) where α = 0.01. The plots show that the number of required samples for
different methods peaks at 0.5 and decreases towards the boundaries.

A.2 THEOREMS

Theorem 2. If a classifier fp is such that for all x ∈ Rm,Pϵ(f(x + ϵ) ̸= fp(x + ϵ)) ≤ ζx, and
classifier f satisfies Pϵ(f(x+ ϵ) = cA) ≥ pA ≥ pB ≥ maxc̸=cA Pϵ(f(x+ ϵ) = c) and pA − ζx ≥
pB+ζx then gp satisfies gp(x+δ) = cA for all δ satisying ∥δ∥2 ≤ σ

2 (Φ
−1(pA−ζx)−Φ−1(pB+ζx))

Proof. If f(x+ ϵ) = cA and fp(x+ ϵ) = f(x+ ϵ) then fp(x+ ϵ) = cA.
Thus, if fp(x+ ϵ) ̸= cA then f(x+ ϵ) ̸= cA or fp(x+ ϵ) ̸= f(x+ ϵ).
Using union bound,

Pϵ(f
p(x+ ϵ) ̸= cA) ≤ Pϵ(f(x+ ϵ) ̸= cA) + Pϵ(f(x+ ϵ) ̸= fp(x+ ϵ))

(1− Pϵ(f
p(x+ ϵ) = cA)) ≤ (1− Pϵ(f(x+ ϵ) = cA)) + Pϵ(f(x+ ϵ) ̸= fp(x+ ϵ))

Pϵ(f(x+ ϵ) = cA) ≤ Pϵ(f
p(x+ ϵ) = cA) + Pϵ(f(x+ ϵ) ̸= fp(x+ ϵ))

pA − ζx ≤ Pϵ(f
p(x+ ϵ) = cA)

Similarly, if f(x+ ϵ) ̸= c then fp(x+ ϵ) ̸= c or fp(x+ ϵ) ̸= f(x+ ϵ).
Hence, using union bound,

Pϵ(f(x+ ϵ) ̸= c) ≤ Pϵ(f
p(x+ ϵ) ̸= c) + Pϵ(f(x+ ϵ) ̸= fp(x+ ϵ))

(1− Pϵ(f(x+ ϵ) = c)) ≤ (1− Pϵ(f
p(x+ ϵ) = c)) + Pϵ(f(x+ ϵ) ̸= fp(x+ ϵ))

Pϵ(f
p(x+ ϵ) = c) ≤ Pϵ(f(x+ ϵ) = c) + Pϵ(f(x+ ϵ) ̸= fp(x+ ϵ))

max
c̸=cA

Pϵ(f
p(x+ ϵ) = c) ≤ max

c̸=cA
Pϵ(f(x+ ϵ) = c) + ζx

max
c ̸=cA

Pϵ(f
p(x+ ϵ) = c) ≤ pB + ζx

Hence, using Theorem 1, gp satisfies gp(x+ δ) = cA for all δ satisying ∥δ∥2 ≤ σ
2 (Φ

−1(pA − ζx)−
Φ−1(pB + ζx))
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Theorem 3. If pA − ζx ≥ 1
2 , then σΦ−1(pA − ζx) ≤ σ

2 (Φ
−1(pA − ζx)− Φ−1(pB + ζx))

Proof. Since pA − ζx ≥ 1
2 , 0 ≤ pA ≤ 1 and ζx ≥ 0, we get 0 ≤ pA − ζx ≤ 1

And since 1− pA ≥ pB , we get pB + ζx ≤ 1
2 , and thus, 0 ≤ pB + ζx ≤ 1

Since Φ−1(1− t) = −Φ−1(t)

Φ−1(pB + ζx) = −Φ−1(1− (pB + ζx))

= −Φ−1((1− pB)− ζx)

Since 1− pA ≥ pB
≤ −Φ−1(pA − ζx)

Hence,
Φ−1(pA − ζx) ≤ −Φ−1(pB + ζx)

σ

2
Φ−1(pA − ζx) ≤ −σ

2
Φ−1(pB + ζx)

Adding σ
2Φ

−1(pA − ζx) on both sides,

σΦ−1(pA − ζx) ≤
σ

2
(Φ−1(pA − ζx)− Φ−1(pB + ζx))

Theorem 4. If Pϵ(f(x + ϵ) = fp(x + ϵ)) > 1 − ζx with confidence at least 1 − αζ . If classifier
f satisfies Pϵ(f(x + ϵ) = cA) ≥ pA with confidence at least 1 − α. Then for classifier fp,
Pϵ(f

p(x+ ϵ) = cA) ≥ pA − ζx with confidence at least 1− (α+ αζ)

Proof. Suppose f and fp are classifiers such that for a fixed x ∈ Rm,Pϵ(f(x+ ϵ) = cA) ≥ pA and
Pϵ(f(x+ ϵ) = fp(x+ ϵ)) > 1− ζx. Note that this is true by the definition of pA, and is a separate
pA for each x. The statement is not true for all x with single pA
Let E1 denote the event that Pϵ(f(x+ ϵ) = cA) ≥ pA.
Let E2 denote the event that Pϵ(f(x+ ϵ) = fp(x+ ϵ)) > 1− ζx.
By Theorem 2,

Pϵ(f(x+ ϵ) = cA) ≤ Pϵ(f
p(x+ ϵ) = cA) + Pϵ(f(x+ ϵ) ̸= fp(x+ ϵ))

pA − ζx ≤ Pϵ(f
p(x+ ϵ) = cA)

Let E3 denote the event that pA − ζx ≤ Pϵ(f
p(x+ ϵ) = cA)

Since, E1 and E2 imply E3 i.e. E1 ∩ E2 ⊆ E3,

P(E3) ≥ P(E1 ∩ E2)

By the additive rule of probability,

P(E1 ∩ E2) = P(E1) + P(E2)− P(E1 ∪ E2)

P(E3) ≥ (1− α) + (1− αζ)− 1

P(E3) ≥ 1− (α+ αζ)

Hence, for classifier fp, Pϵ(f
p(x+ ϵ) = cA) ≥ pA − ζx has confidence at least 1− (α+ αζ)
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A.3 EVALUATION NETWORKS

Table 5 and Table 6 respectively present the standard top-1 accuracy of the original and approximated
base classifiers and smoothed classifiers respectively.

Table 5: Standard top-1 accuracy for (non-smoothed) networks for combinations of approximations
and σ’s.

Dataset Architecture σ original Quantization Prune
fp16 bf16 int8 5% 10% 20%

0.25 67.2 67.2 66.8 67.2 67.4 66.6 66.6
CIFAR10 ResNet-20 0.5 56.8 56.8 57.2 56.8 57 57.4 58

1.0 47.2 47.2 47.0 47.2 47 46.2 45.2
0.25 69.0 69.0 69.4 69.0 69.2 68.8 68.2

CIFAR10 ResNet-110 0.5 59.4 59.4 59.4 59.4 59.6 59 58.8
1.0 47.0 47.0 46.8 46.8 46.8 47.2 47
0.5 24.2 24.2 24.4 24.2 24.2 24.4 24.2

ImageNet ResNet-50 1.0 9.6 9.6 9.6 9.6 9.6 9.6 9.6
2.0 6.4 6.4 6.4 6.4 6.4 6.4 6.4

Table 6: standard top-1 accuracy for smoothed networks for combinations of approximations and σ’s.

Dataset Architecture σ original Quantization Prune
fp16 bf16 int8 5% 10% 20%

0.25 77.2 77 77.2 77.2 77.6 77.2 77.6
CIFAR10 ResNet-20 0.5 67.8 67.4 67.8 67.8 67.8 67.4 67.8

1.0 55.6 55.6 55.6 55.8 54.8 55.2 55.6
0.25 76.6 76.4 76.2 76.4 76.2 76.2 76.4

CIFAR10 ResNet-110 0.5 66.2 67 68 66.4 67 66.8 66.6
1.0 55.6 55.4 56.2 56.2 55 55 54.8
0.5 63.8 63.4 63.2 63.4 63.6 64 63

ImageNet ResNet-50 1.0 48.8 48.6 48.8 48.6 48.8 48.6 47.8
2.0 34.4 34.2 33.8 34.2 34.2 34.4 33.4
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Table 8: ζx for approximate networks trained on different Gaussian augmentation σ’s.

Dataset Architecture σ Quantization Prune
fp16 bf16 int8 5% 10% 20%

0.25 0.01 0.01 0.006 0.01 0.02 0.04
CIFAR10 ResNet-20 0.5 0.006 0.008 0.01 0.01 0.02 0.03

1.0 0.006 0.007 0.006 0.007 0.02 0.02
0.25 0.006 0.01 0.006 0.009 0.02 0.04

CIFAR10 ResNet-110 0.5 0.006 0.006 0.006 0.008 0.02 0.03
1.0 0.006 0.008 0.009 0.007 0.01 0.02
0.5 0.006 0.009 0.006 0.01 0.02 0.09

ImageNet ResNet-50 1.0 0.007 0.01 0.006 0.01 0.02 0.08
2.0 0.006 0.01 0.006 0.007 0.02 0.07

A.4 ζx EVALUATION

We compute ζx value as the binomial confidence upper limit using (Clopper and Pearson, 1934)
method with n = 1000 samples. For an experiment that adds Gaussian corruptions with σ to the
input, we use the network that is trained with Gaussian data augmentation with variance σ2.

A.5 SENSITIVITY TO CHANGING n

Table 7: Average IRS speedup for com-
binations of n, σ’s, and quantizations for
ResNet-20 on CIFAR10.
n σ Quantization

fp16 bf16 int8
0.25 1.37x 1.29x 1.3x

104 0.5 1.79x 1.7x 1.77x
1.0 2.85x 2.41x 2.65x
0.25 1.22x 1.11x 1.27x

105 0.5 1.73x 1.4x 1.86x
1.0 3.88x 2.40x 4.31x
0.25 1.12x 0.93x 1.15x

106 0.5 1.97x 1.04x 2.25x
1.0 4.58x 1.25x 5.85x

In Section 5, to save time due to a large number of approx-
imations and DNNs tested, we used n = 104 samples for
g’s certification. Here, we present the effect of certifying
with a larger n by comparing the ACR vs certification
time on the IRS and baseline approaches for ResNet-20
on CIFAR10. On average, for larger n, we demonstrate
greater speedup for larger σ. For instance, for int8 quan-
tization with σ = 1.0, the speedup for certifying with
n = 106 samples was 5.85x as compared to certification
with n = 104 which yielded at 2.65x speedup. However,
for smaller σ, certification with a larger n results in less
speedup. For σ = 0.25, we observe speedups from 1.29x
to 1.37x for n = 104 whereas from 0.93x to 1.15x for
n = 106.

A.6 EVALUATION WITH LARGER np

Figure 5: CIFAR10 ResNet-20 with σ = 1, for
np ∈ {5%, 10% . . . 80%} of n

The objective of IRS is to certify the approxi-
mated DNN with few samples. Thus, we con-
sider np ranging from 1% to 10%. Nevertheless,
we check IRS effectiveness for larger np values
in this ablation study.

Since, IRS certifies radius σΦ−1(pA − ζx) that
is always smaller than original certified radius.
When np = n, the baseline running from scratch
should perform better than IRS, as it will reach
a certification radius close to σΦ−1(pA).

In this experiment, on CIFAR10 ResNet-20 with
σ = 1, we let np ∈ {5%, 10% . . . 80%} of n.
Figure 5 shows the ACR vs mean time plot for
the baseline and IRS. We see that IRS gives
speedup for np = 70%. For np = 75% and
np = 80%, we see that baseline ACR is higher
and IRS cannot achieve that ACR.
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A.7 EFFECT OF STANDARD DEVIATION σ ON IRS SPEEDUP.

(a) ResNet-110 on CIFAR-10 (σ = 0.25) (b) ResNet-110 on CIFAR-10 (σ = 1.0)

Figure 6: Distribution of pA values greater than 0.5 with different σ for ResNet-110 on CIFAR-10.

(a) ResNet-50 on ImageNet (σ = 1.0) (b) ResNet-50 on ImageNet (σ = 2.0)

Figure 7: Distribution of pA values greater than 0.5 with different σ for ResNet-50 on ImageNet.

Figure 6 and Figure 7, present the pA distribution between 0.5 to 1, for ResNet-110 on CIFAR-10
and ResNet-50 on ImageNet respectively. The x-axis represents the range of pA values and the y-axis
represents their respective proportion. The results show that while certifying larger σ, on average the
pA values are smaller. As shown in Figure 7a, for σ = 0.25, less than 35% of pA values are smaller
than 0.95. On the other hand, in Figure 7b, when σ = 1.0, the distribution is less left-skewed as
nearly 75% of pA values are less than 0.95. When the σ is larger, the values of pA tend to be farther
away from 1. Therefore, the estimation of pA is less precise in such cases, as observed in insight 2.
As a result, non-incremental RS performs poorly compared to IRS in these situations, leading to a
greater speedup with IRS.

A.8 THRESHOLD PARAMETER γ

Table 9 presents the proportion of cases for which pA > γ for the γ chosen through hyperparameter
search in Section 5.4 for different σ and networks.

Table 9: Proportion of pA > γ for different σ and networks.

Dataset Architecture γ σ pA > γ
0.25 0.346

CIFAR10 ResNet-20 0.99 0.5 0.162
1.0 0.034

0.25 0.362
CIFAR10 ResNet-110 0.99 0.5 0.146

1.0 0.034
0.5 0.292

ImageNet ResNet-50 0.995 1.0 0.14
2.0 0.04
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For CIFAR10 ResNet-20, we observe that pA > γ = 0.346 when σ = 0.25 and pA > γ = 0.034
when σ = 1.0. Additionally, for ImageNet ResNet-50, the results show pA > γ = 0.292 when
σ = 0.50 and pA > γ = 0.04 when σ = 2.0. As shown in Section 5, certifying larger σ yields on
average smaller pA. Expectedly, we see a smaller proportion of pA > γ for larger σ and vice versa.

A.9 QUANTIZATION PLOTS

In this section, we present the ACR vs. time plots for all the quantization experiments. We use n = 104

for samples for certification of g. For certifying gp, we consider np values from {1%, . . . 10%} of n.
Note that these smaller values of n, np compared to Section 5.1 allow us to perform a large number
of experiments.

(a) fp16 (b) bf16 (c) int8

Figure 8: ResNet-20 on CIFAR10 with σ = 0.25.

(a) fp16 (b) bf16 (c) int8

Figure 9: ResNet-20 on CIFAR10 with σ = 0.5.

(a) fp16 (b) bf16 (c) int8

Figure 10: ResNet-20 on CIFAR10 with σ = 1.0.
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(a) fp16 (b) bf16 (c) int8

Figure 11: ResNet-110 on CIFAR10 with σ = 0.25.

(a) fp16 (b) bf16 (c) int8

Figure 12: ResNet-110 on CIFAR10 with σ = 0.5.

(a) fp16 (b) bf16 (c) int8

Figure 13: ResNet-110 on CIFAR10 with σ = 1.0.
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(a) fp16 (b) bf16 (c) int8

Figure 14: ResNet-50 on ImageNet with σ = 0.5.

(a) fp16 (b) bf16 (c) int8

Figure 15: ResNet-50 on ImageNet with σ = 1.0.

(a) fp16 (b) bf16 (c) int8

Figure 16: ResNet-50 on ImageNet with σ = 2.0.

21


	Appendix
	Observation for Binomial Confidence Interval Methods
	Theorems
	Evaluation Networks
	x evaluation
	Sensitivity to changing n
	Evaluation with larger np
	Effect of standard deviation  on IRS speedup.
	Threshold Parameter 
	Quantization Plots


