A APPENDIX

A.1 OBSERVATION FOR BINOMIAL CONFIDENCE INTERVAL METHODS

In this section, we show the plots for the number of samples required to estimate an unknown binomial
proportion parameter through two popular estimation techniques - the Wilson (Wilsonl [1927)) and
Agresti-Coull method (Agresti and Coull, |1998)). For this experiment, we use three different values
of the target error x = 0.5 %, 0.75 %, and 1.0 % and a fixed confidence value (1 — ) = 0.99 for both
estimation methods. As shown in FigE[, for a fixed target error x, confidence (1 — «), and estimation
technique, the number of samples required for estimation peaks, when the actual parameter value
is around 0.5 and is the smallest around the boundaries. This is consistent with the observation
described in Section[3.11
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Figure 4: The number of samples for the Agresti-Coull and Wilson method to achieve a target error
with confidence (1 — «) where @ = 0.01. The plots show that the number of required samples for
different methods peaks at 0.5 and decreases towards the boundaries.

A.2 THEOREMS

Theorem 2. If a classifier fP is such that for all x € R™ P, (f(w +e) #£ fP(x+e€) < and
classifier f satisfies Pc(f(x 4 €) = ca) > pa > PB > MaXepe, P (f(a: +e)=¢) andpA — (>
DB+ then gP satisfies gP (x+08) = ca for all § satisying ||§]|2 < (P~ (@ )= (P +Ca))

Proof. If f(x+¢€) =caand fP(x +¢€) = f(x +€) then fP(x+¢€) =
Thus, if fP(x + €) # ca then f(z + €) # caor fP(x +¢€) # f(xz + )
Using union bound,
Pe(fP(x+€) # ca) SPe(f(x+€) # ca) + Pe(f(z +€) # [P (2 +€))
(I=P(f(z+e€) =ca)) < (1 —Pc(f(z +€) =ca)) + Pe(f(z+€) # fP(z+6))
Pe(f(z 4 €) = ca) SPe(fP(z +¢) —CA)+Pe(f(I+€) # fP(x+¢€))
pa— G SP(fP(z+¢€) =ca)
Similarly, if f(z + €) # cthen fP(z +¢€) # cor fP(z+¢€) # f(z +¢).
Hence, using union bound,
Pe(f(z +€) #¢) SP(fP(x + €) # o) + Pe(f(z + €) # fP(x + €))
(1 =Pc(f(z+€) =c)) <A =Pc(f’(x+e€) =) + Pe(f(x +€) # [Pz +¢))
Pe(fP(x+e) =c) SPf(x+e) =c) +P(f(x+e) # [z +e)
max (72 + ) = ) < max Po(f(+ €) = ) + G,

c#ca

<
<

maxIP’ fPlx+e€) =c) <D+

(
Hence, using Theorem' g? satlsﬁes gP(x 4 6) = ca for all § satisying [|6]]2 < §(® " (pa — (o) —
o (pB + Cw))
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Theorem 3. Ifpa — (> %, then 0@ (pa — () < $(@7Hpa — &) — 71 (DB + &)

Proof. Since ps — (» > 5,0 <pa <land(, >0, weget0 <ps—( <1

Andsincel—@Zﬁ,wegetﬁ—I—@ < %,andthus,O <pp+¢ <1
Since ®~1(1 —t) = —d~1(¢)
(P + () =-'(1— (P5 + )
=—& 1 ((1-7B) — )
Since 1 —pa > pB
< —‘I)_l(@ - Cz)
Hence,

O pa— ) < -2 (BB + ()

27 (pa =) S 27 (FE + C)

Adding $®~!(pa — () on both sides,

0@ (pa = ) < (27 (pa — G) = 27 (PE + o))

7
2
O

Theorem 4. If P (f(x +€) = fP(x +¢€)) > 1 — (, with confidence at least 1 — a. If classifier
[ satisfies P(f(x + €) = ca) > pa with confidence at least 1 — o. Then for classifier fP,
Pc(fP(x +€) = ca) > pa — (u with confidence at least 1 — (a + o)

Proof. Suppose f and f? are classifiers such that for a fixed 2 € R™, P(f(z +¢€) = ca) > pa and

Pc(f(x +¢€) = fP(x +€)) > 1 — (,. Note that this is true by the definition of p4, and is a separate
pa4 for each x. The statement is not true for all = with single pa

Let £; denote the event that P(f(2 4+ ¢) = ca) > pa.
Let E denote the event that P.(f(z +€) = fP(x +¢€)) > 1 — (,.
By Theorem 2]

Pe(f(z +¢) = ca) SP(fP(z +€) = ca) + Pe(f(z + ) # [Pz + )
pa— G SP(fP(z +¢€) =ca)
Let E3 denote the event that py — ¢, < Pe(fP(x +¢€) = ca)
Since, E1 and Es imply Esie. B4 N Ey C Fs,
P(E3) > P(E; N Es)
By the additive rule of probability,
P(El N E2) = ]P)(El) + ]P(EQ) — P(El U Eg)
IP)(EL;) > (1—0[)+(1—Oz<)—1
P(Es;) >1— (a+ o)
Hence, for classifier f?, P.(f?(x 4 €) = ca) > pa — (, has confidence at least 1 — (av 4+ a¢) [
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A.3 EVALUATION NETWORKS

Table[5]and Table[6]respectively present the standard top-1 accuracy of the original and approximated
base classifiers and smoothed classifiers respectively.

Table 5: Standard top-1 accuracy for (non-smoothed) networks for combinations of approximations
and o’s.

Dataset Architecture o original Quantization Prune
fpl6  bfl6 int8 5% 10% 20%
0.25 672 672 668 672 674 66.6 66.6

CIFAR10  ResNet-20 0.5 56.8 56.8 572 56.8 57 574 58
1.0 472 472 470 472 47 462 452
0.25 69.0 69.0 694 690 692 688 682
CIFAR10  ResNet-110 0.5 594 594 594 594 596 59 58.8
1.0 470 470 468 46.8 468 472 47
0.5 242 242 244 242 242 244 242
ImageNet ResNet-50 1.0 9.6 9.6 9.6 9.6 9.6 9.6 9.6
2.0 6.4 6.4 64 64 64 6.4 6.4

Table 6: standard top-1 accuracy for smoothed networks for combinations of approximations and o’s.

Dataset Architecture o original Quantization Prune
fpl6  bfl6 int8 5% 10% 20%
0.25 77.2 77 772 7712 716 712 776

CIFARIO  ResNet-20 0.5 67.8 674 678 678 678 674 678
1.0 55.6 556 556 558 548 552 55.6
0.25 76.6 764 762 764 762 762 764
CIFARIO  ResNet-110 0.5 66.2 67 68 66.4 67 66.8 66.6
1.0 55.6 554 562 56.2 55 55 54.8
0.5 63.8 634 632 634 63.6 64 63
ImageNet  ResNet-50 1.0 48.8 48.6 488 486 488 486 478
2.0 344 342 338 342 342 344 334
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Table 8: (, for approximate networks trained on different Gaussian augmentation o’s.

Dataset Architecture o Quantization Prune
fpl6  bfl6 int8 5% 10% 20%
0.25 0.01 0.01  0.006 0.01 0.02 0.04
CIFAR10 ResNet-20 0.5 0.006 0.008 0.01 0.01 0.02 0.03
1.0 0.006 0.007 0.006 0.007 0.02 0.02
0.25  0.006 0.01 0.006 0.009 0.02 0.04
CIFARIO ResNet-110 0.5 0.006 0.006 0.006 0.008 0.02 0.03
1.0 0.006 0.008 0.009 0.007 0.01 0.02
0.5 0.006 0.009 0.006 0.01 0.02 0.09
ImageNet ResNet-50 1.0 0.007 0.01 0.006 0.01 0.02 0.08
2.0 0.006 0.01 0.006 0.007 0.02 0.07

A.4 (, EVALUATION

We compute (, value as the binomial confidence upper limit using (Clopper and Pearson, [1934)
method with n = 1000 samples. For an experiment that adds Gaussian corruptions with o to the

input, we use the network that is trained with Gaussian data augmentation with variance 2.

A.5 SENSITIVITY TO CHANGING n

In Section[5} to save time due to a large number of approx-
imations and DNNSs tested, we used n = 10* samples for
g’s certification. Here, we present the effect of certifying
with a larger n by comparing the ACR vs certification
time on the IRS and baseline approaches for ResNet-20
on CIFARI10. On average, for larger n, we demonstrate
greater speedup for larger o. For instance, for int8 quan-
tization with o = 1.0, the speedup for certifying with
n = 10% samples was 5.85x as compared to certification
with n = 10* which yielded at 2.65x speedup. However,
for smaller o, certification with a larger n results in less
speedup. For o = 0.25, we observe speedups from 1.29x
to 1.372 for n = 10* whereas from 0.93x to 1.15x for
n = 10°.

A.6 EVALUATION WITH LARGER np

The objective of IRS is to certify the approxi-
mated DNN with few samples. Thus, we con-
sider n,, ranging from 1% to 10%. Nevertheless,
we check IRS effectiveness for larger n, values
in this ablation study.

-
o

o
®

o
o

Since, IRS certifies radius c® 1 (p4 — ;) that
is always smaller than original certified radius.
When n,, = n, the baseline running from scratch
should perform better than IRS, as it will reach
a certification radius close to c® 1 (p4).

In this experiment, on CIFAR10 ResNet-20 with
o =1 weletn, € {6%,10%...80%} of n.

o
IS

average certification time (sec)

o
N

o
o

0.

Figure[§] shows the ACR vs mean time plot for  gjgyre 5. CIFAR10 ResNet-20 with o = 1, for

Table 7: Average IRS speedup for com-
binations of n, o’s, and quantizations for

ResNet-20 on CIFAR10.

n o Quantization
fp16 bfl6  int8
025 137x 1.29x  1.3x
104 05  1.79x  1.7x 1.77x
1.0 2.85x 241x 2.65x
025 1.22x 1.11x 1.27x
10° 0.5 1.73x  14x 1.86x
1.0 3.88x 240x 4.31x
025 1.12x 0.93x 1.15x
10 05  1.97x 1.04x 2.25x
1.0 458x 1.25x 5.85x

— baseline
IRS
--- original

42 0.44 0.46 0.48

0.50

average certified radius

the baseline and IRS. We see that IRS gives n, € {5%,10%...80%} of n

speedup for n, = 70%. For n, = 75% and
n, = 80%, we see that baseline ACR is higher
and IRS cannot achieve that ACR.
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A.7 EFFECT OF STANDARD DEVIATION ¢ ON IRS SPEEDUP.
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Figure 6: Distribution of p4 values greater than 0.5 with different o for ResNet-110 on CIFAR-10.
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Figure 7: Distribution of p4 values greater than 0.5 with different o for ResNet-50 on ImageNet.

Figure E]\yand Figure[/7] present the p4 distribution between 0.5 to 1, for ResNet-110 on CIFAR-10
and ResNet-50 on ImageNet respectively. The x-axis represents the range of p 4 values and the y-axis
represents their respective proportion. The results show that while certifying larger o, on average the
p4 values are smaller. As shown in Figur for o = 0.25, less than 35% of p4 values are smaller
than 0.95. On the other hand, in Figure [7b] when o = 1.0, the distribution is less left-skewed as
nearly 75% of p4 values are less than 0.95. When the o is larger, the values of p 4 tend to be farther
away from 1. Therefore, the estimation of p4 is less precise in such cases, as observed in insight 2.
As a result, non-incremental RS performs poorly compared to IRS in these situations, leading to a
greater speedup with IRS.

A.8 THRESHOLD PARAMETER vy

TableE] presents the proportion of cases for which p4 > « for the v chosen through hyperparameter
searchin Section[3.4] for different o and networks.

Table 9: Proportion of p4 > for different o and networks.

Dataset Architecture o pa>7y
0.25 0.346
CIFAR10  ResNet-20 0.99 0.5 0.162
1.0 0.034
0.25 0.362
CIFAR10 ResNet-110  0.99 0.5 0.146
1.0 0.034
0.5 0.292
ImageNet ResNet-50 0.995 1.0 0.14
2.0 0.04
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For CIFAR10 ResNet-20, we observe that p4 > v = 0.346 when o = 0.25 and p4 > v = 0.034
when ¢ = 1.0. Additionally, for ImageNet ResNet-50, the results show p4 > v = 0.292 when
o0 =0.50and py > v = 0.04 when o = 2.0. As shown in SectionEI, certifying larger o yields on
average smaller p4. Expectedly, we see a smaller proportion of p4 > « for larger o and vice versa.

A.9 QUANTIZATION PLOTS

In this section, we present the ACR vs. time plots for all the quantization experiments. We use n = 10*
for samples for certification of g. For certifying g?, we consider n,, values from {1%, ...10%} of n.
Note that these smaller values of n, n, compared to Section @ allow us to perform a large number
of experiments.
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Figure 8: ResNet-20 on CIFAR10 with 0 = 0.25.
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Figure 9: ResNet-20 on CIFAR10 with o = 0.5.
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Figure 10: ResNet-20 on CIFAR10 with o = 1.0.
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Figure 11: ResNet-110 on CIFAR10 with o = 0.25.
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Figure 12: ResNet-110 on CIFAR10 with o = 0.5.
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Figure 13: ResNet-110 on CIFAR10 with o = 1.0.

20



== =D =
§ovo
100 100 1000
o 035 0, 045 050 055 0 0350 0375 0400 0425 0450 0475 0500 0525 0550 ¢ 035 0.4 045 055
(a) fp16 (b) bf16 (c) int8
Figure 14: ResNet-50 on ImageNet with o = 0.5.
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Figure 16: ResNet-50 on ImageNet with o = 2.0.
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