
Appendix

Table of Contents
A Extended Related Work 16

A.1 Robust PCA . 16
A.2 Efficient Transformers . 16
A.3 Locality Sensitive Hashing for Efficient Neural Network Training 17
A.4 Structured Matrices for Efficient Machine Learning Models 17

B Motivating Observations: Low-rank and Sparse Structures of Attention Matrices 18
B.1 Setup . 18
B.2 Observation 1: Sparse and low-rank approximation errors are negatively correlated 18
B.3 Observation 2: Sparse approximation error is lower when softmax entropy is low

and low-rank approximation error is lower error when entropy is high 18
B.4 Observation 3: Sparse + Low-rank achieves better approximation error than sparse

or low-rank alone . 20

C Scatterbrain Algorithm and Implementation Details 21

D Proofs 22
D.1 Expressiveness of Sparse + Low-rank Matrices 22
D.2 Generative Model, Softmax Temperature, and Matrix Approximation 25
D.3 Scatterbrain: Analysis . 29

E Additional Experiments and Details 30
E.1 Datasets . 30
E.2 Settings . 30
E.3 More Ablation Studies . 31
E.4 Analysis . 33
E.5 Additional Experiments of Fine-tuning Bert on GLUE 33

F Further Discussions and Future Work 33

15

A Extended Related Work

A.1 Robust PCA

Robust Principle Component Analysis (robust PCA) is the problem of finding a composition of a
matrix M into a sum of sparse and low-rank components: M = S + L. It is a modification of PCA
to accommodate corrupted observations (aka, noise). The sparse part covers the noise, while the
low-rank part recovers the principle components. The most popular method to solve the problem
is convex relaxation [7], where one minimizes the error kM � S � Lk

2
F subject to `1 constraint on

kSk1 and nuclear norm constraint on kLk⇤, in order to promote the sparsity of S and the low-rankness
of L. This convex problem can be solved with a variety of methods, such as interior point methods or
the method of Augmented Lagrange Multipliers.

In our context, to find a sparse + low-rank decomposition of the attention matrix, one can also
heuristically “peel off” the sparse part by finding the large entries of the attention matrix, then find a
low-rank decomposition of the remainder. To avoid materializing the full attention matrix, one can
use LSH to find potential locations of large entries, and use matrix completion [49] to find a low-rank
decomposition. Gradient descent can find global optimum for this matrix completion problem [22].
However, it still requires too many iterations to be used in each training step.

A.2 Efficient Transformers

Sparse, Low-rank Approx.: Transformer-based model such as BERT [35] has achieved unprece-
dented performance in natural language processing. Recently, Vision Transformers [27, 66] has also
achieved comparable performance to the traditional convolutional neural network in computer vision
tasks [63]. However, the quadratic computation of the attention layers constrains the scalability of
Transformers. There are many existing directions to overcome this bottleneck, including attention ma-
trix approximation such as Reformer [33], Performer [16], leveraging a side memory module that can
access multiple tokens at once [53, 36, 35] such as Longformer [5] and BigBird [67], segment-based
recurrence such as Transformer-XL [18] and Compressive Transformer [46]. Please refer to a recent
survey [55] for more details. In this paper, we mainly explore within the scope of approximating
dense or full attention matrices.

Existing combination of Sparse and Low-rank Attention: Our focus on the classical and well-
defined problem of matrix approximation, as opposed to simply designing an efficient model that
performs well on downstream tasks (e.g., Longformer, Luna, Long-short transformer, etc.) affords
us several advantages: (i) Easier understanding and theoretical analysis (Section 3, 4). We see that
Scatterbrain yields an unbiased estimate of the attention matrix, and we can also understand how
its variance changes. (ii) Clear-cut evaluation based on approximation error, as well as the ability
to directly replace a full attention layer with Scatterbrain attention without re-training (Section 5).
This setting is increasingly important as transformer models are getting larger and training them from
scratch has become prohibitively costly. Other methods such as Luna and Long-short transformer are
not backward compatible with pre-trained models.

Here we compare Scatterbrain with other work mentioned by the reviewer, showing how most of
them are special cases of Scatterbrain. We will also add this discussion in the updated version of the
manuscript.

• Longformer [5]: a special case of Scatterbrain where the sparse component is local attention, and
the low-rank component is the global tokens. Global tokens can be considered a restricted form of
low-rank approximation.

• BigBird [67]: a special case of Scatterbrain where the sparse component is local + random sparse
attention, and the low-rank component is the global tokens. The use of global tokens makes the
model unsuited for autoregressive modeling. On the other hand, Scatterbrain’s generality allows it
to use other kinds of low-rank attention (e.g., Performer), and thus Scatterbrain works on both the
causal/autoregressive and the bidirectional/non-causal attention settings. BigBird’s motivation is
also quite different from ours: they aim to design efficient attention such that the whole Transformer
model is still a universal approximator and is Turing complete. Our goal is more concrete and
easier to evaluate: we approximate the attention matrices, to get a small Frobenius error between
the Scatterbrain attention and the full attention matrices.

16

• Luna [40] (concurrent work): they use a fixed-length extra sequence and two consecutive attention
steps: the context sequence attends to the extra sequence, and then the query sequence attends to
the extra sequence. This is similar in spirit to low-rank attention (Linformer) and global tokens, but
it is not a low-rank approximation due to the non-linearity between the two attention steps. It is not
clear to us that it combines different kinds of attention.

• Long-short transformer[68] (concurrent work): a special case of Scatterbrain where the sparse
component is local attention and the low-rank component is Linformer.

A.3 Locality Sensitive Hashing for Efficient Neural Network Training

Locality Sensitive Hashing (LSH) has been well-studied in approximate nearest-neighbor search [28,
31, 51, 2, 26, 10]. Since the brute-force approach for similarity search is computationally expensive,
researchers have come up with various indexing structures to expedite the search process. Usually
this comes with trade-offs on the search quality. Based on these indexing structures, one can achieve
sub-linear search time. LSH has been used in estimation problem as well [12, 11].

Recently, there has been several work taking advantage of LSH data structures for efficient neural
network training. During training process, the weight matrices are slowly modified via gradients
derived from objective functions. If we consider the weights as the search data and input as queries, we
can view neural network training as a similarity search problem. For example, [13, 17, 38] proposes
an algorithm which performs sparse forward and backward computations via maximum inner product
search during training. It is based on the observation that the model is usually over-parameterized so
the activation for a given input could be sparse and LSH is used to find or impose the sparse structure.
Similarly, LSH based algorithms have also been used in Transformers [13, 14], where LSH is used to
capture the sparse structure of the attention matrices. They can largely reduce the memory bottleneck
of self-attention modules especially over long sequences in Transformer. Though [14] has done some
exploration to improve LSH accuracy-efficiency trade-offs through learnable LSH, most of the above
works have limited understanding on when and where LSH can perform well.

A.4 Structured Matrices for Efficient Machine Learning Models

Sparse + low-rank is an example of a class of structured matrices: those with asymptotically fast
matrix-vector multiplication algorithm (o(n2) time complexity) and few parameters (o(n2) space
complexity). Common examples include sparse, low-rank matrices, and matrices based on fast
transforms (e.g., Fourier transform, circulant, Toeplitz, Legendre transform, Chebyshev transform, and
more generally orthogonal polynomial transforms). These classes of matrices, and their generalization,
have been used in machine learning to replace dense matrices in fully connected, convolutional, and
recurrent layers [52, 58, 29]. De Sa et al. [23] shows that any structured matrix can be written as
product of sparse matrices, and products of sparse matrices even with fixed sparsity pattern have been
shown to be effective at parameterizing compressed models [19, 1, 20].

In our setting, it remains difficult to approximate the attention matrix with these more general classes
of structured matrices. This is because many of them are fixed (e.g., Fourier transform, orthogonal
polynomial transforms), and there lacks efficient algorithms to find the closest structured matrix to a
given attention matrix.

17

B Motivating Observations: Low-rank and Sparse Structures of Attention
Matrices

We aim to build a deeper understanding of sparse and low-rank structures in real attention matrices:
where each of them excel, and the potential for their combination. Specifically, we

• show that sparse and low-rank approximation errors are negatively correlated (through statistical
tests),

• characterize regimes where each of sparse and low-rank approximation are well-suited, as dictated
by the entropy of the softmax attention distribution, and

• demonstrate that sparse + low-rank has the potential to achieve better approximation than either.

B.1 Setup

Denote M as the attention matrix (after softmax) and H as entropy. We measure approximation error
by the Frobenius norm or the original matrix and the approximation (sparse or low-rank). All the
observed attention matrices in this section are from (1) a 4-layer vanilla Transformer trained from
scratch on char-level IMDb reviews classification [54] (2) a 16-layer vanilla Transformer trained
from scratch on WikiText103 [42] (3) a 1-layer (attention) pre-trained BigGAN on ImageNet [24].
To collect attention matrices for IMDb and WikiText103, we first save checkpoint of the models in
every epoch; then evaluate 100 samples from validate data for each checkpoint and collect attention
matrices from each layer each head. Note we take the median of the stats (error) for those 100
samples if it is difficult to visualize. To collect attention matrices for BigGAN, we generate 100
samples and collect the attention on the fly.

B.2 Observation 1: Sparse and low-rank approximation errors are negatively correlated

Table 3: The Spearman’s rank, Pearson and Kendall’s Tau correlation coefficients between Sparse and Low-
rank approx. error on IMDb, WikiText-103, and BigGAN-ImageNet. P-values of < 0.05 indicate statistical
significance. The two errors are negatively correlated.

IMDb WikiText103 BigGAN-ImageNet
Coef p-value Coef p-value Coef p-value

Spearman’s rank -0.89 < .00001 -0.63 < .00001 -0.21 < .00001
Pearson -0.78 < .00001 -0.61 < .00001 -0.31 < .00001

Kendall’s Tau -0.74 < .00001 -0.51 < .00001 -0.18 < .00001

We fixed the number of parameters, K, allowed for each attention matrix approximation and collect
the errors from ideal sparse and low-rank approximations: top�K entries for each row of the matrix
for sparse and top�K eigenvalues for low-rank. Then we run three standard statistical correlation
tests [4, 56], Spearman, Pearson and Kendall’s Tau on sparse and low-rank approximation error for
all the matrices. We can see from Table 3 that errors are significantly negatively correlated (p-value
< 0.05). Further more, the left three plots on Figure 7 visualizes the correlation between the two
errors on three datasets.

This negative correlation suggests that there is some property of the softmax attention distribution
which determines when sparse or low-rank excels. We validate this claim in the next observation.

B.3 Observation 2: Sparse approximation error is lower when softmax entropy is low and
low-rank approximation error is lower error when entropy is high

We visualize the sparse and low-rank approximation error against the entropy of attention matrices
H(M) (applied to each row, then averaged) on the right plot in Figure 7. The attention matrices are 2

R1024⇥1024 (padded) so the x-axis has range from [0, ln(1024)]. For high-entropy distributions (more
diffused) low-rank matrices approximates the attention matrix well. For low-entropy distributions
(more peaked), sparse matrices are better-suited.

18

0.0 0.2 0.4 0.6 0.8

Sparse Approx. Error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
ow

-r
an

k
A

p
p
ro

x.
E

rr
or

4 5 6 7

Entropy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
p
p
ro

x.
E

rr
or

Sparse
Low-rank
Sparse+Lowrank

0.0 0.2 0.4 0.6 0.8 1.0

Sparse Approx. Error

0.0

0.2

0.4

0.6

0.8

1.0

L
ow

-r
an

k
A

p
p
ro

x.
E

rr
or

0 2 4 6

Entropy

0.0

0.2

0.4

0.6

0.8

1.0

A
p
p
ro

x.
E

rr
or

Sparse
Low-rank
Sparse+Lowrank

0.0 0.1 0.2 0.3

Sparse Approx. Error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L
ow

-r
an

k
A

p
p
ro

x.
E

rr
or

2 4 6

Entropy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
p
p
ro

x.
E

rr
or

Sparse
Low-rank
Sparse+Lowrank

Figure 7: Characterization of the relationship between the softmax distribution of each attention matrix row
and approximation error of sparse, low-rank and sparse+low-rank. The top, middle and bottom plots are for
IMDb, WikiText103 and BigGAN-ImageNet respectively. Left: The approximation error of sparse and low-rank
are negatively correlated. Sparse performs well when low-rank does not, and vice versa. Right: Entropy of the
softmax attention distribution (i.e., scale of logits) determines the regimes where sparse, low-rank, or sparse +
low-rank perform well. Sparse + low-rank yields better approximation than sparse or low-rank alone, across the
board.

19

This implies that sparse and low-rank approximations could be complementary: if we can combine the
strength of both, it is possible to come up with a better approximation across more general scenarios.
Therefore, in the next observation, we try to combine sparse and low-rank approximations.

B.4 Observation 3: Sparse + Low-rank achieves better approximation error than sparse or
low-rank alone

We find an approximation of the attention matrix of the form S + L, where S is sparse and L is
low-rank. This problem has a rich history and is commonly solved with Robust PCA. As shown in 7,
across the range of entropy, sparse + low-rank approximation can achieve lower error than either
sparse or low-rank when choosing the correct mix ratio of sparse and low rank approximation ideally
(with robust-PCA).

Motivated by the fact that sparse and low-rank approximations of attention matrices have comple-
mentary strengths (Observations 1 and 2), one might want to combine them (Observation 3) in hope
of yielding a more robust approximation that works well across different kinds of attention matrices.
The above introduces three main challenges that we have addressed in the main paper:

• how to find sparse + low-rank decomposition of an attention matrix that is compute efficient (the
most studied algorithm, robust PCA, is orders of magnitude too slow to be done at each training
iteration) and memory efficient (i.e., without materializing the full matrix) (Section 4),

• if we can find such a sparse + low-rank decomposition, how accurate is the approximation (Sec-
tion 4.3),

• how expressive is the sparse + low-rank parameterization, i.e., are there natural classes of matrices
where sparse + low-rank yields asymptotically better approximation than sparse or low-rank alone)
(Section 3)?

20

C Scatterbrain Algorithm and Implementation Details

Let Q, K 2 Rn⇥d be the query and key matrices respectively, and V 2 Rn⇥d be the value matrix.
Let the rows of Q be q1, . . . , qn, and the rows of K be k1, . . . , kn. The attention computes:

softmax(QK>)V,

with softmax applied row-wise, where for each vector v 2 Rn, softmax(v) =
1Pn

j=1 evj [ev1 , . . . , evn]
>

. Here we omit the usual scaling of QK>
p
d

for simplicity since that could be

folded into Q or K. Note that softmax(QK>) = D�1 exp(QK>), where the exponential function
is applied element-wise and D is a diagonal matrix containing the softmax normalization constants
(Di,i =

Pn
j=1 exp(q>

i kj)). Then attention has the form D�1 exp(QK>)V .

We describe the Scatterbrain approximation algorithm in Algorithm 1. This includes the normalization
step.

Algorithm 1 Scatterbrain Approximation of Attention
1: Input: Q,K, V 2 Rn⇥d, hyper-parameters m, k, l

2: procedure INIT(m, k, l)
3: Sample W 2 Rm⇥d where Wi ⇠ N (0, 1) i.i.d.

4: Kernels � : Rd
7! Rm, �(x) =

exp(Wx�kxk2/2)p
m

5: Hash 8l 2 [L], Hl = {hl,k}k2[K], H = [l2[L]Hl

6: end procedure
7: procedure LOWRANKAPPROX(Q,K, V,�)
8: eQ = �(Q), eK = �(K) . applied to each row
9: return eQ(eK>

V), eQ(eK>)1n.
10: end procedure
11: procedure SPARSEAPPROX(Q,K, V,�,H)
12: S = {(i, j)|H(Qi) = H(Kj)}
13: S sparse matrix whose support is S
14: for (i, j) 2 S do
15: Sij = exp(q>i kj)� �(qi)

>
�(kj).

16: end for
17: return SV , S1n.
18: end procedure
19: procedure SCATTERBRAINAPPROX(Q,K, V)
20: �, h INIT(m, k, l).
21: Olr, Dlr LOWRANKAPPROX(Q,K, V,�).
22: Os, Ds SPARSEAPPROX(Q,K, V,�, h).
23: return diag(Dlr +Ds)

�1(Olr +Os).
24: end procedure

Autoregressive / Causal / Unidirectional Attention To approximate autoregressive attention, we
simply use the autoregressive variant of low-rank attention, and apply the autoregressive mask to the
sparse attention. In particular, let M 2 Rn⇥n be the autoregressive mask, whose lower triangle is all
ones and the rest of the entries are zero. The unnormalized attention matrix is exp((QK>) � M),
and the unnormalized output is exp((QK>) � M)V , where � is elementwise multiplication.

The low-rank autoregressive variant computes ((eQ eK>) � M)V , though with a custom GPU kernel
/ implementation so as not to materialize the n ⇥ n matrix. For the sparse component, we simply
mask out locations Sij where i > j. That is, we can perform S � M efficiently. As a result, we can
compute the Scatterbrain output ((eQ eK>) � M)V + (S � M)V efficiently.

21

D Proofs

D.1 Expressiveness of Sparse + Low-rank Matrices

To motivate the use of sparse + low-rank matrices, we describe a family of attention matrices where
sparse + low-rank matrices need asymptotically fewer parameters to approximate the attention matrix,
compared to sparse or low-rank matrices alone. For there cases, either sparse or low-rank alone
requires a quadratic number of parameters (O(n2), where n ⇥ n is the dimension of the attention
matrix) to get ✏ approximation error in Frobenius norm, while sparse + low-rank only requires O(n)
parameters.

We construct a matrix family that shows the separation between the approximation capability of
sparse + low-rank vs. sparse or low-rank alone. More specifically, we will use diagonal + low-rank (a
special case of sparse + low-rank).
Example 1. Let ✏ denote a parameter that satisfies ✏ 2 (0, 1/2]. Consider the following randomized

construction of a matrix Q 2 Rn⇥d
with d � 6✏�2 log n and d = ⇥(✏�2 log n), where each entry of

Q is picked independently and uniformly at random from {±1/
p

d}. Let M = �(QQ>) where � is

the elementwise exponential function (we first ignore the normalization term of softmax here).

It can be shown (e.g. by Hoeffding’s inequality) that with high probability

(QQ>)i,j =

⇢
1, if i = j;
2 [�✏, ✏], otherwise.

Since M = �(QQ>) where � is the elementwise exponential function,

Mi,j =

⇢
e, if i = j;
2 [1 � O(✏), 1 + O(✏)], otherwise.

Intuitively, as the attention matrix M has large diagonal entries, low-rank matrices will not be able
to approximate it well. However, the off-diagonals are also of reasonable size, thus making sparse
approximation difficult. With sparse + low-rank, we can use the sparse part to represent the diagonal,
and the low-rank part to represent the remaining elements, allowing it to approximate this matrix
well. We formalize this separation in the theorem below.
Theorem 3. Let M be the attention matrix from Example 1. For any � 2 [0, 1], with probability at

least 1 � n�1
, there exists a sparse + low-rank estimator with O(��1n3/2 log n) parameters that

achieve �
p

n Frobenius error. For any matrix R 2 Rn⇥n
with rank such that n � rank = ⌦(n) (e.g.,

R has o(n2) parameters), with probability at least 1�n�1
, we have kM �RkF � ⌦(

p
n). Moreover,

any matrix ES that has row sparsity k (each row has less than k non-zeros) such that n � k = !(1)
(e.g., ES has o(n2) parameters) will have error kM � ESkF � ⌦(

p
n) with probability at least

1 � n�1
.

We see that for any � 2 [0, 1], any low-rank or sparse estimator for M with (n2) parameters has
⌦(��1) times the error of the sparse + low-rank estimator with O(��1n1.5 log n) parameters.

Proof of Theorem 3. For each i 2 [n], let qi denote the i-th row of Q 2 Rn⇥d. Define J 2 Rn⇥n to
be the all 1s matrix. Define T = M � J � QQ>. Therefore,

Ti,j =

(
e � 2 if i = j

eq
>
i qj � 1 � q>

i qj otherwise
.

By Hoeffding’s inequality, for a pair i 6= j, we have that

P
���q>

i qj � E[q>
i qj]

�� � ✏
�

 2 exp

0

B@�
2✏2

⇣
1p
d

�
�1p
d

⌘2

1

CA = 2 exp(�d✏2/2).

Note that E[q>
i qj] = 0.

22

By a union bound over all pairs i 6= j (there are n(n � 1)/2 such pairs), with probability at least
1 � n2 exp

�
�d✏2/2

�
, we have that

q>
i qj 2 [�✏, ✏] for all i 6= j.

Since we assume that d � 6✏�2 log n, we have that
n2 exp(�d✏2/2)  n2 exp(�3 log n) = n�1.

Hence q>
i qj 2 [�✏, ✏] for all i 6= j with probability at least 1 � n�1. For the rest of the proof, we

only consider this case (where q>
i qj 2 [�✏, ✏] for all i 6= j).

Since 1 + x  ex  1 + x + x2 for |x| < 1, we can bound the off diagonal elements |Ti,j |  ✏2. In
particular, for all i 6= j,

|Tij | =
���eq

>
i qj � 1 � q>

i qj
��� 

�
q>
i qj

�
 ✏2. (4)

Sparse + low-rank estimator: We use the following sparse + low-rank estimator:

ESL = (e � 2) · I| {z }
sparse

+ J + QQ>
| {z }
low�rank

,

where (e � 2)I has row sparsity 1 and rank(J + QQ>)  d + 1 = O
�
✏�2 log n

�
.

Notice that the ESL estimate matches M exactly on the diagonal, and on the off-diagonal it differs
from M by Tij . Thus, the Frobenious error of the sparse + low-rank estimator is

kM � ESLkF  ✏2
p

n(n � 1)  ✏2n.

Set ✏ =
p
�

n1/4 for 0  �  1, Then

(i) The sparse + low-rank parameter count is n + n · rank  n · O(✏�2 log n)  O(��1n1.5 log n).

(ii) The Frobenius error is  �
p

n.

Low-rank estimator: We want to argue that low-rank approximation would require more pa-
rameters. If we approximate the matrix (e � 2)I by a matrix R with rank r, then the difference
matrix will have at least n � d singular values of magnitude e � 2 � 1/2. As a result, by the
Eckart–Young–Mirsky theorem,

k(e � 2) · I � RkF �
1

2

p
n � r.

Define T 0 = T � (e � 2) · I , then T 0 is all 0 on the diagonal and has absolute value  ✏2 on
off-diagonal entries. Thus kT 0

kF  ✏2n = �
p

n.

We want to show that if R
0

is a rank r0 matrix, then kM � R0
kF �

1
2

p
n � r0 � d � 1 � kT 0

kF . We
argue by contradiction. Suppose that there exists some matrix R0 with rank r0 such that

kM � R0
kF 

1

2

p

n � r0 � d � 1 � kT 0
kF .

Define R = R0
� J � QQ>, so M � R0 = (e � 2) · I � R + T 0. We see that:

k(e � 2) · I � RkF = kM � R0
� T 0

kF

 kM � R0
kF + kT 0

kF


1

2

p

n � r0 � d � 1


1

2

p
n � rank(R).

This contradicts the result above, which states that k(e � 2) · I � RkF �
1
2

p
n � rank(R).

Therefore any low-rank estimator with rank r such that n � r = ⌦(n), which has ⌦(n2) parameters,
will have error at least ⌦(

p
n � r � d � 1) � kT 0

kF = ⌦(
p

n), which is ⌦(��1) times the error of
the sparse + low-rank estimator above.

23

Sparse estimator: For our sparse estimator, it is easy to see that for any ES 2 Rn⇥n that has row
sparsity k (each row has fewer than k non-zeros),

kM � ESkF � ⌦(
p

n(n � k)).

This implies that in order to achieve error O(
p

n), we would need n � k = O(1), which requires
⌦(n2) parameters.

Now we construct a matrix that shows better separation between the approximation capability of
sparse + low-rank vs sparse or low-rank alone.
Example 2. Consider the following randomized construction of matrix Q 2 Rn⇥d

with d �

6✏�2r log n and d = ⇥(✏�2r log n) (✏ 2 (0, 1] and close to 0 and r is ⇥(log n)): each entry of Q is

picked independently and uniformly at random from {±

p
r/d}. Let M = �(QQ>) where � is the

elementwise exponential function.

Similar to Example 1, with high probability, we have:

(QQ>)i,j =

⇢
r, if i = j;
2 [�✏, ✏], otherwise.

We also have:

Mi,j =

⇢
er, if i = j;
2 [1 � O(✏), 1 + O(✏)], otherwise.

By setting r appropriately, we can formalize the separation between the approximation ability of
sparse, low-rank, and sparse + low-rank matrices:
Theorem 4. Let M be the attention matrix from Example 2. Any sparse or low-rank estimator of M
needs ⌦(n2) parameters for O(n) error with probability at least 1 � n�1

while a sparse + low-rank

estimator needs O(n) parameters for O(n) error with probability at least 1 � n�1
.

Proof of Theorem 4. Similar to the proof of Theorem 3, by Hoeffding’s inequality, for a pair i 6= j,
we have that

P
���q>

i qj � E[q>
i qj]

�� � ✏
�

 2 exp

0

B@�
2✏2

⇣
rp
d

�
�rp
d

⌘2

1

CA = 2 exp

✓
�

d✏2

2r

◆
.

Note that E[q>
i qj] = 0. By a union bound over all pairs i 6= j (there are n(n � 1)/2 such pairs), with

probability at least 1 � n�1 (since d � 6✏�2r log n), we have that

q>
i qj 2 [�✏, ✏] for all i 6= j.

Since we assume that d � 6✏�2 log n, we have that For the rest of the proof, we only consider this
case (where q>

i qj 2 [�✏, ✏] for all i 6= j).

Let T = M � (er � 1) · I + J , where J is the all one matrix. We see that T is zero on the diagonal.
Moreover, using the fact that ex  1 + 2 |x| for all x 2 [�1, 1], the off-diagonal entries of T have of
magnitude at most 2✏.

We consider 3 different estimators.

Sparse + low-rank estimator: Our estimator is

ESL = (er � 1) · I| {z }
sparse

+ J|{z}
low�rank

,

where (e � 1)I has row sparsity 1 and rank(J) = 1.

The Frobenious error of sparse + low-rank approximation is

kM � ESLkF  O(
p

✏2n(n � 1))  O(✏n).

24

We have that:

(i) Sparse + low-rank parameter count is n · (1 + 1)  O(n).

(ii) Its Frobenius error is  O(n).

Low-rank estimator: We want to argue that low-rank approximation would require more parameters.
From a similar observation that any matrix R with rank that n � rank = ⌦(1),

k(er � 1)I � RkF � ⌦(er),

(by Eckart–Young–Mirsky theorem), we obtain a similar result to the proof of Theorem 3.

If R
0

is a matrix with rank such that n � rank = ⌦(1), then kM � R0
kF � ⌦(n) � kTkF �

⌦(n) � O(✏n) � ⌦(n). Hence any low-rank matrix with O(n2) parameters would have error ⌦(n).

Sparse estimator: Similar to the proof of Theorem 3, for our sparse estimator, it is easy to see that
for any ES 2 Rn⇥n that has row sparsity k (each row has fewer than k non-zeros),

kM � ESkF � ⌦(
p

n(n � k)).

This implies that to get O(n) error, we would need ⌦(n2) parameters.

D.2 Generative Model, Softmax Temperature, and Matrix Approximation

Here we show 3 cases where depending on the softmax temperature, either we’ll need low-rank,
low-rank + sparse, or sparse to approximate the attention matrix.

We start with some notation first. Given a matrix B, let B[i, j] be the entry in the ith row and jth
column. For a range [l, r], we define a matrix B[l,r] where B[l,r][i, j] = B[i, j] if B[i, j] 2 [l, r] and
B[l,r] = 0 otherwise (that is, B[l,r] only keep entries for B that are in the range [l, r], with other
entries zeroed out). We write supp(C) for the set of locations of non-zeros in C. We let �i(D) be
the i-th largest (in absolute value) eigenvalue of D.

To prove Theorem 1, we first define a more general matrix class, prove that the attention matrix
in Process 1 is a subset of this class (with high probability), and then show that Theorem 1 holds for
this more general class. We introduce an extra parameter l 2 R, in addition to the inverse temperature
� and the intro-cluster distance �.
Matrix Class 1. Let Q 2 Rn⇥d

with every row of Q having `2-norm in [1 � O(�), 1 + O(�)], and

let A = QQ>
. Further:

1. Let H = A[1/l,2�1/l] for some l � ⌦(1). Assume that H is block diagonal with ⌦(n) blocks, and

supp(H) is o(n2). That is, the large entries of QQ>
form a block diagonal matrix.

2. Let L = A � H then L = A[��,�] where � = o(1/log d). Assume that there is a constant

fraction of elements in supp(L) falling in [0, �]. Assume that supp(A[0,�]) is ⌦(n2).

Let M� = exp(� · A).

We now show that Process 1 is a subset of Matrix Class 1, with high probability.
Lemma 5. The matrix M� in Process 1 is a subset of Matrix Class 1, where l = 1

1��2 .

Proof. We first bound the norm of each row in Q in Process 1. For any i, j, we have

kzijk
2 = kci + rijk

2 = kcik
2 + 2c>

i rij + krijk
2 .

Since ci ⇠ N (0, Id/
p

d), kcik
2

2 [1 � �2, 1 + �2] with probability at least 1 � 2e�d�2/8 (by
the standard argument using the fact that �2-random variables are sub-exponential). Similarly,
krijk

2
2 [�2

� �4, �2 + �4] with probability at least 1 � 2e�d�2/8. By concentration of measure,
we can also bound 2c>

i rij 2 [2� � 2�3, 2� + 2�3] as well. Therefore, we have that kzijk
2

2

[1 � O(�), 1 + O(�)].

Now we show that the large entries of QQ> form a block diagonal matrix. With high probability, the
large entries come from intra-cluster dot product, and the small entries come from inter-cluster dot
product.

25

We bound the intra-cluster dot product:

z>
ijzik = (ci + rij)

>(ci + rik)

= kcik
2 + c>

i rij + c>
i rik + r>

ijrik.

Similar to the argument above, by concentration of measure, kcik
2

2 [1 + ✏�, 1 � ✏�] with high
probability (we will pick ✏ = ✓(�)). The cross terms c>

i rij and c>
i rik can be bounded using

Cauchy-Schwarz inequality to be in [�✏�, ✏�] with high probability. And the fourth term r>
ijrik

is in [�✏�2, ✏�2] with high probability. Therefore, the inner product is in 1 ± O(✏�) with high
probability. This satisfies the first condition in Matrix Class 1, for l = 1

1��2 , assuming ✏  �.

We use a similar argument to bound the inter-cluster dot product. For i 6= i0

z>
ijzi0k = (ci + rij)

>(ci0 + ri0k)

= c>
i c>

i0 + c>
i ri0k + c>

i0 rij + r>
ijri0k.

By concentration of measure, c>
i ci0 2 [�✏, ✏]. Similar to the argument in the intra-cluster case, we

can bound the other three terms, so this dot product is in [�O(✏), O(✏)]. This satisfies the second
condition in Matrix Class 1.

To prove Theorem 1 for Matrix Class 1, we start with some technical lemmas.

Lemma 6. Let F 2 RN⇥N
�0 be a symmetric matrix. Let �max be the largest eigenvalue of F .

Assuming N � 2, we have that

�max � min
i 6=j

F [i, j].

Proof. Since F is symmetric, �max is real and

�max = max
u 6=0

u>Fu

uTu
.

Let u be the all 1’s vector, then

�max �
1

N

X

i=j

F [i, j]

�
1

N

X

i 6=j

F [i, j]

�
1

N
· N(N � 1) min

i 6=j
F [i, j]

� min
i 6=j

F [i, j],

where the second step follows from all the diagonal entries are non-negative, the last step follows
from N � 2

The above implies the following result:

Corollary 7. Let F 2 RN⇥N
�0 be a block diagonal matrix. Let r be the number of m ⇥ m blocks in

F for some m � 2. The �r(F) is at least the smallest non-diagonal element in any m ⇥ m block

(m � 2) in F .

Proof. By Lemma 6, each m ⇥ m block B (m � 2) by itself has max eigenvalue at least
mini 6=j2[m] B[i, j]. The claim then follows from the fact that any eigenvalue of B is also an
eigenvalue of F .

26

We’ll need the following function for our low-rank argument:

fk(x) =
kX

i=0

xi

i!
.

Note that f1(x) = ex.
Definition 1. Let ✏ 2 (0, 1/10) and L > 0. We say a function f : R ! R is (✏, L)-close to ey if

|ey � f(y)|  ✏ for any y 2 [�L, L].

Lemma 8. For any ✏ 2 (0, 1/10) and L > 0. If

D � 10(L + log(1/✏))

then function fD(y) is (✏, L)-close to ey .

Proof. Recall the definition of function fD,

ex = fD(x) +
1X

i=D+1

xi

i!
,

It is sufficient to show that |ey � f(y)| < ✏ if we have

xD+1

(D + 1)!


✏

2
,

We can show that
yD

D!


LD

D!


LD

(D/4)D

= (
4L

D
)D

 (1/2)D

 ✏/10

where the first step follows from |y|  L, the second step follows n! � (n/4)n, the forth step follows
from D � 10L, the last step follows D � 10 log(1/✏) and ✏ 2 (0, 1/10).

We’ll also use the following fact:
Lemma 9. For any D = o(log n/ log d), we have

rank(fD)  no(1).

Proof. We can upper bound rank(fD(A)) in the following sense:

rank(fD(A))  (rank(A))D

 dD

= 2D·log d

= 2o(logn)

= no(1).

where the second step follows from rank(A)  d, the forth step follows from D = o(logn
log d).

Finally we’re ready to prove the theorem:

Proof. The basic idea is: (i) Use fk⇤(b · A) to get the low-rank approximation (ii) Use exp(b · H) to
get the sparse part.

27

Small � range, i.e., � is o
⇣

logn
log d

⌘
.

Low rank approximation: R = fk⇤(b · A).

Since each entry of A is in [�1, 1], each entry of � · A is in [��, �]. But note that � in this case is
o
⇣

logn
d

⌘
= O(log n ·�). By the definition of k⇤, each entry of exp(� ·A)�fk⇤(� ·A) has absolute

value  ✏. Therefore the overall error is  ✏n.

For sparse only: By assumption, m = ⌦(kLk0) entries in A are � 0, which are exactly the entries in
exp(� · A) that are � 1. Hence any (say) m

2 sparse approximation has error �
p

m
2 � ⌦(

p
kLk0).

By our assumption, kLk0 = ⌦(n2).

Mid-range �, i.e., � �
1
l · log n and � is O(log n).

Sparse only: the argument is the same as in the low � range.

Sparse + low-rank: The low-rank part R = fst(� · A). By Lemma 9, this has rank no(1), so it has
n(1+o(1)) parameters.

The sparse part is S = e�·H
� Rsupp(H). Clearly this needs |supp(H)| parameters.

Let E = M��(S+R). Then (i) in supp(H), E is all 0. (ii) output of supp(H), by definition, entries
of � · A are in [���, ��], which in the current range of � is [�O(log n�), O(log n�)]. Therefore
all the entries of E have absolute value  ✏. By the definition of k⇤, we have that kEkF  ✏n.

Low-rank only: Let eR be rank r � no(1)
� 1 that approximates M� . Then using the same argument

as our existing lower bound argument, we get that eR � R ⇡E S (this means that the error 

kEkF +
���M� � eR

���
F

). Now note that S = e�·H
� (fk⇤(� ·A))suppH is a symmetric, block diagonal

matrix with r = ⌦(n) blocks. Corollary 7 implies that �r(S) is at least the smallest non-diagonal
value in S. Now the smallest non-diagonal value in e�·H is � e

1
l logn = n. On the other hand, the

largest value in (fk⇤(� · A))suppH is

 k⇤ �k⇤

k⇤!
 � ·

✓
e�

k⇤ � 1

◆k⇤�1

. log n

✓
e · log n

log n · �

◆O(logn·�)

. log neO(logn·�·log 1
�)

. log n · no(1)

= no(1).

Hence �r(S) is ⌦(n). The claimed result then follows since kEkF  ✏n and rank eR � R  r � 1
(Eckart-Young-Mirsky theorem).

Large � range, i.e., � � !(log n).

Sparse only: S = e�·H . Note that each entry in E = M� � S is upper bounded by e�·�
 eo(

�
log d).

Then

kEkF  n · eo(
�

log d)

 ✏ · elog n
✏ +o(�

log d)

 ✏ · eo(�)+o(�
log d)

 ✏ · eo(�)

 ✏ · e�/l.

Low-rank only: since kEkF is  ✏e�/l, it is enough to argue that any rank r-approximation to S
has error � e�/l. But the latter follows since �r(S) � e�/l. This is because eb·H is symmetric and

28

each entry in H is �
1
� . Then we can use Corollary 7. Eckart-Young-Mirsky then completes the

proof.

D.3 Scatterbrain: Analysis

Here we prove Theorem 2, which shows that Scatterbrain approximation is unbiased and analyses its
variance. We restate the theorem here for the reader’s convenience.
Theorem. Define �(q, k) = exp(q>k), b�pfe

as Performer’s estimator and b�sbe
as Scatterbrain

estimator. Denote S
d�1

⇢ Rd
as the unit sphere. Suppose q, k 2 Sd�1

are such that kq � kk < ⌧ .

Then:

E[b�sbe(q, k)] = �(q, k), Var[b�sbe(q, k)] = (1 � p) · Var[b�pfe(q, k)] < Var[b�pfe(q, k)]

where p = exp(� ⌧2

4�⌧2 ln d � O⌧ (ln ln d)).

Proof. Let Aij = exp(q>
k kj) be ij-entry of the unnormalized attention matrix, Alr

ij = �(qi)>�(kj)

the entry of the low-rank approximation (Performer), and let Asb
ij be the entry of the Scatterbrain

(sparse + low-rank) approximation. By the construction of the Scatterbrain attention matrix (Eq. (1)),
if ij 2 S , where S is the set of indices selected by the LSH, then:

Asb
ij = (eQ eK> + S)ij = �(qi)

>�(kj) + exp(q>
i kj) � �(qi)

>�(kj) = exp(q>
i kj).

If ij /2 S , then
Asb

ij = (eQ eK> + S)ij = �(qi)
>�(kj) + 0 = �(qi)

>�(kj).

In other words, Asb matches A on the indices in S , and matches Alr on the indices not in S .

To show that Asb is an unbiased estimator of A, we simply use the fact that Alr is also an unbiased
estimator of A [16, Lemma 1]:

E[Asb
ij] = P(ij 2 S)E[Aij | ij 2 S] + P(ij /2 S)E[Alr

ij | ij /2 S]

= P(ij 2 S)Aij + P(ij /2 S)Aij

= Aij .

In other words, E[b�sbe(q, k)] = �(q, k).

Now we analyze the per-entry variance of Asb. Since Asb is an unbiased estimator of A, by the law
of total variance,

Var(Asb
ij) = P(ij 2 S)Var(Aij | ij 2 S) + P(ij /2 S)Var(Alr

ij | ij /2 S)

= P(ij 2 S) · 0 + P(ij /2 S)Var(Alr
ij)

= P(ij /2 S)Var(Alr
ij).

To compute the probability that the index ij is not in S (i.e., not selected by LSH), we use the standard
bound on cross-polytope LSH [3, Theorem 1]:

p := P(ij 2 S) = exp(�
⌧2

4 � ⌧2
ln d � O⌧ (ln ln d)).

Therefore,
Var(Asb

ij) = (1 � p)Var(Alr
ij) < Var(Alr

ij).

In other words, Var[b�sbe(q, k)] = (1 � p) · Var[b�pfe(q, k)] < Var[b�pfe(q, k)].

More explicitly, by plugging in the variance of Alr [16, Lemma 2], we have

Var(Asb
ij) = (1 � p)

1

m
exp

⇣
kqi + kjk

2
⌘

exp(2q>
i kj)

⇣
1 � exp

⇣
� kqi + kjk

2
⌘⌘

,

where p = exp(� ⌧2

4�⌧2 ln d � O⌧ (ln ln d))

29

E Additional Experiments and Details

E.1 Datasets

ImageNet [24]: ImageNet is one of the most widely-used image classification benchmarks. In our
experiments in Section 5.1 of evaluating the approximation accuracy of Scatterbrain, both BigGAN
and Vision Transformer are pre-trained on this dataset. It has roughly 1.2 million training images and
50,000 validation images.

WikiText103 [42] and Copy [33]: WikiText103 is a popular dataset for auto-regressive models. It
is from a collection of over 100 million tokens extracted from the set of verified good and featured
articles on Wikipedia. It has 28,475 training articles, 60 for validation and 60 for testing.

Copy is a synthetic a synthetic sequence duplication task where inputs are of the form 0w0w and
w 2 {0, ..., N}

⇤. It is previously used in [33, 14]. This task is useful for demonstrating the
effectiveness of long range attention: it requires non-local attention lookups. It cannot be solved by
any model relying on sparse attention with a limited range such as, local attention.

Long Range Arena (LRA) [54]: This is a recent benchmark for evaluating efficient transform-
ers with long input sequence. We used ListOps [43], byte-level IMDb reviews text classifica-
tion [41], byte-level document retrieval [45], image classification on sequences of pixels [34] and
Pathfinder [37]. We follow the same evaluation mechanism from [54] but implement our own version
in Pytorch (like data loader).

GlUE [61]: GLUE is a standard multi-task benchmark in NLP. It has single-sentence tasks, CoLA
and SST-2; similarity and paraphrase tasks, MRPC, STS-B, QQP; and inference tasks, MNLI, QNLI,
RTE and WNLI. For our additional experiments below (not enough space to be included in the main
paper), we follow the tradition from [25, 65, 21] and truncate all the input sequences to 128 tokens.

E.2 Settings

BigGAN: We adapt the same pre-trained BigGAN model from [21] with no additional training.
The model has a single attention layer at resolution 64 ⇥ 64 (4096). Similar to the prior work, we
also replace its full attention layer with Scatterbrain at the same resolution. Figure 5 in the main
paper shows the best-effort comparison with [1/32, 1/16, 1/8, 1/4, 1/2] of the parameter budget. For
example, if given parameter budget 1/2, we report the best performance of Smyrf from choice of
32/64/128 hash round 64/32/16 cluster size.

T2-ViT: We use the pre-trained vision transformer model T2T-ViT-14 from [66] with 224 ⇥ 224
image size. Without any additional training, we just replace the attention layer with Scatterbrain
and other baselines and evaluate the approximation error and classification accuracy on ImageNet
testings. Again, we report the best-effort best performance of each approximation given the certain
parameter budget.

Auto-regressive Model: We follow the settings from the popular repo https://github.com/
NVIDIA/DeepLearningExamples for training vanilla Transformer from scratch on WikiText103,
except for chunking WikiText103 into sequence length 1024 in order to simulate long input sequences.
The model is 16 layer with 8 head and 512 model dimension. We train all the models for 30 epochs
and report the best Testing Perplexity. The model we use for Copy task is simply a 2-layer-4-head
transformer and sequence length is also 1024. We make 5 runs and report average. Table 4 presents
the results with standard deviation.

Classification Model: We follow the model setting from [54, 64]. We share the same finding
with [64] that the acuracy for the Retrieval tasks is actually higher than reported in [54].

Ratio between Sparse and Low-rank components: There are some rules that we used in our
experiments to set this ratio. For inference, we set this ratio based on the entropy of an observed
subset of attention matrices in different layers: we allocate more memory to the low-rank component
compared to the sparse component if the entropy is high. For training, generally allocating more
memory budget to sparse tends to perform better, so in the experiment, we set the ratio to 3:1
(sparse: low-rank component) for simplicity. Moreover, in future work, it could be useful to make
this ratio adaptive during training. For example, in the early stage of the training and early layers,
attention matrices are usually more uniform (higher entropy). Thus, the approximation error could be

30

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples

even lower if the ratio favors low-rank-based components. One approach could be to monitor the
approximation error of sparse and low-rank components compared to full attention regularly and
adjust the memory budget accordingly. We will add the above discussion to the updated manuscript.

Table 4: The performance of Scatterbrain, REFORMER, PERFORMER and Full-Attention on Long-
Range-Arena benchmarks and 2 popular language modeling tasks. We fix the same number of
parameters (1/8 of the full) used for approximating the attention matrix for each method.

Attention Copy (ppl) WikiText-103 (ppl)
Full Attention 1 25.258±0.37

Reformer 6.8±0.64 27.68±0.53
Performer 49±2.7 66±5.8

Scatterbrain 2.58±0.21 26.72±0.44

Attention ListOps Text Retrieval Image Pathfinder Avg
Full Attention 38.2±0.17 63.29±0.38 80.85±0.12 41.78±0.26 73.98±0.31 59.62

Reformer 36.85±0.37 58.12±0.42 78.36±0.29 28.3±0.39 67.95±0.28 53.9
Performer 35.75±0.29 62.36±0.49 78.83±0.33 39.71±0.48 68.6±0.36 57.05

Scatterbrain 38.6±0.22 64.55±0.34 80.22±0.31 43.65±0.46 69.91±0.25 59.38

E.3 More Ablation Studies

E.3.1 Memory Budget

We present an ablation study on the parameter budget for the WikiText-103 language modeling task.
We show that Scatterbrain outperforms its sparse and low-rank baselines across a range of parameter
budgets. The results are presented in Table 5.

Analysis: We have observed that Scatterbrain outperforms its sparse and low-rank baselines under
different memory budgets. Similar to what we found in Section 5.2, Performer does not train stably
even with 1

4 of the full attention memory. However, under the Scatterbrain framework, Performer
can be combined with Reformer in an elegant way to achieve the same accuracy while using only
half of the memory and faster than Reformer by exploiting the sparse+low-rank structure in attention
matrices.

Table 5: We run WikiText-103 LM with a sweep of 1/4, 1/8, 1/16 memory budget. We show the validation
perplexity and speed-up with respect to the full attention with different efficient Attention layers.

1
4 Mem 1

8 Mem 1
16 Mem

Perplexity (Speed-up) Perplexity Perplexity

SMYRF 26.76 (1.6⇥) 27.68 (1.39⇥) 28.7(1.85⇥)

PERFORMER 58(2.13⇥) 66 (2.01⇥) 85(1.77⇥)

Scatterbrain 26.26(1.58⇥) 26.72 (1.87⇥) 27.74(2.03⇥)

E.3.2 Different Sparse and Low-rank baselines

Scatterbrain is general enough to accommodate different kinds of sparse and low-rank approximations
as its sub-components. In particular, we can combine Local attention or block sparse (from Sparse
Transformer and BigBird) + Performer (instead of Reformer + Performer) in a similar fashion. The
support of the sparse matrix S will thus be fixed and not adaptive to input, but all the other steps are
exactly the same.

We have run additional experiments on the Local attention + Performer combination and BigBird.
Recall that in Appendix E, we have shown Scatterbrain can reduce the attention memory of Vision
Transformer by 98% at the cost of only 0.8% drop of accuracy when serving as a drop-in replacement
for full attention without training on ImageNet. We show the results for local+performer variation
with the same memory budget in Table 6.

We have also run additional experiments on Local attention on Copy and Wikitext-103 language
modeling task (Table 7). We see that Local attention is reasonably competitive on Wikitext-103 but
does not perform well on Copy. The results are not surprising as noted in the Reformer paper that
Copy requires non-local attention lookups.

31

Table 6: Top-1 Accuracy of pre-trained T2T Vision Transformer on ImageNet with different attention replace-
ments. Error represents the average normalized approximation error to full attention.

Attention Top-1 Acc
Full Attention 81.7%

SMYRF 79.8%
Local 79.6%

Performer 80.1%
BigBird 80.3%

Scatterbrain (Local + Performer) 80.3%
Scatterbrain (SMYRF + Performer) 80.7%

Table 7: Additional experiments for Local attention on the Copy and Wikitext-103 language modeling
task.

Attention Copy (ppl) WikiText-103 (ppl)
Full Attention 1 25.258

Reformer 6.8 27.68
Performer 49 66

Local 53 30.72
Scatterbrain 2.58 26.72

0 2 4 6

Entropy

0.0

0.2

0.4

0.6

0.8

1.0

A
p
p
ro

x.
E

rr
or

Reformer
Performer
Scatterbrain

0 2 4 6

Entropy

0.0

0.2

0.4

0.6

0.8

1.0

A
p
p
ro

x.
E

rr
or

Reformer
Performer
Scatterbrain

4 5 6 7

Entropy

0.0

0.2

0.4

0.6

0.8

1.0

A
p
p
ro

x.
E

rr
or

Reformer
Performer
Scatterbrain

5.0 5.5 6.0 6.5

Entropy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
p
p
ro

x.
E

rr
or

Reformer
Performer
Scatterbrain

Figure 8: Top two plots present Approximation Error vs. Entropy of attention matrices for REFORMER,
PERFORMER and Scatterbrain on Copy (left) and WikiText103 (right). Bottom two plots present Approximation
Error vs. Entropy of attention matrices for REFORMER, PERFORMER and Scatterbrain on Text-IMDb (left)
and Image-Cifar10 (right). Recall we observe that entropy of the softmax attention distribution (i.e., scale
of logits) determines the regimes where sparse, low-rank, or sparse + low-rank perform well. Scatterbrain
yields better approximation than REFORMER or PERFORMER in most of the cases; PERFORMER performs the
worst on language modeling tasks while REFORMER performs the worst on classification tasks. These plots for
approximation error analysis match with their performance on downstream tasks.

32

E.3.3 Different Sparse and Low-rank baselines

E.4 Analysis

Recall in Section 5, we have reported the analysis after visualizing the error of REFORMER (sparse),
PERFORMER (low-rank), and Scatterbrain (sparse + low-rank) given the same number of parameters
when approximating the full attention matrices for each attention layer during training. In Figure 8,
we present the visualization.

The conclusion for language modeling tasks is that sparse+low-rank has the smallest approximation
error in most of the cases, and sparse has the largest error, which matches with the end-to-end results.
It also confirms the observation in the popular benchmark paper [54] that kernel or low-rank based
approximations are less effective for hierarchical structured data. For classification tasks, we again
find that Scatterbrain has the smallest approximation error, while PERFORMER is the worst on ListOps
and REFORMER has the largest error on classification tasks, which matches with the end-to-end results
and confirms our observations earlier (sparse and low-rank approximation excel in different regimes).

E.5 Additional Experiments of Fine-tuning Bert on GLUE

We provide additional experiments of fine-tuning Bert on GLUE in Table 8. We follow the similar
setting as [21]. We replace all the attention layers in Bert base model with Scatterbrain and other
baselines. Then we fine-tune Bert on 9 downstream tasks for 3 epochs with batch size 32 and learning
rate 3e-5. The parameter budget is 1/2 of the full attention because sequence length 128 is not very
long. We can see Scatterbrain outperforms all the other baselines in most of the downstream tasks.

Table 8: Results of GLUE when replacing dense attention matrices with SMYRF, PERFORMER and Scatterbrain
in BERT base model. We fix the same number ofparameters (1/2 of the full) used for approximating the attention
matrix for each method.

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI

mcc acc acc corr acc acc acc acc acc

FULL 0.576 0.934 0.874 0.879 0.905 0.813 0.916 0.668 0.43

SMYRF 0.538 0.912 0.833 0.856 0.898 0.775 0.879 0.626 0.412

PERFORMER 0.508 0.838 0.782 0.203 0.831 0.563 0.763 0.556 0.449
Scatterbrain 0.569 0.927 0.863 0.867 0.902 0.813 0.893 0.619 0.428

F Further Discussions and Future Work

In this paper, we present Scatterbrain, unifying the strength of sparse and low-rank approximation. It
is inspired by the observations on the attention matrix structures induced by the data and softmax
function as well as the classical robust-PCA algorithm. In our implementation and analysis, we
have REFORMER/Smyrf and PERFORMER as the back-bone for sparse and low-rank approximations
because of their properties, e.g. Performer is unbiased. Scatterbrain is fundamentally a framework for
combining the strength of sparse and low-rank variants, so it can be easily extended to other variants,
such as Routing Transformer [50] or Nystromformer [64]. Further more, our observations on the
connection between entropy and low-rank/sparse approximation error also provide an opportunity for
efficiently detecting the approximation or compression method to choose for different architectures
or benchmarks.

33

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Sec-

tion 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

34

	Introduction
	Problem Setting and Related Work
	Characterization of Sparse + Low-rank Approx. to Attention Matrices
	Motivating Observations: Low-rank and Sparse Structures of Attention Matrices
	A Generative Model of How Sparse + Low-rank Structure Can Arise

	Scatterbrain: Unifying Sparse and Low-rank Attention
	Challenges of Designing an Accurate and Efficient Sparse + Low-rank Approximation
	Scatterbrain: Algorithm Intuition and Description
	Scatterbrain: Analysis

	Experiments
	Scatterbrain's Approximation Accuracy
	End-to-end Training Performance
	Auto-regressive Tasks
	Classification Tasks

	Scatterbrain's Efficiency, Scaling with Input Sequence Length

	Appendix
	 Appendix
	Extended Related Work
	Robust PCA
	Efficient Transformers
	Locality Sensitive Hashing for Efficient Neural Network Training
	Structured Matrices for Efficient Machine Learning Models

	Motivating Observations: Low-rank and Sparse Structures of Attention Matrices
	Setup
	Observation 1: Sparse and low-rank approximation errors are negatively correlated
	Observation 2: Sparse approximation error is lower when softmax entropy is low and low-rank approximation error is lower error when entropy is high
	Observation 3: Sparse + Low-rank achieves better approximation error than sparse or low-rank alone

	Scatterbrain Algorithm and Implementation Details
	Proofs
	Expressiveness of Sparse + Low-rank Matrices
	Generative Model, Softmax Temperature, and Matrix Approximation
	Scatterbrain: Analysis

	Additional Experiments and Details
	Datasets
	Settings
	More Ablation Studies
	Memory Budget
	Different Sparse and Low-rank baselines
	Different Sparse and Low-rank baselines

	Analysis
	Additional Experiments of Fine-tuning Bert on GLUE

	Further Discussions and Future Work

