
Zeroth-Order Negative Curvature Finding: Escaping
Saddle Points without Gradients

Hualin Zhang1 Huan Xiong2,3 Bin Gu1,3

1 Nanjing University of Information Science & Technology
2 Harbin Institute of Technology

3 Mohamed bin Zayed University of Artificial Intelligence
{zhanghualin98,huan.xiong.math,jsgubin}@gmail.com

Abstract

We consider escaping saddle points of nonconvex problems where only the function
evaluations can be accessed. Although a variety of works have been proposed, the
majority of them require either second or first-order information, and only a few of
them have exploited zeroth-order methods, particularly the technique of negative
curvature finding with zeroth-order methods which has been proven to be the most
efficient method for escaping saddle points. To fill this gap, in this paper, we
propose two zeroth-order negative curvature finding frameworks that can replace
Hessian-vector product computations without increasing the iteration complexity.
We apply the proposed frameworks to ZO-GD, ZO-SGD, ZO-SCSG, ZO-SPIDER
and prove that these ZO algorithms can converge to (ϵ, δ)-approximate second-
order stationary points with less query complexity compared with prior zeroth-order
works for finding local minima.

1 Introduction

Nonconvex optimization has received wide attention in recent years due to its popularity in modern
machine learning (ML) and deep learning (DL) tasks. Specifically, in this paper, we study the
following unconstrained optimization problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where both fi(·) and f(·) can be nonconvex. In general, finding the global optima of nonconvex
functions is NP-hard. Fortunately, finding local optima is an alternative because it has been shown in
theory and practice that local optima have comparable performance capabilities to global optima in
many machine learning problems [18, 19, 30, 21, 20, 23, 31]. Gradient-based methods have been
shown to be able to find an ϵ-approximate first-order stationary point (∥∇f(x)∥ ≤ ϵ) efficiently, both
in the deterministic setting (e.g., gradient descent [37]; accelerated gradient descent [8, 33]) and
stochastic setting (e.g., stochastic gradient descent [37, 43]; SCSG [32]; SPIDER [16]). However, in
nonconvex settings, first-order stationary points can be local minima, global minima, or even saddle
points. Converging to saddle points will lead to highly suboptimal solutions [24, 45] and destroy the
model’s performance. Thus, escaping saddle points has recently become an important research topic
in nonconvex optimization.

Several classical results have shown that, for ρ-Hessian Lipschitz functions (see Definition 1),
using the second-order information like computing the Hessian [39] or Hessian-vector products
[1, 9, 2], one can find an ϵ-approximate second-order stationary point (SOSP, ∥∇f(x)∥ ≤ ϵ and
∇2f(x) ⪰ −√ρϵI). However, when the dimension of x is large, even once access to the Hessian

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

is computationally infeasible. A recent line of work shows that, by adding uniform random pertur-
bations, first-order (FO) methods can efficiently escape saddle points and converge to SOSP. In the
deterministic setting, [26] proposed the perturbed gradient descent (PGD) algorithm with gradient
query complexity Õ(log4 d/ϵ2) by adding uniform random perturbation into the standard gradient
descent algorithm. This complexity is later improved to Õ(log6 d/ϵ1.75) by the perturbed accelerated
gradient descent [28] which replaces the gradient descent step in PGD by Nesterov’s accelerated
gradient descent.

Table 1: A summary of the results of finding (ϵ, δ)-approximate SOSPs (see Definition 2) by the
zeroth-order algorithms. (CoordGE, GaussGE, and RandGE are abbreviations of “coordinate-wise
gradient estimator”, “Gaussian random gradient estimator” and “uniform random gradient estimator”,
respectively. RP, RS, and CR are abbreviations of “random perturbation”, “random search” and
“cubic regularization”, respectively.)

Algorithm Setting ZO Oracle Main Techniques Function Queries

ZPSGD [27] Deterministic GaussGE + Noise RP Õ
(

d2

ϵ5

)
†

PAGD [47] Deterministic CoordGE RP O
(

d log4 d
ϵ2

)
†

RSPI [35] Deterministic CoordGE RS + NCF O(d log d
ϵ8/3

) ‡

Theorem. 4 Deterministic CoordGE NCF O
(

d
ϵ2 + d log d

δ3.5

)
ZO-SCRN [5] Stochastic GaussGE CR Õ

(
d

ϵ3.5 + d4

ϵ2.5

)
†

Theorem. 3 Stochastic CoordGE NCF Õ
(

d
ϵ4 + d

ϵ2δ3 + d
δ5

)
Theorem. 5 Stochastic CoordGE + (RandGE) NCF Õ

(
d

ϵ10/3
+ d

ϵ2δ3 + d
δ5

)
Theorem. 6 Stochastic CoordGE NCF Õ

(
d
ϵ3 + d

ϵ2δ2 + d
δ5

)
† guarantees (ϵ,O(

√
ϵ))-approximate SOSP, and ‡ guarantees (ϵ, ϵ2/3)-approximate SOSP.

Another line of work for escaping saddle points is to utilize the negative curvature finding (NCF),
which can be combined with ϵ-approximate first-order stationary point (FOSP) finding algorithms
to find an (ϵ, δ)-approximate SOSP. The main task of NCF is to calculate the approximate smallest
eigenvector of the Hessian for a given point. Classical methods for solving NCF like the power
method and Oja’s method need the computation of Hessian-vector products. Based on the fact the
Hessian-vector product can be approximated by the finite difference between two gradients, [49, 4]
proposed the FO NCF frameworks Neon+ and Neon2, respectively. In general, adding perturbations
in the negative curvature direction can escape saddle points more efficiently than adding random
perturbations by a factor of Õ(poly(log d)) in theory. Specifically, in the deterministic setting,
CDHS [9] combined with Neon2 can find an (ϵ, δ)-approximate SOSP in gradient query complexity
Õ(log d/ϵ1.75). Recently, the same result was achieved by a simple single-loop algorithm [51], which
combined the techniques of perturbed accelerated gradient descent and accelerated negative curvature
finding. In the online stochastic setting, the best gradient query complexity result Õ(1/ϵ3) is achieved
by SPIDER-SFO+ [16], which combined the near-optimal ϵ-approximate FOSP finding algorithm
SPIDER and the NCF framework Neon2 to find an (ϵ, δ)-approximate SOSP.

However, the gradient information is not always accessible. Many machine learning and deep learning
applications often encounter situations where the calculation of explicit gradients is expensive or
even infeasible, such as black-box adversarial attack on deep neural networks [42, 36, 13, 6, 46] and
policy search in reinforcement learning [44, 14, 29]. Thus, zeroth-order (ZO) optimization, which
uses function values to estimate the explicit gradients as an important gradient-based black-box
method, is one of the best options for solving this type of ML/DL problem. A considerable body
of work has shown that ZO algorithms based on gradient estimation have comparable convergence
rates to their gradient-based counterparts. Although many gradient estimation-based ZO algorithms
have been proposed in recent years, most of them focus on the performance of converging to FOSPs
[40, 22, 25, 16], and only a few of them on SOSPs [27, 47, 35, 5].

As mentioned above, although there have been several works of finding local minima via ZO
methods, they utilized the techniques of random perturbations [27, 47], random search [35], and
cubic regularization [5], as shown in Table 1, which are not the most efficient ones of escaping saddle
points as discussed before. Specifically, in the deterministic setting, [27] proposed the ZO perturbed

2

stochastic gradient (ZPSGD) method, which uses a batch of Gaussian smoothing based stochastic ZO
gradient estimators and adds a random perturbation in each iteration. As a result, ZPSGD can find an
ϵ-approximate SOSP using Õ

(
d2/ϵ5

)
function queries. [47] proposed the perturbed approximate

gradient descent (PAGD) method which iteratively conducts the gradient descent steps by utilizing
the forward difference version of the coordinate-wise gradient estimators until it reaches a point with
a small gradient. Then, PAGD adds a uniform perturbation and continues the gradient descent steps.
The total function queries of PAGD to find an ϵ-approximate SOSP is Õ

(
d log4 d/ϵ2

)
. Recently,

[35] proposed the random search power iteration (RSPI) method, which alternately performs random
search steps and power iteration steps. The power iteration step contains an inexact power iteration
subroutine using only the ZO oracle to conduct the NCF, and the core idea is to use a finite difference
approach to approximate the Hessian-vector product. In the stochastic setting, [5] proposed a zeroth-
order stochastic cubic regularization newton (ZO-SCRN) method with function query complexity
Õ
(
d/ϵ7/2

)
using Gaussian sampling-based gradient estimator and Hessian estimator. Unfortunately,

each iteration of ZO-SCRN needs to solve a cubic minimization subproblem, which does not have a
closed-form solution. Typically, inexact solvers for solving the cubic minimization subproblem need
additional computations of the Hessian-vector product [1] or the gradient [7].

Thus, it is then natural to explore faster ZO negative curvature finding based algorithms to make
escaping saddle points more efficient. To the best of our knowledge, negative curvature finding
algorithms with access only to ZO oracle is still a vacancy in the stochastic setting. Inspired by
the fact that the gradient can be approximated by the finite difference of function queries with high
accuracy, a natural question is: Can we turn FO NCF methods (especially the state-of-the-art Neon2)
into ZO methods without increasing the iteration complexity and turn ZO algorithms of finding FOSPs
into the ones of finding SOSPs?

Contributions. We summarize our main contributions as follows:

• We give an affirmative answer to the above question. We propose two ZO negative curvature
finding frameworks, which use only function queries and can detect whether there is a negative
curvature direction at a given point x on a smooth, Hessian-Lipschitz function f : Rd → R in
offline deterministic and online stochastic settings, respectively.

• We apply the proposed frameworks to four ZO algorithms and prove that these ZO algorithms can
converge to (ϵ, δ)-approximate SOSPs, which are ZO-GD, ZO-SGD, ZO-SCSG, and ZO-SPIDER.

• In the deterministic setting, compared with the classical setting where δ = O(
√
ϵ) [26, 28, 27, 47],

or the special case δ = ϵ2/3 [35], our Theorem 4 is always not worse than other algorithms in
Table 1. In the online stochastic setting, all of our algorithms don’t need to solve the cubic
subproblem as in ZO-SCRN and our Theorem 6 improves the best function query complexity by
a factor of Õ(1/

√
ϵ).

2 Preliminaries

Throughout this paper, we use ∥ · ∥ to denote the Euclidean norm of a vector and the spectral
norm of a matrix. We use Õ(·) to hide the poly-logarithmic terms. For a given set S drawn from
[n] := {1, 2, . . . , n}, define fS(·) := 1

|S|
∑

i∈S fi(·).

Definition 1. For a twice differentiable nonconvex function f : Rd → R,

• f is ℓ-Lipschitz smooth if ∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ ℓ∥x− y∥.

• f is ρ-Hessian Lipschitz if ∀x, y ∈ Rd, ∥∇2f(x)−∇2f(y)∥ ≤ ρ∥x− y∥.
Definition 2. For a twice differentiable nonconvex function f : Rd → R, we say

• x ∈ Rd is an ϵ-approximate first-order stationary point if ∥∇f(x)∥ ≤ ϵ.

• x ∈ Rd is an (ϵ, δ)-approximate second-order stationary point if ∥∇f(x)∥ ≤ ϵ,∇2f(x) ⪰ −δI.

We need the following assumptions which are standard in the literature of finding SOSPs [4, 16, 51].

Assumption 1. We assume that f(·) in (1) satisfies:

3

• ∆f := f(x0)− f(x∗) <∞ where x∗ := argminx f(x).

• Each component function fi(x) is ℓ-Lipschitz smooth and ρ-Hessian Lipschitz.

• (For online case only) The variance of the stochastic gradient is bounded: ∀x ∈ Rd, E∥∇fi(x)−
∇f(x)∥2 ≤ σ2.

We’ll also need the following more stringent assumption to get high-probability convergence results
of ZO-SPIDER.

Assumption 2. We assume that Assumption 1 holds, and in addition, the gradient of each component
function fi(x) satisfies ∀i, x ∈ Rd, ∥∇fi(x)−∇f(x)∥2 ≤ σ2.

2.1 ZO Gradient Estimators

Given a smooth, Hessian Lipschitz function f , a central difference version of the deterministic
coordinate-wise gradient estimator is defined by

∇̂coordf(x) =

d∑
i=1

f(x+ µei)− f(x− µei)

2µ
ei, (CoordGradEst)

where ei denotes a standard basis vector with 1 at its i-th coordinate and 0 otherwise; µ is the
smoothing parameter, which is a sufficient small positive constant. A central difference version of the
random gradient estimator is defined by

∇̂randf(x) = d
f(x+ µu)− f(x− µu)

2µ
u, (RandGradEst)

where u ∈ Rd is a random direction drawn from a uniform distribution over the unit sphere; µ is the
smoothing parameter, which is a sufficient small positive constant.

Remark 1. Deterministic vs. Random: CoordGradEst needs d times more function queries than
RandGradEst. However, as will be discussed in section 4, it has a lower approximation error and
thus can reduce the iteration complexity. Central Difference vs. Forward Difference (please refer to
Appendix A.1): Under the assumption of Hessian Lipschitz, a smaller approximation error bound can
be obtained by the central difference version of both CoordGradEst and RandGradEst.

2.2 ZO Hessian-Vector Product Estimator

By the definition of derivative: ∇2f(x) · v = limµ→0
∇f(x+µv)−∇f(x)

µ , we have∇2f(x) · v can be
approximated by the difference of two gradients∇f(x+v)−∇f(x) for some v with small magnitude.
On the other hand, ∇f(x+ v),∇f(x) can be approximated by ∇̂coordf(x+ v), ∇̂coordf(x) with
high accuracy, respectively. Then the coordinate-wise Hessian-vector product estimator is defined by:

Hf (x)v ≜
d∑

i=1

f(x+ v + µei)− f(x+ v − µei) + f(x− µei)− f(x+ µei)

2µ
ei. (2)

Note that we do not need to know the explicit representation ofHf (x). It is merely used as a notation
for a virtual matrix and can be viewed as the Hessian∇2f(x0) with minor perturbations. As stated
in the following lemma, the approximation error is efficiently upper bounded.

Lemma 1. Assume that f is ρ-Hessian Lipschitz, then for any smoothing parameter µ and x ∈ Rd,
we have

∥Hf (x)v −∇2f(x)v∥ ≤ ρ
(
∥v∥2/2 +

√
dµ2/3

)
. (3)

The ZO Hessian-vector product estimator was previously studied in [50, 35], but we provide a tighter
bound than that in Lemma 6 in [35]. This is because we utilize properties of the central difference
version of the coordinate-wise gradient estimator under the Hessian Lipschitz assumption. It is then
directly concluded that, if f(·) is quadratic, we have ρ = 0 and ∥Hf (x)v −∇2f(x)v∥ = 0.

4

3 Zeroth-Order Negative Curvature Finding

In this section, we introduce how to find the negative curvature direction near the saddle point using
zeroth-order methods. Recently, based on the fact that the Hessian-vector product ∇2f(x) · v can
be approximated by ∇f(x + v) − ∇f(x) with approximation error up to O(∥v∥2), [4] proposed
a FO framework named Neon2 that can replace the Hessian-vector product computations in NCF
subroutine with gradient computations and thus can turn a FO algorithm for finding FOSPs into a FO
algorithm for finding SOSPs. Enlightened by Neon2, we propose two zeroth-order NCF frameworks
(i.e., ZO-NCF-Online and ZO-NCF-Deterministic) using only function queries to solve nonconvex
problems in the online stochastic setting and offline deterministic setting, respectively.

3.1 Stochastic Setting

In this subsection, we focus on solving the NCF problem with zeroth-order methods under the
online stochastic setting and propose ZO-NCF-Online. Before introducing ZO-NCF-Online, we first
introduce ZO-NCF-Online-Weak with weak confidence of 2/3 for solving the NCF problem.

We summarize ZO-NCF-Online-Weak in Algorithm 1. Specifically, ZO-NCF-Online-Weak consists
of at most T = O(log

2 d
δ2) iterations and works as follows: Given a detection point x0, add a

random perturbation with small magnitude σ as the starting point. At the t-th iteration where
t = 1, . . . , T , set µt = ∥xt − x0∥ to be the smoothing parameter µ in (2). Then we keep updating
xt+1 = xt−ηHfi(x0)(xt−x0) whereHfi(x0)(xt−x0) is the ZO Hessian-vector product estimator
and stops whenever ∥xt+1 − x0∥ ≥ r or the maximum iteration number T is reached. Thus as
long as Algorithm 1 does not terminate, we have that the approximation error ∥Hfi(x0)(xt − x0)−
∇2fi(x0)(xt − x0)∥ can be bounded by O(

√
dr2) according to Lemma 1. Note that, although

the error bound is poorer by a factor of O(
√
d) as compared to Neononline

weak in [4] which used the
difference of two gradients to approximate the Hessian-vector product and achieve an approximation
error up toO(r2), with our choice of r in Algorithm 1, the error term is still efficiently upper bounded.

Algorithm 1 ZO-NCF-Online-Weak (f , x0, δ)

1: η ← δ
C2

0ℓ
2 log(100d)

, T ← C2
0 log(100d)

ηδ , σ ← η2δ3

(100d)3C0ρ
, r ← (100d)C0σ

2: ξ ← σ ξ′

∥ξ′∥ , with ξ′ ∼ N (0, I)

3: x1 ← x0 + ξ
4: for t = 1, . . . , T do
5: µt ← ∥xt − x0∥
6: xt+1 = xt − ηHfi(x0)(xt − x0) with µ = µt and i ∈ [n]
7: if ∥xt+1 − x0∥ ≥ r then return v = xs−x0

∥xs−x0∥ for a uniformly random s ∈ [t]

Return v = ⊥

Other than the additional error term caused by ZO approximation, the motivation of ZO-NCF-Online-
Weak is almost the same as Neononline

weak . That is, under reasonable control of the approximation
error of the Hessian-vector product, using the update rule of Oja’s method [41] to approximately
calculate the eigenvector corresponding to the minimum eigenvalue of∇2f(x0) =

1
n

∑n
i=1∇2fi(x0).

Under similar analysis, we conclude that as long as the minimum eigenvalue of ∇2f(x0) satisfies
λmin(∇2f(x0)) ≤ −δ, ZO-NCF-Online-Weak will stop before T and find a negative curvature
direction that aligns well with the eigenvector corresponding to the minimum eigenvalue of∇f2(x0).
Then we have the following lemma:
Lemma 2 (ZO-NCF-Online-Weak). The output v of Algorithm 1 satisfies: If λmin(∇2f(x0)) ≤ −δ,
then with probability at least 2/3, v ̸= ⊥ and vT∇2f(x0)v ≤ − 3

4δ.

We summarize ZO-NCF-Online in Algorithm 2. Specifically, ZO-NCF-Online repeatedly calls ZO-
NCF-Online-Weak for Θ(log(1/p)) times to boost the confidence of solving the NCF problem from
2/3 to 1− p. We have the following results:

Lemma 3. In the same setting as in Algorithm 2, define z = 1
m

∑m
j=1 v

T(Hfij
(x0))v. Then, if

∥v∥ ≤ δ
16dρ and m = Θ(ℓ

2

δ2), with probability at least 1− p, we have
∣∣∣ z
∥v∥2 − vT∇2f(x)v

∥v∥2

∣∣∣ ≤ δ
4 .

5

Algorithm 2 ZO-NCF-Online
Input: f(·) = 1

n

∑n
i=1 fi(·), x0, δ > 0, p ∈ (0, 1].

1: for j = 1, 2, · · · ,Θ(log(1/p)) do
2: vj ← ZO-NCF-Online-Weak (f, x0, δ)
3: if vj ̸= ⊥ then
4: m← Θ(ℓ

2 log(1/p)
δ2), v′ ← Θ(δ

dρ)vj
5: Draw i1, . . . , im uniformly randomly from [n]

6: zj =
1
m

∑m
k=1

(v′)THfik
(x0)v

′

∥v′∥2

7: if zj ≤ − 3δ
4 then return v = vj

Return v = ⊥

Theorem 1. Let f(x) = 1
n

∑n
i=1 fi(x) where each fi is ℓ-smooth and ρ-Hessian Lipschitz. For

every point x0 ∈ Rd, every δ ∈ (0, ℓ], the output of Algorithm 2 v satisfies that, with probability at
least 1− p: If v = ⊥, then∇2f(x0) ⪰ −δI; If v ̸= ⊥, then ∥v∥ = 1 and vT∇2f(x0)v ≤ − δ

2 . The
total function query complexity is

O
(
d log2(d/p)ℓ2

δ2

)
.

3.2 Deterministic Setting

In this subsection, we focus on solving the NCF problem with zeroth-order methods under the offline
deterministic setting and propose ZO-NCF-Deterministic. We summarize ZO-NCF-Deterministic in
Algorithm 3. Since we want to compute the eigenvector corresponding to the most negative eigenvalue
of ∇2f(x0) approximately, one can convert it into an approximated top eigenvector computation
problem of M := − 1

ℓ∇
2f(x0) + (1− 3δ

4ℓ)I. This is because all eigenvalues of ∇2f(x0) in [− 3δ
4 , ℓ]

will be mapped to eigenvalues of M in [−1, 1], and all eigenvalues of∇2f(x0) smaller than −δ will
be mapped to eigenvalues of M greater than 1 + δ

4ℓ .

Algorithm 3 ZO-NCF-Deterministic
Input: Function f(·), point x0, negative curvature δ > 0, confidence p ∈ (0, 1].

1: T ← C2
1 log d

p

√
ℓ

√
δ

, σ ≜ (d/p)
−2C1 δ

T 4ρ , r ≜ (d/p)C1σ

2: ξ ← σ ξ′

∥ξ′∥ , with ξ′ ∼ N (0, I)

3: x1 ← x0 + ξ, y0 ← 0, y1 ← ξ
4: for t = 1, . . . , T do
5: µt = ∥yt∥
6: yt+1 = 2M(yt)− yt−1 whereM(y) = (− 1

ℓHf (x0) + (1− 3δ
4ℓ))y

7: xt+1 = x0 + yt+1 −M(yt)

8: if ∥xt+1 − x0∥ ≥ r then return v = xt+1−x0

∥xt+1−x0∥

Return v = ⊥.

Similar to ZO-NCF-Online-Weak, ZO-NCF-Deterministic starts by adding a random perturbation
ξ to the detection point x0. To find the negative curvature direction v of ∇2f(x0) such that
vT∇2f(x0)v ≤ − δ

2 , the classical power method which updates through xT+1 = x0 + MT ξ

[35] will take T ≥ Ω̃(ℓδ) number of iterations since eigenvalues of M greater than 1 + δ
4ℓ grows in a

speed (1 + δ/ℓ)T . To reduce the iteration complexity T , we can replace the matrix polynomial MT

with the matrix Chebyshev polynomial TT (M) and virtually update xT+1 = x0 + TT (M)ξ.
Definition 3. Chebyshev polynomial {Tn(x)}n≥0 of the first kind is

T0(x) = 1, T1(x) = x, Tn+1(x) = 2x · Tn(x)− Tn−1(x),

then it satisfies Tt(x) =
{
cos(n arccos(x)), x ∈ [−1, 1]
1
2 [(x−

√
x2 − 1)n + (x+

√
x2 − 1)n], x > 1

.

6

In the matrix case, we have the so-called matrix Chebyshev polynomial Tt(M) [3], which satisfies:
Tt+1(M)ξ = 2MTt(M)ξ − Tt−1(M)ξ. Thus, eigenvalues of M greater than 1 + δ

4ℓ will grow to(
1 + δ/4ℓ+

√
(δ/4ℓ)2 + δ/2ℓ

)T
≈
(
1 +

√
δ/ℓ
)T

, so we only need to choose T ≥
√
ℓ/δ.

On the other hand, since we only have access to the zeroth-order information, we need to stably
compute the matrix Chebyshev polynomial. In algorithm 3, we set µt = ∥yt∥ and useM(yt) =

(− 1
ℓHf (x0) + (1− 3δ

4ℓ))yt to approximate Myt with approximation error up to 2ρ
√
drt
ℓ ∥yt∥. With

proper choice of r, it allows us to use the inexact backward recurrence [3] to ensure a stable
computation of matrix Chebyshev polynomial:

y0 = 0, y1 = ξ, yt+1 = 2M(yt)− yt−1.

Then the output xT+1 = x0 + yT+1 −M(yT) is close to x0 + TT (M)ξ with a small approximation
error. Finally, we have the following theorem:
Theorem 2. Let f(x) = 1

n

∑n
i=1 fi(x) where each fi is ℓ-smooth and ρ-Hessian Lipschitz. For

every point x0 ∈ Rd, every δ ∈ (0, ℓ], the output of Algorithm 3 v satisfies that, with probability at
least 1− p: If v = ⊥, then∇2f(x0) ⪰ −δI; If v ̸= ⊥, then ∥v∥ = 1 and vT∇2f(x0)v ≤ − δ

2 . The
function query complexity is

O(
d log d

p

√
ℓ

√
δ

).

4 Applications of Zeroth-Order Negative Curvature Finding

In this section, we focus on applying the zeroth-order negative curvature frameworks to the following
ZO algorithms: ZO-GD, ZO-SGD, ZO-SCSG, and ZO-SPIDER. The following result shows that one
can verify if a point x is an ϵ-approximate FOSP using CoordGradEst.

Proposition 1. In the online setting, using CoordGradEst with a batch size ofO
((

128σ2

ϵ2 + 1
)
log 1

p

)
and smoothing parameter µ ≤

√
3ϵ

4ρ
√
d

, we can verify with probability at least 1 − p, either

∥∇f(x)∥ ≥ ϵ/2 or ∥∇f(x)∥ ≤ ϵ. In the deterministic setting, using once computation of Co-
ordGradEst with smoothing parameter µ ≤

√
3ϵ

2ρ
√
d

, we can verify with probability 1, either

∥∇f(x)∥ ≥ ϵ/2 or ∥∇f(x)∥ ≤ ϵ.

4.1 Applying Zeroth-Order Negative Curvature Finding to ZO-GD and ZO-SGD

We apply ZO-NCF-Online to ZO-SGD to turn it into a local minima finding algorithm, and propose
ZO-SGD-NCF in Algorithm 4. At each iteration, we use a batch size of O

(
σ2

ϵ2 log
(

2K
p

))
Coord-

GradEst to verify if xt is an ϵ-approximate stationary point. If not, ZO-SGD-NCF either estimates
the gradient ∇fS(xt) =

1
|S|
∑

i∈S ∇fi(xt) by CoordGradEst (Option I) or RandGradEst (Option

II) with both mini-batch size O(σ
2

ϵ2); If so, we call the ZO-NCF-Online subroutine. Then, If we find
an approximate negative curvature direction v around xt, then we update xt+1 by moving from xt in
the direction v with step-size δ/ρ. We have the following theorem:

Theorem 3. Under Assumption 1, we set µ1 =
√

3ϵ
2ρ

√
d

and other parameters as follows,

Option I:|S| = max{32σ
2

ϵ2
, 1},K = O(ρ

2∆f

δ3
+

ℓ∆f

ϵ2
), η =

1

4ℓ
, µ2 =

√
3ϵ

4ρ
√
d
;

Option II:|S| = max{8σ
2

ϵ2
, 1},K = O(ρ

2∆f

δ3
+

dℓ∆f

ϵ2
), η =

1

32dℓ
, µ2 = min

{√
3ϵ

4ρd
,

ϵ

32
√
dℓ

}
,

where µ1 and µ2 are only used in Line 3 and Line 5 (or Line 6) of Algorithm 4, respectively. With
probability at least 1− p, Algorithm 4 outputs an (ϵ, δ)-approximate local minimum in function query
complexity

Option I:Õ(dσ
2ℓ∆f

ϵ4
+

dσ2ρ2∆f

ϵ2δ3
+

dℓ2ρ2∆f

δ5
);Option II:Õ(d

2σ2ℓ∆f

ϵ4
+

dσ2ρ2∆f

ϵ2δ3
+

dℓ2ρ2∆f

δ5
).

7

Algorithm 4 ZO-SGD-NCF
Input: Function f , starting point x0, confidence p ∈ (0, 1), ϵ > 0 and δ > 0.

1: for t = 0, . . . ,K − 1 do
2: uniformly randomly choose a set B with batch size O(σ

2

ϵ2 log(2K/p))

3: if ∥∇̂coordfB(xt)∥ ≥ 3ϵ
4 then

4: uniformly randomly choose S ⊆ [n]

5: Option I : xt+1 ← xt − η∇̂coordfS(xt)

6: Option II : xt+1 ← xt − η∇̂randfS(xt)
7: else
8: v ← ZO-NCF-Online (f, xt, δ,

p
2K)

9: if v = ⊥ then return xt

10: else xt+1 = xt ± δ
ρv

Algorithm 5 ZO-GD-NCF
Input: Function f , starting point x0, confidence p ∈ (0, 1), ϵ > 0 and δ > 0.

1: for t = 0, . . . ,K − 1 do
2: if ∥∇̂coordf(xt)∥ ≥ 3ϵ

4 then
3: Option I : xt+1 ← xt − η∇̂coordf(xt)

4: Option II : xt+1 ← xt − η∇̂randf(xt)
5: else
6: v ← ZO-NCF-Deterministic (f, xt, δ,

p
K)

7: if v = ⊥ then return xt

8: else xt+1 = xt ± δ
ρv

Remark 2. Note that the dominant term of the function query complexity in Option I is Õ(d
ϵ4), while

in Option II is Õ(d
2

ϵ4). This is because CoordGradEst has a lower approximation error and thus can
reduce the iteration complexity by a factor of d. Then the function query complexity of Option II is
dominated by evaluating the magnitude of the gradient (Line 3 in Algorithm 4).

In the Deterministic setting, we apply ZO-NCF-Deterministic to ZO-GD to turn it into a local minima
finding algorithm and propose ZO-GD-NCF in Algorithm 5. The update rule of ZO-GD-NCF is
similar to that in ZO-SGD-NCF, the only difference is that we don’t need to use mini-batch sampling
of the stochastic gradient. Similarly, we have the following theorem:

Theorem 4. Under Assumption 1, we set µ1 =
√

3ϵ
2ρ

√
d

and other parameters as follows,

Option I: K = O(ρ
2∆f

δ3
+

ℓ∆f

ϵ2
), η =

1

4ℓ
, µ2 =

√
3ϵ

4ρ
√
d
;

Option II: K = O(ρ
2∆f

δ3
+

dℓ∆f

ϵ2
), η =

1

8dℓ
, µ2 = min

{√
3ϵ

4ρd
,

ϵ

16
√
dℓ

}
,

where µ1 and µ2 are only used in Line 2 and Line 3 (or Line 4) of Algorithm 5, respectively. With
probability at least 1− p, Algorithm 5 outputs an (ϵ, δ)-approximate local minimum in function query
complexity

Option I: Õ(dℓ∆f

ϵ2
+ d

√
ℓ√
δ

ρ2∆f

δ3
); Option II: Õ(d

2ℓ∆f

ϵ2
+ d

√
ℓ√
δ

ρ2∆f

δ3
).

4.2 Applying Zeroth-Order Negative Curvature Finding to ZO-SCSG and ZO-SPIDER

In the stochastic setting, we can also apply the zeroth-order negative curvature finding to the variance
reduction-based algorithms: SCSG [32] and SPIDER [16]. Due to space limitation, We defer the
detailed discussions of these applications to Appendix E and F.

To apply ZO-NCF-Online to SCSG, we first propose a zeroth-order variant of the SCSG [32] method
in Algorithm 6. At the beginning of the j-th epoch, we estimate the gradient ∇fIj

(x̃j−1) by

8

CoordGradEst over a batch sampling set Ij with size B. In the inner loop iterations, the stochastic
gradient estimator vjk−1 is either constructed by CoordGradEst or by RandGradEst over a mini-batch
sampling set Ijk−1 with size b. Then we apply ZO-NCF-Online to ZO-SCSG and propose the
ZO-SCSG-NCF method (see Algorithm 7).
Theorem 5 (informal, full version deferred to Appendix E). With probability at least 2

3 , for both
Option I and Option II, Algorithm 7 outputs an (ϵ, δ)-approximate local minimum in function query
complexity

Õ(d(ℓ∆f

ϵ
4
3σ

2
3

+
ρ2∆f

δ3
)(
σ2

ϵ2
+

ℓ2

δ2
) + d

ℓ∆f

ϵ2
ℓ2

δ2
).

We apply ZO-NCF-Online to ZO-SPIDER to turn it into a local minima finding algorithm and propose
ZO-SPIDER-NCF in Algorithm 8. As a by-product, we also propose a zeroth-order variant of the
SPIDER method in Appendix G that can converge to an ϵ-approximate FOSP with high probability
rather than expectation. Using the same technique as in SPIDER-SFO+ [16], that is, instead of
moving in a large single step with size δ/ρ along the approximate negative curvature direction as
in ZO-SGD-NCF and ZO-SCSG-NCF, we can split it into δ/(ρη) equal length mini-steps with size
η. As a result, we can maintain the SPIDER estimates and improve the so-called non-improvable
coupling term 1

δ3ϵ2 by a fact of δ.

Theorem 6 (informal, full version deferred to Appendix F). With probability at least 3
4 , Algorithm 8

outputs an (ϵ, δ)-approximate local minimum in function query complexity

Õ
(
d

(
σℓ∆f

ϵ3
+

σℓρ∆f

ϵ2δ2
+

ℓ2ρ∆f

δ3ϵ
+

ℓ2ρ2∆f

δ5
+

σ2

ϵ2
+

σδℓ

ρϵ2
+

ℓ2

δ2

))
.

Remark 3. We can boost the confidence the of Theorem 5 and 6 to 1− p by running log(1/p) copies
of Algorithm 7 and 8.

5 Numerical Experiments

Octopus Function. We first consider the octopus function proposed by Du et al. [15]. The octopus
function has 2d local optimum: x∗ = (±4τ, . . . ,±4τ)T and 2d − 1 saddle points:

(0, . . . , 0)T, (±4τ, 0, . . . , 0)T, . . . , (±4τ, . . . ,±4τ, 0)T.

We compare ZO-GD-NCF, ZPSGD, PAGD, and RSPI on the octopus function with growing dimen-
sions. The parameters corresponding to the octopus function are set with τ = e, L = e, γ = 1. All
algorithms are initialized at point (0, . . . , 0)T, which is a strict saddle point and the one farthest from
the optimal points among the 2d − 1 saddle points.

We set ϵ = 1e − 4, δ =
√
ρϵ for all experiments and report the function value v.s. the number of

function queries in Figure 1. For RSPI, we follow the hyperparameter update strategy as described in
([35], Appendix, Section F): We keep σ2 constant and update σ1 = ρσ1

σ1 every Tσ1
iterations. We

conduct a grid search for Tσ1
and ρσ1

.

0 10000 20000 30000 40000 50000 60000
Function Query

1400

1200

1000

800

600

400

200

0

Ob
je

ct
iv

e
Fu

nc
tio

n

d = 10
PAGD
ZO-GD-NCF
ZPSGD
RSPI

(a) d=10

0 50000 100000 150000 200000 250000
Function Query

4000

3000

2000

1000

0

Ob
je

ct
iv

e
Fu

nc
tio

n

d = 30
PAGD
ZO-GD-NCF
ZPSGD
RSPI

(b) d=30

0 100000 200000 300000 400000
Function Query

7000

6000

5000

4000

3000

2000

1000

0

Ob
je

ct
iv

e
Fu

nc
tio

n

d = 50

PAGD
ZO-GD-NCF
ZPSGD
RSPI

(c) d=50

0 200000 400000 600000 800000
Function Query

12000

10000

8000

6000

4000

2000

0

Ob
je

ct
iv

e
Fu

nc
tio

n

d = 100

PAGD
ZO-GD-NCF
ZPSGD
RSPI

(d) d=100

Figure 1: Performance of ZO-GD-NCF, ZPSGD, PAGD, and RSPI on the octopus function with
growing dimensions.

The results in Figure 1 illustrate that all algorithms are able to escape saddle points. With the increase
of the dimension of the octopus function, more function queries are needed for each algorithm to
converge to the local minimum. Note that in all experiments, RSPI performs worse than PAGD and

9

ZO-GD-NCF. This is because RSPI is not a gradient based algorithm. Although it can efficiently
escape from the saddle point using the negative curvature finding, it converges very slowly when the
current point is far from the saddle point due to the random search.

We defer more experimental results to Appendix G.

6 Conclusion

In this paper, we analyse two types of ZO negative curvature finding frameworks, which can be
used to find the negative curvature directions near a saddle point in the deterministic setting and
stochastic setting, respectively. We apply the two frameworks to four ZO algorithms and analyse the
complexities for converging to (ϵ, δ)-approximate SOSPs. Finally, we conduct several numerical
experiments to verify the effectiveness of the proposed method in escaping saddle points.

As a future work, it would be interesting to study the (zeroth-order) unified negative curvature finding
frameworks with generic analysis that can be applied to any FOSPs finding algorithms.

Acknowledgments and Disclosure of Funding

The authors thank four anonymous reviewers for their constructive comments and suggestions. Bin Gu
was partially supported by the National Natural Science Foundation of China under Grant 62076138.

References
[1] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding

approximate local minima faster than gradient descent. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1195–1199, 2017.

[2] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. Advances in Neural
Information Processing Systems, 31, 2018.

[3] Zeyuan Allen-Zhu and Yuanzhi Li. Faster principal component regression and stable matrix
chebyshev approximation. In International Conference on Machine Learning, pages 107–115.
PMLR, 2017.

[4] Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles.
Advances in Neural Information Processing Systems, 31, 2018.

[5] Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order nonconvex stochastic op-
timization: Handling constraints, high dimensionality, and saddle points. Foundations of
Computational Mathematics, 22(1):35–76, 2022.

[6] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song. Practical black-box attacks on deep
neural networks using efficient query mechanisms. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 154–169, 2018.

[7] Yair Carmon and John C Duchi. Gradient descent efficiently finds the cubic-regularized
non-convex newton step. arXiv preprint arXiv:1612.00547, 2016.

[8] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. “convex until proven guilty”:
Dimension-free acceleration of gradient descent on non-convex functions. In International
Conference on Machine Learning, pages 654–663. PMLR, 2017.

[9] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for
nonconvex optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

[10] Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. Adaptive cubic regularisation
methods for unconstrained optimization. part i: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295, 2011.

10

[11] Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. Adaptive cubic regularisation
methods for unconstrained optimization. part ii: worst-case function-and derivative-evaluation
complexity. Mathematical programming, 130(2):295–319, 2011.

[12] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[13] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pages 15–26,
2017.

[14] Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard Turner, and Adrian Weller.
Structured evolution with compact architectures for scalable policy optimization. In Interna-
tional Conference on Machine Learning, pages 970–978. PMLR, 2018.

[15] Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos.
Gradient descent can take exponential time to escape saddle points. Advances in Neural
Information Processing Systems, 30, 2017.

[16] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. Advances in Neural
Information Processing Systems, 31, 2018.

[17] Xiang Gao, Bo Jiang, and Shuzhong Zhang. On the information-adaptive variants of the admm:
an iteration complexity perspective. Journal of Scientific Computing, 76(1):327–363, 2018.

[18] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points-online stochastic
gradient for tensor decomposition. In Conference on learning theory, pages 797–842. PMLR,
2015.

[19] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum.
Advances in Neural Information Processing Systems, 29, 2016.

[20] Rong Ge, Jason D. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. In International Conference on Learning Representations, 2018.

[21] Rong Ge and Tengyu Ma. On the optimization landscape of tensor decompositions. Advances
in Neural Information Processing Systems, 30, 2017.

[22] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[23] Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical
systems. Journal of Machine Learning Research, 19(29):1–44, 2018.

[24] Prateek Jain, Chi Jin, Sham Kakade, and Praneeth Netrapalli. Global convergence of non-convex
gradient descent for computing matrix squareroot. In Artificial Intelligence and Statistics, pages
479–488. PMLR, 2017.

[25] Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced
algorithms and analysis for nonconvex optimization. In International Conference on Machine
Learning, pages 3100–3109. PMLR, 2019.

[26] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape
saddle points efficiently. In International Conference on Machine Learning, pages 1724–1732.
PMLR, 2017.

[27] Chi Jin, Lydia T Liu, Rong Ge, and Michael I Jordan. On the local minima of the empirical risk.
Advances in Neural Information Processing Systems, 31, 2018.

[28] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes saddle
points faster than gradient descent. In Conference On Learning Theory, pages 1042–1085.
PMLR, 2018.

11

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[29] Gangshan Jing, He Bai, Jemin George, Aranya Chakrabortty, and Piyush K Sharma. Asyn-
chronous distributed reinforcement learning for lqr control via zeroth-order block coordinate
descent. arXiv preprint arXiv:2107.12416, 2021.

[30] Kenji Kawaguchi. Deep learning without poor local minima. Advances in Neural Information
Processing Systems, 29, 2016.

[31] Kenji Kawaguchi, Jiaoyang Huang, and Leslie Pack Kaelbling. Every local minimum value is the
global minimum value of induced model in nonconvex machine learning. Neural Computation,
31(12):2293–2323, 2019.

[32] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization
via scsg methods. Advances in Neural Information Processing Systems, 30, 2017.

[33] Huan Li and Zhouchen Lin. Restarted nonconvex accelerated gradient descent: No more
polylogarithmic factor in the O(ϵ−7/4) complexity. arXiv preprint arXiv:2201.11411, 2022.

[34] Mingrui Liu, Zhe Li, Xiaoyu Wang, Jinfeng Yi, and Tianbao Yang. Adaptive negative curva-
ture descent with applications in non-convex optimization. Advances in Neural Information
Processing Systems, 31, 2018.

[35] Aurelien Lucchi, Antonio Orvieto, and Adamos Solomou. On the second-order convergence
properties of random search methods. Advances in Neural Information Processing Systems, 34,
2021.

[36] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[37] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

[38] Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

[39] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[40] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

[41] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of Mathematical
Biology, 15(3):267–273, 1982.

[42] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security, pages 506–519, 2017.

[43] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In International Conference on Machine
Learning, pages 314–323. PMLR, 2016.

[44] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[45] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations of
Computational Mathematics, 18(5):1131–1198, 2018.

[46] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh,
and Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization method
for attacking black-box neural networks. Proceedings of the AAAI Conference on Artificial
Intelligence, 33:742–749, 07 2019.

[47] Emmanouil-Vasileios Vlatakis-Gkaragkounis, Lampros Flokas, and Georgios Piliouras. Effi-
ciently avoiding saddle points with zero order methods: No gradients required. Advances in
Neural Information Processing Systems, 32, 2019.

12

[48] Wikipedia contributors. Azuma’s inequality — Wikipedia, the free encyclopedia, 2021. [Online;
accessed 22-March-2022].

[49] Yi Xu, Rong Jin, and Tianbao Yang. Neon+: Accelerated gradient methods for extracting
negative curvature for non-convex optimization. arXiv preprint arXiv:1712.01033, 2017.

[50] Haishan Ye, Zhichao Huang, Cong Fang, Chris Junchi Li, and Tong Zhang. Hessian-aware
zeroth-order optimization for black-box adversarial attack. arXiv preprint arXiv:1812.11377,
2018.

[51] Chenyi Zhang and Tongyang Li. Escape saddle points by a simple gradient-descent based
algorithm. Advances in Neural Information Processing Systems, 34, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In the conclusion, we mention a

way that could improve the current work.
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Please refer to the

Appendix for complete proofs of the theoretical results.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

Appendix

A Auxiliary Lemmas

Lemma 4 ([38], Lemma 1.2.3 & 1.2.4). If f is ℓ-Lipschitz smooth, then for all x, y ∈ Rd,

|f(y)− f(x)−∇f(x)T (y − x)| ≤ ℓ

2
∥y − x∥2.

If f is ρ-Hessian Lipschitz, then for all x, y ∈ Rd,∥∥∇f(y)−∇f(x)−∇2f(x)(y − x)
∥∥ ≤ ρ

2
∥y − x∥2

and ∣∣∣∣f(y)− f(x)−∇f(x)T (y − x)− 1

2
(y − x)T∇2f(x)(y − x)

∣∣∣∣ ≤ ρ

6
∥y − x∥3

Lemma 5 ([4], Fact 2.2). If v1, . . . , vn ∈ Rd satisfy
∑n

i=1 vi = 0, and S is a non-empty, uniform
random subset of [n]. Then

E

∥∥∥∥∥ 1

|S|
∑
i∈S

vi

∥∥∥∥∥
2
 ≤ I[|S| < n]

|S|
1

n

∑
i∈[n]

∥vi∥2 (4)

Lemma 6 ([4], Claim C.2). If v is a unit vector and vT∇2f(y)v ≤ − δ
2 , suppose we choose

y′ = y ± δ
ρv where the sign is random, then f(y)− E[f(y′)] ≥ δ3

12ρ2 .

A.1 Lemmas of ZO Gradient Estimators

Lemma 7. For any given smoothing parameter µ and any x ∈ Rd, if f is ℓ-Lipschitz smooth,
then for both CoordGradEst and the forward difference version of the coordinate-wise gradient:
∇̂coordf(x) =

∑d
i=1

f(x+µei)−f(x)
µ ei, we have

∥∇̂coordf(x)−∇f(x)∥2 ≤ ℓ2dµ2. (5)

If we further assume that f has ρ-Lipschitz Hessian, we have

∥∇̂coordf(x)−∇f(x)∥2 ≤
1

36
ρ2dµ4 (6)

Proof. For the ℓ-Lipschitz gradient case, the proof directly follows from Lemma 3 in [25]. For the
ρ-Hessian Lipschitz case, we have∥∥∥∇f(x)− ∇̂coordf(x)

∥∥∥ =

∥∥∥∥∥
d∑

i=1

f(x+ µei)− f(x− µei)

2µ
ei −∇f(x)

∥∥∥∥∥
=

1

2µ

∥∥∥∥∥
d∑

i=1

(f(x+ µei)− f(x− µei)− 2µ∇if(x))ei

∥∥∥∥∥
For all i ∈ [d], we have

f(x+ µei)− f(x− µei)− 2µ∇if(x)

=

[
f(x+ µei)− f(x)− µ∇if(x)−

µ2

2
∇2

iif(x)

]
−
[
f(x− µei)− f(x) + µ∇if(x)−

µ2

2
∇2

iif(x)

]
≤
∣∣∣∣f(x+ µei)− f(x)− µ∇if(x)−

µ2

2
∇2

iif(x)

∣∣∣∣+ ∣∣∣∣f(x− µei)− f(x) + µ∇if(x)−
µ2

2
∇2

iif(x)

∣∣∣∣
①
≤2 · ρ

6
µ3 =

ρ

3
µ3

14

where ① is due to Lemma 4.∥∥∥∇f(x)− ∇̂coordf(x)
∥∥∥

=
1

2µ

∥∥∥∥∥
d∑

i=1

(f(x+ µei)− f(x− µei)− 2µ∇if(x))ei

∥∥∥∥∥
=

1

2µ

√√√√ d∑
i=1

(f(x+ µei)− f(x− µei)− 2µ∇if(x))
2

≤ 1

2µ

√
d

(
ρµ3

3

)2

=

√
dρµ2

6
(7)

Lemma 8. Let fµ(x) = Eu∼UB
f(x + µu) be a smooth approximation of f(x), where UB is the

uniform distribution over the d-dimension unit Euclidean ball B. Given the gradient estimator
∇̂randf(x) = d f(x+µu)−f(x−µu)

2µ u, we have

If we assume that f is ℓ-Lipshitz smooth, then it has similar properties as its forward version :
∇̂randf(x) = d f(x+µu)−f(x)

µ u.

(1) |fµ(x)− f(x)| ≤ ℓµ2

2 .

(2) E∇̂randfS(x) = E 1
|S|
∑

i∈S fi(x) = ∇fµ(x), where S ∈ [n].

(3) ∥∇fµ(x)−∇f(x)∥ ≤ ℓdµ
2 for any x ∈ Rd.

(4) E[∥∇̂randf(x)∥2] ≤ 2d∥∇f(x)∥2 + ℓ2d2µ2

2 for any x ∈ Rd.

(5) E∥∇̂randf(x)− ∇̂randf(y)∥2 ≤ 3dℓ2∥x− y∥2 + 3ℓ2d2µ2

2 for any x, y ∈ Rd

If we further assume that f is ρ-Hessian Lipschitz, we have

(1)
∣∣∣fµ(x)− f(x)− µ2

2

∑d
i=1 λi

d

∣∣∣ ≤ ρµ3

6 , where λi, i = 1, . . . , d are eigenvalues of∇2f(x).

(2) ∥∇fµ(x)−∇f(x)∥ ≤ ρdµ2

6 for any x ∈ Rd.

(3) E∥∇̂randf(x)∥2 ≤ d∥∇f(x)∥2 + ρ2d2µ4

36 for any x ∈ Rd.

(4) E∥∇̂randf(x)− ∇̂randf(y)∥2 ≤ 2dℓ2∥x− y∥2 + ρ2d2µ4

18 for any x, y ∈ Rd

Remark 4. The inequality of item (1) shows that increasing the level of smoothness of function f
beyond ℓ-smooth cannot improve the approximation ability of f by fµ. Consider a special case that

f∗(x) = ℓ∥x∥2

2 , then we have f∗ is ℓ-Lipschitz smooth and 0-Hessian Lipschitz, and according to
item (1)

|f∗
µ(x)− f∗(x)| =

∣∣∣∣∣µ2

2

∑d
i=1 λi

d

∣∣∣∣∣ = ℓµ2

2
.

This means that ℓµ2

2 is a tight bound of |fµ(x) − f(x)| when f is assumed to be ℓ-smooth and
ρ-Hessian Lipschitz.

Proof. Let α(d) be the volume of the unit ball in Rd, and β(d) be the surface area of the unit sphere
in Rd. Denote by B and Sp the unit ball and unit sphere, respectively.

When f is ℓ-Lipschitz smooth, the proof directly follow from Lemma4.1 in [17] and [25].

15

When f is ρ-Hessian Lipschitz, We first prove item (1).

1

α(d)

∫
B

[
f(x+ µu)− f(x)− ⟨∇f(x), µu⟩ − µ2

2

〈
∇2f(x)u, u

〉]
du

=fµ(x)− f(x)− µ2

2
Eu∼UB

〈
∇2f(x)u, u

〉
=fµ(x)− f(x)− µ2

2

tr
(
∇2f(x)

)
d

= fµ(x)− f(x)− µ2

2

∑d
i=1 λi

d

where λi, i = 1, . . . , d are eigenvalues of ∇2f(x). Therefore∣∣∣∣∣fµ(x)− f(x)− µ2

2

∑d
i=1 λi

d

∣∣∣∣∣
≤ 1

α(d)

∫
B

∣∣∣∣f(x+ µu)− f(x)− ⟨∇f(x), µu⟩ − µ2

2

〈
∇2f(x)u, u

〉∣∣∣∣ du
≤ 1

α(d)

∫
B

ρµ3

6
∥u∥3du

①
≤ ρµ3

6

d

d+ 3
≤ ρµ3

6

where ① is due to 1
α(d)

∫
B
∥u∥pdu = d

d+p as proved in Lemma 7.3(a) in [17].

Then we prove item (2). Denote

au(x, µ) = f(x+ µu)− f(x)− ⟨∇f(x), µu⟩ − µ2

2
uT∇2f(x)u,

we have |au(x, µ)| = |au(x,−µ)| ≤ µ3

6 ρ∥u∥3 according to Lemma 4. Then we have

∥∇fµ(x)−∇f(x)∥

=

∥∥∥∥∥ 1

β(d)

∫
Sp

d

µ
f(x+ µu)udu−∇f(x)

∥∥∥∥∥
=

∥∥∥∥∥ 1

β(d)

∫
Sp

d

2µ
(f(x+ µu)− f(x− µu))udu−∇f(x)

∥∥∥∥∥
=

∥∥∥∥∥ 1

β(d)

∫
Sp

d

2µ
(f(x+ µu)− f(x− µu))udu− 2

1

β(d)

∫
Sp

d

2µ
⟨∇f(x), µu⟩udu

∥∥∥∥∥
=

d

2β(d)µ

∥∥∥∥∥
∫
Sp

(f(x+ µu)− f(x− µu)− 2 ⟨∇f(x), µu⟩)udu

∥∥∥∥∥
≤ d

2β(d)µ

∫
Sp

(|au(x, µ)|+ |au(−µ)|)∥u∥du ≤
ρdµ2

6β(d)

∫
Sp

∥u∥4du =
ρdµ2

6

For item (3). we have

E∥∇̂randf(x)∥2

=
1

β(d)

∫
Sp

d2

4µ2
|f(x+ µu)− f(x− µu)|2 ∥u∥2du

=
d2

β(d)4µ2

∫
Sp

|au(x, µ)− au(x,−µ) + 2 ⟨∇f(x), µu⟩|2 du

≤ d2

β(d)4µ2

[∫
Sp

2
(
|au(x, µ)|2 + |au(x,−µ)|2

)
du+ 4µ2

∫
Sp

∇Tf(x)uuT∇f(x)du

]
①
=

d2

β(d)4µ2

[∫
Sp

2
(
|au(x, µ)|2 + |au(x,−µ)|2

)
du+ 4µ2 β(d)

d
∥∇f(x)∥2

]

16

≤ d2

β(d)4µ2

[∫
Sp

4

(
µ3

6
ρ∥u∥3

)2

du+ 4µ2 β(d)

d
∥∇f(x)∥2

]

=d∥∇f(x)∥2 + ρ2d2µ4

36

where ① is due to E(uuT) = 1
β(d)

∫
Sp

uuT = 1
dI as proved in Lemma 6.3 in [17].

For item (4), we have

E∥∇̂randf(x)− ∇̂randf(y)∥2

=E
∥∥∥∥df(x+ µu)− f(x− µu)

2µ
u− d

f(y + µu)− f(y − µu)

2µ
u

∥∥∥∥2
=

d2

4µ2
E ∥[f(x+ µu)− f(x− µu)]u− [f(y + µu)− f(y − µu)]u∥2

=
d2

4µ2
E ∥(au(x, µ)− au(x,−µ)− (au(y, µ) + au(y,−µ))u+ 2 ⟨∇f(x)−∇f(y), µu⟩u∥2

≤ d2

4µ2
E
[
2
(
|au(x, µ)|2 + |au(x,−µ)|2 + |au(y, µ)|2 + |au(y,−µ)|2

)
∥u∥2

+8∥ ⟨∇f(x)−∇f(y), µu⟩u∥2
]

≤ d2

4µ2
E
[
8
µ6

36
ρ2∥u∥6 · ∥u∥2 + 8∥ ⟨∇f(x)−∇f(y), µu⟩u∥2

]
=2d2E∥ ⟨∇f(x)−∇f(y), u⟩u∥2 + ρ2d2µ4

18
E∥u∥8 = 2d2E ⟨∇f(x)−∇f(y), u⟩2 + ρ2d2µ4

18

=2d2(∇f(x)−∇f(y))TE(uuT)(∇f(x)−∇f(y)) + ρ2d2µ4

18

①
=2d∥∇f(x)−∇f(y)∥2 + ρ2d2µ4

18

≤2dℓ2∥x− y∥2 + ρ2d2µ4

18

where ① is due to E(uuT) = 1
β(d)

∫
Sp

uuT = 1
dI as proved in Lemma 6.3 in [17].

A.2 ZO Hessian-Vector Product Estimator

Proof of Lemma 1. If f is ρ-Hessian Lipschitz,∥∥∇f(x+ v)−∇f(x)−∇2f(x)v
∥∥ ≤ ρ

2
∥v∥2 (8)

this inequality uses Lemma 4. Then we have∥∥∇2f(x0)v −Hf (x)v
∥∥

=
∥∥∇2f(x0)v − (∇f(x+ v)−∇f(x)) + (∇f(x+ v)−∇f(x))−Hf (x)v

∥∥
①
≤
∥∥∇2f(x0)v − (∇f(x+ v)−∇f(x))

∥∥+ ∥(∇f(x+ v)−∇f(x))−Hf (x)v∥

=
∥∥∇2f(x0)v − (∇f(x+ v)−∇f(x))

∥∥+ ∥∥∥(∇f(x+ v)−∇f(x))− (∇̂coordf(x+ v)− ∇̂coordf(x))
∥∥∥

②
≤
∥∥∇2f(x0)v − (∇f(x+ v)−∇f(x))

∥∥+ ∥∥∥∇f(x+ v)− ∇̂coordf(x+ v)
∥∥∥+ ∥∥∥∇f(x)− ∇̂coordf(x)

∥∥∥
③
≤ρ

2
∥v∥2 +

√
dρµ2

3

where ① and ② are due to the triangle inequality; ③ is due to Eq. (8) and Lemma 7.

17

B Proof of Proposition 1

Proof. Online stochastic setting. Let S := {S1, . . . , Sm} be m = O(log 1
p) random uniform

subsets of [n], each of cardinality B = max{ 128σ
2

ϵ2 , 1}. Denote by vj = 1
B

∑
i∈Sj
∇fi(x) and

v̂j =
1
B

∑
i∈Sj
∇̂coordfi(x), according to Lemma 5 we have

ESj

[
∥vj −∇f(x)∥2

]
≤ 1

B
· 1
n

∑
i∈[n]

∥vj −∇f(x)∥2 ≤
σ2

B
=

ϵ2

128

Then, according to the Chebyshev’s inequality: P (|x − E(x)| > u) ≤ var(x)
u2 , with probability at

least 1/2 over the randomness of Sj we have

|∥v̂j∥ − ∥∇f(x)∥| ≤ |∥v̂j∥ − ∥vj∥|+ |∥vj −∇f(x)∥|

≤ ∥v̂j − vj∥+ ∥vj −∇f(x)∥ ≤
ρ
√
dµ2

6
+

ϵ

8
≤ ϵ

4

where the third inequality comes from Lemma 7 and the Chebyshev’s inequality by setting u = ϵ
8 ; the

last inequality is because we choose the smoothing parameter µ such that µ ≤
√

3ϵ
4ρ

√
d

. We denote

the non-decreasing order

π ◦ S := {Sπ(1), Sπ(2), . . . , Sπ(m)}
s.t.

∣∣∥v̂π(1)∥ − ∥∇f(x)∥∣∣ ≥ · · · ≥ ∣∣∥v̂π(m)∥ − ∥∇f(x)∥
∣∣

Then we define the event
Hj =

(∣∣∥v̂π(j)∥ − ∥∇f(x)∥∣∣ ≥ ϵ

4

)
We have Pr (Hj) ≤ 1

2 for all j ∈ [m]. Using the fact that

Hπ(⌊m
2 ⌋) ⊆

(∣∣∥v̂π(j)∥ − ∥∇f(x)∥∣∣ ≥ ϵ

4
,∀j ≤

⌊m
2

⌋)
=

⌊m
2 ⌋⋂

j=1

Hπ(j)

we have

Pr
(
Hπ(⌊m

2 ⌋)
)
≤ Pr

⌊m
2 ⌋⋂

j=1

Hπ(j)

 =

⌊m
2 ⌋∏

j=1

Pr
(
Hπ(j)

)
≤
(
1

2

)⌊m
2 ⌋

If we choose m = O(log(1/p)), we have with probability at least 1 − p, it satisfies that at least⌊
m
2

⌋
+ 1 of the vectors vj satisfy |∥v̂j∥ − ∥∇f(x)∥| ≤ ϵ

4 . Then we select v∗ = vj where j ∈ [m] is
index that gives the median value of ∥v̂j∥, then it satisfies |∥v̂j∥ − ∥∇f(x)∥| ≤ ϵ

4 . Finally, we can
check if ∥v̂j∥ ≤ 3ϵ

4 , then ∥∇f(x)∥ ≤ ϵ, and if not, then ∥∇f(x)∥ ≥ ϵ
2 .

Deterministic. The case in the offline deterministic setting is much simpler than the online setting.
According to Lemma 7 we have

∥∇̂coordf(x)−∇f(x)∥ ≤
ρ
√
dµ2

6

If we choose µ ≤
√

3ϵ
2ρ

√
d

we get ∥∇̂coordf(x)−∇f(x)∥ ≤ ϵ
4 . Thus, we can check if ∥∇̂coordf(x)∥,

then ∥∇f(x)∥ ≤ ϵ, and if not, then ∥∇f(x)∥ ≥ ϵ
2 .

C Proof of Zeroth-Order Negative Curvature Search

C.1 Proof of Online setting

Proof of Lemma 2. We first recall the parameter settings in Algorithm 1:

η ← δ

C2
0ℓ

2 log(100d)
, T ← C2

0 log(100d)

ηδ
, σ ← (100d)−3C0

η2δ3

ρ
, r ← (100d)C0σ (T1)

18

Denote by it ∈ [n] the random index i chosen at the t-th iteration in Algorhtm 1. Let ξt be the error
vector such that

ξt := ∇2fit(x0)(xt − x0)−Hfit
(x0)(xt − x0). (T2)

Then the error vector can be bounded by

∥ξt∥ ≤ ρ(
∥xt − x0∥2

2
+

√
dµ2

t

3
) ≤ ρ

√
d∥xt − x0∥2.

where the first inequality is due to By Lemma 1; the second inequality is due to µt = ∥xt − x0∥ and
d ≥ 1. According to the definition of ξt in (T2), we have

xt+1 = xt − ηHfit
(x0)(xt − x0) = xt − η∇2fit(x0)(xt − x0) + ηξt. (T3)

Then we define the following notations,

zt = xt − x0, At = Bt +Rt where Bt = ∇2fit(x0), Rt = −
ξtz

T
t

∥zt∥2
,

From (T3), we have
zt+1 = zt − ηBtzt + ηξt = (I− ηAt)zt.

As long as Algorithm 1 does not terminate, we have

∥Rt∥ ≤ ρ
√
d∥zt∥

①
≤ ρ
√
dr, ∥Bt∥ ≤ ℓ, ∥At∥ ≤ ∥Bt∥+ ∥Rt∥ ≤ ∥Bt∥+ ρ

√
dr

②
≤ 2ℓ

where ① holds since we always have ∥zt∥ = ∥xt − x0∥ ≤ r as long as Algorithm 1 does
not terminate; ② holds since the parameter setting of r as in Algorithm 1 such that ρ

√
dr =√

dδ5

C4
0 (100d)

2C0 log2(100d)ℓ4
≤ δ5

ℓ4 ≤ ℓ.

Define

Φt = zt+1z
T
t+1

①
= (I− ηAt) · · · (I− ηA1)ξξ

T(I− ηA1)
T · · · (I− ηAt)

T

= (I− ηAt)Φt−1(I− ηAt)
T

= (I− ηAt)Φt−1(I− ηAt)

wt =
zt
∥zt∥

=
zt√

tr(Φt−1)

where ① is because z1 = x1 − x0 = ξ. As long as Algorithm 1 does not terminate, we have

tr(Φt) = ∥zt+1∥2 = ∥(I− ηAt)zt∥2

= ∥zt∥2 − 2ηzTt Atzt + η2zTt A
2
t zt

= ∥zt∥2
(
1− 2ηwT

t Atwt + η2wT
t A

2
twt

)
= tr(Φt−1)

(
1− 2ηwT

t Atwt + η2wT
t A

2
twt

)
≤ tr(Φt−1)

(
1− 2ηwT

t Atwt + 4η2ℓ2
)

≤ tr(Φt−1)
(
1− 2ηwT

t Btwt + 2η∥Rt∥+ 4η2ℓ2
)

≤ tr(Φt−1)
(
1− 2ηwT

t Btwt + 2ηρ
√
dr + 4η2ℓ2

)
≤ tr(Φt−1)

(
1− 2ηwT

t Btwt + 8η2ℓ2
)

where the last inequality is because ρ
√
dr
η =

√
dδ4

(100d)2C0C2
0 log(100d)ℓ2

≤ δ4

ℓ2 ≤ ℓ2. On the other hand,

tr(Φt) = tr(Φt−1)
(
1− 2ηwT

t Atwt + η2wT
t A

2
twt

)
≥ tr(Φt−1)

(
1− 2ηwT

t Atwt

)
≥ tr(Φt−1)

(
1− 2ηwT

t Btwt − 2η∥Rt∥
)

≥ tr(Φt−1)
(
1− 2ηwT

t Btwt − 4ηρdr
)

≥ tr(Φt−1)
(
1− 2ηwT

t Btwt − 8η2ℓ2
)

19

Then take the logarithm on both sides of the inequality, we get

log
(
1− 2ηwT

t Btwt − 8η2ℓ2
)
≤ log (tr(Φt))− log (tr(Φt−1)) ≤ log

(
1− 2ηwT

t Btwt + 8η2ℓ2
)
.

Define
λ = −λmin(∇2f(x0)) = −λmin(E[Bt]), A := ∇2f(x0) = E[Bt].

We know wT
t Btwt ∈ [−ℓ, ℓ] and E[wT

t Btwt] = wT
t Awt ≥ −λ. Then we have

log (tr(Φt))− log (tr(Φt−1)) ∈ [log
(
1− 2ηwT

t Btwt − 8η2ℓ2
)
, log

(
1− 2ηwT

t Btwt + 8η2ℓ2
)
]

①
⊂ [−2(2ηℓ+ 8η2ℓ2), 2ηℓ+ 8η2ℓ2]

②
⊂ [−6ηℓ, 3ηℓ]

E
[
log
(
1− 2ηwT

t Btwt + 8η2ℓ2
)] ③
≤ log

(
E
[
log
(
1− 2ηwT

t Btwt + 8η2ℓ2
)])
≤ 2ηλ+ 8η2ℓ2

above ① uses the fact that | log(1− x)| ≤ 2|x|,∀x ∈ [−1/2, 1/2] and log(1 + x) < x,∀x > 0; ② is
because η = δ

C2
0ℓ

2 log(100d)
≤ 1

8ℓ ; ③ is due to the concavity of log and Jensen’s inequality. Applying
Lemma 9 by setting ρ = 3ηℓ, β = 2ηλ+ 8η2ℓ2, we have

Pr

[
log(tr(Φt))− log(tr(Φ0)) ≥ (2ηλ+ 8η2ℓ2)t+ 6ηℓ

√
t log(

t

p
)

]
≤ p/t.

then we define

T0 = min

{
1

2ηλ
·
log(r

2

σ2)

3
,

1

8η2ℓ2
·
log(r

2

σ2)

3
, T ′

0

}

where T ′
0 is the largest positive integer such that 6ηℓ

√
T ′
0 log(

T ′
0

p) ≤ log(r2

σ2)

3 . Thus, with the choice
of T0 we have

(2ηλ+ 8η2ℓ2)T0 + 6ηℓ

√
T0 log(

T0

p
) ≤

log(r
2

σ2)

3
+

log(r
2

σ2)

3
+

log(r
2

σ2)

3
= log(

r2

σ2
)

Therefore, for t ≤ T0, we have

Pr

[
log(tr(Φt))− log(tr(Φ0)) ≥ log(

r2

σ2
)

]
≤ p

T0

Taking a union bound over t ∈ [T0], we have

Pr

[
T0⋃
t=1

log(tr(Φt))− log(tr(Φ0)) ≥ log(
r2

σ2
)

]
≤

T0∑
t=1

Pr

[
log(tr(Φt))− log(tr(Φ0)) ≥ log(

r2

σ2
)

]
≤ p

which is equivalent to

Pr

[
T0⋂
t=1

log(tr(Φt))− log(tr(Φ0)) ≥ log(
r2

σ2
)

]
≥ 1− p

By definition, tr(Φt) = ∥xt − x0∥2 and tr(Φ0) = ∥ξ∥2 = σ2. Then we know with probability at
least 1− p, for every t ∈ [T0], ∥xt+1−xt∥ < r. Thus Algorithm 1 will not terminate before iteration
T0.

Then we prove that when λ > δ, Algorithm 1 outputs a vector v, with probability at least 2
3 ,

vTAv ≤ − 3
4δ.

We first note when λ ≥ δ, using our choice of η and T0, we have T0 ≤
log

(
r2

σ2

)
6ηλ . Denote by

vt+1
def
= (I− ηBt) · · · (I− ηB1) ξ and ut

def
= zt − vt with u1 = 0, we have

ut+1 = zt+1 − vt+1 =

t∏
s=1

(I− ηAs) ξ −
t∏

s=1

(I− ηBs) ξ

20

= (I− ηBt) (zt − vt)− ηRtzt
= (I− ηBt)ut − ηRtzt

then, before Algorithm 1 stops, we have:

∥ut+1 − (I− ηBt)ut∥ = η ∥Rtzt∥
①
≤ 2dηρr2 (T4)

above, ① is due to ∥Rtzt∥ ≤ ∥Rt∥ · ∥zt∥ ≤ 2ρd∥zt∥2. Using Young’s inequality ∥a + b∥22 ≤
(1 + β)∥a∥22 +

(
1 + 1

β

)
∥b∥22 for every β > 0, we have:

∥ut+1∥2 ≤ (1 + η2ℓ2)∥ (I− ηBt)ut∥2 + (1 +
1

η2ℓ2
)∥ut+1 − (I− ηBt)ut∥2

①
≤ (1 + η2ℓ2)∥ (I− ηBt)ut∥2 + (1 +

1

η2ℓ2
)4η2d2ρ2r4

= (1 + η2ℓ2)∥ (I− ηBt)ut∥2 +
1 + ℓ2η2

ℓ2
4d2ρ2r4

②
≤
(
1 + η2ℓ2

)
∥(I− ηBt)ut∥2 + 8d2

ρ2

ℓ2
r4

=
(
1 + η2ℓ2

)
∥ut∥2

(
1− 2η

uT
t Btut

∥ut∥2
+ η2

uT
t B

2
tut

∥ut∥2

)
+ 8d2

(ρ
ℓ

)2
r4

②
≤ ∥ut∥2

(
1− 2η

uT
t Btut

∥ut∥2
+ 10η2ℓ2

)
+ 8d2

(ρ
ℓ

)2
r4.

above, ① holds due to (T4); ② is because ηℓ ≤ 1; ③ is because ∥Bt∥ ≤ ℓ. Apply Lemma 10 by
setting α = 2ηℓ+ 10η2ℓ2 ≤ 2.5ηℓ and β = 2ηλ, we have

Pr
[
∥ut∥ ≥ 16d

ρ

ℓ
r2teηλt+8ηℓ

√
t log t

p

]
≤ p (9)

Apply Lemma 11 we conclude that for each t ∈ [T], w.p. at least 99/100:

• Norm growth: ∥vt∥ ≥ 1
C

(
e(ηλ−32η2ℓ2)tσ/

√
d
)

.

• Negative curvature: −v⊤
t+1Avt+1

∥vt+1∥2 ≤ −(1− Cηℓ)λ+ C

(
log d
ηt +

√
ℓ2

t + λη2ℓ2t

)
.

Define

T1 =
log 2C

√
dr

σ

ηλ− 32η2ℓ2
=

C0(log d/p) + log(2C
√
d)

ηλ− 32η2ℓ2
≤ 2C0 · log d/p

ηλ− 32η2ℓ2
≤ 4C0 · log d/p

ηλ
≤ 4C0 · log d/p

ηδ
< T

(10)
where the second equality is because r = (d/p)C0σ. When t = T1, by “norm growth” property, we
know that w.p. at least 99/100:

∥vT1∥ ≥
1

C

(
e(ηλ−32η2ℓ2)T1σ/

√
d
)

(10)
= 2r (11)

Combing with (9), we have w.p. at least 98/100,

∥uT1
∥

∥vT1
∥
≤ 16dρr2T1e

ηλT1+8ηℓ
√

T1 log
T1
p

ℓ · 2r

≤ 16C

d
3
2 ρr2T1e

ηλT1+8ηℓ
√

T1 log
T1
p

ℓe(ηλ−32η2ℓ2)T1σ

≤ 16C

(
d

3
2 ρr2T1

ℓσ
e
8ηℓ

√
T1 log

T1
p +32η2ℓ2T1

)

21

①
≤ 16C

(
d

3
2 ρr2T1

ℓσ
e
16

√
log

T1
p

)
②
≤ 16C

(
r2

σ
· d

3
2 ρT 2

1

ℓp

)
③
≤ δ

100ℓ
≤ 1

100
(12)

where inequality ① is because η2ℓ2T1 ≤ η2ℓ2T = 1; Inequality ② is because e16
√

log(x) < x for
sufficiently large x; Inequality ③ is because

r2

σ
= (

d

p
)2C0σ = (

d

p
)−C0

η2δ3

ρ

and thus, for sufficiently large C0 and p = 1/100, we have

(
d

p
)−C0 ≤ p

d3/2
· 1

C0(4C0 log(
d
p))

2

This implies

r2

σ
≤ η2δ3p

C0d3/2ρ(4C0 log(
d
p))

2
=

δp

C0d3/2ρ(
4C0 log(d

p)

ηδ)2

(10)
≤ δp

C0d3/2ρT 2
1

.

Thus for sufficiently large C0 ≥ 1600C ③ holds.

Putting together with ∥vT1
∥ ≥ 2r, we have w.p. at least 97/100, ∥zT1

∥ = ∥uT1
+ vT1

∥ ≥ r. This
means that Algorithm 1 will terminate within T1 ≤ T iterations.

Since w.p. ≥ 99/100, Algorithm 1 will not terminate before T0 ≥ log(r2/σ2)
6ηλ . Thus w.p. at least

96/100, Algorithm 1 will terminate at t ∈ [T0, T1].

Using the “negative curvature” property, we have w.p. at least ≥ 99/100,

vTt Avt
∥vt∥2

≤ −(1− Cηℓ)λ+ C

 log d

ηT0
+

√
ℓ2

T0
+ λη2ℓ2T1

 .

Since T0 ≥
log(r

σ)2

6ηλ = C0 log(d/p)
3ηλ ≥ C0 log d

3ηλ , thus,

log d

ηT0
≤ 3λ

C0

By the choice of η we have ηℓ2 ≤ δ
C2

0
≤ λ

C2
0

and

ℓ2

T0
≤ 3ηλℓ2

C0
≤ λ2

C0
,

λη2ℓ2T1 ≤ λη2ℓ2
4C0 log(d/p)

ηλ
≤ λ

4C0 log d

C2
0 log d

≤ 4λ

C0

Then we have w.p. at least 95/100, Algorithm 1 terminates at t ∈ [T0, T1] and

vTt Avt
∥vt∥2

≤ −15

16
λ ≤ −15

16
δ.

Since ∥ut + vt∥ = ∥zt∥ ≥ r, we have w.p. at least 99/100,

∥ut∥
∥ut∥+ ∥vt∥

≤ ∥ut∥
∥ut + vt∥

≤ 16dρr2T1e
ηλT1+8ηℓ

√
T1 log

T1
p

ℓr

(12)
≤ δ

50ℓ
.

This implies ∥ut∥
∥vt∥ ≤

δ
49ℓ . In sum, we have w.p. at least 94/100:

z⊤t Azt

∥zt∥2
=
∥vt∥2

∥zt∥2
· z

⊤
t Azt

∥vt∥2
=
∥vt∥2

∥zt∥2
· (vt + ut)

TA(vt + ut)

∥vt∥2

22

≤ ∥vt∥
2

∥zt∥2
· v

⊤
t Avt + 4ℓ ∥ut∥ ∥vt∥

∥vt∥2

≤ ∥vt∥
2

∥zt∥2
·

(
v⊤t Avt

∥vt∥2
+

4ℓ ∥ut∥
∥vt∥

)
≤ ∥vt∥

2

∥zt∥2
·
(
−15

16
δ +

4

49
δ

)
≤ −17δ

20

∥vt∥2

∥zt∥2

≤ −17δ

20

(
1− ∥ut∥2

∥zt∥2

)
≤ −17δ

20
· 49
50

< −3

4
δ

Proof of Lemma 3. By Lemma 1 with µ = ∥v∥ we have∥∥vT(Hfi(x)−∇2fi(x))v
∥∥ ≤ ρ

√
d∥v∥3.

Define
zj = vTHfij

v,

then z1, . . . , zm are i.i.d. random variables with

|zj | ≤
∥∥∥vT(Hfij

(x)−∇2fi(x))v
∥∥∥+ ∥∥vT∇2fij (x)v

∥∥
≤ ρ
√
d∥v∥3 + ℓ∥v∥2.

By Chernoff inequality, we have

Pr

[
|z − E[z]| ≥ 2(ρ

√
d∥v∥3 + ℓ∥v∥2)

√
1

m
log

1

p

]
≤ p.

Since |E[z]− vT∇2f(x)v| ≤ ρ
√
d∥v∥3, we have

Pr

[∣∣∣∣ z

∥v∥2
− vT∇2f(x)v

∥v∥2

∣∣∣∣ ≤ 2(ρ
√
d∥v∥+ ℓ)

√
1

m
log

1

p
+ ρ
√
d∥v∥

]
≥ 1− p.

Lemma 9. Consider the random variables {xt}Tt=0 with respect to random events {F}Tt=0 and
log(1−a0), log(1−a1), . . . , log(1−aT) ∈ [−2ρ, ρ] where each xt and at only depend onF1, . . . ,Ft.

log xt = log xt−1 + log(1− at) and E [log(1− at) | F1, . . . ,Ft−1] ≤ β.

Then we have for every p ∈ (0, 1),

Pr

[
log xt − log x0 ≥ βT + 2ρ

√
T log

T

p

]
≤ p/T

Proof. Applying a general form of Azuma-Hoeffding inequality [48], we have

Pr [log xt − log x0 ≥ ϵ1] ≤ exp{− 2ϵ21
((β + 2ρ)2)T

}

Let exp{− 2ϵ21
(µ+2ρ)2T } = p/T , we get

ϵ1 = (β + 2ρ)

√
1

2
T log

T

p

≤ βT + 2ρ

√
T log

T

p
:= ϵ

So we have
Pr[log xt − log x0 ≥ ϵ] ≤ Pr[log xt − log x0 ≥ ϵ1] ≤ p/T

23

Lemma 10 ([4]). Consider random events {Ft}t≥1 and random variables x1, . . . , xT ≥ 0 and
a1, . . . , aT ∈ [−α, α] for α ∈ [0, 1/2] where each xt and at only depend on F1, . . . ,Ft. Letting
x0 = 0 and suppose there exist constant b ≥ 0 and β > 0 such that for every t ≥ 1:

xt ≤ xt−1 (1− at) + b and E [at | F1, . . . ,Ft−1] ≥ −β.

Then, we have for every p ∈ (0, 1): Pr
[
xT ≥ T · b · eβT+2α

√
T log T

p

]
≤ p.

Lemma 11 ([4]). There exists an absolute constant C > 0 such that the following holds: Suppose
B1,B2, . . . ,Bt are i.i.d. random matrices with ∥Bi∥ ≤ ℓ and E [Bi] = −A. Suppose also
λmax(A) = λ ≥ 0. Let

∀i = 0, 1, . . . , t : vi+1
def
= (I− ηBi) · · · (I− ηB1) ξ

where ξ is a random Gaussian vector with norm σ, and η ∈
(
0,
√

1
1350000tℓ2

]
is the learning rate.

Then, with probability at least 99/100:

1. Norm growth: ∥vt+1∥2 ≥
1
C

(
e(ηλ−32η2ℓ2)tσ/

√
d
)

.

2. Negative curvature: −v⊤
t+1Avt+1

∥vt+1∥2
2

≤ −(1− Cηℓ)λ+ C

(
log d
ηt +

√
ℓ2

t + λη2ℓ2t

)
.

C.2 Proof of Deterministic setting

Proof of Theorem 2. For notation simplicity, we denote

A = ∇2f(x0), M = −1

ℓ
∇2f(x0) + (1− 3δ

4ℓ
)I, λ = −λmin(A).

Then, we know that all the eigenvalues of M lie in [−1, 1 + λ−3δ/4
ℓ]. Define

M(y) =

(
−1

ℓ
Hf (x0) + (1− 3δ

4ℓ
)

)
y

and use it to approximate My. Recall that

y0 = 0, y1 = ξ, yt = 2M(yt−1)− yt−2.

If we set xt+1 = x0 + yt+1 −M(yt), then it satisfies xt+1 − x0 ≈ Tt(M)ξ according to the
Definition 5.

Denote by
x∗
t+1 ≜ x0 + Tt(M)ξ

the exact solution. We have

yt = 2M(yt−1)− yt−2 = 2(x0 − xt + yt)− yt−2 =⇒ yt − yt−2 = 2(xt − x0).

Since ∥xt − x0∥ ≤ r for each t before Algorithm 3 terminates, we have

∥yt∥ ≤ ∥yt−2∥+ ∥yt − yt−2∥ ≤ ∥yt−2∥+ 2r

≤ ∥yt−4∥+ 4r

≤ · · ·
≤ 2tr

From Lemma 4, we have

∥M(yt)−Myt∥ = ∥−
Hf (x0)

ℓ
yt+
∇2f(x0)

ℓ
yt∥ ≤

1

ℓ
ρ

(
∥yt∥2

2
+

√
dµ2

t

3

)
≤ ρ
√
d

ℓ
∥yt∥2 ≤

2ρ
√
drt

ℓ
∥yt∥.

Recall from Definition 4 that

Tt(x) ∈

{
[−1, 1] if x ∈ [−1, 1][
1
2

(
x−
√
x2 − 1

)t
,
(
x+
√
x2 − 1

)t]
if x > 1

24

On the other hand, we have for every x > 1, a = x+
√
x2 − 1, b = x−

√
x2 − 1, it satisfies

Ut(x) =
1

a− b
(at+1 − bt+1) =

t∑
i=0

aibt−i ≤ (t+ 1)at

Then we apply Lemma 12 with eigenvalues of M in [a, b] =
[
0, 1 + λ−3δ/4

ℓ

]
and

γ ≜ max

{
1 +

λ− 3δ/4

ℓ
+

√
(1 +

λ− 3δ/4

ℓ
)2 − 1, 1

}
, Cc = γt∥ξ∥ = γtσ, CT = 2,

CU = t+ 2, ϵ =
2ρ
√
drt

ℓ
.

Then according to Lemma 12, we have

∥x∗
t+1 − xt+1∥ ≤

40
√
dρrt4γtσ

ℓ

Then we prove that if λmin(∇2f(x0)) ≤ −δ, then with probability at least 1− p, it satisfies that if
v ̸= ⊥, ∥v∥ = 1, and vT∇2f(x0)v ≤ − 1

2δ. In other words, we can assume that λ ≥ δ.

λ ≥ δ implies γ > 1, so we can let

T1 ≜
log 4dr

pσ

log γ
≤ T.

By Definition 4 we know that ∥TT1
(M)∥ ≥ 1

2γ
T1 = 2dr

pσ . Thus, with probability at least 1 − p,
∥x∗

T1+1 − x0∥ = ∥TT1
(M)ξ∥ ≥ 2r. Morever, at iteration T1, we have

∥x∗
T1+1 − xT1+1∥ ≤

80dρrT 4
1 γ

T1σ

ℓ
≤ 80dρrT 4

1 σ

ℓ
· 4dr
pσ
≤ 512d2ρT 4

1

ℓ
· r

2

p

①
≤ δ

100ℓ
r ≤ 1

16
r,

where ① is because r ≤ δp
51200d2ρT 4

1
. This means ∥xT1+1 − x0∥ ≥ r so the algorithm must terminate

before iteration T1 ≤ T .

On the other hand, since ∥Tt(M)∥ ≤ γt, we know that the algorithm will not terminate until t ≥ T0:

T0 ≜
log r

2σ

log γ

At the time of t ≥ T0 of termination, define γ′ = 1 + λ−3δ/4
ℓ , by Definition 4 we have

• Tt(γ′) ≥ 1
2γ

t ≥ 1
2γ

T0 ≥ r
4σ = (dp)

Θ(1).

• ∀x ∈ [−1, 1], Tt(x) ∈ [−1, 1].

Since all the eigenvalues of A that are ≥ −3δ/4 are mapped to the eigenvalues of M that are in
[−1, 1], and the smallest eigenvalue of A is mapped to the largest eigenvalue γ′ of M. So we have,
with probability at least 1− p, letting vt ≜ x∗

t+1 − x0 = Tt(M)ξ, then it satisfies

vTt Avt
∥vt∥2

≤ −3

4
δ ≤ −5

8
δ

Therefore, denoting by zt ≜ xt+1 − x0, we have

∥zt − vt∥
∥zt − vt∥+ ∥vt∥

≤ ∥zt − vt∥
∥zt∥

≤
∥x∗

t+1 − xt+1∥
r

≤ δ

100ℓ
≤ 1

16
,

Finally, we have

zTt Azt
∥zt∥2

=
∥vt∥2

∥zt∥2
· z

T
t Azt
∥vt∥2

≤ ∥vt∥
2

∥zt∥2
· v

⊤
t Avt + 4ℓ ∥zt − vt∥ ∥vt∥

∥vt∥2

25

≤ ∥vt∥
2

∥zt∥2
·

(
v⊤t Avt

∥vt∥2
+

4ℓ ∥zt − vt∥
∥vt∥

)

≤ ∥vt∥
2

∥zt∥2

(
−5

8
δ +

1

25
δ

)
≤ (1− ∥zt − vt∥

∥zt∥
)

(
−5

8
δ +

1

25
δ

)
≤ 15

16

(
−5

8
δ +

1

25
δ

)
≤ −1

2
δ.

Definition 4. Let Tt(x) be the t-th Chebyshev polynomial of the first kind and Ut(x) be the t-th
Chebyshev polynomial of the second kind, defined as:

T0(x) := 1, T1(x) := x, Tn+1(x) := 2x · Tn(x)− Tn−1(x)

U0(x) := 1, U1(x) := 2x, Un+1(x) := 2x · Un(x)− Un−1(x)

then Un(x) satisfies: d
dxTn(x) = nUn−1(x) and:

Tn(x) =

{
cos(n arccos(x)) ∈ [−1, 1] if x ∈ [−1, 1]
1
2

[(
x−
√
x2 − 1

)n
+
(
x+
√
x2 − 1

)n]
if x > 1

Un(x) =

{
∈ [−t, t] if x ∈ [−1, 1]

1
2
√
x2−1

[(
x+
√
x2 − 1

)n+1 −
(
x−
√
x2 − 1

)n+1
]

if x > 1

Definition 5 (Inexact backward recurrence, [4]). Suppose we want to compute

s⃗N ≜
N∑

k=0

Tk(M)c⃗k, where M ∈ Rd×d is symmetric and each c⃗k ∈ Rd.

LetM be an approximate algorithm that satisfies ∥M(u)−Mu∥ ≤ ϵ∥u∥ for every u ∈ Rd. Then,
define inexact backward recurrence to be

b̂N+1 = 0, b̂N = c⃗N , and ∀r ∈ {N − 1, . . . , 0} : b̂r ≜ 2M(b̂r+1)− b̂r+2 + c⃗r ∈ Rd,

and define the output as ŝN ≜ b̂0 −M(b̂1). If ϵ = 0, then ŝN = s⃗N .
Lemma 12 (Stable computation of Chebyshev Polynomials, [4]). For every N ∈ N∗, suppose the
eigenvalues of M are in [a, b] and suppose there are parameters CU ≥ 1, CT ≥ 1, γ ≥ 1, Cc ≥ 0
satisfying

∀k ∈ {0, 1, . . . , N} :
{
γk∥c⃗k∥ ≤ Cc and ∀x ∈ [a, b] : |Tk(x)| ≤ CT γ

k, |Uk(x)| ≤ CUγ
k
}
.

Then, if ϵ ≤ 1
4NCU

, we have

∥ŝN − s⃗N∥ ≤ ϵ · 2(1 + 2NCT)NCUCc.

D Proof of Results of ZO-GD and ZO-SGD

D.1 Proof of Theorem 3 (Option I)

If we update xt+1 = xt− η
|S|
∑

i∈S ∇̂coordfi(xt), then according to the smoothness of f(·) we have

f(xt)− ES [f(xt+1)] ≥ ES

[
⟨∇f(xt), xt − xt+1⟩ −

ℓ

2
∥xt − xt+1∥2

]

=η
〈
∇f(xt), ∇̂coordf(x)

〉
− η2ℓ

2
ES

∥∥∥∥∥ 1

|S|
∑
i∈S

∇̂coordfi(xt)

∥∥∥∥∥
2

①
≥η

2
(∥∇f(xt)∥2 − ∥∇f(xt)− ∇̂coordf(xt)∥2)−

η2ℓ

2
ES

∥∥∥∥∥ 1

|S|
∑
i∈S

∇̂coordfi(xt)

∥∥∥∥∥
2

26

②
≥η

2
(∥∇f(xt)∥2 −

ρ2dµ4

36
)− η2ℓ

∥∇f(x)∥2 + ES

∥∥∥∥∥∇f(x)− 1

|S|
∑
i∈S

∇̂coordfi(xt)

∥∥∥∥∥
2

=
η

2
((1− 2ηℓ)∥∇f(xt)∥2 −

ρ2dµ4

36
)− η2ℓES

∥∥∥∥∥∇f(x)− 1

|S|
∑
i∈S

∇̂coordfi(xt)

∥∥∥∥∥
2

③
≥η

2
((1− 2ηℓ)∥∇f(xt)∥2 −

ρ2dµ4

36
)− 2η2ℓES

∥∥∥∥∥∇f(x)− 1

|S|
∑
i∈S

∇fi(xt)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

|S|
∑
i∈S

(
∇fi(xt)− ∇̂coordfi(xt)

)∥∥∥∥∥
2

④
≥η

2
((1− 2ηℓ)∥∇f(xt)∥2 −

ρ2dµ4

36
)− 2η2ℓ(

σ2

B
+

ρ2dµ4

36
)

=
η − 2η2ℓ

2
∥∇f(xt)∥2 − (

η

2
+ 2η2ℓ)

ρ2dµ4

36
− 2η2ℓσ2

B
,

where inequality ① holds since −2 ⟨a, b⟩ ≤ ∥a − b∥2 − ∥a∥2; ② and ③ holds since ∥a + b∥2 ≤
2(∥a∥2 + ∥b∥2) and Lemma 7; inequality ④ holds since Lemma 5 and Lemma 7. With the choice of
η = 1

4ℓ , µ ≤
√

3ϵ
4ρ

√
d

and B = max{ 32σ
2

ϵ2 , 1} we have

f(xt)− ES [f(xt+1)] ≥
1

16ℓ
(∥∇f(x)∥2 − ϵ2

8
)

Thus as long as Line 5 of Algorithm 4 is reached, we have f(xt) − Ef(xt+1) ≥ Ω(ϵ
2

ℓ). On the
other hand, whenever line 10 is reached, we have vT∇f(xt)v ≤ − δ

2 . By Lemma 6, we have
f(xt)− Ef(xt+1) ≥ Ω(δ

3

ρ2).

Then we choose K = O
(

ρ2∆f

δ3 +
ℓ∆f

ϵ2

)
, then the algorithm must terminate. As for the total query

complexity, we note that each iteration of Algorithm 4 needs Õ(B) = Õ(σ
2

ϵ2 + 1) stochastic gradient
estimators in Line 3 and Line 5, totaling Õ(d(σ

2

ϵ2 +1)K) function queries, as well as Õ(ℓ
2

δ2) stochastic

gradient estimators computations with no more than O(ρ
2∆f

δ3) times. Therefore, the total function
query complexity is

Õ
(
d(

σ2

ϵ2
+ 1)K + d

ℓ2

δ2
ρ2∆f

δ3

)
= Õ

(
d(

σ2

ϵ2
+ 1)(

ρ2∆f

δ3
+

ℓ∆f

ϵ2
) + d

ℓ2ρ2∆f

δ5

)
D.2 Proof of Theorem 3 (Option II)

Lemma 13. For any x ∈ Rd, we have

E∥ 1

|S|
∑
i∈S

∇̂randfi(xt)− ∇̂randf(xt)∥2 ≤
2d

|S|
∥∇f(xt)∥2 +

2dσ2

|S|
+

ρ2d2µ4

36|S|

Proof. Let zi = ∇̂randfi(xt)− ∇̂randf(xt) and Ii = I(i ∈ S), where I(·) is the indicator function.

Then we have Ei(I
2
i)

|S|
n and Ei(IiIj) =

(|S|
2)
(n2)

= |S|(|S|−1)
n(n−1) , i ̸= j. Then we have

E∥ 1

|S|
∑
i∈S

∇̂randfi(xt)− ∇̂randf(xt)∥2 = E∥ 1

|S|
∑
i∈S

zi∥2 =
1

|S|2
E∥

n∑
i=1

ziIi∥2

=
1

|S|2

 n∑
i=1

EI2i ∥zi∥2 +
∑
i ̸=j

EIiIj ⟨zi, zj⟩

 =
1

|S|2
Eu

 |S|
n

n∑
i=1

∥zi∥2 +
|S|(|S| − 1)

n(n− 1)

∑
i ̸=j

⟨zi, zj⟩

27

=
1

|S|2
Eu

((
|S|
n
− |S|(|S| − 1)

n(n− 1)

) n∑
i=1

∥zi∥2 +
|S|(|S| − 1)

n(n− 1)
∥

n∑
i=1

zi∥2
)

①
=Eu

n− |S|
n(n− 1)|S|

n∑
i=1

∥zi∥2 ≤
1

|S|
Eu

1

n

n∑
i=1

∥zi∥2 =
1

|S|
EuEi∥∇̂randfi(xt)− ∇̂randf(xt)∥2

②
≤ 1

|S|
EuEi∥∇̂randfi(xt)∥2

Lemma 8
≤ 1

|S|
Ei

(
d∥∇fi(xt)∥2 +

ρ2d2µ4

36

)
≤ d

|S|
Ei

(
2∥∇f(xt)∥2 + 2∥∇f(xt)−∇fi(xt)∥2

)
+

ρ2d2µ4

36|S|

≤ 2d

|S|
∥∇f(xt)∥2 +

2dσ2

|S|
+

ρ2d2µ4

36|S|

If we update xt+1 = xt − η
|S|
∑

i∈S ∇̂randfi(xt), then according to the smoothness of fµ(·), we
have

fµ(xt)− E[fµ(xt+1)]

≥E
[
⟨∇fµ(xt), xt − xt+1⟩ −

ℓ

2
∥xt − xt+1∥2

]

=E

〈
∇fµ(xt),

η

|S|
∑
i∈S

∇̂randfi(xt)

〉
− η2ℓ

2
E

∥∥∥∥∥ 1

|S|
∑
i∈S

∇̂randfi(xt)

∥∥∥∥∥
2

①
≥η∥∇fµ(xt)∥2 −

3η2ℓ

2
E

∥∥∥∥∥ 1

|S|
∑
i∈S

∇̂randfi(xt)− ∇̂randf(xt)

∥∥∥∥∥
2

+
∥∥∥∇̂randf(xt)−∇fµ(xt)

∥∥∥2
+∥∇fµ(xt)∥2

)
②
≥η
(
1− 3ηℓ

2

)
∥∇fµ(xt)∥2 −

3η2ℓ

2

(
2d

|S|
∥∇f(xt)∥2 +

2dσ2

|S|
+

ρ2d2µ4

36|S|
+ d∥∇f(xt)∥2 +

ρ2d2µ4

36

)
≥η
(
1− 3ηℓ

2

)
∥∇fµ(xt)∥2 − η2ℓ

(
9d

2
∥∇f(xt)∥2 +

3dσ2

|S|
+

ρ2d2µ4

24

)
≥η
(
1− 3ηℓ

2

)(
1

2
∥∇f(xt)∥2 − ∥∇f(xt)−∇fµ(xt)∥2

)
− η2ℓ

(
9d

2
∥∇f(xt)∥2 +

3dσ2

|S|
+

ρ2d2µ4

24

)
≥η
(
1− 3ηℓ

2

)(
1

2
∥∇f(xt)∥2 −

ρ2d2µ4

36

)
− η2ℓ

(
9d

2
∥∇f(xt)∥2 +

3dσ2

|S|
+

ρ2d2µ4

24

)
≥η(1

2
− 8dηℓ)∥∇f(xt)∥2 − 3dη2ℓ

σ2

|S|
− η

ρ2d2µ4

36

where ① is due to ∥a+ b+ c∥2 ≤ 3(∥a∥2 + ∥b∥2 + ∥c∥2); ② is due to Lemma 8 and Lemma 13.

Since |f(x)− fµ(x)| ≤ ℓµ2

2 , we have

f(xt)− E[f(xt+1)]

≥fµ(xt)− E[fµ(xt+1)]− ℓµ2

≥η(1
2
− 8dηℓ)∥∇f(xt)∥2 − 3dη2ℓ

σ2

|S|
− η

ρ2d2µ4

36
− ℓµ2

With the choice of η = 1
32dℓ , µ = min

{√
3ϵ
4ρd ,

ϵ
32

√
dℓ

}
, B = max{ 8σ

2

ϵ2 , 1}, we have

f(xt)− E[f(xt+1)]

≥ 1

128dℓ
∥∇f(xt)∥2 −

1

256dℓ

σ2

B
− 1

128dℓ

ρ2d2µ4

9
− ℓµ2

28

=
1

128dℓ

(
∥∇f(xt)∥2 −

σ2

2B
− ρ2d2µ4

9
− 128dℓ2µ2

)
≥ 1

128dℓ

(
∥∇f(xt)∥2 −

ϵ2

8

)
Thus as long as Line 6 of Algorithm 4 is reached, we have f(xt) − Ef(xt+1) ≥ Ω(ϵ

2

dℓ). On the
other hand, whenever line 10 is reached, we have vT∇f(xt)v ≤ − δ

2 . By Lemma 6, we have
f(xt)− Ef(xt+1) ≥ Ω(δ

3

ρ2).

Then we choose K = O
(

ρ2∆f

δ3 +
dℓ∆f

ϵ2

)
, then the algorithm must terminate. As for the total query

complexity, we note that each iteration of Algorithm 4 needs Õ(B) = Õ(σ
2

ϵ2 + 1) stochastic gradient
estimators in Line 6 and Õ(σ

2

ϵ2 +1) deterministic coordinate-wise gradient estimators Line 3, totaling
Õ(d(σ

2

ϵ2 + 1)K) function queries, as well as Õ(ℓ
2

δ2) stochastic gradient estimators computations with

no more than O(ρ
2∆f

δ3) times. Therefore, the total function query complexity is

Õ
(
(d

σ2

ϵ2
+ d)K + d

ℓ2

δ2
ρ2∆f

δ3

)
= Õ

(
d(

σ2

ϵ2
+ 1)(

ρ2∆f

δ3
+

dℓ∆f

ϵ2
) + d

ℓ2ρ2∆f

δ5

)

E Applying Zeroth-Order Negative Curvature Finding to ZO-SCSG

In this section, we first propose a zeroth-order variant of the SCSG [32] method in Algorithm 6. At
the beginning of the j-th epoch, we estimate the gradient∇fIj

(x̃j−1) by CoordGradEst over a batch
sampling set Ij with size B. In the inner loop iterations, the stochastic gradient estimator vjk−1 is
either constructed by CoordGradEst or by RandGradEst over a mini-batch sampling set Ijk−1 with
size b. After running ZO-SCSG for one epoch, we have the following lemma:

Algorithm 6 ZO-SCSG
Input: Number of stages T , initial point x̃0, batch size B, mini-bath size b, learning rate η > 0.

1: for j = 1, . . . , T do
2: Uniformly randomly sample a batch Ij ⊂ [n] with |Ij | = B

3: vj = ∇̂coordfIj
(x̃j−1)

4: xj
0 = x̃j−1

5: Option I: Nj ∼ Geom(B
B+b) Option II: Nj ∼ Geom(B

B+b/d)

6: for k = 1, . . . , Nj do
7: Randomly pick Ijk−1 ⊂ [n] with size b

8: Option I: vjk−1 = ∇̂coordfIj
k−1

(xj
k−1)− ∇̂coordfIj

k−1
(xj

0) + vj

9: Option II: vjk−1 = ∇̂randfIj
k−1

(xj
k−1)− ∇̂randfIj

k−1
(xj

0) + vj

10: xj
k = xj

k−1 − ηvjk−1

11: x̃j = xj
Nj

Lemma 14 (One epoch analysis). Under Assumption 1, Option I: Let ηℓ = γ
(

b
B

) 2
3 . Suppose γ ≤ 1

4 ,
B ≥ 8b and b ≥ 1, then after running ZO-SCSG for one epoch, we have(

B

b

) 1
3

E∥∇f(x̃j)∥2 ≤
4ℓ

γ
(f(x̃j−1)− f(x̃j)) +

30σ2

b
1
3B

2
3

+ c

(
B

b

) 1
3

ℓ2dµ2, (13)

where c is a sufficiently large constant. Option II: Let ηℓ = γ
(

b/d
B

) 2
3

. Suppose γ ≤ 1
8 , B ≥ 8b/d

and b ≥ d, then after running ZO-SCSG for one epoch, we have(
B

b/d

) 1
3

E∥∇f(x̃j)∥2 ≤
8ℓ

γ
E (f(x̃j−1)− f(x̃j)) +

72σ2

(b/d)
1
3B

2
3

+ c

(
B

b/d

) 1
3

ℓ2d2µ2, (14)

29

Algorithm 7 ZO-SCSG-NCF
Input: Function f , starting point x0, batch size B, mini-batch size b, K, ϵ > 0 and δ > 0.

1: if b > B then return ZO-SGD(f, x0,
2
3 , ϵ, δ)

2: for t = 0, . . . ,K − 1 do
3: uniformly randomly choose a set B with batch size O(σ

2

ϵ2 logK)

4: if ∥∇̂coordfB(xt)∥ ≥ 3ϵ
4 then

5: xt+1 ← apply ZO-SCSG on xt for one epoch with batch size B and mini-batch size b
6: else
7: v ← ZO-NCF-Online (f, xt, δ,

1
20K)

8: if v = ⊥ then return xt

9: else xt+1 = xt ± δ
ρv

where c is a sufficiently large constant.

Remark 5. The epoch size Nj obeys the Geometric distribution, i.e., Nj ∼ Geom(B
B+b) in Option I

and Nj ∼ Geom(B
B+b/d) in Option II. Since in expectation we have E(Nj)Nj∼Geom(θ) =

θ
1−θ [32],

then for both Option I and Option II, the function query complexity in each epoch is O(d ·B).

Theorem 7. Under Assumption 1, if we set µ1 =
√

3ϵ
4ρ

√
d

and other parameters as follows,

Option I:B = max{480σ
2

ϵ2
, 1}, b = max{1,Θ(

(ϵ2 + σ2)ϵ4ρ6

δ9ℓ3
)},K = Θ(

ℓb
1
3∆f

ϵ2B
1
3

), µ2 =
ϵ

4
√
cdℓ

;

Option II:B = max{1, 1152σ
2

ϵ2
}, b = max{1, dΘ(

(ϵ2 + σ2)ϵ4ρ6

δ9ℓ3
)},K = Θ(

ℓ(b/d)
1
3∆f

ϵ2B
1
3

), µ2 =
ϵ

4
√
cdℓ

,

where µ1 and µ2 are only use in Line 4 and Line 5 of Algorithm 7, respectively. With probability at
least 2

3 , for both Option I and Option II, Algorithm 7 outputs an (ϵ, δ)-approximate local minimum
in function query complexity

Õ(d(ℓ∆f

ϵ
4
3σ

2
3

+
ρ2∆f

δ3
)(
σ2

ϵ2
+

ℓ2

δ2
) + d

ℓ∆f

ϵ2
ℓ2

δ2
).

Remark 6. The problem described in Remark 2 doesn’t exist in ZO-SCSG-NCF as we only evaluate
the magnitude of the gradient after each epoch (i.e., Line 4 in Algorithm 7), and the function query
complexity is almost the same in the inner loop for both Option I and Option II. We can boost the
confidence in Theorem 5 from 2/3 to 1− p by running log 1/p copies of ZO-SCSG-NCF.

E.1 One Epoch Analysis of ZO-SCSG (Option I)

Lemma 15 ([32]). Let N ∼ Geom(γ) for γ > 0. Then for any sequence D0, D1, . . . with E|DN | <
∞

E(DN −DN+1) =

(
1

γ
− 1

)
(D0 − EDN).

Proof. Then proof directly follows from Lemma A.2 in [32].

Lemma 16. Suppose ηℓ < 1, then under Assumption 1,

η(1− ℓη)BE∥∇f(x̃j)∥2 + ηBE
〈
êjNj

,∇f(x̃j)
〉

≤b (f(x̃j−1)− Ef(x̃j)) +
ℓ3η2B

b
E∥x̃j − x̃j−1∥2 +

4ℓ3η2dµ2B

b
+ ℓη2BE∥êjNj

∥2

Proof. By Lemma 4, we have

f(xj
k+1) ≤ f(xj

k)−
〈
xj
k+1 − xj

k,∇f(x
j
k)
〉
+
ℓ

2
∥xj

k+1−x
j
k∥

2 ≤ f(xj
k)−η

〈
vjk,∇f(x

j
k)
〉
+
ℓη2

2
∥vjk∥

2

30

Define the following notation,

êj =vj − ∇̂coordf(x
j
0)

êjk =∇̂coordf(x
j
k)−∇f(x

j
k) + êj

Then we have

EIj
k
vjk = EIj

k

(
∇̂coordfIj

k
(xj

k)− ∇̂coordfIj
k
(xj

0) + vj

)
= ∇f(xj

k) + êjk

Taking expectation over the above inequality we have

EIj
k
f(xj

k+1)

≤f(xj
k)− η

〈
EIj

k
vjk,∇f(x

j
k)
〉
+

ℓη2

2
EIj

k
∥vjk∥

2

=f(xj
k)− η

〈
∇f(xj

k) + êjk,∇f(x
j
k)
〉
+

ℓη2

2
EIj

k
∥vjk∥

2

=f(xj
k)− η∥∇f(xj

k)∥
2 − η

〈
êjk,∇f(x

j
k)
〉
+

ℓη2

2
EIj

k
∥vjk∥

2

Then we bound the term EIj
k
∥vjk∥2 by using the fact that E∥a∥2 = E∥a− Ea∥2 + ∥Ea∥2.

EIj
k
∥vjk∥

2 = EIj
k
∥vjk − EIj

k
vjk∥

2 + ∥EIj
k
vjk∥

2

=EIj
k
∥∇̂coordfIj

k
(xj

k)− ∇̂coordfIj
k
(xj

0)−
(
∇̂coordf(x

j
k)− ∇̂coordf(x

j
0)
)
∥2 + ∥∇f(xj

k) + êjk∥
2

≤EIj
k
∥∇̂coordfIj

k
(xj

k)− ∇̂coordfIj
k
(xj

0)−
(
∇̂coordf(x

j
k)− ∇̂coordf(x

j
0)
)
∥2 + 2∥∇f(xj

k)∥
2 + 2∥êjk∥

2

By Lemma 5,

EIj
k
∥∇̂coordfIj

k
(xj

k)− ∇̂coordfIj
k
(xj

0)−
(
∇̂coordf(x

j
k)− ∇̂coordf(x

j
0)
)
∥2

≤1

b
· 1
n

n∑
i=1

∥∇̂coordfi(x
j
k)− ∇̂coordfi(x

j
0)−

(
∇̂coordf(x

j
k)− ∇̂coordf(x

j
0)
)
∥2

=
1

b

(
1

n

n∑
i=1

∥∇̂coordfi(x
j
k)− ∇̂coordfi(x

j
0)∥2 − ∥∇̂coordf(x

j
k)− ∇̂coordf(x

j
0)∥2

)

≤1

b
· 1
n

n∑
i=1

∥∇̂coordfi(x
j
k)− ∇̂coordfi(x

j
0)∥2

≤1

b
· 1
n

n∑
i=1

(
2∥∇fi(xj

k)−∇fi(x
j
0)∥2 + 2∥∇̂coordfi(x

j
k)− ∇̂coordfi(x

j
0)−

(
∇fi(xj

k)−∇fi(x
j
0)
)
∥2
)

≤1

b
· 1
n

n∑
i=1

(
2∥∇fi(xj

k)−∇fi(x
j
0)∥2 + 4∥∇̂coordfi(x

j
k)−∇fi(x

j
k)∥

2 + 4∥∇̂coordfi(x
j
0)−∇fi(x

j
0)∥2

)
≤1

b
· 1
n

n∑
i=1

(
2∥∇fi(xj

k)−∇fi(x
j
0)∥2 + 8ℓ2dµ2

)
≤1

b
· 1
n

n∑
i=1

(
2ℓ2∥xj

k − xj
0∥2 + 8ℓ2dµ2

)
=
2ℓ2

b
∥xj

k − xj
0∥2 +

8ℓ2dµ2

b

Therefore,

EIj
k
∥vjk∥

2 ≤ 2ℓ2

b
∥xj

k − xj
0∥2 +

8

b
ℓ2dµ2 + 2∥∇f(xj

k)∥
2 + 2∥êjk∥

2

So we have

EIj
k
f(xj

k+1)

31

≤f(xj
k)− η∥∇f(xj

k)∥
2 − η

〈
êjk,∇f(x

j
k)
〉
+

ℓη2

2

(
2ℓ2

b
∥xj

k − xj
0∥2 +

8

b
ℓ2dµ2 + 2∥∇f(xj

k)∥
2 + 2∥êjk∥

2

)
=f(xj

k)− η(1− ℓη)∥∇f(xj
k)∥

2 − η
〈
êjk,∇f(x

j
k)
〉
+

ℓ3η2

b
∥xj

k − xj
0∥2 +

4ℓ3η2dµ2

b
+ ℓη2∥êjk∥

2

Let Ej denotes the expectation over Ik0 , Ik1 , . . . , given Nj . Since Ijk+1, I
j
k+2, . . . are independent of

xj
k, the above inequality implies that

η(1− ℓη)Ej∥∇f(xj
k)∥

2 + ηEj

〈
êjk,∇f(x

j
k)
〉

≤Ejf(x
j
k)− Ejf(x

j
k+1) +

ℓ3η2

b
Ej∥xj

k − xj
0∥2 +

4ℓ3η2dµ2

b
+ ℓη2Ej∥êjk∥

2

Let k = Nj , by taking expectation to Nj and using Fubini’s theorem, we have

η(1− ℓη)ENj
Ej∥∇f(xj

Nj
)∥2 + ηENj

Ej

〈
êjNj

,∇f(xj
Nj

)
〉

≤ENj

(
Ejf(x

j
Nj

)− Ejf(x
j
Nj+1)

)
+

ℓ3η2

b
ENj

Ej∥xj
Nj
− xj

0∥2 +
4ℓ3η2dµ2

b
+ ℓη2ENj

Ej∥êjNj
∥2

=
b

B

(
f(xj

0)− ENjEjf(x
j
Nj

)
)
+

ℓ3η2

b
EjENj∥x

j
Nj
− xj

0∥2 +
4ℓ3η2dµ2

b
+ ℓη2ENjEj∥êjNj

∥2

Substituting Xj
Nj

, xj
0 by x̃j , x̃j−1 and take a further expectation to the past randomness, we get

η(1− ℓη)E∥∇f(x̃j)∥2 + ηE
〈
êjNj

,∇f(x̃j)
〉

≤ b

B
(f(x̃j−1)− Ef(x̃j)) +

ℓ3η2

b
E∥x̃j − x̃j−1∥2 +

4ℓ3η2dµ2

b
+ ℓη2E∥êjNj

∥2

Multiplying both sides by B, we have

η(1− ℓη)BE∥∇f(x̃j)∥2 + ηBE
〈
êjNj

,∇f(x̃j)
〉

≤b (f(x̃j−1)− Ef(x̃j)) +
ℓ3η2B

b
E∥x̃j − x̃j−1∥2 +

4ℓ3η2dµ2B

b
+ ℓη2BE∥êjNj

∥2

Lemma 17. Suppose 2η2ℓ2B < b2, under Assumption 1(
b

B
− 2η2ℓ2

b

)
E∥x̃j − x̃j−1∥2 + 2ηE

〈
êjNj

, x̃j − x̃j−1

〉
≤− 2ηE ⟨∇f(x̃j), x̃j − x̃j−1⟩+

8η2ℓ2dµ2

b
+ 2η2E∥∇f(x̃j)∥2 + 2η2E∥êjNj

∥2

Proof. Since xj
k+1 = xj

k − ηvjk, we have

EIj
k
∥xj

k+1 − xj
0∥2

=∥xj
k − xj

0∥2 − 2η
〈
EIj

k
vjk, x

j
k − xj

0

〉
+ η2EIj

k
∥vjk∥

2

=∥xj
k − xj

0∥2 − 2η
〈
∇f(xj

k), x
j
k − xj

0

〉
− 2η

〈
êjk, x

j
k − xj

0

〉
+ η2EIj

k
∥vjk∥

2

≤∥xj
k − xj

0∥2 − 2η
〈
∇f(xj

k), x
j
k − xj

0

〉
− 2η

〈
êjk, x

j
k − xj

0

〉
+ η2

(
2ℓ2

b
∥xj

k − xj
0∥2 +

8

b
ℓ2dµ2 + 2∥∇f(xj

k)∥
2 + 2∥êjk∥

2

)
=

(
1 +

2η2ℓ2

b

)
∥xj

k − xj
0∥2 − 2η

〈
∇f(xj

k), x
j
k − xj

0

〉
− 2η

〈
êjk, x

j
k − xj

0

〉
+

8η2ℓ2dµ2

b
+ 2η2∥∇f(xj

k)∥
2 + 2η2∥êjk∥

2

32

Using the notation Ej we have

2ηEj

〈
∇f(xj

k), x
j
k − xj

0

〉
+ 2ηEj

〈
êjk, x

j
k − xj

0

〉
≤
(
1 +

2η2ℓ2

b

)
Ej∥xj

k − xj
0∥2 − Ej∥xj

k+1 − xj
0∥2 +

8η2ℓ2dµ2

b
+ 2η2∥∇f(xj

k)∥
2 + 2η2Ej∥êjk∥

2

Let k = Nj , by taking expectation with respect to Nj and using Fubini’s theorem, we have

2ηENj
Ej

〈
∇f(xj

Nj
), xj

Nj
− xj

0

〉
+ 2ηENj

Ej

〈
êjNj

, xj
Nj
− xj

0

〉
≤
(
1 +

2η2ℓ2

b

)
ENjEj∥xj

Nj
− xj

0∥2 − ENjEj∥xj
Nj+1 − xj

0∥2 +
8η2ℓ2dµ2

b

+ 2η2ENj
∥∇f(xj

Nj
)∥2 + 2η2ENj

Ej∥êjNj
∥2

=

(
− b

B
+

2η2ℓ2

b

)
ENjEj∥xj

Nj
− xj

0∥2 +
8η2ℓ2dµ2

b
+ 2η2ENj∥∇f(x

j
Nj

)∥2 + 2η2ENjEj∥êjNj
∥2

Substituting xj
Nj

, xj
0 by x̃j , x̃j−1 and take a further expectation to the past randomness, we get

2ηE ⟨∇f(x̃j), x̃j − x̃j−1⟩+ 2ηE
〈
êjNj

, x̃j − x̃j−1

〉
≤
(
− b

B
+

2η2ℓ2

b

)
E∥x̃j − x̃j−1∥2 +

8η2ℓ2dµ2

b
+ 2η2E∥∇f(x̃j)∥2 + 2η2E∥êjNj

∥2

Swapping the order we get(
b

B
− 2η2ℓ2

b

)
E∥x̃j − x̃j−1∥2 + 2ηE

〈
êjNj

, x̃j − x̃j−1

〉
≤− 2ηE ⟨∇f(x̃j), x̃j − x̃j−1⟩+

8η2ℓ2dµ2

b
+ 2η2E∥∇f(x̃j)∥2 + 2η2E∥êjNj

∥2

Lemma 18.
b

B
E
〈
êjk, x̃j − x̃j−1

〉
= −ηE

〈
êjNj

,∇f(x̃j)
〉
− ηE∥êjNj

∥2

Proof. Let M j
k =

〈
êjk, x

j
k − xj

0

〉
. Then we have

ENj

〈
êjk, x̃j − x̃j−1

〉
= ENj

M j
Nj

Since Nj is independent of xj
0, ê

j
k, we have

E
〈
êjk, x̃j − x̃j−1

〉
= EM j

Nj

Also we have M j
0 = 0. On the other hand,

EIj
k

(
M j

k+1 −M j
k

)
= EIj

k

〈
êjk, x

j
k+1 − xj

k

〉
= −η

〈
êjk,EIj

k
vjk

〉
= −η

〈
êjk,∇f(x

j
k)
〉
− η∥êjk∥

2

Using the same notation Ej as in the proof in Lemma 16 and Lemma 17, we have

Ej

(
M j

k+1 −M j
k

)
= −η

〈
êjk,Ej∇f(xj

k)
〉
− ηEj∥êjk∥

2

Let k = Nj , by taking the expectation with respect to Nj and using Fubini’s theorem, we have , we
have

b

B
ENj

EjM
j
Nj

= −η
〈
êjNj

,ENj
Ej∇f(xj

Nj
)
〉
− ηENj

Ej∥êjNj
∥2

33

Substituting xj
Nj

, xj
0 by x̃j , x̃j−1 and take a further expectation to the past randomness, we get

b

B
E
〈
êjk, x̃j − x̃j−1

〉
= −ηE

〈
êjNj

,∇f(x̃j)
〉
− ηE∥êjNj

∥2

Lemma 19 ([25]). Define êj = vj − ∇̂coordf(x
j
0) = ∇̂coordfIj

(x̃j−1)− ∇̂coordf(x̃j−1), we have

∥êj∥2 ≤
3(2ℓ2dµ2 + σ2)

B

Proof. The proof directly follows from Lemma 4 in [25].

Proof of Lemma 14 (Option I). Multiplying Lemma 16 by 2, Lemma 17 by b
η and summing them

up, we have

2ηB

(
1− ηℓ− b

B

)
E∥∇f(x̃j)∥2 +

b3 − 2η2ℓ2bB − 2ℓ3η3B2

ηbB
E∥x̃j − x̃j−1∥2

+ 2ηBE
〈
êjNj

,∇f(x̃j)
〉
+ 2b

〈
êjNj

, x̃j − x̃j−1

〉
≤− 2bE ⟨∇f(x̃j), x̃j − x̃j−1⟩+ 2b (f(x̃j−1)− f(x̃j)) + (ℓ

B

b
+

1

η
)8η2ℓ2dµ2 + (2η2ℓB + 2ηb)E∥êjNj

∥2

By Lemma 18,

2ηBE
〈
êjNj

,∇f(x̃j)
〉
+ 2b

〈
êjNj

, x̃j − x̃j−1

〉
= −2ηBE∥êjNj

∥2

So the above inequality can simplified as

2ηB

(
1− ηℓ− b

B

)
E∥∇f(x̃j)∥2 +

b3 − 2η2ℓ2bB − 2ℓ3η3B2

ηbB
E∥x̃j − x̃j−1∥2

≤− 2bE ⟨∇f(x̃j), x̃j − x̃j−1⟩+ 2b (f(x̃j−1)− f(x̃j)) + (ℓ
B

b
+

1

η
)8η2ℓ2dµ2

+ (2η2ℓB + 2ηb+ 2ηB)E∥êjNj
∥2

Using the fact that 2 ⟨a, b⟩ ≤ β∥a∥2 + 1
β ∥b∥

2 for any β > 0, we have

− 2bE ⟨∇f(x̃j), x̃j − x̃j−1⟩

≤ ηbB

b3 − 2η2ℓ2bB − 2ℓ3η3B2
b2E∥∇f(x̃j)∥2 +

b3 − 2η2ℓ2bB − 2ℓ3η3B2

ηbB
E∥x̃j − x̃j−1∥2

Then we conclude that

ηB

(
2− 2ηℓ− 2

b

B
− b3

b3 − 2η2ℓ2bB − 2ℓ3η3B2

)
E∥∇f(x̃j)∥2

≤2b (f(x̃j−1)− f(x̃j)) + (ℓ
B

b
+

1

η
)8η2ℓ2dµ2 + (2η2ℓB + 2ηb+ 2ηB)E∥êjNj

∥2

Multiplying both sides by ℓ
b , we have

ηℓ
B

b

(
2− 2ηℓ− 2

b

B
− b3

b3 − 2η2ℓ2bB − 2ℓ3η3B2

)
E∥∇f(x̃j)∥2

≤2ℓ (f(x̃j−1)− f(x̃j)) +

(
ℓ2B

b2
+

ℓ

bη

)
8η2ℓ2dµ2 + (2η2ℓ2

B

b
+ 2ηℓ+ 2ηℓ

B

b
)E∥êjNj

∥2

Let ηℓ = γ
(

b
B

) 2
3 and b ≥ 1, B

b ≥ 8 ≥ 8
b , we have

b3 − 2η2ℓ2bB − 2ℓ3η3B2 =b3
(
1− 2γ2b(

b

B
)

1
3 − 2γ3b−1

)

34

≥b3(1− γ2 − 2γ3)

Then the above inequality can be simplified as

γ

(
B

b

) 1
3
(
2− 2γ(

b

B
)

2
3 − 2

b

B
− 1

1− γ2 − 2γ3

)
E∥∇f(x̃j)∥2

≤2ℓ (f(x̃j−1)− f(x̃j)) + 2γ

(
1 + γ

(
b

B

) 2
3

+
b

B

)(
B

b

) 1
3

E∥êjNj
∥2 + γ

(
γ(

b

B
)

1
3 + (

b

B
)

2
3

)
8ℓ2dµ2

b

Since B ≥ 8b, γ ≤ 1
4 , we have

2− 2γ(
b

B
)

2
3 − 2

b

B
− 1

1− γ2 − 2γ3
≥2− γ

2
− 1

4
− 1

1− γ2 − 2γ3
≥ 0.5

1 + γ

(
b

B

) 2
3

+
b

B
≤1 + γ

4
+

1

8
≤ 19

16

γ(
b

B
)

1
3 + (

b

B
)

2
3 ≤1

2
γ +

1

4
≤ 3

8

Thus we have(
B

b

) 1
3

E∥∇f(x̃j)∥2 ≤
4ℓ

γ
(f(x̃j−1)− f(x̃j)) + 5

(
B

b

) 1
3

E∥êjNj
∥2 + 6ℓ2dµ2

b

Using Lemma 19, we have

E∥êjNj
∥2 =E∥∇f(xj

Nj
)− ∇̂coordf(x

j
Nj

) + êj∥2

≤2∥∇f(xj
Nj

)− ∇̂coordf(x
j
Nj

)∥2 + 2E∥êj∥2

≤2ℓ2dµ2 + 2

(
3(2ℓ2dµ2 + σ2)

B

)
Thus we obtain(

B

b

) 1
3

E∥∇f(x̃j)∥2 ≤
4ℓ

γ
(f(x̃j−1)− f(x̃j)) +

30σ2

b
1
3B

2
3

+ c

(
B

b

) 1
3

ℓ2dµ2

where c is a sufficient large constant. Telescope the sum in j = 1, . . . , T , and using the definition of
x̃∗
T , we finally get

E∥x̃∗
T ∥2 =

1

T

T∑
j=1

E∥∇f(x̃j)∥2 ≤
4ℓ
γ

T
(

B
b/d

) 1
3

· E (f(x̃0)− f(x̃T)) +
30σ2

B
+ cℓ2dµ2

E.2 Proof of Second-Order Stationary Point (Option I)

Proof of Theorem 5. Let N1 and N2 be the number of times we reach Line 7 and 9 of Algorithm 7.
From Lemma 14 of ZO-SCSG we know that for one epoch with size B = max{1, 480σ2

ϵ2 }, mini-batch
size b ≥ 1 and the smoothing parameter µ = ϵ

4
√
cdℓ

, we have

E∥xt+1∥2 ≤
4ℓ

γ

(
b

B

) 1
3

E (f(xt)− f(xt+1)) +
ϵ2

8

Then, if ∥∇f(xt+1)∥ ≥ ϵ
2 , we have xt+1 = xt+1; if v = ⊥, we set xt+1 = xt+1 for if v ̸= ⊥, we

have f(xt+1) − Ef(xt+1) ≥ δ3

12ρ2 (here the expectation is taken on the randomness of sign of v).
Thus we have

γB
1
3

4ℓb
1
3

E

[
K−1∑
t=0

(
∥∇f(xt+1)∥2 −

ϵ2

8

)]
+

δ3

12ρ2
E[N2] ≤ ∆f

35

On one hand, since we have chosen K such that K ≥ Ω

(
ℓb

1
3 ∆f

ϵ2B
1
3

)
= Ω

(
ℓb

1
3 ∆f

ϵ2(1+σ2

ϵ2
)
1
3

)
, then by

Markov’s inequality, with probability at least 5
6 , it satisfies

∑K−1
t=0 ∥∇f(xt+1)∥2 ≤ ϵ

4K. As a
sequence, at least half of the indices t = 0, . . . ,K − 1 will satisfy ∥∇f(xt+1)∥ ≤ ϵ

2 , which means
that N1 ≥ K

2 .

On the other hand, we have δ3

12ρ2E[N2] ≤ ∆f + KγB
1
3 ϵ2

32ℓb
1
3

. Since K ≥ Ω

(
ℓb

1
3 ∆f

ϵ2B
1
3

)
=

Ω

(
ℓb

1
3 ∆f

ϵ2(1+σ2

ϵ2
)
1
3

)
, we have E[N2] ≤ KγB

1
3 ϵ2ρ2

ℓδ3b
1
3

. As long as B ≤ O
(

ℓ3δ9b
ϵ6ρ6

)
, or equivalently

b ≥ Ω
(

Bϵ6ρ6

δ9ℓ3

)
, we have E[N2] ≤ K

12 . Therefore, with provability at least 5
6 , it satisfies N2 ≤ k

2 .

Since N1 ≥ N2, this means with probability at least 2
3 the algorithm must terminate and output some

xt+1 in an iteration.

Finally, the per-iteration complexity of Algorithm 7 is dominated by Õ(B) stochastic gradient
estimators per iteration for both ZO-SCSG and estimating ∥∇f(xt+1)∥, as well as Õ(ℓ

2

δ2) invoking
Algorithm 2. The total function query complexity is

Õ
(
dK

(
B +

ℓ2

δ2

))
= Õ

(
d

(
ℓb

1
3∆f

ϵ2B
1
3

)(
B +

ℓ2

δ2

))

= Õ

d

ℓmax{1, B
1
3 ϵ2ρ2

δ3ℓ }∆f

ϵ2B
1
3

(B +
ℓ2

δ2

)
= Õ

d

ℓ(1 + B
1
3 ϵ2ρ2

δ3ℓ)∆f

ϵ2B
1
3

(B +
ℓ2

δ2

)
= Õ

(
d

(
ℓ∆f

ϵ2B
1
3

+
ρ2∆f

δ3

)(
B +

ℓ2

δ2

))
= Õ

(
d

(
ℓ∆f

ϵ2 max{1, σ2

ϵ2 }
1
3

+
ρ2∆f

δ3

)(
max{1, σ

2

ϵ2
}+ ℓ2

δ2

))

= Õ
(
d

(
ℓ∆f

ϵ
4
3σ

2
3

+
ρ2∆f

δ3

)(
σ2

ϵ2
+

ℓ2

δ2

)
+ d

ℓ∆f

ϵ2
ℓ2

δ2

)

E.3 One Epoch Analysis of ZO-SCSG (Option II)

From Algorithm 6, we know that all randomness in epoch j, iteration k come from three part: 1)

random selection of Ijk−1 in Line 7; 2) random direction of u in estimating the gradient in Line 9; 3)
random generation of Nj .
Lemma 20. Under Assumption 1,

EuEIj
k
∥vjk∥

2 ≤ 3dℓ2

b
∥xj

k − xj
0∥2 +

3ℓ2d2µ2

2b
+ 2∥∇fµ(xj

k)∥
2 + 2∥êj∥2

Proof. Define the following notation,

êj = vj −∇fµ(xj
0)

Then we have

EuEIj
k
vjk = EuEIj

k

(
∇̂randfIj

k
(xj

k)− ∇̂randfIj
k
(xj

0) + vj

)
= ∇fµ(xj

k) + êj

Using the fact that E∥a∥2 = E∥a− Ea∥2 + ∥Ea∥2, we have

EuEIj
k
∥vjk∥

2 = EuEIj
k
∥vjk − EuEIj

k
vjk∥

2 + ∥EuEIj
k
vjk∥

2

36

=EuEIj
k
∥∇̂randfIj

k
(xj

k)− ∇̂randfIj
k
(xj

0)−
(
∇fµ(xj

k)−∇fµ(x
j
0)
)
∥2 + ∥∇fµ(xj

k) + êj∥2

≤EuEIj
k
∥∇̂randfIj

k
(xj

k)− ∇̂randfIj
k
(xj

0)−
(
∇fµ(xj

k)−∇fµ(x
j
0)
)
∥2 + 2∥∇fµ(xj

k)∥
2 + 2∥êj∥2.

By Lemma 5, we have

EuEIj
k
∥∇̂randfIj

k
(xj

k)− ∇̂randfIj
k
(xj

0)−
(
∇fµ(xj

k)−∇fµ(x
j
0)
)
∥2

=
1

b2
EuEIj

k
∥
∑
i∈Ij

k

(
∇̂randfi(x

j
k)− ∇̂randfi(x

j
0)−

(
∇fµ(xj

k)−∇fµ(x
j
0)
))
∥2

=
1

b2
EuEIj

k

∑
i∈Ij

k

∥∇̂randfi(x
j
k)− ∇̂randfi(x

j
0)−

(
∇fµ(xj

k)−∇fµ(x
j
0)
)
∥2

+
1

b2
EuEIj

k

∑
i ̸=j

〈
∇̂randfi(x

j
k)− ∇̂randfi(x

j
0)−

(
∇fµ(xj

k)−∇fµ(x
j
0)
)
,

∇̂randfj(x
j
k)− ∇̂randfj(x

j
0)−

(
∇fµ(xj

k)−∇fµ(x
j
0)
)〉

=
1

b2
EuEIj

k

∑
i∈Ij

k

∥∇̂randfi(x
j
k)− ∇̂randfi(x

j
0)−

(
∇fµ(xj

k)−∇fµ(x
j
0)
)
∥2

=
1

b
Eu

1

n

∑
i∈[n]

∥∇̂randfi(x
j
k)− ∇̂randfi(x

j
0)−

(
∇fµ(xj

k)−∇fµ(x
j
0)
)
∥2

=
1

b
· Eu

 1

n

∑
i∈[n]

∥∇̂randfi(x
j
k)− ∇̂randfi(x

j
0)∥2

− 1

b
∥∇fµ(xj

k)−∇fµ(x
j
0)∥2

≤1

b
· Eu

 1

n

∑
i∈[n]

∥∇̂randfi(x
j
k)− ∇̂randfi(x

j
0)∥2

Lemma 8
≤ 3dℓ2

b
∥xj

k − xj
0∥2 +

3ℓ2d2µ2

2b

Therefore

EuEIj
k
∥vjk∥

2 ≤ 3dℓ2

b
∥xj

k − xj
0∥2 +

3ℓ2d2µ2

2b
+ 2∥∇fµ(xj

k)∥
2 + 2∥êj∥2

Lemma 21. Suppose ηℓ < 1, then under Assumption 1,

η(1− ℓη)BE∥∇fµ(x̃j)∥2 + ηBE ⟨êj ,∇fµ(x̃j)⟩

≤b/dE (fµ(x̃j−1)− fµ(x̃j)) +
3dℓ3η2B

2b
E∥x̃j − x̃j−1∥2 +

3ℓ3η2d2µ2B

4b
+ ℓη2BE∥êj∥2

Proof. By Lemma 4, we have

fµ(x
j
k+1) ≤ fµ(x

j
k)−

〈
xj
k+1 − xj

k,∇f(x
j
k)
〉
+
ℓ

2
∥xj

k+1−x
j
k∥

2 ≤ fµ(x
j
k)−η

〈
vjk,∇fµ(x

j
k)
〉
+
ℓη2

2
∥vjk∥

2

Taking expectation over the above inequality we have

fµ(x
j
k+1) ≤fµ(x

j
k)− η

〈
∇fµ(xj

k) + êj ,∇fµ(xj
k)
〉
+

ℓη2

2
EuEIj

k
∥vjk∥

2

=fµ(x
j
k)− η∥∇fµ(xj

k)∥
2 − η

〈
êj ,∇fµ(xj

k)
〉
+

ℓη2

2
EuEIj

k
∥vjk∥

2

≤fµ(xj
k)− η(1− ℓη)∥∇fµ(xj

k)∥
2 − η

〈
êj ,∇fµ(xj

k)
〉

37

+
3dℓ3η2

2b
∥xj

k − xj
0∥2 +

3ℓ3η2d2µ2

4b
+ ℓη2∥êj∥2

Let Ej denote the expectation over Ik0 , Ik1 , . . . , given Nj . Since Ijk+1, I
j
k+2, . . . are independent of

xj
k, the above inequality implies that

η(1− ℓη)Ej∥∇fµ(xj
k)∥

2 + ηEj

〈
êj ,∇fµ(xj

k)
〉

≤Ejfµ(x
j
k)− Ejfµ(x

j
k+1) +

3dℓ3η2

2b
Ej∥xj

k − xj
0∥2 +

3ℓ3η2d2µ2

4b
+ ℓη2∥êj∥2

Let k = Nj , by taking expectation to Nj and using Fubini’s theorem, we have

η(1− ℓη)ENj
Ej∥∇fµ(xj

Nj
)∥2 + ηENj

Ej

〈
êj ,∇fµ(xj

Nj
)
〉

≤ENj

(
Ejfµ(x

j
Nj

)− Ejfµ(x
j
Nj+1)

)
+

3dℓ3η2

2b
ENj

Ej∥xj
Nj
− xj

0∥2 +
3ℓ3η2d2µ2

4b
+ ℓη2∥êj∥2

=
b/d

B
ENj

(
fµ(x

j
0)− fµ(x

j
Nj

)
)
+

3dℓ3η2

2b
EjENj∥x

j
Nj
− xj

0∥2 +
3ℓ3η2d2µ2

4b
+ ℓη2∥êj∥2

then we have

η(1− ℓη)BE∥∇fµ(x̃j)∥2 + ηBE ⟨êj ,∇fµ(x̃j)⟩

≤b/dE (fµ(x̃j−1)− fµ(x̃j)) +
3dℓ3η2B

2b
E∥x̃j − x̃j−1∥2 +

3ℓ3η2d2µ2B

4b
+ ℓη2BE∥êj∥2

Lemma 22. Suppose 3d2ℓ2η2B < b2, then under Assumption 1,(
b/d

B
− 3dℓ2η2

b

)
E∥x̃j − x̃j−1∥2 + 2ηE ⟨êj , x̃j − x̃j−1⟩

≤ − 2ηE ⟨∇fµ(x̃j), x̃j − x̃j−1⟩+
3ℓ2η2d2µ2

2b
+ 2η2E∥∇fµ(x̃j)∥2 + 2η2E∥êj∥2

Proof. Since xj
k+1 = xj

k − ηvjk, we have

EuEIj
k
∥xj

k+1 − xj
0∥2

=∥xj
k − xj

0∥2 − 2η
〈
EuEIj

k
vjk, x

j
k − xj

0

〉
+ η2EuEIj

k
∥vjk∥

2

=∥xj
k − xj

0∥2 − 2η
〈
∇fµ(xj

k), x
j
k − xj

0

〉
− 2η

〈
êj , x

j
k − xj

0

〉
+ η2EuEIj

k
∥vjk∥

2

≤
(
1 +

3dℓ2η2

b

)
∥xj

k − xj
0∥2 − 2η

〈
∇fµ(xj

k), x
j
k − xj

0

〉
− 2η

〈
êj , x

j
k − xj

0

〉
+

3ℓ2η2d2µ2

2b

+ 2η2∥∇fµ(xj
k)∥

2 + 2η2∥êj∥2

Using the notation Ej we have

2ηEj

〈
∇fµ(xj

k), x
j
k − xj

0

〉
+ 2ηEj

〈
êj , x

j
k − xj

0

〉
≤
(
1 +

3dℓ2η2

b

)
Ej∥xj

k − xj
0∥2 − Ej∥xj

k+1 − xj
0∥2 +

3ℓ2η2d2µ2

2b
+ 2η2∥∇fµ(xj

k)∥
2 + 2η2∥êj∥2

Let k = Nj , by taking expectation to Nj and using Fubini’s theorem, we have

2ηENj
Ej

〈
∇fµ(xj

Nj
), xj

Nj
− xj

0

〉
+ 2ηENj

Ej

〈
êj , x

j
Nj
− xj

0

〉
≤
(
1 +

3dℓ2η2

b

)
ENj

Ej∥xj
Nj
− xj

0∥2 − ENj
Ej∥xj

Nj+1 − xj
0∥2 +

3ℓ2η2d2µ2

2b

+ 2η2ENj
∥∇fµ(xj

Nj
)∥2 + 2η2∥êj∥2

38

=

(
−b/d

B
+

3dℓ2η2

b

)
ENj

Ej∥xj
Nj
− xj

0∥2 +
3ℓ2η2d2µ2

2b
+ 2η2ENj

∥∇fµ(xj
Nj

)∥2 + 2η2∥êj∥2

Substituting xj
Nj

, xj
0 by x̃j , x̃j−1 and take a further expectation to the past randomness, we get(

b/d

B
− 3dℓ2η2

b

)
E∥x̃j − x̃j−1∥2 + 2ηE ⟨êj , x̃j − x̃j−1⟩

≤ − 2ηE ⟨∇fµ(x̃j), x̃j − x̃j−1⟩+
3ℓ2η2d2µ2

2b
+ 2η2E∥∇fµ(x̃j)∥2 + 2η2E∥êj∥2

Lemma 23.
b/d

B
E ⟨êj , x̃j − x̃j−1⟩ = −ηE ⟨êj ,∇fµ(x̃j)⟩ − ηE∥êj∥2

Proof. Let M j
k =

〈
êj , x

j
k − xj

0

〉
. Then we have

ENj
⟨êj , x̃j − x̃j−1⟩ = ENj

M j
Nj

Since Nj is independent of xj
0, êj , we have

E ⟨êj , x̃j − x̃j−1⟩ = EM j
Nj

Also we have M j
0 = 0. On the other hand,

EuEIj
k

(
M j

k+1 −M j
k

)
=EuEIj

k

〈
êj , x

j
k+1 − xj

k

〉
= −η

〈
êj ,EuEIj

k
vjk

〉
=− η

〈
êj ,∇fµ(xj

k)
〉
− η∥êj∥2

Using the notation Ej , we have

Ej

(
M j

k+1 −M j
k

)
= −η

〈
êj ,Ej∇fµ(xj

k)
〉
− η∥êj∥2

Let k = Nj , by taking the expectation with respect to Nj and using Fubini’s theorem, we have

b/d

B
ENjM

j
Nj

= −η
〈
êj ,ENjEj∇fµ(xj

Nj
)
〉
− η∥êj∥2

Substituting xj
Nj

, xj
0 by x̃j , x̃j−1 and take a further expectation to the past randomness, we get

b/d

B
E ⟨êj , x̃j − x̃j−1⟩ = −ηE ⟨êj ,∇fµ(x̃j)⟩ − ηE∥êj∥2

Proof of Lemma 14 (Option II). Multiplying Lemma 21 by 2, Lemma 22 by b/d
η and summing them

up, we have

2ηB(1− ηℓ− b/d

B
)E∥∇fµ(x̃j)∥2 +

b3/d2 − 3ℓ2η2bB − 3dℓ3η3B2

ηbB
E∥x̃j − x̃j−1∥2

+ 2ηBE ⟨êj ,∇fµ(x̃j)⟩+ 2b/d ⟨êj , x̃j − x̃j−1⟩

≤ − 2b/dE ⟨∇fµ(x̃j), x̃j − x̃j−1⟩+ 2b/dE (fµ(x̃j−1)− fµ(x̃j)) +
3ℓ2η2d2µ2

2b

(
Bℓ+

b/d

η

)
+ (2ℓη2B + 2ηb/d)E∥êj∥2

By Lemma 23,

2ηBE ⟨êj ,∇fµ(x̃j)⟩+ 2b/dE ⟨êj , x̃j − x̃j−1⟩ = −2ηBE∥êj∥2

39

So the above inequality can be simplified as

2ηB(1− ηℓ− b/d

B
)E∥∇fµ(x̃j)∥2 +

b3/d2 − 3ℓ2η2bB − 3dℓ3η3B2

ηbB
E∥x̃j − x̃j−1∥2

≤− 2b/dE ⟨∇fµ(x̃j), x̃j − x̃j−1⟩+ 2b/dE (fµ(x̃j−1)− fµ(x̃j)) +
3ℓ2η2d2µ2

2b

(
Bℓ+

b/d

η

)
+ (2ℓη2B + 2ηb/d+ 2ηB)E∥êj∥2

Using the fact that 2 ⟨a, b⟩ ≤ β∥a∥2 + 1
β ∥b∥

2 for any β > 0, we have

− 2b/dE ⟨∇fµ(x̃j), x̃j − x̃j−1⟩

≤ ηbB

b3/d2 − 3ℓ2η2bB − 3dℓ3η3B2
(
b

d
)2E∥∇fµ(x̃j)∥2 +

b3/d2 − 3ℓ2η2bB − 3dℓ3η3B2

ηbB
E∥x̃j − x̃j−1∥2

Then we conclude that

ηℓB

b/d

(
2− 2ηℓ− 2

b/d

B
− b3/d2

b3/d2 − 3ℓ2η2bB − 3dℓ3η3B2

)
E∥∇fµ(x̃j)∥2

≤2ℓE(fµ(x̃j−1)− fµ(x̃j)) +
3ℓ2η2d2µ2

2b

(
Bℓ2

b/d
+

ℓ

η

)
+

2ηℓB

b/d

(
1 + ηℓ+

b/d

B

)
E∥êj∥2

Let ηℓ = γ
(

b/d
B

) 2
3

and b/d ≥ 1, B
b/d ≥ 8 ≥ 8

b/d ,

b3/d2 − 3ℓ2η2bB − 3dℓ3η3B2 =b3/d2
(
1− 3γ2(b/d)−1(

b/d

B
)

1
3 − 3γ3(b/d)−1

)
≥b3/d2

(
1− 3

2
γ2 − 3γ3

)
Then the above inequality can be simplified as

γ

(
B

b/d

) 1
3

(
2− 2γ

(
b/d

B

) 2
3

− 2
b/d

B
− 1

1− 3
2γ

2 − 3γ3

)
E∥∇fµ(x̃j)∥2

≤2ℓE (fµ(x̃j−1)− fµ(x̃j)) +
3ℓ2d2µ2

2b
γ

(
(
b/d

B
)

1
3 γ + (

b/d

B
)

2
3

)
+ 2γ

(
B

b/d

) 1
3

(1 + γ(
b/d

B
)

2
3 +

b/d

B
)E∥êj∥2

Since B
b/d ≥ 8, γ ≤ 1

8 , we have

2− 2γ

(
b/d

B

) 2
3

− 2
b/d

B
− 1

1− 3
2γ

2 − 3γ3
≥2− γ

2
− 1

4
− 1

1− 3
2γ

2 − 3γ3
≥ 0.65

(
b/d

B
)

1
3 γ + (

b/d

B
)

2
3 ≤γ

2
+

1

4
≤ 5

16

1 + γ(
b/d

B
)

2
3 +

b/d

B
≤1 + γ

4
+

1

8
≤ 37

32

Thus we have(
B

b/d

) 1
3

E∥∇fµ(x̃j)∥2 ≤
4ℓ

γ
E (fµ(x̃j−1)− fµ(x̃j)) +

ℓ2d2µ2

b
+ 4

(
B

b/d

) 1
3

E∥êj∥2

Using Lemma 19, we have

E∥êj∥2

=E∥vj −∇fµ(xj
0)∥2 = E∥∇̂coordfIj

(xj
0)∥2

≤3E∥∇̂coordfIj
(xj

0)− ∇̂coordf(x
j
0)∥2 + 3E∥∇̂coordf(x

j
0)−∇f(x)∥2 + 3E∥∇f(xj

0)−∇fµ(x
j
0)∥2

40

≤9(2ℓ2dµ2 + σ2)

B
+ 3ℓ2dµ2 +

3ℓ2d2µ2

4

Using Lemma 8, we have

E (fµ(x̃j−1)− fµ(x̃j)) ≤ E (f(x̃j−1)− f(x̃j)) + ℓµ2

E∥∇fµ(x̃j)∥2 ≥
1

2
E∥∇f(x̃j)∥2 −

1

2
E∥∇f(x̃j)−∇fµ(x̃j)∥2 ≥

1

2
E∥∇f(x̃j)∥2 −

ℓ2d2µ2

8

Thus we obtain(
B

b/d

) 1
3
(
1

2
E∥∇f(x̃j)∥2 −

ℓ2d2µ2

8

)
≤4ℓ

γ

(
E (f(x̃j−1)− f(x̃j)) + ℓµ2

)
+

ℓ2d2µ2

b
+ 4

(
B

b/d

) 1
3
(
9(2ℓ2dµ2 + σ2)

B
+ 3ℓ2dµ2 +

3ℓ2d2µ2

4

)
≤4ℓ

γ

(
E (f(x̃j−1)− f(x̃j)) + ℓµ2

)
+

ℓ2d2µ2

b
+ 4

(
B

b/d

) 1
3
(
9(2ℓ2dµ2 + σ2)

B
+ 4ℓ2d2µ2

)
Finally we get(

B

b/d

) 1
3

E∥∇f(x̃j)∥2 ≤
8ℓ

γ
E (f(x̃j−1)− f(x̃j)) +

72σ2

(b/d)
1
3B

2
3

+ c

(
B

b/d

) 1
3

ℓ2d2µ2

where c is a sufficient large constant. Telescope the sum in j = 1, . . . , T , and using the definition of
x̃∗
T , we finally get

E∥x̃∗
T ∥2 ≤

8ℓ
γ

T
(

B
b/d

) 1
3

· E (f(x̃0)− f(x̃T)) +
72σ2

B
+ cℓ2d2µ2

E.4 Proof of Second-Order Stationary Point (Option II)

Proof of Theorem 5. Let N1 and N2 be the number of times we reach Line 7 and 9 of Algorithm 7.
From Lemma 14 of ZO-SCSG we know that for one epoch with size B = max{1, 1152σ2

ϵ2 }, mini-
batch size b ≥ 1 and the smoothing parameter µ = ϵ

4
√
cℓd

, we have

E∥xt+1∥2 ≤
8ℓ

γ

(
b/d

B

) 1
3

E (f(xt)− f(xt+1)) +
ϵ2

8

Then, if ∥∇f(xt+1)∥ ≥ ϵ
2 , we have xt+1 = xt+1; if v = ⊥, we set xt+1 = xt+1 for if v ̸= ⊥, we

have f(xt+1) − Ef(xt+1) ≥ δ3

12ρ2 (here the expectation is taken on the randomness of sign of v).
Thus we have

γB
1
3

8ℓ(b/d)
1
3

E

[
K−1∑
t=0

(
∥∇f(xt+1)∥2 −

ϵ2

8

)]
+

δ3

12ρ2
E[N2] ≤ ∆f

On one hand, since we have chosen K such that K ≥ Ω

(
ℓ(b/d)

1
3 ∆f

ϵ2B
1
3

)
= Ω

(
ℓ(b/d)

1
3 ∆f

ϵ2(1+σ2

ϵ2
)
1
3

)
, then

by Markov’s inequality, with probability at least 5
6 , it satisfies

∑K−1
t=0 ∥∇f(xt+1)∥2 ≤ ϵ

4K. As a
sequence, at least half of the indices t = 0, . . . ,K − 1 will satisfy ∥∇f(xt+1)∥ ≤ ϵ

2 , which means
that N1 ≥ K

2 .

On the other hand, we have δ3

12ρ2E[N2] ≤ ∆f + KγB
1
3 ϵ2

64ℓ(b/d)
1
3

. Since K ≥ Ω

(
ℓ(b/d)

1
3 ∆f

ϵ2B
1
3

)
=

Ω

(
ℓ(b/d)

1
3 ∆f

ϵ2(1+σ2

ϵ2
)
1
3

)
, we have E[N2] ≤ KγB

1
3 ϵ2ρ2

ℓδ3(b/d)
1
3

. As long as B ≤ O
(

ℓ3δ9b/d
ϵ6ρ6

)
, or equivalently

b/d ≥ Ω
(

Bϵ6ρ6

δ9ℓ3

)
, we have E[N2] ≤ K

12 . Therefore, with provability at least 5
6 , it satisfies N2 ≤ k

2 .

41

Since N1 ≥ N2, this means with probability at least 2
3 the algorithm must terminate and output some

xt+1 in an iteration.

Finally, the per-iteration complexity of Algorithm 7 is dominated by Õ(d ·B + B
b/d · b) = Õ(dB)

function queries for ZO-SCSG and Õ(dB) function queries for estimating ∥∇f(xt+1)∥, as well as
Õ(ℓ

2

δ2) invoking Algorithm 2. Thus the total function query complexity is

Õ
(
K

(
dB + d

ℓ2

δ2

))
= Õ

((
ℓ(b/d)

1
3∆f

ϵ2B
1
3

)(
dB + d

ℓ2

δ2

))

= Õ

d

ℓmax{1, B
1
3 ϵ2ρ2

δ3ℓ }∆f

ϵ2B
1
3

(B +
ℓ2

δ2

)
= Õ

d

ℓ(1 + B
1
3 ϵ2ρ2

δ3ℓ)∆f

ϵ2B
1
3

(B +
ℓ2

δ2

)
= Õ

(
d

(
ℓ∆f

ϵ2B
1
3

+
ρ2∆f

δ3

)(
B +

ℓ2

δ2

))
= Õ

(
d

(
ℓ∆f

ϵ2 max{1, σ2

ϵ2 }
1
3

+
ρ2∆f

δ3

)(
max{1, σ

2

ϵ2
}+ ℓ2

δ2

))

= Õ
(
d

(
ℓ∆f

ϵ
4
3σ

2
3

+
ρ2∆f

δ3

)(
σ2

ϵ2
+

ℓ2

δ2

)
+ d

ℓ∆f

ϵ2
ℓ2

δ2

)

F Applying Zeroth-Order Negative Curvature Finding to ZO-SPIDER

In this section, we apply ZO-NCF-Online to ZO-SPIDER to turn it into a local minima finding
algorithm and propose ZO-SPIDER-NCF in Algorithm 8. As a by-product, we also propose a
zeroth-order variant of the SPIDER method in Appendix G that can converge to an ϵ-approximate
FOSP with high probability rather than expectation. Using the same technique as in SPIDER-SFO+

[16], that is, instead of moving in a large single step with size δ/ρ along the approximate negative
curvature direction as in ZO-SGD-NCF and ZO-SCSG-NCF, we can split it into δ/(ρη) equal length
mini-steps with size η. As a result, we can maintain the SPIDER estimates and improve the so-called
non-improvable coupling term 1

δ3ϵ2 by a fact of δ.

Algorithm 8 ZO-SPIDER-NCF
Input: Function f , starting point x0, ϵ > 0 and δ > 0.

1: for j = 0 to J do
2: w1 ← ZO-NCF-Online (f, xk, δ,

1
16J)

3: Randomly flip a sign, and set w2 = ±ηw1

4: for k to k + K do
5: if k mod q = 0 then
6: Sample S1 from [n] without replacement, vk = ∇̂coordfS1

(xk)
7: else
8: Sample S2 from [n] with replacement,
9: vk = ∇̂coordfS2

(xk)− ∇̂coordfS2
(xk−1) + vk−1

10: if w1 ̸= ⊥ then
11: xk+1 = xk − w2

12: else
13: if ∥vk∥ ≤ 2ϵ̃ then
14: return xk

15: xk+1 = xk − η(vk/∥vk∥)

42

Theorem 8. Under Assumption 2, if we set ϵ̃ = 10ϵ log(128(K0+1)), |S1| = 16σ2

ϵ2 , |S2| = 16σ
ϵn0

, η =

ϵ
ℓn0

, q = σn0

ϵ , µ =
(

ϵ·ϵ̃
8q2ρ2d

) 1
4

= Õ(ϵ
d1/4),K = δℓn0

ρϵ , where n0 ∈ [1, 2σ
ϵ], then with probability at

least 3
4 , Algorithm 8 outputs xk with j ≤ J = 8

(⌊
max

(
12ρ2∆f

δ3 ,
4ρ∆f

δϵ

)⌋
+ 1
)
, k ≤ K0 = JK

satisfying ∥∇f(xk)∥ ≤ 3ϵ̃, λmin(∇2f(xk)) ≥ −2δ with ϵ̃ = 10ϵ log(128(K0 + 1)) = Õ(ϵ). The
total function query complexity is bounded by

Õ
(
d

(
σℓ∆f

ϵ3
+

σℓρ∆f

ϵ2δ2
+

ℓ2ρ∆f

δ3ϵ
+

ℓ2ρ2∆f

δ5
+

σ2

ϵ2
+

σδℓ

ρϵ2
+

ℓ2

δ2

))
.

Remark 7. We can boost the confidence of Theorem 6 from 3/4 to 1− p by running log 1/p copies
of ZO-SPIDER-NCF

Algorithm 9 ZO-SPIDER-Coord (For convergence rates in high probability)
Input: function f , starting point x0, ϵ > 0.

1: for k = 0 to K do
2: if k mod q = 0 then
3: Sample S1 from [n], vk = ∇̂coordfS1(x

k)
4: else
5: Sample S2 from [n] with replacement,
6: vk = ∇̂coordfS2(x

k)− ∇̂coordfS2(x
k−1) + vk−1

7: if ∥vk∥ ≤ 2ϵ̃ then
8: return xk

9: xk+1 = xk − η(vk/∥vk∥)
Output: xK ▷ this line is not reached with high probability

Theorem 9. Under the settings of Algorithm 9, if we set

ϵ̃ =10ϵ log(4(K0 + 1)/p), |S1| =
16σ2

ϵ2
, |S2| =

16σ

ϵn0
, η =

ϵ

ℓn0
, q =

σn0

ϵ
,

µ =

(
ϵ · ϵ̃

8q2ρ2d

) 1
4

= Õ(
ϵ

d1/4
)

where n0 ∈ [1, 2σ
ϵ]. Then under Assumption 2, with probability at least 1− p, Algorithm 9 terminates

before K0 =
⌊
4ℓn0

ϵ2

⌋
+ 2 iterations and outputs xK satisfying

∥vK∥ ≤ 2ϵ̃, ∥∇f(xK)∥ ≤ 3ϵ̃.

The function query complexity is O
(
d
(

128ℓσ∆f

ϵ3 + 16σ2

ϵ2 + 32σ
ϵn0

))
.

Lemma 24 (Proposition 2 in [16]). Let ϵ1:K be a vector-valued martingale difference sequence with
respect to Fk, i.e., for each k = 1, . . . ,K,E[ϵk|Fk−1] = 0 and ∥ϵk∥2 ≤ B2

k. We have

Pr

(∥∥∥∥∥
K∑

k=1

ϵk ≥ λ

∥∥∥∥∥
)
≤ exp

(
− λ2

4
∑K

k=1

B2
k

)
,

where λ is an arbitrary real positive value.

F.1 Proof of high probability results for First-Order Stationary Point of Theorem 9

Define K to be the time when Algorithm 9 stops. We have K = 0 if ∥v0∥ ≤ 2ϵ, and K = inf{k ≥ 0 :
∥vk∥ ≤ 2ϵ}+ 1 if ∥v0∥ ≥ 2ϵ.
Lemma 25. Define the event,

HK0
=
(
∥vk −∇f(xk)∥2 ≤ ϵ · ϵ̃,∀k ≤ min{K,K0}

)
,

thenHK0
will happen with probability at least 1− p.

43

Proof. When k ≥ K, the algorithm has already stopped. Define virtual update when xk+1 = xk, and
vk is generated by Line 3 and Line 6 in Algorithm 9.

Define the event H̃k = (∥vk − ∇f(xk)∥2 ≥ ϵ · ϵ̃), k ∈ [K0]. Then if we can prove that for any
k ∈ [K0], the probability of H̃k occurring is no more than p/(K0 + 1), i.e., Pr(H̃k) ≤ p

K0+1 . Then
we have

Pr(HK0
) ≥ 1− Pr(

K0⋃
k=0

H̃k) ≥ 1−
K0∑
k=0

Pr(H̃k) ≥ 1− p

Now, we prove that Pr(H̃k) ≤ p
K0+1 ,∀k ∈ [K0].

First, we have

∥vk −∇f(xk)∥2 ≤2∥vk − ∇̂coordf(xk)∥2 + 2∥∇̂coordf(xk)−∇f(xk)∥2

≤2∥vk − ∇̂coordf(xk)∥2 +
ρ2dµ4

18

Denote by ξk the randomness in maintaining SPIDER vk at iteration k, and Fk = σ{ξ0, . . . , ξk},
where σ(·), where σ{·} denotes the sigma field. We know that xk and vk are measurable on Fk−1.

❶ Then given Fk−1, if k = ⌊k/q⌋ q , we define

ϵ̂k,i =
1

|S1|

(
∇̂coordfS1(i)(xk)− ∇̂coordf(xk)

)
, ϵk,i =

1

|S1|
(
∇fS1(i)(xk)−∇f(xk)

)
where S1(i) denotes the i-th random component function seleted at iteration k and 1 ≤ i ≤ |S1|. We
have

E[ϵ̂k,i|Fk−1] = 0, E[ϵk,i|Fk−1] = 0, ∥ϵk,i∥
Assumption 2
≤ σ

|S1|
and

∥vk − ∇̂coordf(xk)∥2

=∥
|S1|∑
i=1

ϵ̂k,i∥2

≤2∥
|S1|∑
i=1

ϵk,i∥2 + 2∥
|S1|∑
i=1

(ϵk,i − ϵ̂k,i)∥2

=2∥
|S1|∑
i=1

ϵk,i∥2 + 2∥∇̂coordfS1
(xk)− ∇̂coordf(xk) +∇fS1

(xk)−∇f(xk)∥2

≤2∥
|S1|∑
i=1

ϵk,i∥2 + 2
(
2∥∇̂coordfS1

(xk)−∇fS1(xk)∥
2 + 2∥∇̂coordf(xk)−∇f(xk)∥2

)

≤2∥
|S1|∑
i=1

ϵk,i∥2 +
2

9
ρ2dµ4

Then we have

∥vk −∇f(xk)∥2 ≤2∥vk − ∇̂coordf(xk)∥2 +
ρ2dµ4

18

≤4∥
|S1|∑
i=1

ϵk,i∥2 +
1

2
ρ2dµ4

Then we have

Pr
(
∥vk −∇f(xk)∥2 ≥ ϵ · ϵ̃|Fk−1

)
44

≤Pr

4∥
|S1|∑
i=1

ϵk,i∥2 +
1

2
ρ2dµ4 ≥ ϵ · ϵ̃|Fk−1

 = Pr

∥ |S1|∑
i=1

ϵk,i∥2 ≥
ϵ · ϵ̃− 1

2ρ
2dµ4

4
|Fk−1

≤4 exp

(
−

ϵ·ϵ̃− 1
2ρ

2dµ4

4

4|S1| σ2

|S1|2

)
= 4 exp

(
−
ϵ · ϵ̃− 1

2ρ
2dµ4

16 σ2

|S1|

)

❷ When k ̸= ⌊k/q⌋ q, set k0 = ⌊k/q⌋ q and define

ϵj,i =
1

|S2|
(
∇fS2(i)(xj)−∇fS2(i)(xj−1)−∇f(xj) +∇f(xj−1)

)
ϵ̂j,i =

1

|S2|

(
∇̂coordfS2(i)(xj)− ∇̂coordfS2(i)(xj−1)− ∇̂coordf(xj) + ∇̂coordf(xj−1)

)
where S2(i) denotes the i-th random component function selected at iteration k and 1 ≤ i ≤
|S2|, k0 ≤ j ≤ k. We have

E[ϵj,i|Fj−1] = 0, E[ϵ̂j,i|Fj−1] = 0

From the update rule if k < K, we have ∥xk+1− xk∥ = ∥ηvk/∥vk∥∥ = η = ϵ
ℓn0

, if k > K, we have
∥xk+1 − xk∥ = 0 ≤ ϵ

ℓn0
. We have

∥ϵj,i∥

≤ 1

|S2|
(
∥∇fS2(i)(xj)−∇fS2(i)(xj−1)∥+ ∥∇f(xj)−∇f(xj)∥

)
≤ 2ℓ

|S2|
∥xj − xj−1∥ ≤

2ϵ

|S2|n0

for all k0 < k ≤ k and 1 ≤ i ≤ |S2|, and

∥vk − ∇̂coordf(xk)∥2

=
∥∥∥∇̂coordfS2

(xk)− ∇̂coordfS2
(xk−1)− ∇̂coordf(xk)− ∇̂coordf(xk−1) + (vk − ∇̂coordf(xk−1))

∥∥∥2
=

∥∥∥∥∥∥
|S2|∑
i=1

ϵ̂k,i + vk−1 − ∇̂coordf(xk−1)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
k∑

j=k0+1

|S2|∑
i=1

ϵ̂j,i + vk0
− ∇̂coordf(xk0

)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
k∑

j=k0+1

|S2|∑
i=1

ϵ̂j,i +

|S1|∑
i=1

ϵ̂k0,i

∥∥∥∥∥∥
2

≤2

∥∥∥∥∥∥
k∑

j=k0+1

|S2|∑
i=1

ϵj,i +

|S1|∑
i=1

ϵk0,i

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
k∑

j=k0+1

|S2|∑
i=1

(ϵj,i − ϵ̂j,i) +

|S1|∑
i=1

(ϵk0,i − ϵ̂k0,i)

∥∥∥∥∥∥
2

≤2

∥∥∥∥∥∥
k∑

j=k0+1

|S2|∑
i=1

ϵj,i +

|S1|∑
i=1

ϵk0,i

∥∥∥∥∥∥
2

+ 2

2

∥∥∥∥∥∥
k∑

j=k0+1

|S2|∑
i=1

(ϵj,i − ϵ̂j,i)

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
|S1|∑
i=1

(ϵk0,i − ϵ̂k0,i)

∥∥∥∥∥∥
2

≤2

∥∥∥∥∥∥
k∑

j=k0+1

|S2|∑
i=1

ϵj,i +

|S1|∑
i=1

ϵk0,i

∥∥∥∥∥∥
2

+ 2

2

∥∥∥∥∥∥
k∑

j=k0+1

|S2|∑
i=1

(ϵj,i − ϵ̂j,i)

∥∥∥∥∥∥
2

+
2

9
ρ2dµ4

The second term can be bounded by∥∥∥∥∥∥

k∑
j=k0+1

|S2|∑
i=1

(ϵj,i − ϵ̂j,i)

∥∥∥∥∥∥
2

45

≤(k − k0)

k∑
j=k0+1

∥∥∥∥∥
S2∑
i=1

(ϵj,i − ϵ̂j,i)

∥∥∥∥∥
2

=(k − k0)

k∑
j=k0+1

4

(∥∥∥∇fS2(xj)− ∇̂coordfS2(xj)
∥∥∥2 + ∥∥∥∇fS2(xj−1)− ∇̂coordfS2

(xj−1)
∥∥∥2

+
∥∥∥∇f(xj)− ∇̂coordf(xj)

∥∥∥2 + ∥∥∥∇f(xj−1)− ∇̂coordf(xj−1)
∥∥∥2)

≤(k − k0)

k∑
j=k0+1

4 · 4ρ
2dµ4

36
= (k − k0)

2 4

9
ρ2dµ4

Thus we have

∥vk −∇f(xk)∥2

≤2∥vk − ∇̂coordf(xk)∥2 +
ρ2dµ4

18

≤4

∥∥∥∥∥∥
k∑

j=k0+1

|S2|∑
i=1

ϵj,i +

|S1|∑
i=1

ϵk0,i

∥∥∥∥∥∥
2

+ 4

(
2(k − k0)

2 4

9
ρ2dµ4 +

2

9
ρ2dµ4

)
+

ρ2dµ4

18

≤4

∥∥∥∥∥∥
k∑

j=k0+1

|S2|∑
i=1

ϵj,i +

|S1|∑
i=1

ϵk0,i

∥∥∥∥∥∥
2

+ 4(k − k0)
2ρ2dµ4

Using Lemma 24, we have

Pr
(
∥vk −∇f(xk)∥2 ≥ ϵ · ϵ̃ | Fk0−1

)
≤Pr

4

∥∥∥∥∥∥
k∑

j=k0+1

|S2|∑
i=1

ϵj,i +

|S1|∑
i=1

ϵk0,i

∥∥∥∥∥∥
2

+ 4(k − k0)
2ρ2dµ4 ≥ ϵ · ϵ̃ | Fk0−1

=Pr

∥∥∥∥∥∥

k∑
j=k0+1

|S2|∑
i=1

ϵj,i +

|S1|∑
i=1

ϵk0,i

∥∥∥∥∥∥
2

≥ ϵ · ϵ̃
4
− (k − k0)

2ρ2dµ4 | Fk0−1

≤4 exp

(
−

ϵ·ϵ̃
4 − (k − k0)

2ρ2dµ4

4|S1| σ2

|S1|2 + 4|S2|(k − k0)
4ϵ2

|S2|2n2
0

)

≤4 exp

(
−

ϵ·ϵ̃
4 − q2ρ2dµ4

4 σ2

|S1| + 4q 4ϵ2

|S2|n2
0

)
= 4 exp

(
− ϵ · ϵ̃− 4q2ρ2dµ4

16 σ2

|S1| + 16q 4ϵ2

|S2|n2
0

)

If we set

ϵ̃ = 10ϵ log
4(K0 + 1)

p
, |S1| =

16σ2

ϵ2
, |S2| =

16σ

ϵn0
, q =

σn0

ϵ
, µ =

(
ϵ · ϵ̃

8q2ρ2d

) 1
4

= Õ(
ϵ

d1/4
)

We will get

• When k ̸= ⌊k/q⌋ q,

Pr
(
∥vk −∇f(xk)∥2 ≥ ϵ · ϵ̃ | Fk0−1

)
≤ 4 exp

(
− ϵ · ϵ̃− 4q2ρ2dµ4

16 σ2

|S1| + 16q 4ϵ2

|S2|n2
0

)
≤ p

K0 + 1

• When k = ⌊k/q⌋ q,

Pr
(
∥vk −∇f(xk)∥2 ≥ ϵ · ϵ̃ | Fk0−1

)
≤4 exp

(
−
ϵ · ϵ̃− 1

2ρ
2dµ4

16 σ2

|S1|

)

46

≤4 exp

(
− ϵ · ϵ̃− 4q2ρ2dµ4

16 σ2

|S1| + 16q 4ϵ2

|S2|n2
0

)
≤ p

K0 + 1

This completes the whole proof.

Lemma 26. Under assumption 2, we have that onHK0
∩ (K > K0), for all 0 ≤ k ≤ K0,

f(xk+1)− f(xk) ≤ −
ϵ · ϵ̃
4ℓn0

.

and
f(xK0+1 − f(x0)) ≤ −

ϵ · ϵ̃
4ℓn0

K0

Proof. Let ηk = η/∥vk∥ and since f has ℓ-Lipschitz continuous gradient, we have

f(xk+1) ≤ f(xk)− ⟨∇f(xk), xk+1 − xk⟩+
ℓ

2
∥xk+1 − xk∥2

= f(xk)− ηk ⟨∇f(xk), vk⟩+
ℓη2k
2
∥vk∥2

= f(xk)− ηk ⟨∇f(xk)− vk, vk⟩ − ηk∥vk∥2 +
ℓη2k
2
∥vk∥2

≤ f(xk) +
ηk
2
∥vk −∇f(xk)∥2 − ηk

(
1

2
− ηkℓ

2

)
∥vk∥2 (15)

where the last inequality uses the the Cauchy-Schwarz inequality. Because we are on the event
HK0 ∩ (K > K0), so K − 1 ≥ K0, then for all 0 ≤ k ≤ K0, we have ∥vk∥ ≥ 2ϵ̃, thus

ηk =
ϵ

ℓn0

1

∥vk∥
≤ ϵ

ℓn0

1

2ϵ̃
≤ 1

2ℓn0
≤ 1

2ℓ

we have

ηk

(
1

2
− ηkℓ

2

)
∥vk∥2 ≥ ηk

1

4
∥vk∥2 =

1

4

ϵ

ℓn0

1

∥vk∥
∥vk∥2 ≥

ϵ · ϵ̃
2ℓn0

and whenHK0
happens, we also have

ηk
2
∥vk −∇f(xk)∥2 ≤

ηk
2
ϵ · ϵ̃

ηk ≤ 1
2ℓn0

≤ ϵ · ϵ̃
4ℓn0

Hence
f(xk+1) ≤ f(xk) +

ϵ · ϵ̃
4ℓn0

− ϵ · ϵ̃
2ℓn0

= f(xk)−
ϵ · ϵ̃
4ℓn0

By telescoping the above the inequality, we have

f(xK0+1)− f(x0) ≤ −
ϵ · ϵ̃
4ℓn0

K0.

Proof of Theorem 9 . IfK ≤ K0∩HK0 , we have ∥vK∥ ≤ 2ϵ̃. Because ∥vK−∇f(xK)∥ ≤
√
ϵ · ϵ̃ ≤

ϵ̃ ifHK0 occurs, so ∥∇f(xK)∥ ≤ 2ϵ̃.

If K > K0 ∩HK0
, we have

−∆f ≤f∗ − f(x0) ≤ f(xK0+1)− f(x0) ≤ −
ϵ · ϵ̃
4ℓn0

K0 ≤ −
ϵ · ϵ̃
4ℓn0

(
4ℓ∆fn0

ϵ2
+ 1

)
≤− ϵ · ϵ̃

4ℓn0

(
4ℓ∆fn0

ϵ · ϵ̃
+ 1

)
= −∆f −

ϵ · ϵ̃
4ℓn0

47

which is contradict with the fact that −∆f > −∆f − ϵ·ϵ̃
4ℓn0

. This means that when HK0 happens,
then the algorithm must terminate before K0 iterations.

Therefore, the total function query complexity can be bounded by:

d (⌈K0/q⌉ |S1|+K0|S2|) ≤d ((K0/q + 1) |S1|+K0|S2|)
①
≤d (|S1|+ 2K0|S2|)

≤d
(
16σ2

ϵ2
+ 2

(
4ℓ∆fn0

ϵ2
+ 1

)
16σ

ϵn0

)
=d

(
128ℓσ∆f

ϵ3
+

16σ2

ϵ2
+

32σ

ϵn0

)
where ① is because |S1| = q|S2|.

F.2 Proof of high probability results for Second-Order Stationary Point of Theorem 6

From Algorithm 8, we know that all randomness in iteration k come from three parts: 1) maintaining
SPIDER vk in Line 5-10; 2) to conduct the zeroth-order negative-curvature search in Line 2;
choosing a random sign of w2 in Line 3. Denote by ξ1k; ξ

2
k; ξ

3
k the randomness of from the three

parts, respectively. Let Fk be the filtration involving the full information of x0:k, v0:k, i.e., Fk =
σ{ξ10;k, ξ20;k, ξ30;k−1}. So the randomness in iteration k given Fk only comes from ξ3k.

Denote the random index

Ik =

{
1 if w1 = ⊥
2 if w1 ̸= ⊥

then we know that Ik is measurable onF⌊k/K ⌋K and also onFk. When the event (Ik = 1
⋂
∥vk∥ ≤

2ϵ̃) happens, then the algorithm will be stopped. In this case, we define a virtual update xk+1 = xk

in Line 13 and Line 18.

LetH1
k denotes the event that algorithm has not stopped before k, i.e.,

H1
k =

k⋂
i=1

((
∥vi∥ ≥ 2ϵ̃

⋂
Ii = 1

)⋃
Ii = 2

)
LetH2

K j denotes the event that the Zeroth-Order Curvature Finding in iteration K j runs successfully.

LetH3
k denotes the event that

H3
k =

(
k⋂

i=0

(∥vi −∇f(xi)∥ ≤ ϵ · ϵ̃)

)⋂⌊k/K ⌋⋂
j=0

H2
K j

Then we haveHk

3 ∈ Fk, andH3
1 ⊇ H3

2 ⊇ · · · ⊇ H3
k.

Lemma 27. With the setting of Theorem 6, and under the Assumption 2, we have

Pr
(
H3

K0

)
≥ 15

16

Proof. Denote the event H̃k = (∥vk − ∇f(xk)∥ ≤ ϵ · ϵ̃), 0 ≤ k ≤ K0. If we can prove that
Pr(H̃k) ≥ 1 − 1

32(K0+1) , we have Pr
(⋂K0

i=0 H̃i

)
≥ 1 − 1

32 . On the other hand, from Theorem 1,

we know that each time Pr
(
H2

K j

)
≥ 1 − 1

32J , so Pr
(⋂⌊K0/K ⌋

j=0 H2
K j

)
≥ 1 − 1

32 . So we have

Pr(H3
K0

) ≥ 15
16 .

Now, we prove Pr(H̃k) ≥ 1− 1
32(K0+1) .

Consider the filtration of full information of x0:k, F2
k = σ{ξ10;k−1, ξ

2
0;k, ξ

3
0;k−1}. We know xk is

measurable on F2
k . Given F2

k , we have

48

• when k = ⌊k/q⌋ q,

Ei

[
∇̂coordfi(xk)− ∇̂coordf(xk) | F2

k

]
= 0, Ei

[
∇fi(xk)−∇f(xk) | F2

k

]
= 0

• when k ̸= ⌊k/q⌋ q,

Ei

[
∇̂coordfi(xk)− ∇̂coordfi(xk−1) +

(
∇̂coordf(xk)− ∇̂coordf(xk−1)

)]
= 0

Ei [∇fi(xk)−∇fi(xk−1) + (∇f(xk)−∇f(xk−1))] = 0

Because xk is generated by one of the three ways:

• when w1 = ⊥, we have ∥xk − xk−1∥ = ∥η(vk−1/∥vk−1∥)∥ = η = ϵ
ℓn0

;

• when w1 ̸= ⊥, we have ∥xk − xk−1∥ = ∥ηw1∥ = η = ϵ
ℓn0

;

• when Algorithm 8 has already stopped, we have ∥xk+1 − xk∥ = 0 ≤ ϵ
ℓn0

So vk −∇f(xk) is martingale. If we set |S1|, |S1|, η, µ and ϵ̃ = 10ϵ log(128(K0 + 1)) as the same
in Lemma 25. Then using the same technique of Lemma 25 with p = 1

32 , we have Pr(H̃k) ≥
1− 1

16(K0+1) , 0 ≤ k ≤ K0.

Lemma 28. If
(
H1

K0

)c ∩H3
K0

happens, Algorithm 8 outputs xk satisfying

∥∇f(xk)∥ ≤ 3ϵ̃, λmin(∇2f(xk)) ≥ −2δ,

before K0 iterations.

Proof. If
(
H1

K0

)c
happens, then Algorithm 8 has already stopped before iteration K0 and output xk

with ∥vk∥ ≤ 2ϵ̃. IfH3
K0

happens, we have

• ∥∇f(xk)− vk∥ ≤
√
ϵ · ϵ̃ ≤ ϵ̃. So we have

∥∇f(xk)∥ ≤ ∥vk∥+ ∥∇f(xk)− vk∥ ≤ 3ϵ̃.

• Each time the Zeroth-Order Curvature Finding runs successfully, so from Theorem 1, we
have

λmin(∇2f(xk0)) ≥ −δ,
where k0 = ⌊k/K ⌋K .

From Assumption 2, we have

∥∇2f(x)−∇2f(y)∥ ≤

∥∥∥∥∥ 1n
n∑

i=1

(
∇2fi(x)−∇2fi(y)

)∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥∇2fi(x)−∇2fi(y)∥ ≤ ρ∥x−y∥.

This means that f has ρ-Lipschitz Hessian. We have

∥∥∇2f(xk)−∇2f(xk0)
∥∥ ≤∥∥∥∥∥

k−1∑
i=k0

(∇2f(xi+1)−∇2f(xi))

∥∥∥∥∥
≤

k−1∑
i=k0

ρ∥xi+1 − xi∥ ≤ K
ϵ

ℓn0

K =
δℓn0
ρϵ

= δ

Finally we get λmin(∇2f(xk)) ≥ −2δ.

49

Proof of Theorem 6. DenoteH4
k = H1

k ∩H3
k. For all iteration K with mod(K,K) = 0, given FK,

we consider:

❶ WhenH4
k

⋂
(IK = 2) happens. From Lemma 4 and the fact that f is ρ-Hessian Lipschitz, we have

f(xK+K)

≤f(xK) + ⟨∇f(xK), xK+K − xK⟩+
1

2
(xK+K − xK)

T∇2f(xK)(xK+K − xK) +
ρ

6
∥xK+K − xK∥3.

From Theorem 1, we have wT
1∇2f(xK)w1 ≤ − δ

2 . Take expectation on the random number of the
sign we have

E ⟨∇f(xK), xK+K − xK⟩ = 0

Thus we have

f(xK+K) ≤f(xK) +
1

2
(η ·K w1)

T∇2f(xK)(η ·K w1) +
ρ

6
∥η ·K w1∥3

η = ϵ
ℓn0

,K =
δℓn0
ρϵ

= f(xK)−
δ3

4ρ2
+

δ3

6ρ2
= f(xK)−

δ3

12ρ2

Then we analysis the difference of (f(xK − f∗)) IH4
K

, where IH4
K

is the indication function ofH4
K,

then we have

E
[
(f(xK+K − f∗)) IH4

K+K
| FK − (f(xK − f∗)) IH4

K
| FK

]
=E

[
(f(xK+K − f∗))

(
IH4

K+K
− IH4

K

)
| FK

]
+ E

[
(f(xK+K)− f(xK)) IH4

K
| FK

]
≤Pr(H4

K | FK)E
[
(f(xK+K)− f(xK)) IH4

K
| FK ∩H4

K

]
≤− Pr(H4

K | FK)
δ3

12ρ2
(16)

where the last second inequality uses the fact that IH4
K+K

− IH4
K
≤ 0.

❷ WhenH4
k

⋂
(IK = 1) happens, then for K ≤ k < K + K , from Eq.(15), we have

f(xk+1) ≤ f(xk) +
ηk
2
∥vk −∇f(xk)∥2 − ηk

(
1

2
− ηkℓ

2

)
∥vk∥2

where ηk = η/∥vk∥. IfH4
k happens we have ∥vk∥ ≥ 2ϵ̃ and ∥vk −∇f(xk)∥ ≤ ϵ · ϵ̃, then from the

proof of Lemma 26, we also have

f(xk+1) ≤ f(xk)−
ϵ · ϵ̃
4ℓn0

Taking expectation up to FK, we have

E
[
f(xk+1)− f(xk) | FK ∩H4

k

]
≤ − ϵ · ϵ̃

4ℓn0

By analyzing the difference of (f(xk)− f∗) I4Hk
, we have

E
[
(f(xk+1)− f∗) IH4

k+1
| FK − (f(xk)− f∗) IH4

k
| FK

]
=E

[
(f(xk+1)− f∗)

(
IH4

k+1
− IH4

k

)
| FK

]
+ E

[
(f(xk+1))− f(xk) IH4

k
| FK

]
≤Pr(H4

k | FK)E
[
(f(xk+1)− f(xk)) IH4

k
| FK ∩H4

k

]
≤− Pr(H4

k | FK)
ϵ · ϵ̃
4ℓn0

where the last second inequality uses the fact that IH4
K+K

− IH4
K
≤ 0. By telescoping the above

inequality with k from K to K + K − 1, we have

E
[
(f(xK+K)− f∗) IH4

K+K
| FK − (f(xK)− f∗) IH4

K
| FK

]
50

≤− ϵ · ϵ̃
4ℓn0

K+K∑
i=K

Pr(H4
i | FK) ≤ −

ϵ · ϵ̃
4ℓn0

K Pr(H4
K+K | FK)

K =
δℓn0
ρϵ

= − Pr(H4
K+K | FK)

δϵ̃

4ρ
(17)

where the second inequality uses the fact thatH4
i ⊆ H4

K+K , thus Pr(H4
i | FK) ≥ Pr(H4

K+K | FK).

Combining (16) and (17) we have

E
[
(f(xK+K)− f∗) IH4

K+K
| FK − (f(xK)− f∗) IH4

K
| FK

]
≤min

(
−Pr(H4

K | FK)
δ3

12ρ2
,−Pr(H4

K+K | FK)
δϵ̃

4ρ

)
≤− Pr(H4

K+K | FK)min

(
δ3

12ρ2
,
δϵ̃

4ρ

)
By taking full expectation on the above inequality, and telescoping the results with K =
0,K , . . . , (J − 1)K , we have

E
[
(f(xJK)− f∗) IH4

JK
− (f(x0)− f∗) IH4

0

]
≤−min

(
δ3

12ρ2
,
δϵ̃

4ρ

) J−1∑
j=0

Pr(H4
jK)

≤−min

(
δ3

12ρ2
,
δϵ̃

4ρ

)
JPr(H4

JK)

Then we use the fact that f(xJK) − f∗ ≥ 0, f(x0) − f∗ ≤ ∆f and choose J =

8
(⌊

max
(

12ρ2∆f

δ3 ,
4ρ∆f

δϵ

)⌋
+ 1
)
≥ 8∆f

min
(

δ3

12ρ2
, δϵ̃4ρ

) , we have

Pr
(
H4

JK

) K0 = JK
= Pr

(
H4

K0

)
≤ 1

8
Using the union bound and Lemma 27, we have

Pr
(
H1

K0

)
=Pr

(
H1

K0

⋂
H3

K0

)
+ Pr

(
H1

K0

⋂(
H3

K0

)c)
= Pr

(
H4

K0

)
+ Pr

(
H1

K0

⋂(
H3

K0

)c)
≤Pr

(
H4

K0

)
+ Pr

((
H3

K0

)c)
= Pr

(
H4

K0

)
+ 1− Pr

(
H3

K0

)
≤1

8
+ 1− 15

16
=

3

16
Then we have

Pr
((
H1

K0

)c⋂H3
K0

)
=1− Pr

(
H1

K0

⋃(
H3

K0

)c) ≥ 1− Pr
(
H1

K0

)
− Pr

((
H3

K0

)c)
=Pr

(
H3

K0

)
− Pr

(
H1

K0

)
≥ 15

16
− 3

16
=

3

4

From Lemma 28, we have with probability at least 3
4 , Algorithm 8 will be terminated and output xk

before K0 iterations satisfying

∥∇f(xk)∥ ≤ 3ϵ̃, λmin(∇2f(xk)) ≥ −2δ,

Then we compute the total function query complexity:

• On the one hand, with probability at least 3/4, the algorithm stops with no more than K0

iterations, thus the function query complexity of computing the deterministic coordinate-
wise gradient in Line 6 and Line 9 of Algorithm 8 can be bounded by

d (⌈K0/q⌉ |S1|+K0|S2|) ≤d ((K0/q + 1) |S1|+K0|S2|)
|S1| = q|S2|
≤ d (|S1|+ 2K0|S2|)

≤d
(
|S1|+ K

(
8

⌊
max

(
12ρ2∆f

δ3
,
4ρ∆f

δϵ

)⌋
+ 8

)
· 2|S2|

)

51

• On the other hand, with probability at least 3/4, the algorithm stops with no more than
K0 iterations, thus there are at most K0/K = J times of zeroth-order negative curvature
search. The total function query complexity for zeroth-order negative curvature search can
be bounded by

Õ

(
d

(
8

⌊
max

(
12ρ2∆f

δ3
,
4ρ∆f

δϵ

)⌋
+ 8

)
ℓ2

δ2

)
where Õ hides a polylogarithmic factor of d.

Then by substituting K = δℓn0

ρϵ , |S1| = 16σ2

ϵ2 , |S2| = 16σ
ϵn0

the total function query complexity can be
bounded by

Õ
(
d

(
16σ2

ϵ2
+

(
2
16σ

ϵn0

δℓn0

ρϵ
+

ℓ2

δ2

)
·
(
8

(
12ρ2∆f

δ3
+

4ρ∆f

δϵ

)
+ 8

)))
=Õ

(
d
σ2

ϵ2
+ d

(
σδℓ

ρϵ2
+

ℓ2

δ2

)(
ρ2∆f

δ3
+

ρ∆f

δϵ
+ 1

))
=Õ

(
d

(
σℓ∆f

ϵ3
+

σℓρ∆f

ϵ2δ2
+

ℓ2ρ∆f

δ3ϵ
+

ℓ2ρ2∆f

δ5
+

σ2

ϵ2
+

σδℓ

ρϵ2
+

ℓ2

δ2

))
above, Õ hides the polylogarithmic factor of d and the constant factor.

G Additional Experiments

In this section, we conduct several experiments to verify the effectiveness of our methods for both
deterministic setting and stochastic setting. Specifically, for the deterministic setting, we compare
our ZO-GD-NCF against three ZO algorithms for escaping saddle points, which are ZPSGD, PAGD,
and RSPI. For the stochastic setting, we compare the three algorithms proposed in the paper, which
are ZO-SGD-NCF, ZO-SCSG-NCF, and ZO-SPIDER-NCF. We don’t compare our methods against
ZO-SCRN because each iteration of ZO-SCRN needs to solve a cubic minimization subproblem:
xk+1 = argminx∈Rd gT(x−xk)+

1
2 (x−xk)

TH(x−xk)+
α
6 ∥x−xk∥3, where g and H are inexact

estimations of the full gradient ∇f(xk) and ∇2f(xk) by ZO oracle, respectively. Although many
efficient inexact solvers of the cubic minimization subproblem have been proposed, most of them are
second-order or first-order methods [1, 7, 10, 11], which is out of the scope of this paper.

G.1 Algorithms Description

Algorithm 10 Zero-th order Perturbed Stochastic Gradient Descent (ZPSGD)
Input: x0, learning rate η, noise radius r, mini-batch size m.

for t = 0, 1, . . . , T do
sample (z

(1)
t , · · · , z(m)

t) ∼ N (0, σ2I)

gt(xt)←
∑m

i=1 z
(i)
t [f(xt + z

(i)
t)− f(xt)]/(mσ2)

xt+1 ← xt − η(gt(xt) + ξt), ξt uniformly ∼ B0(r)

return xT

Algorithm Initialization: (ℓ, ρ, ϵ, c, δ,∆f)

1: χ← 3max{log(dℓ∆f

cϵ2δ), 4}, η ←
c
ℓ , r ←

√
c

χ2 · ϵℓ , gthres ←
√
c

χ2 · ϵ, fthres ← c
χ3 ·

√
ϵ3

ρ

2: tthres ← χ
c2 ·

ℓ√
ρϵ , S ←

√
c

χ

√
ρϵ

ρ , hlow ← 1
ch

min{gthres,
rρδS

2
√
d
}

52

Algorithm 12 PAGD(x0)
1: for t = 0, 1, . . . do
2: zt ← q(xt,

gthres
4ch

)

3: if ∥zt∥ ≥ 3
4gthres then

4: xt+1 ← xt − ηzt
5: else
6: xt+1 ← EscapeSaddle (xt)
7: if xt+1 = xt then return xt

Algorithm 13 EscapeSaddle (x̂)
1: ξ ∼ Unif(B0(r))
2: x̃0 ← x̂+ ξ
3: for i = 0, 1, . . . tthres do
4: if f(x̂)− f(x̃i) ≥ fthres then
5: return x̃i

6: x̃i+1 ← x̃i − ηq(x̃i, hlow)

7: return x̂

Algorithm 14 Random search PI (RSPI).
1: Parameters σ1, σ2 > 0
2: Initialize x0 at random
3: for k = 0, 2, 4, · · · 2K do
4: s1 ∼ Sd−1 (uniformly)
5: xk+1 = argmin{f(xk), f(xk +

σ1s1), f(xk − σ1s1)}
6: s2 = DFPI(xk)
7: xk+2 = argmin{f(xk+1), f(xk+1 +

σ2s2), f(xk+1 − σ2s2)}
8: Optional: Update σ1 and σ2

Algorithm 15 Derivative-Free Power Iteration (DFPI)
1: Parameters c, r, η > 0 and TDFPI ∈ Z+

2: Inputs : x ∈ Rd,
3: s

(0)
2 ∼ Sd−1 (uniformly)

4: for t = 0 . . . TDFPI − 1 do

5: g+ =
d∑

i=1

f(x+r·s(t)2 +c·ei)−f(x+r·s(t)2 −c·ei)
2c ei

6: g− =
d∑

i=1

f(x−r·s(t)2 +c·ei)−f(x−r·s(t)2 −c·ei)
2c ei

7: Update: s(t+1)
2 = s

(t)
2 − η g+−g−

2r

8: Normalize s
(t+1)
2 = s

(t+1)
2 /∥s(t+1)

2 ∥
9: Return : s(TDFPI)

2

G.2 Parameter Settings of the Octopus Function Experiment

The detailed parameter settings of the octopus function experiment are stated in the following table.

Table 2: Choices of parameters for the experiment of the octopus function.

Algorithm Parameters
d = 10, 30, 50, 100

ZPSGD ℓ = e, ρ = 1e− 4, r = ϵ, η = 1
2ℓ ,m = d

PAGD ℓ = e, ρ = e, η = 1
4ℓ , r = e

100 , tthresh = 1, gthresh = eγ
100

ZO-GD-NCF ℓ = e, ρ = e, η = 1
4ℓ , p = 0.01

d = 10
RSPI ℓ = e, ρ = e, σ1 = 1, σ2 = 1.25, ρσ1

= 0.95, Tσ1
= 20, TDFPI = 20

d = 30
RSPI ℓ = e, ρ = e, σ1 = 1, σ2 = 1.25, ρσ1

= 0.95, Tσ1
= 20, TDFPI = 20

d = 50
RSPI ℓ = e, ρ = e, σ1 = 1, σ2 = 1.25, ρσ1

= 0.85, Tσ1
= 20, TDFPI = 20

d = 100
RSPI ℓ = e, ρ = e, σ1 = 0.75, σ2 = 0.5, ρσ1

= 0.9, Tσ1
= 20, TDFPI = 20

G.3 Comparison between ZO-GD-NCF and Neon2+GD on Octopus Function

In order to show that our ZO-GD-NCF method will not significantly increase the iteration complexity
compared to Neon2+GD [4], we compare the iteration performance between ZO-GD-NCF and
Neon2+GD on octopus function. The parameters corresponding to the octopus function are set with
τ = e, L = e, γ = 1. We initialize the two algorithms at point (0, . . . , 0)T.

We set ϵ = 1e−4, δ =
√
ρϵ for all experiments and report the function value v.s. number of iterations

in Figure 2.

53

0 50 100 150 200
Iterations

4000

3000

2000

1000

0

f(x
k)

Neon2+GD
ZO-NCF-GD

(a) d=30

0 50 100 150 200 250 300 350
Iterations

7000

6000

5000

4000

3000

2000

1000

0

f(x
k)

Neon2+GD
ZO-NCF-GD

(b) d=50

Figure 2: Comparison of ZO-GD-NCF and Neon2+GD for solving octopus function problem.

The results in Figure 2 clearly shows that ZO-GD-NCF have almost the same iteration performance
with Neon2+GD. The detailed parameter settings are stated in the following table.

Table 3: Choices of parameters of ZO-GD-NCF and Neon2+GD.

Algorithm Parameters
ZO-GD-NCF ℓ = e, ρ = e, η = 1

2ℓ , p = 0.01
Neon2+GD ℓ = e, ρ = e, η = 1

2ℓ , p = 0.01

G.4 Cubic Regularization Problem

To test performance of the proposed methods for both deterministic setting and stochastic setting. We
consider the cubic regularization problem [34], which is defined as:

min
w∈Rd

1

2
wTAw + bTw +

α

3
∥w∥3. (18)

For the deterministic setting, we generate a diagonal A such that 10% randomly selected diagonal
entries are -1 and the rest diagonal entries are uniformly randomly chosen from [1, 2], and set b
to a zero vector. For the stochastic setting, we let A = A′ + E[diag(ξ)] and b = E[ξ′], where A′

is generated the same way as that in the deterministic setting, ξ are uniformly randomly chosen
from [-0.1, 0.1] and ξ′ are uniformly randomly chosen from [−1, 1]. The parameter α in Eq. (18)
is set to 0.5 for both deterministic setting and stochastic setting. We set ϵ = 10−2, δ =

√
ρϵ for all

experiments. To test the ability of different algorithms to escape from saddle points, we initialize all
algorithms at a saddle point (0, . . . , 0)T.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Function Query 1e6

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ob
je

ct
iv

e
Fu

nc
tio

n

PAGD
ZO-NCF-GD
ZPSGD
RSPI

(a) Deterministic, d=100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Function Query 1e6

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ob
je

ct
iv

e
Fu

nc
tio

n

PAGD
ZO-NCF-GD
ZPSGD
RSPI

(b) Deterministic, d=200

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
of Function Query 1e7

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ob
je

ct
iv

e
Fu

nc
tio

n

ZO-SGD-NCF
ZO-SCSG-NCF (Option I)
ZO-SCSG-NCF (Option II)
ZO-SPIDER-NCF

(c) Stochastic, d=20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
of Function Query 1e7

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ob
je

ct
iv

e
Fu

nc
tio

n

ZO-SGD-NCF
ZO-SCSG-NCF (Option I)
ZO-SCSG-NCF (Option II)
ZO-SPIDER-NCF

(d) Stochastic, d=100

Figure 3: Comparison of different algorithms for solving cubic regularization problem in deterministic
setting and stochastic setting.

In deterministic setting, the results in Fig. 3 (a) and (b) illustrate that, 1) the negative curvature finding
based algorithms (ZO-GD-NCF, RSPI) can escape saddle points more efficient than the random

54

perturbation based algorithms (ZPSGD, PAGD). 2) On the other hand, the gradient estimation based
algorithms (ZO-GD-NCF, ZPSGD, PAGD) converge faster than the random search based algorithm
(RSPI). In the stochastic setting, ZO-SPIDER-NCF converges faster than other three algorithms.

Table 4: Choices of parameters for the experiment of the cubic regularization problem.

Algorithm Parameters
Deterministic, d = 100

ZPSGD ℓ = 102, ρ = 1, r = ϵ, η = 1
2ℓ ,m = d

PAGD ℓ = 102, ρ = 1, η = 1
4ℓ , r = 10−2, tthresh = 1, gthresh = 10−2

RSPI ℓ = 102, ρ = 1, σ1 = 0.4, σ2 = 0.4, ρσ1
= 0.98, Tσ1

= 10, TDFPI = 100
ZO-GD-NCF ℓ = 102, ρ = 1, η = 1

4ℓ , p = 0.01
Deterministic, d = 200

ZPSGD ℓ = 102, ρ = 1, r = ϵ, η = 1
2ℓ ,m = d

PAGD ℓ = 102, ρ = 1, η = 1
4ℓ , r = 10−2, tthresh = 1, gthresh = 10−2

RSPI ℓ = 102, ρ = 1, σ1 = 0.4, σ2 = 0.4, ρσ1
= 0.98, Tσ1

= 10, TDFPI = 100
ZO-GD-NCF ℓ = 102, ρ = 1, η = 1

4ℓ , p = 0.01
Stochastic, d = 20, d=100

ZO-SGD-NCF ℓ = 102, ρ = 1, η = 1
3ℓ , |S| = 128, p = 0.01

ZO-SCSG-NCF Option I : ℓ = 102, ρ = 1, η = 1
4ℓ , B = 128, b = 10, p = 0.01

ZO-SCSG-NCF Option II : ℓ = 102, ρ = 1, η = 1
10ℓ , B = 128, b = 10, p = 0.01

ZO-SPIDER-NCF ℓ = 102, ρ = 1, η = 1
15ℓ , |S1| = 128, |S2| = 10, p = 0.01

G.5 Regularized Non-Linear Least-Square Problem

We next consider the regularized non-linear least-square problem [34], which is defined as:

min
w∈Rd

1

n

n∑
i=1

(yi − σ(wTxi))
2 +

d∑
i=1

λw2
i

1 + αw2
i

, (19)

where xi ∈ Rd, yi ∈ {0, 1}, σ(s) = 1
1+exp(−s) , and the second term is a non-convex regularizer. We

use the w1a data (n=2477, d=300) which can be downloaded from the LIBSVM website [12]. We
set λ = 1, α = 1 in Eq.(19) and ϵ = 1e− 2, δ =

√
ρϵ for both deterministic setting and stochastic

setting. We report the objective function value v.s. the number of function queries in Figure 4 and
can draw similar conclusions to the previous experiment.

0 1 2 3 4 5 6 7
of Function Query 1e5

0.20

0.21

0.22

0.23

0.24

0.25

Ob
je

ct
iv

e
Fu

nc
tio

n

PAGD
ZO-NCF-GD
ZPSGD
RSPI

0.0 0.5 1.0 1.5 2.0 2.5 3.0
of Function Query 1e7

0.2350

0.2375

0.2400

0.2425

0.2450

0.2475

0.2500

Ob
je

ct
iv

e
Fu

nc
tio

n

ZO-SGD-NCF
ZO-SCSG-NCF (Option I)
ZO-SCSG-NCF (Option II)
ZO-SPIDER-NCF

Figure 4: Comparison of different algorithms for solving regularized non-linear least-square problem
in deterministic setting and stochastic setting

55

Table 5: Choices of parameters for the experiment of the regularized non-linear least-square problem.

Algorithm Parameters
Deterministic

ZPSGD ℓ = 102, ρ = 1, r = ϵ, η = 1
2ℓ ,m = d

PAGD ℓ = 102, ρ = 1, η = 1
4ℓ , r = 10−2, tthresh = 1, gthresh = 10−2

RSPI ℓ = 102, ρ = 1, σ1 = 0.4, σ2 = 0.4, ρσ1
= 0.98, Tσ1

= 10, TDFPI = 100
ZO-GD-NCF ℓ = 102, ρ = 1, η = 1

4ℓ , p = 0.01
Stochastic

ZO-SGD-NCF ℓ = 102, ρ = 1, η = 1
3ℓ , |S| = 128, p = 0.01

ZO-SCSG-NCF Option I : ℓ = 102, ρ = 1, η = 1
4ℓ , B = 128, b = 10, p = 0.01

ZO-SCSG-NCF Option II : ℓ = 102, ρ = 1, η = 1
10ℓ , B = 128, b = 10, p = 0.01

ZO-SPIDER-NCF ℓ = 102, ρ = 1, η = 1
15ℓ , |S1| = 128, |S2| = 10, p = 0.01

56

	Introduction
	Preliminaries
	ZO Gradient Estimators
	ZO Hessian-Vector Product Estimator

	Zeroth-Order Negative Curvature Finding
	Stochastic Setting
	Deterministic Setting

	Applications of Zeroth-Order Negative Curvature Finding
	Applying Zeroth-Order Negative Curvature Finding to ZO-GD and ZO-SGD
	Applying Zeroth-Order Negative Curvature Finding to ZO-SCSG and ZO-SPIDER

	Numerical Experiments
	Conclusion
	Auxiliary Lemmas
	Lemmas of ZO Gradient Estimators
	ZO Hessian-Vector Product Estimator

	Proof of Proposition 1
	Proof of Zeroth-Order Negative Curvature Search
	Proof of Online setting
	Proof of Deterministic setting

	Proof of Results of ZO-GD and ZO-SGD
	Proof of Theorem 3 (Lg)
	Proof of Theorem 3 (Lg)

	Applying Zeroth-Order Negative Curvature Finding to ZO-SCSG
	One Epoch Analysis of Lg
	Proof of Second-Order Stationary Point (Lg)
	One Epoch Analysis of Lg
	Proof of Second-Order Stationary Point (Lg)

	Applying Zeroth-Order Negative Curvature Finding to ZO-SPIDER
	Proof of high probability results for First-Order Stationary Point of Theorem 9
	Proof of high probability results for Second-Order Stationary Point of Theorem 6

	Additional Experiments
	Algorithms Description
	Parameter Settings of the Octopus Function Experiment
	Comparison between ZO-GD-NCF and Neon2+GD on Octopus Function
	Cubic Regularization Problem
	Regularized Non-Linear Least-Square Problem

