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In this supplementary material, we present additional details and clarifications that are omitted in
the main text due to space constraints.

• Appendix A Related Works.

• Appendix B Dataset Details.

• Appendix C Implementation Details.

• Appendix D Full Results.

• Appendix E More Qualitative Examples.

A RELATED WORKS

VLMs for Robotics. Vision-language models (VLMs) have emerged as pivotal tools in robotics,
enabling systems to interpret and act upon complex visual and textual information. By integrating
visual perception with language understanding, VLMs facilitate more intuitive human-robot inter-
actions and enhance autonomous decision-making capabilities. Recent advancements have demon-
strated the potential of VLMs in various robotic applications. For instance, vision-language-action
models (VLAs) Kim et al. (2024); Brohan et al. (2023); Octo Model Team et al. (2024) enable
robots to interpret and execute complex instructions and output executable robot actions. Addition-
ally, VLMs like GPT-4v OpenAI et al. (2024) have been utilized for high-level task planning Wake
et al. (2023), allowing robots to generate detailed action sequences from natural language instruc-
tions. Furthermore, VLMs have been used for keypoint/mask prediction Huang et al. (2024c); Wi
et al. (2023); Nasiriany et al. (2024), error analysis Duan et al. (2024), grasp pose prediction Huang
et al. (2024a). Despite these advancements, integrating VLMs Cai et al. (2024); Cheng et al. (2024);
Yuan et al. (2024) into robotic systems presents challenges. One significant hurdle is the need for
precise spatial reasoning to navigate and manipulate objects effectively. While VLMs excel in un-
derstanding and generating language, their ability to comprehend and reason about spatial relation-
ships in dynamic environments remains limited Yamada et al. (2024); Xu et al. (2024); Wang et al.
(2024a). Therefore, ROBOSPATIAL aims to tackle this gap by presenting a large scale pretraining
and evaluation setup for teaching spatial understanding to VLM for robotics.

Spatial Understanding with VLMs. Spatial understanding has been implicitly and explicitly part
of various vision and question answering tasks Fu et al. (2024); Azuma et al. (2022); Jia et al.
(2024); Suhr & Artzi (2019); Salewski et al. (2022); Krishna et al. (2017); Johnson et al. (2017);
Hudson & Manning (2019). While many benchmarks and methods have been proposed, they often
come with limitations: some focus exclusively on simulations Szymanska et al. (2024) or generic
images Liu et al. (2023a); Rajabi & Kosecka (2024); Cheng et al. (2024); Chen et al. (2024); Fu
et al. (2024); Kamath et al. (2023); Shiri et al. (2024); Ranasinghe et al. (2024), others are difficult
to evaluate Szymanska et al. (2024); Du et al. (2024); Linghu et al. (2024), rely on complete 3D
scans Zhang et al. (2024); Man et al. (2024); Ma et al. (2023); Linghu et al. (2024), or do not consider
reference frames Zhang et al. (2024); Man et al. (2024); Ma et al. (2023); Linghu et al. (2024); Chen
et al. (2024); Cheng et al. (2024); Fu et al. (2024); Ranasinghe et al. (2024). Furthermore, they
often fail to address actionable, robotics-relevant spatial relationships such as spatial compatibility
and context Du et al. (2024); Fu et al. (2024); Wang et al. (2024b); Shiri et al. (2024); Kamath et al.
(2023); Linghu et al. (2024); Ranasinghe et al. (2024).

Inspired by prior works on spatial reasoning Liu et al. (2023a); Kamath et al. (2023)—where the
impact of reference frames and spatial configurations was explored in generic images Lin et al.
(2015); Hudson & Manning (2019)—we extend spatial understanding to a robotics-specific context
with actionable spatial relationships such as spatial compatibility and spatial context. Our aim is to
enable direct application to robotic workflows, such as task planning and verification.

To achieve this, we have developed and are planning to open-source a large-scale 2D/3D ready
pretraining dataset, an automated data annotation pipeline, and trained models. We further show how
our dataset can be used to teach spatial reasoning to a suite of vision-language models (VLMs) in
in-domain and out-of-domain spatial reasoning datasets. We hope these resources lower the barrier
to entry for exploring spatial understanding tailored to robotics.
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3D Point Cloud

Image

Spatial Configuration Spatial CompatibilitySpatial Context

Diverse Reference Frames
Ego-centric World-centric Object-centric

Q. Is the bin left of the
      cabinet?
A. Yes

Q. Point to the empty areas 
       in front of the cabinet.
A. (603, 979), (594, 988)

Q. Can the bin fit in front of 
       the cabinet?
A. Yes

3D Bounding Boxes

Q. Can the cup fit left 
      of the screwdriver?
A. Yes

Q. Is the soup can below      
      the banana?
A. No

Q. Is the chair in front 
      of the monitor?
A. Yes

Spatial Relationship Annotations

Procedural 
Generation

Figure 3: Overview of the ROBOSPATIAL dataset. We automatically generate spatial relationship
annotations from existing datasets with 3D point clouds, egocentric images, and 3D bounding box
annotations. We create question/answer pairs covering three classes of spatial relationships, three
spatial reference frames, and both binary (yes/no) and numeric (e.g., 2D image points) answers.
From 1M images and 5K scans, we generate over 3M spatial question/answer pairs.

B DATASET DETAILS

B.1 DATASET STATISTICS

We provide the full dataset statistics in Table 3. For all training, we use only 900,000 spatial relation-
ships, equally divided across all datasets, due to computational constraints. We further experiment
on the effect of data scaling on Table 7 and explain the results. Notably, HOPE Tyree et al. (2022)
and GraspNet-1B Fang et al. (2020) contain similar tabletop images captured from different per-
spectives, resulting in lower dataset diversity for the tabletop environment. We plan to enhance the
diversity of our dataset by incorporating additional tabletop datasets.

B.2 DATASET GENERATION DETAILS

Frame Generation. We explain how answers are generated for each frame Figure 3. Each question
type has three answers from ego-centric, object-centric, and world-centric perspectives. Each frame
may share the same answer since not all frames lead to unique answers. For our answer generation,
we used the following logic:

• Ego-centric: The default perspective from the ego-centric view.

• Object-centric: Using the oriented bounding box directions, we determine the front of the
object. With this information, we assign front, behind, left, and right. Above and below
remain the same as in the ego-centric perspective.

• World-centric: Using the z-coordinate of the oriented bounding box, we modify the above
and below relationships to reflect whether an object is above or below another object with
respect to elevation.

Compatibility Generation. For compatibility, we construct a top-down map as shown in Figure 4.
Using the top-down map and the top-down 2D bounding box of the object to be placed, we determine
if there exists an empty space within a threshold distance (i.e., 1% of the object’s longest width or
length). If the object meets this condition, it is deemed compatible to be fitted.

12
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Table 3: Full dataset statistics for indoor and tabletop datasets.

Category Dataset Split Scans Images Configuration Q Context Q Compatibility Q

Indoor

Matterport3D Chang et al. (2017)
Train 1859 scans 236243 298439 298439 298439

Validation 5 scans 100 100 100 100
Test 5 scans 100 100 100 100

ScanNet Dai et al. (2017)
Train 1512 scans 278402 298439 298439 298439

Validation 12 scans 1200 500 500 500
Test 12 scans 1200 500 500 500

3RScan Wald et al. (2019)
Train 1543 scans 365355 298439 298439 298439

Validation 9 scans 900 400 400 400
Test 9 scans 900 400 400 400

Tabletop

HOPE Tyree et al. (2022)
Train 50 scenes 50000 36317 36317 36317

Validation 10 scenes 50 500 500 500
Test 47 scenes 235 500 500 500

GraspNet-1B Fang et al. (2020)
Train 100 scenes 25500 36317 36317 36317

Validation 30 scenes 120 500 500 500
Test 30 scenes 120 500 500 500

3D Bounding Boxes Top-Down Map

Figure 4: An example of generated top-down map of the image from 3D bounding boxes.

C IMPLEMENTATION DETAILS

C.1 MODEL TRAINING

We further explain the training details for all 2D and 3D VLMs trained on ROBOSPATIAL. For
all models, we perform instruction tuning using the model weights from public repositories. All
training is done using 8 Nvidia H100 GPUs, with the training time between 20 and 40 hours.

VILA Lin et al. (2023) We initialize our model from Efficient-Large-Model/Llama-3-VILA1.5-8B
on Hugging Face. We use the fine-tuning script from the VILA GitHub repository to train our model
using the default hyperparameters.
LLaVA-NeXT Liu et al. (2023b) We initialize our model from lmms-lab/llama3-llava-next-8b on
Hugging Face. We use the LLaVA-Next fine-tuning script from the LLaVA-Next repository using
the default hyperparameters.
SpaceLLaVA Chen et al. (2024) As official code and weights for SpatialVLM Chen et al. (2024)
is not released, we use a community implementation which is endorsed by SpatialVLM Chen et al.
(2024) authors. We initialize our model from remyxai/SpaceLLaVA from Hugging Face. We use
LLaVA-1.5 finetuning script from LLaVa Liu et al. (2023c) repository using the default hyperpa-
rameters.
RoboPoint Yuan et al. (2024) We initialize our model from wentao-yuan/robopoint-v1-vicuna-v1.5-
13b on Hugging Face. We use the fine-tuning script provided in the RoboPoint Yuan et al. (2024)
GitHub repository to train our model using the default hyperparameters.
3D-LLM Hong et al. (2023) We initialize our model using the pretrain blip2 sam flant5xl v2.pth
checkpoint downloaded from the official GitHub repository. Since the model requires preprocessing
of multiview images, we follow the author’s pipeline to process multiview images from our environ-
ments. Because the model does not accept image input, we append the following text in front of the
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Table 4: Results of existing 2D/3D VLMs on a held-out test split of images and scans. All methods, for all
tasks, perform better (") when fine-tuned on our ROBOSPATIAL dataset. The best result for each column is
bolded.

Model Indoor Tabletop Average
Configuration Context Compatibility Configuration Context Compatibility Indoor Tabletop Total

Open-source VLMs

2D VLMs
VILA Lin et al. (2023) 54.7 18.3 56.3 45.1 13.2 53.8 43.1 37.4 40.2
+ROBOSPATIAL 71.4 " 45.9 " 77.2 " 71.8 " 43.7 " 73.3 " 64.8 " 62.9 " 63.9 "

LLaVA-NeXT Liu et al. (2023b) 48.9 12.5 32.7 48.3 8.4 30.9 31.4 29.2 30.3
+ROBOSPATIAL 69.3 " 41.3 " 70.5 " 70.7 " 44.8 " 66.1 " 60.4 " 60.5 " 60.5 "

SpaceLLaVA Chen et al. (2024) 52.6 15.3 49.0 66.5 12.2 60.1 38.9 46.2 43.6
+ROBOSPATIAL 76.0 " 50.7 " 76.6 " 74.9 " 46.4 " 70.5 " 67.8 " 63.6 " 65.7 "

RoboPoint Yuan et al. (2024) 39.0 41.4 38.3 37.9 31.6 45.2 39.6 38.2 38.9
+ROBOSPATIAL 72.2 " 68.9 " 72.1 " 70.3 " 61.7 " 78.4 " 71.0 " 70.1 " 70.6 "

3D VLMs
3D-LLM Hong et al. (2023) 54.5 8.1 53.6 59.2 10.6 57.4 37.6 42.4 40.0
+ROBOSPATIAL 76.3 " 35.4 " 77.5 " 76.2 " 46.8 " 75.0 " 63.1 " 66.0 " 64.6 "

LEO Huang et al. (2024b) 56.1 11.3 58.3 60.8 11.1 59.3 41.9 43.7 42.8
+ROBOSPATIAL 80.2 " 56.7 " 82.5 " 78.1 " 55.2 " 78.9 " 73.1 " 70.7 " 71.9 "

Not available for fine-tuning

2D VLMs
Molmo Deitke et al. (2024) 40.6 48.2 60.0 61.5 35.8 54.6 49.6 50.6 50.1
GPT-4o OpenAI et al. (2024) 63.5 25.1 59.4 62.3 27.9 66.8 49.3 52.3 50.8

question to ensure the model understands the perspective from which the question is being asked: “I
am facing ANCHOR OBJECT.” We use the default hyperparameters and train the model for 20 epochs
per the author’s guidelines. We choose the best model based on validation accuracy.
LEO Huang et al. (2024b) We initialize our model from the sft noact.pth checkpoint downloaded
from the official GitHub repository.
Since LEO supports dual image and 3D point cloud input, we input both of them and modify the
question as in 3D-LLM. We use the default hyperparameters and train the model for 10 epochs per
the author’s guidelines, and choose the best model based on validation accuracy.

We could not fine-tune Molmo Deitke et al. (2024) from allenai/Molmo-7B-D-0924 or GPT-4o Ope-
nAI et al. (2024) from the gpt-4o-2024-08-06 API due to the unavailability of the fine-tuning script
at the time of this work, thus we use them as a zero-shot baselines.

C.2 ROBOT SETUP

For picking, we find which object the point maps to using SAM 2 Ravi et al. (2024) and execute
our picking behavior on that object. For placing, we simply compute the 3D coordinate based on
the depth value at that pixel and place the object at that coordinate. There were no failures due to
cuRobo Sundaralingam et al. (2023) failing. The experiments were purposely designed to consist
of behaviors that our robot system can handle in order to avoid introducing irrelevant factors. The
picking behavior consists of computing a top-down grasp pose and reaching it with cuRobo Sundar-
alingam et al. (2023). To compute the grasp pose:

1. We estimate the major axis of the object’s point cloud in top-down view using PCA.

2. The grasp orientation is orthogonal to the major axis.

3. The grasp height is based on the highest point in the object’s point cloud minus an offset of
3cm. This heuristic ensures the system can grip long objects.

The placing behavior is the same as picking, except that an area within 5cm of the placement coor-
dinate is used as the point cloud for estimating orientation and height, and a vertical height offset is
added to account for the height at which the object was picked.

C.3 OMITTED RESULTS IN THE MAIN TEXT

We show the full results in held-out test split in Table 4 and out-of-domain splits in Table 5.
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Table 5: Results on an out-of-domain test split comparing prior art VLMs. The results show improved (")
spatial understanding capabilities on similar domains. Bolded number is the best result for the column.

Model ROBOSPATIAL-Home BLINK-Spatial
Localization Affordance Compatibility Accuracy

Open-source VLMs

2D VLMs
VILA Lin et al. (2023) 53.3 12.0 52.0 72.7

+ROBOSPATIAL 62.0 " 32.0 " 58.0 " 79.7 "
LLaVA-NeXT Liu et al. (2023b) 48.0 9.3 37.3 71.3

+ROBOSPATIAL 58.0 " 24.0 " 44.0 " 79.0 "
SpaceLLaVA Chen et al. (2024) 60.0 16.0 49.3 76.2

+ROBOSPATIAL 68.7 " 38.0 " 56.0 " 81.8 "
RoboPoint Yuan et al. (2024) 43.3 41.3 36.0 63.6

+ROBOSPATIAL 50.0 " 54.0 " 48.0 " 70.6 "

3D VLMs
3D-LLM Hong et al. (2023) 40.0 8.0 46.0 N/A

+ROBOSPATIAL 48.0 " 36.0 " 52.7 " N/A
LEO Huang et al. (2024b) 50.7 10.0 48.0 N/A

+ROBOSPATIAL 64.0 " 40.0 " 60.0 " N/A
Not available for fine-tuning

Molmo Deitke et al. (2024) 44.7 38.0 58.0 67.1
GPT-4o OpenAI et al. (2024) 64.0 25.3 56.7 76.2

Table 6: Average accuracy for dataset generalization when training on indoor scenes and testing on tabletop
scenes (indoor!tabletop), and vice versa (tabletop!indoor).

Indoor ! Tabletop Tabletop ! Indoor
RoboPoint Yuan et al. (2024) 38.7 38.2

+ROBOSPATIAL 48.9 " 51.3 "
LEO Huang et al. (2024b) 41.9 43.7

+ROBOSPATIAL 47.2 " 54.5 "

C.4 CROSS-DATASET GENERALIZATION

We evaluate the generalization capability of our method by testing it across different scene
types—specifically, both indoor and tabletop scenes—to control for any bias in the annotations
of the underlying datasets that make up our benchmark. We train on data derived from subsets of
the datasets corresponding to one scene type (either indoor or tabletop) and test on held-out datasets
from the other scene type, representing unseen environments. We expect that even when training on
a subset of datasets, the performance on unseen scene types will improve if our method generalizes
well. The results of this cross-dataset evaluation are shown in Table 6.

C.5 DATA SCALING

In Table 7, we experiment with scaling the number of annotations while keeping images fixed. We
found that even though the number of images stays consistent, increasing the number of annotations
can improve performance. For future work, we plan to apply our data generation pipeline to a diverse
set of indoor and tabletop environments to further improve the performance of our models.

C.6 ACCURACY PER FRAME OF REFERENCE

We show the results per frame in Table 8 for our out-of-domain test set. From the results, we
can see a distinct difference between 2D and 3D VLMs in understanding the world-centric frame
before training with ROBOSPATIAL. Baseline 2D VLMs have trouble understanding the world-
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Table 7: Results of scaling experiment on LLaVa-Next Liu et al. (2023b) with varied spatial relationship anno-
tations. Average accuracy on held-out test set is reported.

Annotation Size 100K 300K 900k (Default) 1.8M 3M (Full)

LLaVa-Next Liu et al. (2023b) 38.1 46.7 60.5 65.8 72.4

Table 8: Results of per frame accuracy of existing 2D/3D VLMs on a held-out test split of images and scans.
All methods, for all tasks, perform better (") when fine-tuned on our ROBOSPATIAL dataset. The best result
for each column is bolded.

Model Indoor Tabletop Average
Ego-centric Object-centric World-centric Ego-centric Object-centric World-centric Indoor Tabletop Total

Open-source VLMs

2D VLMs
VILA Lin et al. (2023) 55.9 40.5 32.9 43.6 39.7 28.9 43.1 37.4 40.2

+ROBOSPATIAL 74.3" 57.8 " 62.3 " 70.3 " 58.1 " 60.3 " 64.8 " 62.9 " 63.9 "
LLaVA-Next Liu et al. (2023b) 35.2 24.3 34.7 36.4 28.5 22.7 31.4 29.2 30.3

+ROBOSPATIAL 75.4 " 54.1 " 68.8 " 67.9 " 54.7 " 58.9 " 60.4 " 60.5 " 60.5 "
SpaceLLaVA Chen et al. (2024) 40.6 36.0 30.1 52.3 32.8 53.5 38.9 46.2 43.6

+ROBOSPATIAL 78.5 " 60.6 " 64.3 " 73.0 " 49.5 " 68.3 " 67.8 " 63.6 " 65.7 "
RoboPoint Yuan et al. (2024) 41.9 36.2 40.7 46.2 30.5 37.9 39.6 38.2 38.9

+ROBOSPATIAL 76.4 " 58.3 " 78.3 " 76.7 " 62.6 " 71.0 " 71.0 " 70.1 " 70.6 "

3D VLMs
3D-LLM Hong et al. (2023) 28.9 38.3 45.6 38.9 35.7 52.6 37.6 42.4 40.0

+ROBOSPATIAL 60.7 " 52.1 " 76.5 " 57.9 " 62.8 " 77.3 " 63.1 " 66.0 " 64.6 "
LEO Huang et al. (2024b) 46.9 30.6 48.2 41.4 34.3 55.4 41.9 43.7 42.8

+ROBOSPATIAL 68.1 " 71.6 " 79.6 " 71.4 " 60.2 " 80.5 " 73.1 " 70.7 " 71.9 "
Not available for fine-tuning

2D VLMs
Molmo Deitke et al. (2024) 50.4 50.8 47.6 64.4 33.6 53.8 49.6 50.6 50.1
GPT-4o OpenAI et al. (2024) 52.9 38.7 56.3 62.5 30.7 63.7 49.3 52.3 50.8

centric frame, which involves understanding elevation, while 3D VLMs comparatively excel at it.
Furthermore, we can see that since baseline 3D VLMs are trained on point clouds without infor-
mation of perspective, their accuracy in ego-centric and object-centric frames is lower. However,
with ROBOSPATIAL training, we were able to teach the 3D VLMs to think in a certain frame, thus
considerably improving their performance on ego-centric and object-centric frames. However, we
hypothesize that, due to their design—specifically, the lack of a means to visually inject perspective
information since they require complete 3D point clouds—3D VLMs still lag behind 2D VLMs on
ego-centric and object-centric frames.

D FULL RESULTS

D.1 ROBOT EXPERIMENTS

We present additional results from our robot experiments in Figure 5 and Figure 6. We observe
that models trained with ROBOSPATIAL consistently outperform baseline models in most cases,
even though the prompt is not optimized for ROBOSPATIAL-trained models. This demonstrates that
the power of VLMs enables templated language to generalize to language unseen during training
while maintaining spatial understanding capabilities. However, even with ROBOSPATIAL training,
the models struggle with understanding stacked items, indicating a need for further data augmen-
tation with diverse layouts. In a few cases, ROBOSPATIAL training adversely affects performance,
especially with RoboPoint Yuan et al. (2024). We hypothesize that mixing the dataset with Robo-
Point training data and ROBOSPATIAL training data may lead to unforeseen side effects, particularly
in grounding objects. Nevertheless, we demonstrate that ROBOSPATIAL training enhances VLM’s
spatial understanding in real-life robotics experiments, even with freeform language.

E MORE QUALITATIVE EXAMPLES

Figure 7 and Figure 8 present additional qualitative comparisons between models trained on RO-
BOSPATIAL. Our findings demonstrate that models trained on ROBOSPATIAL consistently exhibit
spatial understanding in the challenging ROBOSPATIAL-Home dataset, even outperforming closed
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Task: Place the object in a free space in front of the orange juice box.

Task: Place the object in a free space in front of the pony.

Figure 5: Robotics experiments: the red dot shows the model output (if not present, the model failed
to provide a valid point in the image); green dots are used to show when a model outputs multiple
points. The robot motion generator, cuRobo Sundaralingam et al. (2023), is used to grasp the item
referenced by the generated point. The spatial- prefix indicates model trained with ROBOSPATIAL.

models like GPT-4o OpenAI et al. (2024). However, we observed that object grounding is a crucial
prerequisite for spatial understanding; the improvement is often hindered by the model’s inability
to ground objects in cluttered scenes, where GPT-4o performs more effectively. Additionally, in
Figure 8, we show that the ROBOSPATIAL-trained model successfully generalizes to unseen spatial
relationships in Blink-Spatial Fu et al. (2024), including those involving distance, such as ”touch-
ing.”
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Question: pick lone object

GPT-4o OpenAI et al. (2024) ×
Molmo Deitke et al. (2024) X
LLaVa-Next Liu et al. (2023b) ×
S-LLaVa-Next Liu et al. (2023b) X
RoboPoint Yuan et al. (2024) ×
S-RoboPoint Yuan et al. (2024) X

Question: Is there room to slot the pan-
cake mix in the middle of the row of
boxes

GPT-4o OpenAI et al. (2024) X
Molmo Deitke et al. (2024) X
LLaVa-Next Liu et al. (2023b) X
S-LLaVa-Next Liu et al. (2023b) X
RoboPoint Yuan et al. (2024) ×
S-RoboPoint Yuan et al. (2024) X

Question: Is there space in the white
container for the orange juice box

LLaVa-Next Liu et al. (2023b) ×
S-LLaVa-Next Liu et al. (2023b) X
RoboPoint Yuan et al. (2024) ×
S-RoboPoint Yuan et al. (2024) ×
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) X

Question: pick object behind the mid-
dle container

LLaVa-Next Liu et al. (2023b) ×
S-LLaVa-Next Liu et al. (2023b) X
RoboPoint Yuan et al. (2024) X
S-RoboPoint Yuan et al. (2024) ×
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ×

Question: place object in container be-
hind popcorn

LLaVa-Next Liu et al. (2023b) ×
S-LLaVa-Next Liu et al. (2023b) X
RoboPoint Yuan et al. (2024) X
S-RoboPoint Yuan et al. (2024) X
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ×

Question: alphabet soup fit in the pur-
ple box

LLaVa-Next Liu et al. (2023b) X
S-LLaVa-Next Liu et al. (2023b) ×
RoboPoint Yuan et al. (2024) X
S-RoboPoint Yuan et al. (2024) X
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) X

Question: pick shortest object

LLaVa-Next Liu et al. (2023b) ×
S-LLaVa-Next Liu et al. (2023b) X
RoboPoint Yuan et al. (2024) X
S-RoboPoint Yuan et al. (2024) X
Molmo Deitke et al. (2024) X
GPT-4o OpenAI et al. (2024) X

Question: place the object inside the
smallest box

LLaVa-Next Liu et al. (2023b) ×
S-LLaVa-Next Liu et al. (2023b) X
RoboPoint Yuan et al. (2024) X
S-RoboPoint Yuan et al. (2024) X
Molmo Deitke et al. (2024) X
GPT-4o OpenAI et al. (2024) ×

Question: can the robot directly pick
the red orange peaches can without dis-
turbing other objects?

LLaVa-Next Liu et al. (2023b) X
S-LLaVa-Next Liu et al. (2023b) X
RoboPoint Yuan et al. (2024) ×
S-RoboPoint Yuan et al. (2024) ×
Molmo Deitke et al. (2024) X
GPT-4o OpenAI et al. (2024) X

Question: can the macaroni and cheese
be placed on top of cheez-it without
touching other objects?

LLaVa-Next Liu et al. (2023b) ×
S-LLaVa-Next Liu et al. (2023b) ×
RoboPoint Yuan et al. (2024) X
S-RoboPoint Yuan et al. (2024) X
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) X

Question: place on the object to the left
of macaroni and cheese

GPT-4o OpenAI et al. (2024) ×
Molmo Deitke et al. (2024) X
LLaVa-Next Liu et al. (2023b) ×
S-LLaVa-Next Liu et al. (2023b) X
RoboPoint Yuan et al. (2024) X
S-RoboPoint Yuan et al. (2024) X

Question: is there an object that is not
in a stack?

GPT-4o OpenAI et al. (2024) X
Molmo Deitke et al. (2024) X
LLaVa-Next Liu et al. (2023b) X
S-LLaVa-Next Liu et al. (2023b) X
RoboPoint Yuan et al. (2024) X
S-RoboPoint Yuan et al. (2024) X

Question: is there space to place one of
the cans on the cheez-it box?

GPT-4o OpenAI et al. (2024) ×
Molmo Deitke et al. (2024) ×
LLaVa-Next Liu et al. (2023b) ×
S-LLaVa-Next Liu et al. (2023b) ×
RoboPoint Yuan et al. (2024) ×
S-RoboPoint Yuan et al. (2024) ×

Question: pick the highest object on
the stack of two objects

GPT-4o OpenAI et al. (2024) ×
Molmo Deitke et al. (2024) ×
LLaVa-Next Liu et al. (2023b) ×
S-LLaVa-Next Liu et al. (2023b) ×
RoboPoint Yuan et al. (2024) ×
S-RoboPoint Yuan et al. (2024) ×

Figure 6: Additional robot experiments. A green check mark indicates that the model
answered correctly. The S- prefix denotes a model trained with ROBOSPATIAL. The
questions are purposely not cleaned to reflect realistic language inputs.
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Spatial
Configuration

Spatial 
Context

Spatial 
Compatibility

Question: Point to empty 
areas behind the trash bin.

Answer:
S-VILA:
S-LLaVa:
S-SpaceLLaVa:
RoboPoint:
S-RoboPoint:
S-3D-LLM: 
S-LEO:
Molmo:
GPT-4o:

Question: Point to empty areas 
  left of the pot.

Answer:
S-VILA:
S-LLaVa:
S-SpaceLLaVa:
RoboPoint:
S-RoboPoint:
S-3D-LLM: 
S-LEO:
Molmo:
GPT-4o:

Question: Can the pot fit above the fridge?

Answer: Yes
VILA: No
S-VILA: Yes
LLaVa: No
S-LLaVa: Yes
SpaceLLaVa: No
S-SpaceLLaVa: Yes
RoboPoint: No
S-RoboPoint: Yes
3D-LLM: No
S-3D-LLM: Yes
LEO: No
S-LEO: Yes
Molmo: No
GPT-4o: No

Question: Can the lamp fit in front 
  of the shelf?

Answer: Yes
VILA: No
S-VILA: Yes
LLaVa: No
S-LLaVa: Yes
SpaceLLaVa: No
S-SpaceLLaVa: Yes
RoboPoint: No
S-RoboPoint: Yes
3D-LLM: No
S-3D-LLM: Yes
LEO: No
S-LEO: Yes
Molmo: No
GPT-4o: No

Question: Is the chair in front of the bed?

Answer: Yes
VILA: No
S-VILA: Yes
LLaVa: No
S-LLaVa: Yes
SpaceLLaVa: No
S-SpaceLLaVa: Yes
RoboPoint: No
S-RoboPoint: Yes
3D-LLM: No
S-3D-LLM: Yes
LEO: No
S-LEO: Yes
Molmo: No
GPT-4o: No

Question: Is the lamp 
  above the shelf?

Answer: Yes
VILA: No
S-VILA: Yes
LLaVa: No
S-LLaVa: Yes
SpaceLLaVa: Yes
S-SpaceLLaVa: Yes
RoboPoint: No
S-RoboPoint: Yes
3D-LLM: No
S-3D-LLM: Yes
LEO: No
S-LEO: Yes
Molmo: No
GPT-4o: Yes

Figure 7: Qualitative results on ROBOSPATIAL-Home. For spatial context questions, we
omit the baseline models which fail to generate a point inside the image. Furthermore, the
first predict point for each model is shown in the image.

Question: Is the dining table touching the 
donut?

Answer: Yes
VILA: No
S-VILA: Yes
LLaVa: No
S-LLaVa: Yes
SpaceLLaVa: No
S-SpaceLLaVa: Yes
RoboPoint: No
S-RoboPoint: Yes
Molmo: No
GPT-4o: No

Question: Is the couch under the 
suitcase?

Answer: Yes
VILA: No
S-VILA: Yes
LLaVa: No
S-LLaVa: Yes
SpaceLLaVa: No
S-SpaceLLaVa: Yes
RoboPoint: No
S-RoboPoint: Yes
Molmo: No
GPT-4o: Yes

Figure 8: Qualitative results on Blink-Spatial Fu et al. (2024). ROBOSPATIAL-trained
model can generalize to unseen spatial relationships.
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