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Abstract Vizier is the de-facto blackbox and hyperparameter optimization service across Google,

having optimized some of Google’s largest products and research e�orts. To operate at

the scale of tuning thousands of users’ critical systems, Google Vizier solved key design

challenges in providing multiple di�erent features, while remaining fully fault-tolerant. In

this paper, we introduce Open Source (OSS) Vizier, a standalone Python-based interface

for blackbox optimization and research, based on the Google-internal Vizier infrastructure

and framework. OSS Vizier provides an API capable of de�ning and solving a wide variety

of optimization problems, including multi-metric, early stopping, transfer learning, and

conditional search. Furthermore, it is designed to be a distributed system that assures

reliability, and allows multiple parallel evaluations of the user’s objective function. The

�exible RPC-based infrastructure allows users to access OSS Vizier from binaries written

in any language. OSS Vizier also provides a back-end ("Pythia") API that gives algorithm

authors a way to interface new algorithms with the core OSS Vizier system. OSS Vizier is

available at https://github.com/google/vizier.

1 Introduction

Blackbox optimization is the task of optimizing an objective function 5 where the output 5 (G) is the

only available information about the objective. Due to its generality, blackbox optimization has been

applied to an extremely broad range of applications, including but not limited to hyperparameter

optimization (He et al., 2021), drug discovery (Shields et al., 2021), reinforcement learning (Parker-

Holder et al., 2022), and industrial engineering (Zhang et al., 2020).

Figure 1: Vizier: An advisor.

Google Vizier (Golovin et al., 2017) is the �rst hyperparameter

tuning service designed to scale, and has thousands of monthly

users both on the research
1

and production side at Google. Since its

inception, Google Vizier has run millions of blackbox optimization

tasks and saved a signi�cant amount of computing and human

resources to Google and its customers.

This paper describes Open Source (OSS) Vizier, a standalone

Python implementation of Google Vizier’s APIs. It consists of a user
API, which allows users to con�gure and optimize their objective

function, and a developer API, which de�nes abstractions and utilities for implementing new

optimization algorithms. Both APIs consist of Remote Procedure Call (RPC) protocols (Section 3)

to allow the setup of a scalable, fault-tolerant and customizable blackbox optimization system, and

Python libraries (Sections 4.3 and 6) to abstract away the corresponding RPC protocols.

Compared to (Golovin et al., 2017), OSS Vizier features an evolved backend design for algorithm

implementations, as well as new functionalities such as conditional search and multi-objective

optimization. OSS Vizier’s RPC API is based on Vertex Vizier
2
, making OSS Vizier compatible with

any framework which integrates with Vertex Vizier, such as XManager
3
.

1
A list of research works that have used Google Vizier can be found in Appendix C.

2https://cloud.google.com/vertex-ai/docs/vizier/overview.
3https://github.com/deepmind/xmanager.
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Due to the existence of 3 di�erent versions (Google, Vertex/Cloud, OSS) of Vizier, to prevent

confusion, we explicitly refer to the version (e.g. "Google Vizier") whenever Vizier is mentioned.

We summarize the distinct functionalities of each version of Vizier below:

• Google Vizier: C++ based service hosted on Google’s internal servers and integrated deeply with

Google’s internal infrastructure. The service is available only for Google software engineers and

researchers to tune their own objectives with a default algorithm.

• Vertex/Cloud Vizier: C++ based service hosted on Google Cloud servers, available for external

customers + businesses to tune their own objectives with a default algorithm.

• OSS Vizier: Fully standalone and customizable code that allows researchers to host a Python-based

service on their own servers, for any downstream users to tune their own objectives.

2 Problem and Our Contributions
Blackbox optimization has a broad range of applications. Inside Google, these applications include:

optimizing existing systems written in a wide variety of programming languages; tuning the

hyperparameters of a large ML model using distributed parallel processes (Verbraeken et al.,

2020); optimizing a non-computational objective, which can be e.g. physical, chemical, biological,

mechanical, or even human-evaluated (Kochanski et al., 2017). Generally, such objectives 5 (G) we

are interested in optimizing possess a moderate number (e.g. several hundred) of parameters for

the input G , may produce noisy evaluation measurements, and may not be smooth or continuous.

Furthermore, the blackbox optimization work�ow greatly varies depending on the applica-

tion. The evaluation latency can be anywhere between seconds and weeks, while the budget

for the number of evaluations, or Trials, varies from tens to millions. Evaluations can be done

asynchronously (e.g. ML model tuning) or in synchronous batches (e.g. wet lab experiments).

Furthermore, evaluations may fail due to transient errors and should be retried, or may fail due

to persistent errors (e.g. 5 (G) cannot be measured) and should not be retried. One may also wish

to stop the evaluation process early after observing intermediate measurements (e.g. from a ML

model’s learning curve) in order to save resources.

To handle all of these scenarios, OSS Vizier is developed as a service. The service architecture

does not make assumptions on how Trials are evaluated, but rather simply speci�es a stable API

for obtaining suggestions G1, G2, ... to evaluate and report results as Trials. Users have the freedom

to determine when to request trials, how to evaluate trials, and when to report back results.

Another advantage of the service architecture is that it can collect data and metrics over time.

Google Vizier runs as a central service, and we track usage patterns to inform our research agenda,

and our extensive database of runs serves as a valuable dataset for research into meta-learning

and multitask transfer learning. This allows users to transparently bene�t from the resulting

improvements we make to the system.

2.1 Comparisons to Related Work

Table 1 contains a non-comprehensive list of open-source packages for blackbox optimization,

focusing on hyperparameter tuning. Overall, OSS Vizier API is compatible with many of the features

present in other hyperparameter tuning open-source packages. We did not include commercial

services for hyperparameter tuning such as Microsoft Azure, Amazon SageMaker, SigOpt and

Vertex Vizier. For a comprehensive review of hyperparameter tuning tools, see (He et al., 2021).

There are many other blackbox optimization tools not mentioned in Table 1, including iterated

racing (López-Ibáñez et al., 2016; Vieira, 2021), as well as heuristics and automation of algorithm

designs (Bezerra et al., 2016; Hoos and Stützle, 2018); see more comparisons and usages in (Lindauer

et al., 2022; Feurer et al., 2015).

We divide the open-source packages into three categories:
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Name Type Client

Languages

Parallel

Trials

Features*

OSS Vizier Service Any Yes Multi-Objective, Early Stopping, Transfer Learning,

Conditional Search

SMAC Framework Python Yes Multi-Objective, Multi-�delity, Early Stopping, Condi-

tional Search, Parameter Constraints

Advisor Service Any Yes Early Stopping

OpenBox Service Any Yes Multi-Objective, Early Stopping, Transfer Learning, Pa-

rameter Constraints

HpBandSter Framework Python Yes Early Stopping, Conditional Search, Parameter Con-

straints

Ax + BoTorch Framework Python Yes Multi-Objective, Multi-�delity, Early Stopping, Transfer

Learning, Parameter and Outcome Constraints

HyperOpt Library Python No Conditional Search

Emukit Library Python No Multi-Objective, Multi-�delity, Outcome Constraints

Table 1: Open Source Optimization Packages. *OSS Vizier supports the API only.

• Services host algorithms in a server. OSS Vizier, Advisor (Chen, 2017) and OpenBox (Li et al.,

2021), which are modeled after Google Vizier (Golovin et al., 2017), belong to this category.

Services are more �exible and scalable than frameworks, at the cost of engineering complexities.

• Frameworks execute the entire optimization, including both the suggestion algorithm and user

evaluation code. Ax (Facebook, 2021) and HpBandSter (ML4AAD, 2018) belong to this category.

While frameworks are convenient, they often require knowledge on the system being optimized,

such as how to manage resources and perform proper initialization and shutdown.

• Libraries implement blackbox optimization algorithms. HyperOpt (Bergstra et al., 2013), Emukit

(Paleyes et al., 2019), and BoTorch (Balandat et al., 2020) belong to this category. Libraries o�er the

most freedom but lack scalability features such as error recovery and distributed/asynchronous

trial evaluations. Instead, libaries are often used as algorithm implementations for frameworks

or services (e.g. BoTorch in Ax).

One major architectural di�erence between OSS Vizier and other services is that OSS Vizier’s

algorithms may run in a separate service and communicate via RPCs with the API server, which

performs database operations. With a distributed backend setup, OSS Vizier can serve algorithms

written in di�erent languages, scale up to thousands of concurrent users, and continuously process

user requests without interruptions during a server maintenance or update.

Furthermore, there are other minor di�erences between the services. While OSS Vizier and

OpenBox support distinguishing workers via the workers’ logical IDs (Section 5), Advisor does not.

In addition, OSS Vizier’s Python clients possess more sophisticated functionalities than Advisor’s,

while OpenBox lacks a client implementation and requires users to implement client code using

framework-provided worker wrappers. OSS Vizier also emphasizes algorithm development, by

providing a developer API called Pythia (Section 6) and utility libraries for state recovery. Other

features of OSS Vizier include:

• OSS Vizier is one of the �rst open-source AutoML systems simultaneously compatible with a

large-scale industry production service, Vertex Vizier, via our PyVizier library (Section 4.3).

• The backend of OSS Vizier is based on the standard Google Protocol Bu�er library, one of the

most widely used RPC formats, which allows extensive customizability. In particular, the client

(i.e. blackbox function to be tuned) can be written in any language and is not restricted to machine

learning models in Python.

• OSS Vizier is extensively integrated with numerous other Google packages, such as Deepmind

XManager for experiment management (Section 7).
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3 Infrastructure

We brie�y conceptually de�ne a Study as all relevant data pertaining to an entire optimization loop,

a Suggestion as a suggested G , and a Trial containing both G and the objective 5 (G). Note that in

the code, we use Trial as a container to store both G and 5 (G) and thus, a Trial without 5 (G) is

also considered a suggestion. We de�ne these core primitives more programatically in Section 4.

3.1 Protocol Bu�ers

OSS Vizier’s APIs are RPC interfaces that carry protocol bu�ers, or protobufs/protos4
, to allow simple

and e�cient inter-machine communication. The protos are language- and platform- independent

objects for serializing structured data, which make building external software layers and wrappers

onto the system straightforward. In particular, the user can provide their own:

• Visualization Tools: Since OSS Vizier securely stores all study data in its database, the data can

then be loaded and visualized, with e.g. standard Python tools (Colab, Numpy, Scipy, Matplotlib)

and other statistical packages such as R via RProtoBuf (Eddelbuettel et al., 2014). Front-end

languages such as Angular/Javascript may also be used for visualizing studies.

• Persistent Datastore: The database in OSS Vizier can changed based on the user’s needs. For

instance, a SQL-based datastore with full query functionality may be used to store study data.

• Clients: Protobufs allow binaries written in Python, C++, and other languages to be tuned and/or

used for evaluating the objective function. This allows OSS Vizier to easily tune existing systems.

We explain the interactions between these components in a distributed backend below.

3.2 Distributed Backend

In order to serve multiple users while remaining fault-tolerant, OSS Vizier runs in a distributed

fashion, with a server performing the algorithmic proposal work, while users or clients communicate

with the server via RPCs using the Client API, built upon gRPC
5
. A packet of RPC communication

is formatted in terms of standard Google protobufs.

To start an optimization loop, a client will send a CreateStudy RPC request to the server, and

the server will create a new Study in its datastore and return the ID to the client. The main tuning

work�ow in OSS Vizier will then involve the following repeated cycle of events:

1. The client sends a SuggestTrials RPC request to the server.

2. The server creates a Operation in its datastore, and starts a thread to launch a Pythia policy (i.e.

blackbox optimization algorithm) to compute the next suggested Trials. The server returns an

Operation protobuf to the client to denote the computation taking place.

3. The client will repeatedly poll the server via GetOperation RPCs to check the status of the

Operation until the Operation is done.

4. When the Pythia policy produces its suggestions, the server will store these suggestions into the

Operation and mark the Operation done, which will be collected by the client’s GetOperation
ping.

5. The client retrieves the suggestions G8 , ..., G8+= stored inside the Operation, and returns objective

function measurements 5 (G8), ..., 5 (G8+=) to the server via calls to the CompleteTrial RPC.

Note that the server may be launched in the same local process as the client, in cases where

distributed computing is not needed and functio evaluation is cheap (e.g. benchmarking algorithms

4https://github.com/protocolbuffers/protobuf 5https://grpc.io/
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Figure 2: Pictorial representation of the distributed pipeline. The OSS Vizier server services multiple

clients, each with their own types of requests. Such requests can involve running Pythia

Policies, saving measurement data, or retrieving previous studies. Note that Pythia may run

as a separate service from the API service.

on synthetic functions). However, if the user wishes to use the distributed setting, the following

are core advantages of OSS Vizier’s system:

Server-side Fault Tolerance. The Operations are stored in the database and contain su�cient

information to restart the computation after a server crash, reboot, or update.

Automated/Early Stopping. A similar sequence of events takes place when the client sends a

CheckTrialEarlyStoppingStateRequest RPC, in which the policy determines if a trial’s evaluation

should be stopped, and returns this signal as a boolean via the EarlyStoppingOperation RPC.

Batched/Parallel Evaluations. Note that multiple clients may work on the same study, and the same
Trial. This is important for compute-heavy experiments (e.g. neural architecture search) which

need to parallelize workload by using multiple machines, with each machine 9 evaluating the

objective 5 (G 9 ) after being given suggestion G 9 from the server.

Client-side Fault Tolerance. When one of the parallel workers fails and then reboots, the service

will assign the worker the same suggestion as before. The worker can choose to load a model from

the checkpoint to warm-start the evaluation.

4 Core Primitives

In Figure 3, we provide a pictorial example representation of how OSS Vizier’s primitives are

structured; below we provide de�nitions.

4.1 De�nitions

A Study is a single optimization run over a feasible space. Each study contains a name, its description,

its state (e.g. ACTIVE, INACTIVE, or COMPLETED), a StudySpec, and a list of suggestions and evaluations

(Trials).

A StudySpec contains the con�guration details for the Study, namely the search space X
(constructed by ParameterSpecs; see §4.2), the algorithm to be used, automated stopping type (see
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Study

StudySpec

Name: learning_rate
Double: [0.0, 1.0]

ScaleType: REVERSE_LOG

Name: model_type 
Categorical: {“resnet”, “vgg”}

Name: accuracy
Goal: MAXIMIZE

Name: num_params
Goal: MINIMIZE
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learning_rate: 0.3
model_type: “vgg”

accuracy: 0.79
num_params: 602430

learning_rate: 0.15
model_type: “resnet”

accuracy: 0.56
num_params: 20423

Algorithm: RANDOM
ObsNoise: LOW
AutoStop: None

Name: “owners/…/studies/…”
DisplayName: “CIFAR-10”

State: ACTIVE
CreateTime: 1/1/2022

 

Figure 3: Example of a study that tunes a deep learning task, featuring relevant data types.

Appendix B.1), the type of ObservationNoise (see Appendix B.2), and at least one MetricSpec,

containing information about the metric 5 to optimize, including the metric name and the goal

(i.e. whether to minimize or maximize 5 ). Multiple MetricSpecs will be used for cases involving

multiobjective optimization, where the goal is to �nd Pareto frontiers over multiple objectives

51, ..., 5: .

A Trial is a container for the input G ∈ X , as well as potentially the scalar value 5 (G) or

multiobjective values 51(G), ..., 5: (G). Each Trial possesses a State, which indicates what stage of

the optimization process the Trial is in, with the two primary states being ACTIVE (meaning that

G has been suggested but not yet evaluated) and COMPLETED (meaning that evaluation is �nished,

and typically that the objectives (51(G), ..., 5: (G)) have been calculated).

Both the StudySpec and the Trials can contain Metadata. Metadata is not interpreted by OSS

Vizier, but rather a convenient method for developers to store algorithm state, by users to store

small amounts of arbitrary data, or as an extra communication medium between user code and

algorithms.

4.2 Search Space

Search spaces can be built by combining the the following primitives, or ParameterSpecs:

• Double: Speci�es a continuous range of possible values in the closed interval [0, 1] for some real

values 0 ≤ 1.

• Integer: Speci�es an integer range of possible values in [0, 1] ∈ Z for some integers 0 ≤ 1.

• Discrete: Speci�es a �nite, ordered set of values from R.

• Categorical: Speci�es an unordered list of strings.
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Furthermore, each of the numerical parameters {Double, Integer, Discrete} has a scaling
type, which toggles whether the underlying algorithm is performing optimization in a transformed

space. The scale type allows the user to conveniently inform the optimizer about the shape of the

function, and can sometimes drastically accelerate the optimization. For instance, a user may use

logarithmic scaling, which expresses the intent that a parameter ranging over [0.001, 10] should

roughly receive the same amount of attention in the subrange [0.001, 0.01] as [1, 10], which would

otherwise not be the case when using uniform scaling.

Each parameter also can potentially contain a list of child parameters, each of which will be

active only if the parent’s value matches the correct value(s). This allows the notion of conditional
search, which is helpful when dealing with search spaces involving incompatible parameters or

parameters which only exist in speci�c scenarios. For example, this can be useful when competitively

tuning several machine learning algorithms along with each algorithm’s parameters. E.g. one

could tune the following for the model parameter: {"linear", "DNN", "random_forest"}, each

with its own set of parameters. Conditional parameters help keep the user’s code organized,

and also describe certain invariances to OSS Vizier, namely that when model="DNN", 5 (G) will be

independent of the "random_forest" and "linear" model parameters.

These parameter primitives can be used �exibly to build highly complex search spaces, of which

we provide examples in Appendix A.

4.3 PyVizier

All the above objects are implemented as protos to allow RPC exchanges through the service, as

mentioned in Section 3. However, for ease-of-access, each object is also represented by an equivalent

PyVizier class to provide a more Pythonic interface, validation, and convenient construction (further

details and examples are found in Appendix D.3). Translations to and from protos are provided

by the to_proto() and from_proto() methods in PyVizier classes. PyVizier provides a common
interface across all Vizier variants (i.e. Google Vizier, Vertex Vizier, and OSS Vizier)6. The two

intended primary use cases for PyVizier are:

• Tuning user binaries. For such cases, the core PyVizier primitive is the VizierClient class that

allows communication with the service.

• Developing algorithms for researchers. In this case, the core PyVizier primitives are the Pythia

Policy and PolicySupporter classes.

Both cases typically use the StudyConfig and SearchSpace classes to de�ne the optimization, and

the Trial, and Measurement classes to support the evaluation. We describe the two cases in detail

below.

5 User API: Parallel Distributed Tuning with OSS Vizier Client

The OSS Vizier service must be set up �rst (see pseudocode in Appendix D.2), preferably on

a multithreaded machine capable of processing multiple RPCs concurrently. Then, replicas of

Code Block 1 can be launched in parallel, each with a unique command-line argument to be used as

the client id in Line 11. The �rst replica to be launched creates a new Study from the StudyConfig,

which de�nes the search space, relevant metrics to be evaluated, and the algorithm for providing

suggestions. The other replicas then load the same study to be worked on. There are a few important

aspects worth noting in this setting:

• The service does not make any assumptions about how Trials are evaluated. Users may complete

Trials at any latency, and may do so with a custom client written in any language. Algorithms

6
For compatibility reasons, protos have slightly di�erent names than PyVizier equivalents; e.g. StudySpec protos are

equivalent to StudyConfig PyVizier objects. We describe conversions further in Appendix D.3
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1 from vizier import StudyConfig , VizierClient

2

3 config = StudyConfig () # Search space , metrics , and algorithm.

4 root = config.search_space.select_root () # "Root" params must exist in every trial.

5 root.add_float('learning_rate ', min=1e-4, max=1e-2, scale='LOG')

6 root.add_int('num_layers ', min=1, max=5)

7 config.metrics.add('accuracy ', goal='MAXIMIZE ', min=0.0, max =1.0)

8 config.algorithm = 'RANDOM_SEARCH '

9

10 client = VizierClient.load_or_create_study(

11 'cifar10 ', config , client_id=sys.argv [1]) # Each client should use a unique id.

12 while suggestions := client.get_suggestions(count =1)

13 # Evaluate the suggestion(s) and report the results to Vizier.

14 for trial in suggestions:

15 metrics = _evaluate_trial(trial.parameters)

16 client.complete_trial(metrics , trial_id=trial.id)

Code Block 1: Pseudocode for tuning a blackbox function using the included Python client. To save

space, we did not use longer o�cial argument names from the actual code.

may however, set a time limit and reassign Trials to other clients to prevent stalling (e.g. due to

a slow client).

• Each Trial is assigned a client_id and only suggested to clients created with the same

client_id. This design makes it easy for users to recover from failures during Trial evalu-

ations; if one of the tuning binaries is accidentally shut down, users can simply restart the binary

with the same client id. The tuning binary creates a new client attached to the same study and

OSS Vizier suggests the same Trial.

• Multiple binaries can share the same client_id and collaborate on evaluating the same Trial.

This feature is useful in tuning a large distributed model with multiple workers and evaluators.

• The client may optionally turn on automated stopping for objectives that can provide intermediate

measurements (e.g. learning curves in deep learning applications). Further details and an example

code snippet can be found in Appendix B.1 and Appendix 3 respectively.

6 Developer API: Implementing a New Algorithm Using Pythia Policy

6.1 Overview

As we have explained in Section 3, OSS Vizier runs its algorithms in a binary called the Pythia
service (which can be the same binary as the API service). When the client asks for suggestions

or early stopping decisions, the API service creates operations and sends requests to the Pythia

service. This section describes the default python implementation of the Pythia service included in

the open-source package.

The Pythia service creates a Policy object that executes the algorithm and returns the response.

Policy is designed to be a minimal and general-purposed interface built on top of PyVizier, to

allow researchers to quickly incorporate their own blackbox optimization algorithms. Policy is

usually given a PolicySupporter, which is a mini-client specialized in reading and �ltering Trials.

As shown in Code Block 2, a typical Policy loads Trials via PolicySupporter and processes the

request at hand.

8



1 from vizier.pythia import Policy , PolicySupporter , SuggestRequest , SuggestDecisions

2

3 class MyPolicy(Policy):

4 def __init__(self , policy_supporter: PolicySupporter):

5 self.policy_supporter = policy_supporter # Used to obtain old trials.

6

7 def suggest(self , request: SuggestRequest) -> SuggestDecisions:

8 """ Suggests trials to be evaluated."""

9 Xs, y = _trials_to_np_arrays(self.policy_supporter.GetTrials(

10 status='COMPLETED ')) # Use COMPLETED trials only.

11 model = _train_gp(Xs, y)

12 return _optimize_ei(model , request.study_config.search_space)

Code Block 2: Pseudocode for implementing a Gaussian Process Bandit.

6.2 PolicySupporter

The PolicySupporter allows the Policy to actively decide what Trials from what Studies are

needed to generate the next batch of Suggestions. Policies can meta-learn from potentially any

Study in the database by calling the GetStudyConfig and GetTrials methods. Beyond that, the

Policy can request only the Trials it needs; e.g. for algorithms that only need to look at newly

evaluated Trials, this can reduce the database work by orders of magnitude relative to loading all

the Trials.

6.3 State Saving via Metadata

The primary application of Google Vizier (Golovin et al., 2017) was optimizing a blackbox function

that is expensive to evaluate. Over time, as Google Vizier became widely adopted, there was an

increasing number of applications where users wished to evaluate cheap functions over a very

large number of Trials. Popular methods for these applications include evolutionary methods

and local search methods, such as NSGA-II (Deb et al., 2002), Fire�y (Yang, 2010), and Harmony

Search (Lee and Geem, 2005) to name a few (For a survey on meta-heuristics, see Beheshti and

Shamsuddin (2013)).

A typical algorithm in this category iteratively updates its population pool and generates

mutations to be suggested, both of which take constant time with respect to the number of previous

trials, as opposed to e.g. cubic time when using Gaussian Processes in a Bayesian Optimization

loop. Since the lifespan of a Policy object is equivalent to that of one suggestion or early stopping

operation, the algorithm would need to fetch all Trials in the Study and reconstruct its state in

$ (number of previous trials) time. This leads to slow and di�cult-to-maintain implementations.

PolicySupporter provides an easy-to-use API for developers to send algorithm states into the

database as Metadata. Metadata is a key-value mapping with namespaces that help prevent key

collisions. There are two tables for metadata in the database: one attached to the StudySpec and

another to each Trial. A Policy can restore its last saved state from metadata, re�ect the recently

added Trials, and process the operation at hand. We provide example code for this functionality

in Appendix D.4

7 Integrations

OSS Vizier is also compatible with multiple other interfaces developed at Google as well. These

include:

7https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/StudySpec.
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• Vertex Vizier whose Protocol Bu�er de�nitions are exactly the same
7

as OSS Vizier’s. This

consistency also allows a wide variety of other packages (discussed below) pre-integrated with

Vertex Vizier to be used with minimal changes.

• Deepmind XManager experiments currently can be tuned by Vertex Vizier
8

through

VizierWorker. This worker can also be directly connected to an OSS Vizier server to allow

custom policies to manage experiments.

• OSS Vizier will also be the core backend for PyGlove (Peng et al., 2020)
9
, which is a symbolic

programming language for AutoML, in particular facilitating combinational and evolutionary

optimization which are common in neural architecture search applications.

8 Conclusion, Limitations and Broader Impact Statement

Conclusion. We discussed the motivations and bene�ts behind providing OSS Vizier as a service in

comparison to other blackbox optimization libraries, and described how our gRPC-based distributed

back-end infrastructure may be deployed as a fault-tolerant yet �exible system that is capable of

supporting multiple clients and diverse use cases. We further outlined our client-server API for

tuning, our algorithm development Pythia API, and integrations with other Google libraries.

Limitations. Due to proprietary and legal concerns, we are unable to open-source the default

algorithms used in Google Vizier and Cloud Vizier. Furthermore, this paper intentionally does not

discuss algorithms or benchmarks, as the emphasis is on the systems aspect of AutoML. Algorithms

may easily be added as policies to OSS Vizier’s collection over time from contributors.

OSS Vizier also may not be suitable for all problems within the very broad scope of blackbox

optimization. For instance, if evaluating 5 (G) is very cheap and fast (e.g. miliseconds), then the OSS

Vizier service itself may dominate the overall cost and speed. Furthermore, for problems requiring

very large numbers of parameters (e.g. 100K+) and evaluations (e.g. 1M+), such as training a large

neural network with gradientless methods (Mania et al., 2018; Such et al., 2017), OSS Vizier can also

be inappropriate, as such cases can overload the datastore memory with redundant trials which do

not need to be kept track of.

Broader Impact. While there are a rich collection of sophisticated and e�ective AutoML algorithms

published every year, broad adoption to practical use cases still remains low, as only 7% of the ICLR

2020 and NeurIPS 2019 papers used a tuning method other than random or grid search (Bouthillier

and Varoquaux, 2020). In comparison, Google Vizier is widely used among multiple researchers

at Google, including for conference submissions. We hope that the release of OSS Vizier and its

similar bene�ts may signi�cantly improve the reach of AutoML techniques to users.

In terms of potential negative impacts, optimization as a service encourages central storage

of data with the attendant risks and bene�ts. For example, currently through the Client API, a

user may request all studies associated with another users, which may cause security and privacy

concerns. This may be �xed by limiting user access to only their own studies in the service logic.

Furthermore, the host of the service currently has full access to all client data, which is another

potential privacy concern. However, from our experience with Google Vizier, the most impactful

applications for clients typically occur when parameters and measurements correspond to aggregate

data (e.g. the learning rate of a ML algorithm, or e.g. the number of threads in a server) rather

than data that describes individuals. Furthermore, data received by OSS Vizier can be obscured

to a degree to reduce unwanted exposure to the host. Most notably, names (e.g. study name,

parameter and metric names) can be encrypted, and (within limits) di�erential privacy (Dwork,

2008) approaches, especially for databases (Johnson et al., 2018), can be applied to the parameters

values and measurements.

8https://github.com/deepmind/xmanager/tree/main/xmanager/vizier.
9
PyGlove will be open-sourced soon.
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9 Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper’s

contributions and scope? [Yes] We discussed the motivations for why OSS Vizier is designed

as a service, and outlined in detail its distributed infrastructure. We further demonstrated

(with pseudocode) the two main usages of OSS Vizier, which are to tune users’ objects via

client-side API, and develop algorithms via Pythia.

(b) Did you describe the limitations of your work? [Yes] See Section 8.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 8.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes] Our paper follows all of the ethics review guidelines.

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] This is a systems

paper.

(b) Did you include complete proofs of all theoretical results? [N/A] This is a systems paper.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemen-

tal material or as a url)? [Yes] We have provided a README, installation instructions

with a requirements.txt, numerous integration and unit tests along with PyTypes which

demonstrate each code snippet’s function.

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] Our unit-tests demonstrate the expected results of running all components of

our code.

(c) Did you include scripts and commands that can be used to generate the �gures and tables

in your paper based on the raw results of the code, data, and instructions given? [N/A] This

is a systems paper.

(d) Did you ensure su�cient code quality such that your code can be safely executed and the

code is properly documented? [Yes] Our code follows all standard industry-wide coding

practices at Google, which include extensive unit tests with continuous integration, PyType

and PyLint enforcement for code cleanliness, and peer review during code submission.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, �xed

hyperparameter settings, and how they were chosen)? [N/A] This is a systems paper.

(f) Did you ensure that you compared di�erent methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [N/A] This is a systems paper.

(g) Did you run ablation studies to assess the impact of di�erent components of your approach?

[N/A] This is a systems paper.

(h) Did you use the same evaluation protocol for the methods being compared? [N/A] This is a

systems paper.
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(i) Did you compare performance over time? [N/A] This is a systems paper.

(j) Did you perform multiple runs of your experiments and report random seeds? [N/A] This

is a systems paper.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [N/A] This is a systems paper.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] This is a

systems paper.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [N/A] This is a systems paper.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [N/A] This is a systems paper.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] Our work wraps around

other Google libraries such as the Cloud Vizier SDK and Deepmind XManager, which we

provided url links for.

(b) Did you mention the license of the assets? [Yes] Both the Cloud Vizier SDK and Deepmind

XManager use the Apache 2.0 License.

(c) Did you include any new assets either in the supplemental material or as a url? [N/A] No

new assets were used.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] No human data was used.

(e) Did you discuss whether the data you are using/curating contains personally identi�able

information or o�ensive content? [N/A] This is a systems paper without data use.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] Not applicable.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] Not applicable.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] Not applicable.
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Appendix

A Search Space Flexibility

In this section, we describe the ways in which more complex search spaces may be created in OSS

Vizier, showcasing its �exibility and applicability to a wide variety of problems.

A.1 Combinatorial Optimization

One of the most common uses for blackbox optimization in research involves combinatorial

optimization. In this setting, X is usually de�ned via common manipulations over the set [=] =
{0, 1, ..., = − 1}, such as permutations or subset selections. Below, we provide example methods to

deal with such cases, in the order of most practical to least practical. We note that many of these

methods are more suited for evolutionary algorithms which only need to utilize mutations and

cross-overs between trials, rather than regression-based methods (e.g. Bayesian Optimization).

A.1.1 Reparameterization. Reparameterization of the search space X via conceptual means should be

considered �rst, as it is one of the most practical and easiest ways to reduce the complexity of

representing X in OSS Vizier. Mathematically speaking, the high level idea is to construct a more

practical search space Z which can easily be represented in OSS Vizier, and then create a surjective

mapping Φ : / → - .

For basic combinatorial objects such as permutations, if we consider the standard permutation

space X = {G : G ∈ [=]=, G8 ≠ G 9 ∀8 ≠ 9}, then we may de�ne Z = [=] × [= − 1] × ... × [2] × [1]
and allow Φ to be the decoding operator for the Lehmer code

10
. If X = {G : G ⊆ [=], |G | = :}

involves subset selection, then we may de�ne Z = [=] × [= − 1] × ... × [= − : + 1] and apply a

similar mapping.

Another common case involves searching over the space of graphs. In such scenarios, there are

a multitude of methods to parameterizing the graph, including adjacency matrices via [=] × [=].
An illustrative example can be seen across neural architecture search (NAS) benchmarks. Even

though such search spaces correspond to graph objects, ironically, many NAS benchmarks, termed

“NASBENCH"s, actually do not use nested or conditional search spaces. For instance, NASBENCH-

101 (Ying et al., 2019) uses only a �at adjacency matrix and �at operation list. NASBENCH-201

(Dong and Yang, 2020) is even simpler, as it takes the graph dual of the node-op representation,

allowing the search space to be a full feasible set represented by only 5 categorical parameters.

A.1.2 Infeasibility. In some scenarios, we may not be able to �nd a mappingΦ as in the reparameterization

case above, but instead may lift the search space X into a larger search space Z , where X ⊂ Z , and

thus perform search on Z instead. For trials in Z − X = {I : I ∈ Z, I ∉ - }, OSS Vizier supports

reporting these trials as infeasible. As a basic example, if X = {G ∈ R2
: | |G | | ≤ 1} de�nes a disk,

then Z = [−1, 1]2. Another example can be seen with the same NASBENCH-101 (Ying et al., 2019)

benchmark described earlier, where some pairs of adjacency matrices and operation lists do not

correspond to an actual valid graph, and are thus infeasible.

The main limitation is if |X | � |Z |, the vast bulk of trials may be infeasible, and if so, the

search will converge slowly. Furthermore, for the disk case, this can lead to problems during

optimization, as it creates a sharp border X ∩ Z and a �at infeasible region Z − X . This leads

to lack of information about which infeasible points are better/worse than others, and can also

make it di�cult to �nd a small feasible region. Modelling techniques such Gaussian Processes also

inherently assume the objective function is continuous everywhere, which is incompatible with

the discontinuity from the border X ∩ Z .

10https://en.wikipedia.org/wiki/Lehmer_code
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A.1.3 Serialization. If all else fails, we may avoid the use of the ParameterSpec API and simply serialize

G ∈ X into a string format, which can then be inserted into a Trial’s metadata �eld. In cooperation

with a custom Pythia policy, this can be very e�ective.

B Additional OSS Vizier Settings

B.1 Automated Stopping

Automated/early stopping is used commonly when trials can be stopped early to save resources,

and is determined by the trial’s intermediate measurements. Currently there are two modes to

automated stopping which the client can specify in their StudyConfig:

• Decay Curve Automated Stopping, in which a Gaussian Process Regressor is built to predict

the �nal objective value of a Trial based on the already completed Trials and the intermediate

measurements of the current Trial. Early stopping is requested for the current Trial if there is

very low probability to exceed the optimal value found so far.

• Median Automated Stopping, in which a pending trial is stopped if the Trial’s best objective

value is strictly below the median ’performance’ of all completed Trials reported up to the Trial’s

last measurement. Currently, ’performance’ refers to the running average of the objective values

reported by the Trial in each measurement.

B.2 Observation Noise

We have found it useful to let the user give Vizer a hint about the amount of noise in their evaluations

via the StudyConfig. Because the noise/irreproducibility of evaluations is often not well known in

advance by users, we give users a broad choice that the noise is either Low or High:

• Low: This implies that the objective function is (nearly) perfectly reproducible, and an algorithm

should never repeat the same Trial parameters.

• High: This assumes there is enough noise in the evaluations that it is worthwhile for OSS Vizier

sometimes to re-evaluate with the same (or nearly) parameter values.

This hint is passed to the Pythia policy, and the policy is free to also use this hint to e.g. adjust

priors on the hyperparameters of a Gaussian Process regressor.
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C Google Vizier Users and Citations

Besides Google Vizier’s extensive internal production usage, below comprises a selected list of

publicly available research works
11

which have used Google Vizier, demonstrating its rich research

user-base which may directly translate to OSS Vizier’s future user-base as well.

Neural Architecture Search. Google Vizier has acted as a core backend for many of the neural

architecture search (NAS) e�orts at Google, beginning with Google Vizier having been used to

hyperparameter tune the RNN controller in the original NAS paper (Zoph and Le, 2017). Over

the course of NAS research, Google Vizier has also been used to reliably handle the training of

thousands of models (Zoph et al., 2018; Chen et al., 2018), as well as comparisons against di�erent

NAS optimization algorithms in NASBENCH-101 (Ying et al., 2019). Furthermore, it serves as the

primary distributed backend for PyGlove (Peng et al., 2020), a core evolutionary algorithm API for

NAS research across Google.

Hardware and Systems. Google Vizier’s tuning led to crucial gains for hardware benchmarking,

such as improving JAX’s MLPerf scores over TPUs
12

. Google Vizier’s multiobjective optimization

capabilities were a key component in producing better computer architecture designs in APOLLO

(Yazdanbakhsh et al., 2020)
13

. Furthermore, Google Vizier was a key component to Full-stack
Accelerator Search Technique (FAST) (Zhang et al., 2022), an automated framework for jointly

optimizing hardware datapath, software schedule, and compiler passes.

Reinforcement Learning. “AutoRL" (Parker-Holder et al., 2022) has recently seen a great deal of

promise in automating reinforcement learning systems. Google Vizier was extensively used as the

core component in tuning hyperparameters and rewards in navigation (Faust et al., 2019; Francis

et al., 2020; Chiang et al., 2019). Google Vizier’s backend was also used to host the Regularized

Evolution optimizer (Real et al., 2019), used for evolving RL algorithms (Co-Reyes et al., 2021), where

the search space involved combinatorial directed acyclic graphs (DAGs). On the infrastructure side,

Google Vizier was used to improve the performance of Reverb (Cassirer et al., 2021), one of the

core replay bu�er APIs used for most RL projects at Google. (Agarwal et al., 2021)

Biology/Chemistry/Healthcare. Google Vizier’s algorithms were used for comparison on several

papers related to protein optimization (Bileschi et al., 2022), and was also used to tune RNNs for

peptide identi�cation in (Tiwary et al., 2019). For healthcare, Google Vizier was used to tune models

for classifying diseases such as diabetic retinopathy (Krause et al., 2017)

General Deep Learning. For fundamental research, Google Vizier was used to tune Neural Additive

Models (Agarwal et al., 2020), and has also been the backbone of core research into in�nite-width

deep neural networks, having tuned (Nguyen et al., 2021; Lee et al., 2020; Hron et al., 2020b,a). For

NLP-based tasks, Google Vizier regularly tunes language model training, and has also been used to

search feature weights in (Wang et al., 2020), as well improve performance for work on theorem

proving (Aygün et al., 2020). Computer vision models such as ones used for the Pixel-3
14

have been

tuned by Google Vizier.

Miscallaneous:. As an example of tuning for human-based judgement on objectives unrelated to

technology, Google Vizier was used to tune the recipe for cookie-baking (Kochanski et al., 2017).

11
Full list of Google Vizier’s citations: https://scholar.google.com/scholar?oi=bibs&hl=en&cites=14342343058535677299.

12
Link too long; hyperlink can be found here.

13https://ai.googleblog.com/2021/02/machine-learning-for-computer.html
14https://ai.googleblog.com/2018/12/top-shot-on-pixel-3.html
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D Extended Code Samples

D.1 Automated stopping

Code Block 3 demonstrates the use of automated stopping, when training a standard machine

learning model.

1 from vizier import StudyConfig , VizierClient

2

3 config = StudyConfig ()

4 ... # configure search space and metrics

5 client = VizierClient.load_or_create_study(

6 'cifar10 ', config , client_id=sys.argv [1]) # Each client should use a unique id.

7 while suggestions := client.get_suggestions(count =1)

8 # Evaluate the suggestion(s) and report the results to OSS Vizier.

9 for trial in suggestions:

10 for epoch in range(EPOCHS):

11 if client.should_trial_stop(trial.id):

12 break

13 metrics = model.train_and_evaluate(trial.parameters['learning_rate '])

14 client.report_metrics(epoch , metrics)

15 metrics = model.evaluate ()

16 client.complete_trial(metrics , trial_id=trial.id)

Code Block 3: Pseudocode for tuning a model using the included Python client, with early stopping

enabled.

D.2 Service Setup

Code Block 4 displays the simple method in which to setup the service on a multithreaded server.

1 from vizier.service import vizier_server

2 from vizier.service import vizier_service_pb2_grpc

3

4 hostname = 'localhost ' # Example; usually user -specified

5 port = 6006 # Example; usually user -specified

6 address = f'{hostname }:{ port}'

7 servicer = vizier_server.VizierService ()

8

9 server = grpc.server(futures.ThreadPoolExecutor(max_workers =100))

10 vizier_service_pb2_grpc.add_VizierServiceServicer_to_server(servicer , server)

11 server.add_secure_port(address , grpc.local_server_credentials ())

12 server.start()

Code Block 4: Pseudocode for setting up the service on a server.
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D.3 Proto vs Python API

We provide an example of equivalent methods between PyVizier and corresponding Protocol Bu�er

objects. Note that clients and algorithm developers should not normally need to modify protos.

Such cases are more common if one wishes to add extra layers on top of the service, as mentioned

in Subsection 3.1.

1 from vizier.service import study_pb2

2 from google.protobuf import struct_pb2

3

4 param_1 = study_pb2.Trial.Parameter(parameter_id='learning_rate ', value=struct_pb2.

Value(number_value =0.4))

5 param_2 = study_pb2.Trial.Parameter(parameter_id='model_type ', value=struct_pb2.

Value(string_value='vgg'))

6 metric_1 = study_pb2.Measurement.Metric(metric_id='accuracy ',value =0.4)

7 metric_2 = study_pb2.Measurement.Metric(metric_id='num_params ',value =20423)

8 final_measurement = study_pb2.Trial.Measurement(metrics =[metric_1 ,metric_2 ])

9 trial = study_pb2.Trial(parameters =[param_1 ,param_2], final_measurement=

final_measurement)

Code Block 5: Original Protocol Bu�er method of creating a Trial.

1 from vizier.pyvizier import ParameterDict , ParameterValue , Measurement , Metric ,

Trial

2

3 params=ParameterDict ()

4 params['learning_rate '] = ParameterValue (0.4)

5 params['model_type '] = ParameterValue('vgg')

6 final_measurement = Measurement ()

7 final_measurement.metrics['accuracy '] = Metric (0.7)

8 final_measurement.metrics['num_params '] = Metric (20423)

9 trial = pv.Trial(parameters=params ,final_measurement=final_measurement)

Code Block 6: Equivalent method of writing the PyVizier version of the Trial from Code Block 5. Note

the signi�cantly more "Pythonic" way of writing code, with a signi�cant reduction in

code complexity.

We also provide in Table 2, changes between OSS Vizier’s Protocol Bu�er names and their

corresponding PyVizier names, as well as converter objects.

Protocol Bu�er Name PyVizier Name Converter

Study Study N/A

StudySpec SearchSpace + StudyConfig SearchSpace (self) + StudyConfig (self)

ParameterSpec ParameterConfig ParameterConfigConverter
Trial Trial TrialConverter

Parameter ParameterValue ParameterValueConvereter
MetricSpec MetricInformation MetricInformation (self)

Measurement Measurement MeasurementConverter

Table 2: Corresponding names and conversion objects between Protocol Bu�er and PyVizier objects.

(self) denotes that the PyVizier object has its own immediate to_proto() and from_proto()
functions.
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D.4 Implementing an Evolutionary Algorithm

OSS Vizier possesses an abstraction SerializableDesigner de�ned purely in terms of PyVizier

without any Pythia dependencies. This interface wraps around most commonly used algorithms

which sequentially update their internal states as new observations arrive. The interface is easy to

understand and can be wrapped into a Pythia policy using the SerializableDesignerPolicy class

which handles state management. See Code Block 7 for an example.

1 from vizier import pyvizier as vz

2

3 class RegEvo(SerializableDesigner):

4

5 # override

6 def suggest(self , count: Optional[int]) -> Sequence[vz.TrialSuggestion]

7 """ Generate `count ` number of mutations and return them."""

8

9 # override

10 def update(self , delta: CompletedTrials):

11 """ Apply selection step and update the population pool."""

12

13 # override

14 def dump(self) -> vz.Metadata:

15 """ Dumps the population pool."""

16 md = vz.Metadata ()

17 md['population '] = json.dumps (...)

18 return md

19

20 # override

21 def recover(cls: Type['_S'], metadata: vz.Metadata) -> '_S':

22 """ Restores the population pool."""

23 if 'population ' not in md:

24 raise HarmlessDecodeError('Cannot find key: "population"')

25 ... = json.loads(md['population '])

26

27 policy = SerializableDesignerPolicy(

28 policy_supporter ,

29 designer_factory=RegEvo.__init__ ,

30 designer_cls=RegEvo)

Code Block 7: Example Pseudocode of implementing an evolutionary algorithm as a Pythia policy

using SerializableDesigner interface.
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