
We thank reviewers for their thoughtful comments and provide responses to, in our opinion, the most prominent ones.1

[R1] Linearity and Gaussianity. We have focused on linear functional form and Gaussian noises for simplicity. In2

addition to efficient computation and causal effect estimation (the latter was briefly mentioned in Section S4 of the3

Supplementary Materials), this simple setup also allows us to convey the main idea that heterogeneity alone is enough4

to enable causal identifiability. Since nonlinearity and non-Gaussianity have already been proven useful for causal5

identification, we may somewhat mask the contribution of heterogeneity if we already incorporate nonlinearity and/or6

non-Gaussianity into our model. That said, a natural future direction is indeed to extend our current simple model to7

nonlinear (e.g., via basis expansion) and non-Gaussian (e.g., via mixture of Gaussian) models. This should be quite8

doable. For example, the proof of Theorem 2 actually does not rely on the Gaussian assumption and our simulation also9

shows the model is relatively robust to non-Gaussian errors.10

[R1] Confounding. Suppose we explicitly account for confounders via X = BX + ⇤L + E where L are latent11

confounders. Marginalizing out L leads to X = BX + Ẽ where cov(Ẽ) = ⇤cov(L)⇤T + cov(E). This motivates12

and justifies modeling confounding effects through the off-diagonal entries of cov(Ẽ) (denoted by S in the paper).13

[R1] NOTEARS and DAG-GNN. We now apply these methods to scenario 2 with n = 125 and p = 10. The MCC14

averaged over 50 repeated simulations are 0.374 for NOTEARS and 0.392 for DAG-GNN, which are similar to that of15

the best alternatives (e.g., RFCI) considered in our initial submission. Hence our overall conclusion remains the same16

(i.e., the proposed method outperformed existing methods in heterogeneous settings).17

[R1] ARD or RVM. We agree with the reviewer that the focus of this paper is to introduce the idea of heterogeneity18

in the problem of causal discovery. In fact, choices on how to model direct causal effects and learn from finite data19

are quite open. For simplicity, we have used B-splines and spike-and-slab priors to capture sparse non-linear direct20

causal effects. With spike-and-slab prior (a Bayesian approach), our method is able to provide both point estimates and21

uncertainty quantification via the posterior distribution. But one could definitely use e.g., Gaussian processes to model22

direct causal effects and ARD or RVM to promote sparsity.23

[R1, R4] Real examples. We didn’t include more real examples because of lack of ground truth in many real datasets24

(there are some causal benchmark datasets that could have been used but they may not contain any cycles and/or may25

not be heterogeneous). We now apply our method to the Hong Kong Stock Market dataset containing 10 major stocks26

used by Huang et al. 2020. Our finding is similar to theirs (shown below); however, it is hard to judge which method27

has a better recovery of the truth without the ground truth.28
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[R2] Causal variance/invariance. In cancer genomics, gene regulatory networks are not invariant across patients. For30

example, the causal effects between two genes/proteins could be vastly different between two patients due to different31

cancer subtypes/stages (this is one of the reasons why cancer is so hard to treat). ICP assumes the causal effects to be32

constant across patients and hence is most likely violated in our motivating example. Our method (also some other33

existing methods such as JCI), on the contrary, allows the causal effects to be different.34

[R7] Writing clarity. We will carefully revise our final version accordingly by (i) making it clear that our identifiability35

theorem is for the model; (ii) discussing the assumption of constant error covariances (e.g., in the motivating breast36

cancer dataset, demographic variables may be confounders that have constant effects on gene expressions); and (iii)37

discussing the connection and difference between our method and Rothenhäusler et al. (e.g., they focus on mean shift38

whereas we consider the shift in causal effects).39

[R7] Observational data and soft interventions. Mathematically, the proposed method is similar to performing soft40

intervention on the entire population (although the causal effects are modified by continuous covariates in our model41

whereas a typical soft intervention scenario contains a finite number of environments i.e., a discrete covariate). Despite42

the mathematical link to soft intervention, our data, in our opinion, are still observational because the "intervention" is43

performed by nature instead of by human. We shall clarify this point.44

[R7] Why CHOD performs reasonably well in Scenario 1. Although we are not able to formally prove it yet, we45

strongly believe that CHOD is fully identifiable in the multivariate case because (i) Theorem 1 indicates it is identifiable46

in the bivariate case and (ii) Theorem 2-3 suggest it is identifiable in the multivariate case when the graph is acyclic47

or when there is no confounder. Note that the bivariate result is a strong indicator of identifiability in the multivariate48

cases because in the multivariate case, the existence of v-structure can help causal identification whereas in the bivariate49

case, we can only rely on cause-effect asymmetry. With our favorable empirical evidence in Scenario 1, we will be very50

interested in extending our Theorem 1 to the general multivariate case in the future.51
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