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1 Notation18

In addition to the notation used in the main paper, we also introduce further notation to aid in the19

proofs. For working with tensors, Kolda and Bader [8] proved to be an invaluable resource; we have20

borrowed their notation in most cases. The only exception is that we have chosen to denote the21

ℓ-mode matricization of a tensor T as matℓ [T ] rather than T(ℓ), to highlight its similarity to vec [T ]22

and free up the subscript for other purposes.23
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To keep track of lengths of axes, we define the following notation:24

• dγℓ is the length of axis ℓ25

• dγ>ℓ is the product of lengths of all axes after ℓ26

• dγ<ℓ is the product of lengths of all axes before ℓ27

• dγ\ℓ is the product of lengths of all axes except for ℓ28

• dγ∀ is the product of lengths of all axes (i.e. the number of elements in Dγ)29

• d∀ =
∑

γ d
γ
∀ is the total number of elements across all datasets30

In prior work, dℓ has been used to represent the lengths of axes but mℓ was used where we write d\ℓ31

(such as in [5]). As prior work also used \ℓ to represent leaving out the ℓth axis in other contexts32

(such as in [6]), and the analogous definitions of d>ℓ and d<ℓ were convenient for use in proofs, we33

chose to introduce d\ℓ as the variable to represent leave-one-out length products. By representing all34

of these related concepts with similar symbols, we hope the maths will be easier to parse.35

We will let Ia be the a× a identity matrix, which allows a concise definition of the Kronecker sum:36 ⊕
ℓ Ψℓ =

∑
ℓ Id<ℓ

⊗Ψℓ ⊗ Id>ℓ
.37

We make frequent use of the vectorization vec [M] of a matrix M, and more generally of a tensor38

vec [T ]. We adopt the rows-first convention of vectorization, such that:39

vec

[
1 2
3 4

]
= [1 2 3 4] (1)

While columns-first is more common, rows-first is more natural when we adopt the convention that40

rows are the first axis of tensor; this is the convention that matricization uses, and matricization41

is much more important for our work due to its role in defining the Gram matrices. Note that, for42

matrices, a rows-first vectorization of M is equivalent to a columns-first vectorization of MT , so there43

is no fundamental difference between the two. For vectorizing a tensor, we proceed by stacking the44

rest of the axes in order, such that an element (i1, ..., iK) in T gets mapped to the element
∑

ℓ iℓd<ℓ45

in vec [T ].46

We define the Gram matrices as Sγ
ℓ = matℓ [Dγ ] matℓ [Dγ ]

T . Typically we consider only the one-47

sample case but if you have multiple samples, indexed by a subscript i, then the Gram matrix becomes48

an average: Sγ
ℓ = 1

n

∑n
i matℓ [Dγ

i ] matℓ [Dγ
i ]

T .49

An essential concept is that of the "stridewise-blockwise trace", defined as:50

trab [M] =
[
tr
[
M
(
Ia ⊗ Jij ⊗ Ib

)]]
ij

(2)

Where Jij is the matrix of zeros except at (i, j) where it has a 1. It is a generalization of the51

blockwise trace considered by Kalaitzis et al. [6], and is related to the projK operation defined by52

Greenewald, Zhou, and Hero III [5]. Specifically, projK [M] is equivalent to
⊕

ℓ tr
d<ℓ

d>ℓ
[M] up to53

an additive diagonal factor (Lemma 33 from Greenewald, Zhou, and Hero III [5]). projK [M] was54

defined to be the matrix that best approximates M (in terms of the Frobenius norm) while being55

Kronecker-sum-decomposable. This matrix is not unique; the choice by Greenewald, Zhou, and56

Hero III [5] to include an additive factor was to enforce tr [projK [M]] = 0. We do not wish to57

enforce this constraint as it would be impossible to preserve in the multi-tensor case.58

The parameter b of the stridewise-blockwise trace partitions the m×m matrix M into a block matrix59

with b × b blocks of size (mb × m
b ). The parameter a then partitions these blocks into a "strided"60

matrix with a× a strides containing m
ab ×

m
ab blocks. We take the trace of each stride, and the final61

matrix is the matrix of these traces. As this is conceptually complicated, we provide an example.62
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tr22



1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8


(3)

=tr2



tr

[
1 2
1 2

]
tr

[
3 4
3 4

]
tr

[
5 6
5 6

]
tr

[
7 8
7 8

]
tr

[
1 2
1 2

]
tr

[
3 4
3 4

]
tr

[
5 6
5 6

]
tr

[
7 8
7 8

]
tr

[
1 2
1 2

]
tr

[
3 4
3 4

]
tr

[
5 6
5 6

]
tr

[
7 8
7 8

]
tr

[
1 2
1 2

]
tr

[
3 4
3 4

]
tr

[
5 6
5 6

]
tr

[
7 8
7 8

]


(4)

=tr2

3 7 11 15
3 7 11 15
3 7 11 15
3 7 11 15

 (5)

=

tr
[
3 11
3 11

]
tr

[
7 15
7 15

]
tr

[
3 11
3 11

]
tr

[
7 15
7 15

]
 (6)

=

[
14 22
14 22

]
(7)

Notice the construction of the "strides" in Line 6 - the parameter of 2 told us to grab every second63

element from each row and each column.64

2 Proofs65

We will assume that no dataset contains repeated axes (i.e. no single tensor has two axes represented66

by the same graph), as this greatly affects the derived gradients. Shared axes - two tensors having67

one or more axes in common - are allowed. The case of shared axes is, after all, the whole point of68

developing this extension to prior work.69

2.1 Permutations70

Note that both vec [mat1 [Dγ ]] and vec [matℓ [Dγ ]] are row vectors containing the same ele-71

ments, just in a different order. This means that there is a permutation matrix Pℓ→1 such that72

vec [mat1 [Dγ ]]
T
Pℓ→1 = vec [matℓ [Dγ ]]

T .73

Lemma 1 (Rearrangement lemma). Pℓ→1

(
Id<ℓ

⊗Ψℓ ⊗ Id>ℓ

)
PT

ℓ→1 = Ψℓ ⊗ Id\ℓ74

Proof. While vec, matℓ and
⊗

are defined as operations on matrices, for the purposes of permuta-75

tions we can consider them as operations on indices. We can express them as follows:76
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vec : (i1, ..., iK) →

(∑
ℓ

iℓd<ℓ

)
(8)

matℓ : (i1, ..., iK) →

(
iℓ,
∑
ℓ′<ℓ

iℓ′d<ℓ′ +
∑
ℓ′>ℓ

iℓ′
d<ℓ′

dℓ

)
(9)

⊗
:
(
(i11, i

2
1), ..., (i

1
K , i

2
K)
)
→

(∑
ℓ

i1ℓd<ℓ,
∑
ℓ

i2ℓd<ℓ

)
(10)

We’ll consider just the rows of
⊗

,
⊗

rows - although the same argument applies with columns:77

⊗
rows

:
(
i11, ..., i

1
K

)
→

(∑
ℓ

i1ℓd<ℓ

)
(11)

Finally, we’ll introduce the permutation operation σℓ→1 that will change the order of our Kronecker78

product:79

σℓ→1 :
(
(i11, i

2
1), ..., (i

1
K , i

2
K)
)
→
(
((i1ℓ , i

2
ℓ), (i

1
1, i

2
1), ..., (i

1
ℓ−1, i

2
ℓ−1), (i

1
ℓ+1, i

2
ℓ+1), ..., (i

1
K , i

2
K)
)
(12)

And again without loss of generality we restrict ourself to σrows
ℓ→1 :80

σrows
ℓ→1 :

(
i11, ..., i

1
K

)
→
(
i1ℓ , i

1
1, ..., i

1
ℓ−1, i

1
ℓ+1, ..., i

1
K

)
(13)

After a Kronecker product our indices are in the form
∑

ℓ iℓd<ℓ, and if we were to reorder it with81

σℓ→1 they would be in the form iℓ+
∑

ℓ′<ℓ iℓ′d<ℓ′dℓ+
∑

ℓ′>ℓ iℓ′d<ℓ′ . Likewise, if we had matricized82

it we would have
(
iℓ,
∑

ℓ′<ℓ iℓ′d<ℓ′ +
∑

ℓ′>ℓ iℓ′
d<ℓ′
dℓ

)
, which is vectorized to iℓ+

∑
ℓ′<ℓ iℓ′d<ℓ′dℓ+83 ∑

ℓ′>ℓ iℓ′d<ℓ′ . These reorderings are the same, and hence the matrix that represents it is Pℓ→1.84

85
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2.2 Derivation of the probability density function86

Recall that the Kronecker-sum-structured normal distribution for a single tensor is defined as follows:87

vec [Dγ ] ∼ N

0,

⊕
ℓ∈γ

Ψℓ

−1
 ⇐⇒ Dγ ∼ NKS

(
{Ψℓ}ℓ∈γ

)
(14)

The log-likelihood for this distribution is given in [6] for the matrix case and [5] for the general tensor88

case. However, neither of these papers provide a derivation. As the full derivation will motivated the89

construction of lemmas useful for the proofs of Theorems 1 and 2, we will give it here. First, observe90

that the density function is that of a normal distribution.91

p (Dγ) =

√∣∣∣⊕ℓ∈γ Ψℓ

∣∣∣
(2π)

d
γ
∀
2

e
−1
2 vec[Dγ ]T (

⊕
ℓ Ψℓ)vec[Dγ ] (15)

Lemma 2 (⊕-vec lemma). vec [Dγ ]
T
(
⊕

ℓ Ψℓ) vec [Dγ ] =
∑

ℓ tr [S
γ
ℓΨℓ]92

Proof. This proof relies on the following two properties of vec: (A⊗B) vec [C] = vec
[
BCTAT

]
93

and tr
[
ATB

]
= vec [A]

T
vec [B]. The C term picks up a transpose due to our use of the rows-first94

vectorization; when using columns-first notation the right hand side becomes vec
[
BCAT

]
.95

vec [Dγ ]

(⊕
ℓ

Ψℓ

)
vec [Dγ ] =

∑
ℓ

vec [Dγ ]
T (

Id<ℓ
⊗Ψℓ ⊗ Id>ℓ

)
vec [Dγ ] (Definition of

⊕
)

=
∑
ℓ

vec [mat1 [Dγ ]]
T (

Id<ℓ
⊗Ψℓ ⊗ Id>ℓ

)
vec [mat1 [Dγ ]] (16)

=
∑
ℓ

vec [matℓ [Dγ ]]
T
PT

ℓ→1

(
Id<ℓ

⊗Ψℓ ⊗ Id>ℓ

)
Pℓ→1vec [matℓ [Dγ ]]

(17)

=
∑
ℓ

vec [matℓ [Dγ ]]
T (

Ψℓ ⊗ Id\ℓ

)
vec [matℓ [Dγ ]]

(Rearrangement Lemma)

=
∑
ℓ

vec [matℓ [Dγ ]]
T
vec
[
matℓ [Dγ ]ΨT

ℓ

]
(18)

=
∑
ℓ

tr [Sγ
ℓΨℓ] (19)

96

With this lemma, the probability density function in the single-tensor case can be expressed in the97

form:98

p (Dγ) =

√∣∣∣⊕ℓ∈γ Ψℓ

∣∣∣
(2π)

d
γ
∀
2

e
−1
2

∑
ℓ tr[S

γ
ℓ Ψℓ] (20)

Leading to the probability density function for the multi-tensor case as:99
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p ({Dγ}) =
∏
γ

√∣∣∣⊕ℓ∈γ Ψℓ

∣∣∣
(2π)

d
γ
∀
2

e
−1
2

∑
ℓ tr[S

γ
ℓ Ψℓ] (21)

=

∏
γ

√∣∣∣⊕ℓ∈γ Ψℓ

∣∣∣
(2π)

d∀
2

e
−1
2

∑
γ

∑
ℓ tr[S

γ
ℓ Ψℓ] (22)

=

∏
γ

√∣∣∣⊕ℓ∈γ Ψℓ

∣∣∣
(2π)

d∀
2

e
−1
2

∑
ℓ tr[SℓΨℓ] (23)

The negative log-likelihood is thus:100

NLL ({Dγ}) = d∀
2

log (2π) +
1

2

∑
ℓ

tr [SℓΨℓ]−
1

2

∑
γ

log

∣∣∣∣∣∣
⊕
ℓ∈γ

Ψℓ

∣∣∣∣∣∣ (24)

2.3 Gradient101

The derivation of the gradient of the negative log-likelihood is essentially the same as the derivation102

given by Kalaitzis et al. [6] for the original Bi-Graphical Lasso. Our derivation is complicated by the103

fact that we are considering general tensors rather than matrices. We’ll let sym be the symmetricizing104

operator that must be applied as we are taking the derivative with respect to a symmetric matrix:105

sym [M] = K ◦M, where K is a matrix with 1s on the diagonal and 2s everywhere else. We’ll also106

define Jij to be the matrix of zeros except for a 1 at position (i, j).107
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d

dΨℓ
NLL ({Dγ}) = 1

2
sym [Sℓ]−

1

2

∑
γ

d

dΨℓ
log

∣∣∣∣∣∣
⊕
ℓ′∈γ

Ψℓ′

∣∣∣∣∣∣ (25)

=
1

2
sym [Sℓ]−

1

2

∑
γ

tr


⊕

ℓ′∈γ

Ψℓ′

−1

d

dψij
ℓ

⊕
ℓ′∈γ

Ψℓ′


ij

(26)

=
1

2
sym [Sℓ]−

1

2

∑
γ

tr


⊕

ℓ′∈γ

Ψℓ′

−1(
Id<ℓ

⊗ d

dψij
ℓ

Ψℓ ⊗ Id>ℓ

)
ij

(27)

=
1

2
sym [Sℓ]−

1

2

∑
γ

tr


⊕

ℓ′∈γ

Ψℓ′

−1 (
Id<ℓ

⊗
(
Jij + Jji − δijJ

ij
)
⊗ Id>ℓ

)
ij

(28)

=
1

2
sym [Sℓ]−

1

2

∑
γ

(2− δij)tr


⊕

ℓ′∈γ

Ψℓ′

−1 (
Id<ℓ

⊗ Jij ⊗ Id>ℓ

)

ij

(29)

=
1

2
sym [Sℓ]−

1

2

∑
γ

(2J− I) ◦ tr


⊕

ℓ′∈γ

Ψℓ′

−1 (
Id<ℓ

⊗ Jij ⊗ Id>ℓ

)
ij

(30)

=
1

2
sym [Sℓ]−

1

2

∑
γ

sym

trd<ℓ

d>ℓ


⊕

ℓ′∈γ

Ψℓ′

−1

 (31)

The MLE occurs when this gradient is zero, i.e. when the following equation is satisfied:108

Sℓ =
∑
γ

tr
d<ℓ

d>ℓ


⊕

ℓ′∈γ

Ψℓ

−1
 (32)

In other words, our effective Gram matrices are the best Kronecker-sum decomposition of the109

covariance matrix of the maximum likelihood estimate. Unfortunately, Kronecker-sum decomposition110

does not interact well with matrix inverses, so this does not directly yield an analytic solution. It does,111

however, yield a solution for the eigenvectors.112

2.4 Maximum Likelihood Estimate for the Eigenvectors113

We first produce two lemmas to aid in the derivation.114

Lemma 3 (Cyclic property of the stridewise-blockwise trace). For any matrices M,Aa×a,Bb×b,115

we have that trab [(A⊗ I⊗B)M] = trab [M (A⊗ I⊗B)]116

Proof. This follows directly from the cyclic property of the (normal) trace operator and the definition117

of the stridewise-blockwise trace.118

Lemma 4 (Conjugacy extraction of the stridewise-blockwise trace). For any matrices M and V, we119

have that trab
[
(Ia ⊗V ⊗ Ib)M (Ia ⊗V ⊗ Ib)

T
]
= Vtrab [M]VT .120
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Proof.

trab

[
(Ia ⊗V ⊗ Ib)M (Ia ⊗V ⊗ Ib)

T
]
=
[
tr
[
(Ia ⊗V ⊗ Ib)M (Ia ⊗V ⊗ Ib)

T (
Ia ⊗ Jij ⊗ Ib

)]]
ij

(Definition of trab )

Thanks to the Rearrangement Lemma, we can get this just in terms of the standard blockwise trace,121

for which there exists a convenient lemma from Dahl et al. [3] that does the heavy lifting for us.122

Unfortunately, this requires inserting permutation matrices into every nook and cranny.123

=
[
tr
[
P (Ia ⊗V ⊗ Ib)P

TPMPTP (Ia ⊗V ⊗ Ib)
T
PTP

(
Ia ⊗ Jij ⊗ Ib

)
PT
]]

ij
(33)

=
[
tr
[
(V ⊗ Iab)

T
PMPT (V ⊗ Iab)

(
Jij ⊗ Iab

)]]
ij

(34)

= trab

[
(V ⊗ Iab)PMPT (V ⊗ Iab)

T
]

(Definition of trab)

= Vtrab
[
PMPT

]
VT (Lemma 2 of Dahl et al. [3])

We then can see analogously that trab
[
PMPT

]
= trab [M], completing the proof.124

125

Theorem 1. Let VℓeℓV
T
ℓ be the eigendecomposition of Sℓ. Then Vℓ are the eigenvectors of the126

maximum likelihood estimate of Ψℓ.127

Proof.

Sℓ =
∑
γ

tr
d<ℓ

d>ℓ


⊕

ℓ′∈γ

Ψℓ

−1
 (35)

=
∑
γ

tr
d<ℓ

d>ℓ


⊕

ℓ′∈γ

VℓΛℓV
T
ℓ

−1
 (36)

=
∑
γ

tr
d<ℓ

d>ℓ

(⊗
ℓ′

Vℓ′

)⊕
ℓ′∈γ

Λℓ

−1(⊗
ell′

Vℓ′

)T
 (37)

=
∑
γ

tr
d<ℓ

d>ℓ

(Id<ℓ
⊗Vℓ ⊗ Id>ℓ

)⊕
ℓ′∈γ

Λℓ

−1 (
Id<ℓ

⊗Vℓ ⊗ Id>ℓ

)T (Cyclic Property)

=
∑
γ

Vtr
d<ℓ

d>ℓ


⊕

ℓ′∈γ

Λℓ

−1
VT (Conjugacy Extraction)

= V

∑
γ

tr
d<ℓ

d>ℓ


⊕

ℓ′∈γ

Λℓ

−1

VT (38)

We conclude the proof by observing that the central matrix is diagonal, and thus the right hand side128

constitutes an eigendecomposition of Sℓ. Thus Sℓ and Ψℓ share eigenvectors.129

2.5 Maximum Likelihood Estimate for the Eigenvalues130

In the previous section, we derived the eigenvectors of the maximum likelihood estimate. While131

interesting (they correspond to the principal components of our data), we need the eigenvalues132
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to reconstruct Ψℓ. Our strategy for this is to transform our data such that the precision matrices133

are diagonal, and estimate these diagonals. This transformation is stated in terms of the Tucker134

operator ([[Dγ ;
{
VT

ℓ

}
ℓ∈γ

]]). In the case where D is a matrix, we have that [[D];VT
rows,V

T
cols]] =135

VrowsDVT
cols. While the definition of the Tucker operator can be given in terms of “n-mode prod-136

ucts”[8], we will only use the following property relating the Tucker operator to matricizationKolda137

[7]:138

Y = [[X ]; {Mℓ}]

=⇒ matℓ [Y] = Mℓmatℓ [X ] (MK ⊗ ...⊗Mℓ+1 ⊗Mℓ−1 ⊗ ...⊗M1)
T (Kolda [7])

The Tucker operator is an important concept for our calculation of the eigenvalues, but it is only the139

existence of such an operator that is important for our work; we never need to calculate it.140

Lemma 5 (Eigendecompositions of the Kronecker-sum-structured normal distribution). Suppose141

{Dγ} ∼ NKS ({Ψℓ}). Then
{
[[Dγ ;

{
VT

ℓ

}
]]
}
∼ NKS ({Λℓ}) and the effective Gram matrices of142

this distribution are given by the eigenvalues eℓ of the effective Gram matrices Sℓ of the original143

distribution.144

Proof. We will prove this by showing that the probability density function is that of a Kronecker-145

sum-structured normal distribution with the given parameters.146

In the first part of the proof, we will massage the probability density function into a convenient form -147

this does not depend on the Tucker decomposition, and holds for our original dataset as well.148

p([[Dγ ;
{
VT

ℓ

}
ℓ∈γ

]]) = p({Dγ}) (39)

=

∏
γ

√∣∣⊕
ℓ∈Dγ Ψℓ

∣∣
(2π)

d∀
2

e
−1
2

∑
ℓ tr[ΨℓSℓ] (40)

=

∏
γ

√∣∣⊕
ℓ∈Dγ Λℓ

∣∣
(2π)

d∀
2

e
−1
2

∑
ℓ tr[VℓΛℓV

T
ℓ Sℓ] (41)

=

∏
γ

√∣∣⊕
ℓ∈Dγ Λℓ

∣∣
(2π)

d∀
2

e
−1
2

∑
ℓ tr[ΛℓV

T
ℓ SℓVℓ] (42)

=

∏
γ

√∣∣⊕
ℓ∈Dγ Λℓ

∣∣
(2π)

d∀
2

e
−1
2

∑
ℓ tr[Λℓeℓ] (43)

To complete the proof, we must show that eℓ are the effective Gram matrices for [[Dj ;
{
VT

ℓ

}
ℓ∈Dj

]].149

For brevity, let V\ℓ = (VK ⊗ ...⊗Vℓ+1 ⊗Vℓ−1 ⊗ ...⊗V1).150

eℓ = VT
ℓ SℓVℓ (44)

=
∑
ℓ′∈γ

1

n

n∑
i

VT
ℓ matℓ [Dγ

i ] matℓ [Dγ
i ]

T
Vℓ (Definition of Sℓ)

=
∑
ℓ′∈γ

1

n

n∑
i

VT
ℓ matℓ [Dγ

i ]V
T
\ℓV\ℓmatℓ [Dγ

i ]
T
Vℓ (45)

=
∑
ℓ′∈γ

1

n

n∑
i

matℓ

[
[[Dj ;

{
VT

ℓ

}
ℓ∈Dj

]]
]
matℓ

[
[[Dj ;

{
VT

ℓ

}
ℓ∈Dj

]]
]T

(46)
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This completes the proof.151

152

Since this transformed data is still normally distributed with Kronecker-sum structure, we can use the153

previously derived gradient (Line 32):154

d

dΛℓ
NLL ({Dγ}) = eℓ −

∑
γ

tr
d<ℓ

d>ℓ


⊕

ℓ′∈γ

Λℓ

−1
 (47)

This yields Theorem 2:155

Theorem 2. Let {Gγ
ℓ } be matrices such that the expression

⊕
ℓ∈γ G

γ
ℓ is the best Frobenius-norm156

approximation of
(⊕

ℓ∈γ Λ
t
ℓ

)−1

. Then, for a learning rate µt, gradient descent can be performed157

with the update equation Λt+1
ℓ = Λt

ℓ − µt

[
eℓ −

∑
γ|ℓ∈γ G

γ
ℓ

]
. As Ψℓ is positive definite, µt must158

be chosen to prevent Λt
ℓ from becoming negative.159

This is convenient because we have reduced our optimization task from one with
∑

ℓ d
2
ℓ parameters160

to one with
∑

ℓ dℓ parameters.161

3 Dependences162

All tests and figures were generated on a Linux (Ubuntu 20.04) with an Intel Core i7 chip and 8GB of163

RAM. Along with our code, we provide an environment file (environment.yml) that contains full164

details of all the dependencies used. In our GitHub repository (https://github.com/NeurIPS-GmGM-165

Paper/GmGM), we give precise and simple instructions on how to create a conda environment with166

the same setup as ours. Most of the packages used were specific to the experiments we ran. The167

dependencies necessary for our algorithm were Python 3.9 and NumPy 1.23.5.168

4 Experiments169

4.1 Synthetic data170

We generated random graphs by modelling each edge’s probability of existing as being drawn from171

independent Bernoulli distributions. When estimating the runtimes, we ran all models five times and172

averaged out the results. When creating precision-recall curves, we averaged the results of fifty runs173

of the models. Due to space reasons, we omitted the precision-recall curves for the tensor-variate174

case in our main paper, so we provide this here in Figure 1.175

4.2 COIL video176

We downloaded the processed COIL-20[10] dataset, and tested our model on it. We wanted to see177

if our model could understand the structure of a video, which we expected to consist of two linear178

graphs (for the rows and columns, i.e. each row is connected only to its neighbor rows) and a circular179

graph (for the frames, because the video is of a 360° rotation). To generate these graphs, we ran180

our algorithm on the duck video from the dataset, and then greedily kept the largest edge from each181

vertex such that vertices in the final graph had at most two edges. If we shuffled our data (shuffle182

rows, columns, and frames) and try to reconstruct it with these graphs, we get mixed results (Figure183

2).184

We can put a numeric value to the reconstruction, by measuring the percentage of the time that185

our reconstructed edges connect two adjacent rows/columns/frames. We get an accuracy of 80%186

for the rows, 91% for the columns, and 99% for the frames. This hints that it is quite good at187

reconstructing frames of videos, but rows and columns are a harder task. This could be due to the188

specific characteristics of this video, in which there are a lot of rows that spend most of their time189

being mostly blue.190
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Figure 1: PR curves for the graphs generated from a 3-axis tensor. TeraLasso does almost perfectly;
it can be hard to see as it is hugging the top right corner.

Figure 2: A reconstruction of the COIL-20 duck video after shuffling the rows, columns, and frames,
using GmGM. While portions of the duck are well-reconstructed, it is clearly imperfect. Notably, the
duck kisses itself.

4.3 EchoNet-Dynamic ECGs191

We downloaded all of the EchoNet-Dynamic[11] data. This dataset did not have heartbeats labeled,192

so we picked a few videos at random and labeled them ourselves as a proof of concept. Specifically,193

we labeled every frame in which the mitral valve opened. Our goal was to see if the graphs produced194

by our algorithm could predict this opening. Table 1 contains the videos we picked, the labels we195

gave, and the labels we predicted.196

Mitral valve predictions were done by taking GmGM’s output frames graph in precision matrix form,197

and measuring the mass along the diagonals. We treated this as a time series (since each diagonal198

corresponds to an increasing time offset from all frames simultaneously). We applied gaussian blur199

and then a continuous wavelet transform peak detection algorithm[4] to find which diagonals had200

the most mass (Figure 3). These represent the offsets corresponding with a heartbeat. Given the first201

mitral valve opening and these offsets, we predict the remaining openings.202

4.4 Mouse embryo stem cell transcriptomics203

We used the mouse embryo stem cell dataset E-MTAB-2805[2]. This dataset had already been labeled204

by what stage of the cell cycle each cell was in. The data was log-transformed, and we restricted the205
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Figure 3: An example heartbeat offset detection, from EchoNet-Dynamic video
0XFE6E32991136338. The blue curve represents our Gaussian-blurred diagonal mass (if
x=10, it represents the blurred mass of the 10th diagonal to the right of the main diagonal). The red
lines represent the predicted peaks via a continuous wavelet transform peak detection algorithm.
These represent offsets from the first mitral valve opening. For this video, the mitral valve opened on
frame 17 and our first offset was on the 30th diagonal. Hence, we would predict the second mitral
valve opening to occur at frame 47 (which, in this case, was correct).

gene set to the same mitosis-related genes used for Li et al. [9]’s analysis of this same dataset. We206

kept the top 100 edges in our output graphs for each vertex, and set the rest to zero.207

4.5 10x Genomics flash frozen lymph node208

For this experiment, we looked at a single-cell RNA-sequencing+ATAC-sequencing dataset from 10x209

Genomics[1]. We wanted to know whether clusters in UMAP-space make sense when viewed on210

GmGM’s predicted graphs, whether clusters on the graphs made sense in UMAP-space, and whether211

these clusters had any meaning. Before performing the experiment, we removed cells whose library212

size was three median absolute deviations from the median, and similarly removed genes and peaks213

if the the total amount of times they were expressed was three median absolute deviations from the214

median. In our output graphs, we kept the top 5 edges per vertex.215

From Figures 4 and 5, we can see that the clusters indeed seem to make sense in both UMAP-space216

and on the GmGM graph, as they all form coherent regions in both spaces.217

To validate that these clusters are meaningful, we performed a GO term enrichment analysis; the full218

results of this analysis are saved on our GitHub repository, but we summarize them here.219

Clusters 3 and 7 are clearly distinct in both spaces, and this is reflected in their GO terms. Cluster220

3 was strongly associated with the CCKR signalling map and apoptosis, which none of the other221

clusters were. Cluster 7 was the most distinct, associated with the integrin signalling pathway, blood222

coagulation, and insulin. The other clusters all related to B and T cell-specific pathways. GmGM223

always grouped clusters 4 and 6 together, whereas UMAP would sometimes prefer to group cluster 6224

with the rest of the clusters (compare Figures 5a and 6).225

226

4.6 LifeLines-DEEP metagenomics + metabolomics227

We used the LifeLines-DEEP metagenomics and metabolomics datasets[13]. We did not do any pre-228

processing to the metabolomics, and we used the already pre-processed version of the metagenomics229

data from Prost, Gazut, and Brüls [12]. We kept only patients that appeared in both datasets, and230
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(a) (b)

Figure 4: (a) UMAP of the cells in the 10x Genomics dataset. Colored by kmeans (k=3). (b) GmGM’s
predicted graph over those cells, colored using the same clusters as on UMAP and plotted using
igraph without reference to the outputs of UMAP.

(a) (b)

Figure 5: (a) UMAP of the cells in the 10x Genomics dataset. Colored using same clusters as GmGM.
(b) GmGM’s predicted graph over those cells, colored using Louvain clustering.
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Video ID Label Predicted Precision Matrix

0XFE6E32991136338 [17, 47, 77, 106] [17, 47, 78, 104]

0XF072F7A9791B060 [24, 56, 100] [24, 59, 90]

0XF70A3F712E03D87 [22, 66, 110] [22, 67, 111]

0XF60BBEC9C303C98 [19, 67, 114, 162] [19, 66, 115, 162]

0XF46CF63A2A1FA90 [25, 79, 134, 188] [25, 80, 133, 184]
Table 1: Mitral valve labellings and precision matrices for the EchoNet-Dynamic dataset. The
precision matrices, for the most part, seem to have clear off-diagonal structures, as expected, and
the mitral valve prediction is generally quite good; it is only significantly off for the last opening in
0XF072F7A9791B060.

log-transformed the data. We compared our model’s results to the model given by Prost, Gazut, and231

Brüls [12] in the main paper.232
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Figure 6: Another UMAP plot showing the same concept as Figure 5a, with the clusters labeled

(a) (b)

Figure 7: (a) Runtimes of our algorithm and prior work on matrix-variate data. Our regularized
algorithm is denoted “GmGM L1”, and takes about the same time as the unregularized “GmGM”. (b)
Precision-recall curves for tensor-variate data. TeraLasso and our regularized “GmGM L1” perform
almost perfectly.

5 Regularization233

As remarked in the main paper, our algorithm by default includes no regularization. This is because234

our algorithm leverages the fact that we have a closed-form expression for the eigenvectors of the235

maximum likelihood estimate to avoid costly eigendecompositions every iteration. We do not have a236

closed-form expression for the eigenvectors in the regularized case.237

Nevertheless, we can add regularization to the eigenvalue estimation by performing an eigenrecom-238

position and regularizing that. Eigenrecomposition requires a matrix multiplication, which is quite239

costly compared to the cost of an unregularized iteration - both in practice, and asymptotically in240

the matrix-variate case (matrix multiplication is O(
∑

ℓ d
3
ℓ) whereas an unregularized iteration is241
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O(
∏

ℓ dℓ)). Thus, to regularize we first let our algorithm converge to the MLE before considering the242

penalty term. This allows us to avoid a major increase in runtime; our regularized algorithm runs in243

roughly the same time as the unregularized one (Figure 7a).244

It is important to note that this estimator is slightly different than the standard Lasso estimator, as the245

standard estimator would minimize ∥Ψℓ∥1 and our estimator minimizes ∥V̂ℓΛℓV̂
T
ℓ ∥1 (where only246

the eigenvalues Λℓ are free to vary). It can be derived as follows:247

∂

∂λi
∥VΛVT ∥1 =

∂

∂λi
∥
∑
j

λjvjavbj∥1 (48)

=

 ∂

∂λi

∣∣∣∣∣∣
∑
j

λjvjavbj

∣∣∣∣∣∣

ab

(49)

=

 ∂

∂λi
sign

∑
j

λjvjavbj

 viavbi

ab

(50)

=
[
sign

[
VΛVT

]
ab
viavbi

]
ab

(51)

= vT
i sign

[
VΛVT

]
vi (52)

Despite this difference, it performs comparably to prior work. We show in Figure 7b the precision-248

recall curves for the 3-axis case, and observe that it performs almost perfectly. This is notable as it249

was the case that the unregularized algorithm performed worse than prior work.250
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