
Off-Beat Multi-Agent Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We investigate model-free multi-agent reinforcement learning (MARL) in environ-1

ments where off-beat actions are prevalent, i.e., all actions have pre-set execution2

durations. During execution durations, the environment changes are influenced3

by, but not synchronised with, action execution. Such a setting is ubiquitous in4

many real-world problems. However, most MARL methods assume actions are5

executed immediately after inference, which is often unrealistic and can lead to6

catastrophic failure for multi-agent coordination with off-beat actions. In order to7

fill this gap, we develop an algorithmic framework for MARL with off-beat ac-8

tions. We then propose a novel episodic memory, LeGEM, for model-free MARL9

algorithms. LeGEM builds agents’ episodic memories by utilizing agents’ indi-10

vidual experiences. It boosts multi-agent learning by addressing the challenging11

temporal credit assignment problem raised by the off-beat actions via our novel12

reward redistribution scheme, alleviating the issue of non-Markovian reward. We13

evaluate LeGEM on various multi-agent scenarios with off-beat actions, including14

Stag-Hunter Game, Quarry Game, Afforestation Game, and StarCraft II microman-15

agement tasks. Empirical results show that LeGEM significantly boosts multi-agent16

coordination and achieves leading performance and improved sample efficiency.17

1 Introduction18

In Multi-Agent Reinforcement Learning (MARL), multiple agents act interactively and complete tasks19

in a sequential decision-making manner with Reinforcement Learning (RL). It has made remarkable20

advances in many domains, including autonomous systems [8, 19, 72] and real-time strategy (RTS)21

video games [58]. By the virtue of the centralised training with decentralised execution (CTDE) [33]22

paradigm, which aims to tackle the scalability and partial observability challenges in MARL, many23

CTDE-based MARL methods are proposed [13, 49, 41, 62, 47, 63, 23, 35]. With these methods, an24

agent executes actions only via feeding its individual observations independently and optimizes its25

own policy with access to global trajectories centrally.26

Despite the recent successes of MARL, learning effective multi-agent coordination policies for27

complex multi-agent systems remains challenging. One key challenge is the off-beat actions, i.e., all28

actions have pre-set execution durations1 and during the execution durations, the environment changes29

are influenced by, but not synchronised with, action execution (an illustrative scenario is shown in30

Fig. 1). However, Dec-POMDP [32], which underpins many CTDE-based MARL methods, hinges31

on the assumption that actions are executed momentarily after inference, leading to catastrophic32

failure for centralized training on various off-beat multi-agent scenarios (OBMAS). To fill this gap,33

we study MARL in settings where off-beat actions are prevalent. Such setting is very common in34

many real-world problems. For example, in the traffic light control problem, traffic lights in the35

conjunctions of the road network have pre-set execution time which is set asynchronously.36

1In the RL literature [39, 6], action execution durations are called delays of actions. In this paper, we use the
term execution durations, which is self-consistent with off-beat actions defined in Sec. 3.

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

hunter 0

hunter 1

stag hunter 0

hunter 1

stag

Hunters shoot arrows at
different timesteps.
(hunter 0: 𝑡 = 0, hunter 1: 𝑡 = 5)

Arrows hit the stag
at the same timestep.
(hunter 0 and 1: 𝑡 = 9)

takes 9 timesteps to hit the stag
takes 4 timesteps to hit the stag

Hunter 0:
Hunter 1:

Action durations

Figure 1: An illustrative scenario: two-agent stag-hunter game, where two agents (hunters) have only partial
observations, different durations of the shoot action, and cannot communicate. The goal is to catch the stag and
they are rewarded when their shot hits – as in, completion of the action is synchronised, the stag at the same
time. Both agents can see the stag. As the shoot action durations of the two agents are different, to catch the stag,
the two agents should shoot the arrow at different timesteps given the distances. Though the scenario is easy for
human beings, it is hard for MARL agents due to the action duration. Experiment results: in this scenario, the
optimal policy for agent 0 is to shoot the arrow at timestep 0 while the optimal policy for agent 1 is to shoot
the arrow at timestep 5. Such asynchronous property of OBMAS motivates agents to learn tacit policies. The
curves show that VDN and IQL fail to learn coordination policies even in this simple scenario. With LeGEM,
MARL methods gain enhanced performances as well as improved sample efficiency.

The problem of off-beat actions in MARL has yet to be investigated and tackled. Training MARL37

policies in OBMAS is challenging: (i) Each agent’s actions can have a variety of execution durations,38

which augments the order of complexity of OBMAS during decentralized execution, resulting39

in failure of the coordination; (ii) The action durations are unknown to agents during individual40

executions, and communication is constrained and not always feasible, making it non-trivial to model41

the environment; (iii) During training, both the temporal credit assignment with TD-learning [51]42

and the inter-agent credit assignment with value decomposition methods [41] cannot perform well43

due to the displaced rewards in multi-agent replay. With off-beat actions, the nonstationarity issue,44

which mainly stems from rewards’ time dependency on the agents’ past actions, is exacerbated.45

While actions durations are ubiquitous, existing works only focus on single-agent settings, i.e., delay,46

in RL. Many approaches [59, 39, 66] augment the state space with the queuing actions to be executed47

into the environment. However, such state-augmentation trick leads to exponentially increasing48

training samples with the growing action duration, making training intractable [11]. Chen et al. [10]49

extend the delayed MDP [39] and propose Delayed Markov Game for MARL. However, on one50

hand, such state-augmentation treatment is confined to short delays, e.g., one timestep delay; on51

the other hand, the delayed timestep of the actions is privileged information, which is not available52

in many scenarios. Recent works on macro-actions [67, 68] introduce asynchronous actions by53

designing macro-actions with prior environment knowledge. Macro-actions are different from options54

in hierarchical RL (HRL) [52, 3] in that the later is not manually designed but learned. The key55

difference between macro-actions and off-beat actions is that macro-actions are high-level actions56

while off-beat actions are primitive actions. Unfortunately, the inter-agent credit assignment is still57

a challenge of HRL in OBMAS and the asynchronous 2 nature of off-beat actions undermines the58

temporal credit assignment of centralized training, causing poor sample efficiency and unsatisfactory59

performance (more discussions can be found in the related works section in Sec. 7).60

We aim to address the aforementioned issues. We first propose off-beat Dec-POMDP. We then instan-61

tiate a new class of episodic memory, LeGEM, for model-free MARL algorithms. LeGEM boosts62

multi-agent learning by addressing the challenging temporal credit assignment problem raised by the63

off-beat actions via our novel levelled graph-based temporal recency reward redistribution scheme.64

Specifically, each agent maintains LeGEM and during centralized training, each agent searches the65

pivot timestep given observations from its graph. The pivot timestep is the timestep wherein the off-66

beat reward relates to the given node. The pivot timesteps of each agent are ranked, in which the final67

pivot timestep will be chosen by recency and later used for reward redistribution and target estimation68

in TD-learning. We evaluate our method on Stag-Hunter Game, Quarry Game, Afforestation Game,69

and StarCraft II micromanagement tasks. Empirical results show that our method significantly boosts70

multi-agent coordination and achieves leading performance as well as improved sample efficiency.71

2We clarify the term asynchronous: actions that simultaneously committed into the environment by all agents
in MARL will not complete their respective action durations at the same time in future timesteps.

2

2 Preliminaries72

Dec-POMDP. A cooperative MARL problem can be modeled as a decentralised partially observable73

Markov decision process (Dec-POMDP) which can be formulated as a tuple ⟨S,U ,P, R,O,N , γ⟩,74

where s ∈ S denotes the state of the environment. Each agent i ∈ N := {1, ..., N} chooses an75

action ui ∈ U at each timestep, forming a joint action vector, u := [ui]
N
i=1 ∈ UN . The Markovian76

transition function can be defined as P(s′|s,u) : S×UN ×S 7→ [0, 1], transiting one state of current77

timestep to the state of next timestep conditioned on current state and joint action. Every agent shares78

the reward and the reward function is R(s,u) : S × UN 7→ R. γ ∈ [0, 1) is the discount factor.79

Due to partial observability, each agent has individual partial observation o ∈ O, according to the80

observation function O(s, i) : S × N 7→ O. The goal of each agent is to optimize its own policy81

πi(ui|τi) : T × U 7→ [0, 1] given its action-observation-reward history τi ∈ T := (O × U).82

Multi-Agent Reinforcement Learning. MARL aims to learn optimal policies for all the agents83

in the team. With TD-learning and a global Q value proxy Qtot for the optimal Q∗, {Qi}Ni=1 are84

optimized via minimizing the loss [65, 31]: θ∗ = argminθ∗ L(θ) := ED′∼D[(y
tot
t −Qtot

θ (st,ut))
2],85

where ytott = rt + γmaxu′ Qtot
θ̄

(st+1,u
′) and θ is the parameters of the agents. θ̄ is the parameter86

of the target Qtot and is periodically copied from θ. D′ is a sample from the replay buffer D.87

3 Off-Beat Dec-POMDP88

We introduce our formulation for OBMAS. We first define the off-beat actions3 for multi-agent89

scenarios; then we propose the Off-Beat Dec-POMDP. All the proofs can be found in Appx. A.90

Definition 1 (Off-Beat Actions). Off-beat action ũ ∈ U characterizes OBMAS where the action
ũi taken by agent i has execution duration mũi

∼ A(m|ũi, i) , A ∈ A, m ∈ {0, 1, 2, · · · ,M}
and M ≤ T , where T is the maximum duration and A is the action duration distribution. It is a
distribution and takes ũi and the index of the agent as parameters. A can be either stochastic or
deterministic. The joint off-beat action is ũ = [ũi]

N
i=1. The execution duration is decided at the time

the action was committed to the environment. Thus, the execution duration of an action ũt initiated
at timestep t is mt = {mt

ũt
i
}Ni=1.

91

Note that for each agent, mt
ũt
i

4 can be different. At timestep t, there are at least 1 action 5 and at most92

N actions being initiated (committed to the environment for execution), leading to asynchronicity of93

the joint actions. Next, we propose the Off-Beat Dec-POMDP for OBMAS and discuss its properties.94

Definition 2 (Off-Beat Dec-POMDP). Off-Beat Dec-POMDP extends Dec-POMDP, such that
(1) state space is S; (2) joint action space is UN ; (3) action duration space is AN ;
(4) transition function is P(s′|s, ũ,m) : S ×UN ×S ×AN 7→ [0, 1], and m is the action durations
of the joint action;
(5) the reward function is R(s, ũ,m) : S × UN ×AN 7→ R;
(6) we call a reward r as off-beat reward when any its mũi ≥ 1, mũi ∈ m, and r ̸= 0.

95

In OBMAS, at each timestep t, the environment receives actions that agent initiates for execution96

in the environment. The initiated actions ũt are instantaneous actions inferred by agents’ policies97

given individuals’ observations. The joint reward is the consequence of the committed joint actions98

of current timestep and previous timesteps, depending on the actions’ duration. The asynchronicity99

is an inherent feature of the environment, which is different from asynchronicity incurred by com-100

munication delays in many video games (asynchronous gameplay6). We discuss some properties of101

Off-Beat Dec-POMDP below.102

3Asynchronicity is prevalent in real-world multi-agent scenarios, including asynchronicity in observations,
actions and communication, etc. In this paper, we focus on the asynchronicity of actions in multi-agent scenarios.
For brevity, we name the asynchronicity of actions in MARL as off-beat.

4We will omit t in the rest of the paper for brevity.
5We note that agents have a special NO-OP action available.
6https://www.whatgamesare.com/2011/08/synchronous-or-asynchronous-definitions.

html

3

https://www.whatgamesare.com/2011/08/synchronous-or-asynchronous-definitions.html
https://www.whatgamesare.com/2011/08/synchronous-or-asynchronous-definitions.html

Remark 1. When the durations for all actions are identical, off-beat Dec-POMDP reduces to103

Delayed Dec-POMDP and there is no off-beat actions in it.104

Remark 2. There exists ũ that is synchronous since duration of agents’ actions can be m = 0.105

When m of all actions is zero, off-beat Dec-POMDP reduces to Dec-POMDP.106

In Delayed Dec-POMDP, actions have the same delayed timesteps, which is different from off-107

beat actions where actions have different action durations or delays. In order to investigate the108

problem, we consider the deterministic setting of the transition function and the reward function.109

Remark 3 (Non-episodic Reward). In our formulation, the reward is not episodic reward [16].110

Remark 4 (Non-Markovian Reward). With off-beat actions, the Markovian property of the reward111

function R(s, ũ,m) does not hold.112

With off-beat actions, the shared rewards can be readily displaced, causing non-Markovian rewards.113

Solving Off-Beat Dec-POMDP is challenging as discussed in Sec. 1. We propose our methods to114

tackle aforementioned challenges.115

4 The Journey is the Reward: A Collective Mental Time Travel Method116

We propose two methodological elements for Off-Beat MARL. The first, LeGEM, presented in117

this section, is a form of episodic memory that facilitates discovery of a pivotal timestep for off-118

beat rewards; and the second, presented in Sec. 5, is redistribution of the off-beat reward to the pivot119

timestep when the relevant off-beat actions were initialised.120

4.1 LeGEM: A Levelled Graph Episodic Memory for Off-Beat MARL121

Human learning relies on retrospecting our detailed memory of the past [55, 48]. For example,122

while exploring a new scenic area, we do not just remember a multitude of specific spots there,123

but can recall the paths that connect them with junctions and turns. However, there is no MARL124

method that can explicitly recall the past and identify key states that lead to future rewards. Such125

“mental time travel” [24] ability is vital for tackling the challenges in OBMAS. Inspired by the recent126

progress in RL with episodic memory [18, 5, 17] that is based on the memory prosthesis proposed127

by neuroscientists [55, 48], we propose our method of episodic memory representation for MARL.128

Unlike previous episodic memory methods that train a parameterized memory by either augmenting129

the policy inputs for execution [18] or regularizing the TD learning [17] for RL, our method utilizes130

the levelled graph data structure [4], a well established structure for data storage and retrieval, to131

represent an agent’s individual episodic memory.132

0

1

2

3

4

Level

=

5

6

+

Sub-graph 1 Sub-graph 2 Graph

10

9

8

7

4

4

4 4

5

6

7

7

7

7

44

9

10

14

15

16

10 7

Figure 2: The maximum
level of the graph is 7. Circles
indicate the nodes and num-
bers indicate the visit count.

We propose our novel episodic memory, Levelled Graph Episodic133

Memory method (LeGEM), via the levelled graph data structure.134

LeGEM memorizes each agent’s past trajectories which are partial135

observations and the unilateral action of the agent. During training,136

each agent i collects its individual trajectories τi. We then define τi137

of agent i as τi = [(o0i , ũ
0
i , r

0), · · · , (oT−1
i , ũT−1

i , rT−1)], where T is138

the length of the trajectory and the triplet (oti, ũ
t
i, r

t) represents the139

observation, action and reward of timestep t. Note that rt is globally140

shared between agents. We define agent i’s LeGEM as a directed graph141

ϕt
i ∈ Φi where Φi is the set of graphs of agent i and ϕt

i is the t-th graph142

of Φi, t ∈ {0, · · · , T − 1}. Each ϕt
i consists of a tuple of (Ψ,Ξ) where143

Ψ is the set of nodes and Ξ represents the set of edges that connect144

nodes in the graph. To model an agent’s behaviour explicitly and make145

the trajectories of agents easy to represent, we create T graphs for each146

agent and let Φi = {ϕt
i}

T−1
t=0 where T is the maximum level of all graphs and the maximum length147

of the episode as well. The maximum level of ϕt
i is t + 1. The node contains key, visit count and148

pointers connecting the precursors (node at the previous level) and the successors (node at the next149

level). Unlike many parameterized episodic memory using state/observation as the key [18, 24], we150

resort to afterstate [36]. That is, we use agent i’s observation oti and action at timestep t, ũt
i, to define151

the key (oti, ũ
t
i). We provide an example to showcase the relationship between sub-graph and the152

graph in Fig. 2. For complex and continuous state scenarios, for example StarCraft II scenarios, we153

4

Algorithm 1: SearchPivotTimesteps (ρ)

1 Input: τ , Φ, Υ and Search (scheme I or II);
2 Initialize: κ: an empty list to store pivot timesteps;
// Length of τ and τi are equal.

3 l← length(τi)-1;
4 for t← 0 to length(τ)-1 do
5 if rt ̸= 0 (rt ∈ τ) then

// Off-beat reward
6 for i← 1 to N do
7 Get τi from τ ;
8 ϕl

i ← Φi[l];
9 ψ ← ϕl

i.getNode(o
t
i, ũ

t
i);

10 Find all the paths Λt,l
i from node ψ to

the node at level 0;
11 Get the discretized episode return rl,i;
12 Get the index ω from Υ with rl,i;
13 eit ← Search(ω,Λt

i, τi, r
l,i,Υ,Φi);

14 Get et (Eqn. 1) and append et to κ;
15 Return: κ.

Algorithm 2: Search Scheme I

1 Input: ω, Λt,l
i , τi, rl,i, Υ and Φi;

2 Initialize: ei
t: a list whose values are all t

and its size is the number of paths in Λt,l
i ;

3 ϕl,ω
i ← Φl,Ω

i [ω];
4 vc← VisitCount(Λt,l

i) (Alg. 4);
5 foreach path Λt,l

i [j] ∈ Λt,l
i do

6 ei,j,↓t ← UL(Λt,l
i [j], vc, τi) (Alg. 5);

7 ei,j,↑t ← LU(Λt,l
i [j], vc, τi) (Alg. 6);

8 if ei,j,↓t ̸= −1 then
9 ei

t[j]← ei,j,↓t ;
10 else if ei,j,↑t ̸= −1 then
11 ei

t[j]← ei,j,↑t ;
12 else
13 ei

t[j]← t;
14 eit ← Summarize(ei

t) (Alg. 7) ;
15 Return: eit.

use SimHash [9] to discretize the key (oti, ũ
t
i). This technique has been widely used in commercial154

search engines and RL [54]. Visit count indicates the total visits made by agent i to the node. It initial155

value is 1. Note that nodes are bidirectional since it is helpful for searching (see Sec. 4.2).156

Given a τi with the length of T , if the node is already in the graph at level t, we then increase the157

visit count by 1. Otherwise, we create a new node for level t of the graph and update its pointers.158

Meanwhile, sub-graphs will be also created and updated. The process of updating LeGEM is in Alg.159

3. We provide an example of Alg. 3 in Fig. 9, Appx. B.1. It is worth noting that τi is generated via160

the interaction of the agent with the environment, and there is no extra interaction needed to collect τi.161

The generated trajectories are saved in the experience replay and later sampled for MARL training.162

4.2 Multi-Agent Collective Mental Time Travel with LeGEM163

With structured agent’s past experiences, it can be used to search the pivot timestep when actions164

that triggered the rewarded state were executed. For example, with LeGEM, we can find the pivot165

timestep, et = 5, when agent 1 shoots the arrow in Fig. 1.166

Fact 1. (Action-Reward Association) When an off-beat reward rt exists in the trajectory τi (i ∈167

{1, · · · , N}), rt ∈ τi, off-beat action ut′ exists (t′ < t) in the trajectory set {τj}Nj=1, where {τj}Nj=1168

constitutes the global trajectory of all agents.169

As the reward function and transition function are deterministic in our setting, Fact 1 holds. Intuitively,170

once we find an off-beat reward in a trajectory, we are sure that the action which triggered the reward171

can be found in the trajectory. With more experiences collected by the agents, such pattern is obvious172

and significant. It motivates us to propose a method to leverage the association property of the173

off-beat action-reward data and search the pivot timestep for timesteps when off-beat rewards occur,174

which can further help to redistribute the reward backward to mitigate the temporal credit assignment175

issue (c.f. Sec. 5). Therefore, we first propose a search method to search the pivot timestep and then176

propose a proximal ranking method to estimate the pivot timestep that invokes the future reward.177

Collective Mental Time Travel. The displaced rewards in the replay buffer hinder multi-agent178

learning. It is essential for each agent to search the pivot timestep when the potential off-beat action179

that triggered the rewarded state was committed to the environment. Therefore, we propose two180

search schemes to find the pivot timestep for all agents given an off-beat reward.181

Scheme I: For agent i, given rt ∈ τi, episode return rl,i of τi, ϕl
i = Φi[l] and ϕl,ω

i = Φl,Ω
i [ω] ,182

agent i searches from the node (the key is (oti, ũ
t
i) and oti ∈ τi, ut

i ∈ τi) at level t in sub-graph ϕl,ω
i to183

find the pivot timestep et for rt. Concretely, we propose our bi-directional search method. The first184

one is called Low-Up (LU) search, which traverses from the given node at level t upwards to the node185

at level 0. The second one is named Up-Low (UL) search which traverses from the node at level 0186

downwards to the given node at level t. LU traversing ends when the pattern of increasing visit count187

5

(𝑜!" , 𝑢!"#$)

𝑞!

𝑄!"!

[𝑞!]!%&'#$

Env
Decentralized
Execution:
The Policy

[𝑢!"]!%$(

Centralized Training: The Loss

actions

Online interaction

𝒔" , 𝒖" , 𝑟" , 𝒔")$ "%&
* , 𝑒" "%&

*#$

experiences

agent 𝑖

... ...

update the graphs

Search for each agent 𝑖

Replay
Buffer save

𝜏! !"#
$%&

'"&
(

samples

𝑒) !,)"#
+%&

!"#,…,$%& 𝜏! !"#
$%&

Centralized Training: LeGEM

concatenate the results

agent 𝑖

sampled
trajectories

Rank 𝜅! across agents

Graphs

policy
𝜏 = 𝒔" , 𝒖" , 𝑟" , 𝒔")$ "%&

+

TD Learning Central Mixer

Identify

𝜏, ,%&
-#$

!

Search

agent 𝑖

Get
paths

𝜅! = 𝑒"! "%&
*#$

for each 𝑑

all agents

𝜋! Agent 𝑖

reward redistribution

Figure 3: Our framework: LeGEM, the loss and the agent’s policy.

ends and the corresponding level is the candidate pivot timestep. On the contrary, UL traversing188

ends when the pattern of decreasing visit count ends and the corresponding level is the candidate189

pivot timestep. In Alg. 2, we first get visit count (Line 4) and then apply UL traversing (Line 6)190

and LU traversing (Line 7). We summarize the results (Line 14) by select the pivot timestep that191

has the maximum count. UL traversing has a higher searching priority than its counterpart. The192

reason is that there exists pattern that the visit count is decreasing from the node at level 0 and193

such pattern ends at the pivot timestep. In practise, it works well in scenarios whose trajectories are194

single-off-beat-reward trajectories (there is only one off-beat reward) and the accuracy of Scheme I is195

over 90% in grid world scenarios. For scenarios, especially complex scenarios, whose trajectories are196

multiple-off-beat-reward trajectories, we apply Scheme II. We put Alg. 4, Alg. 5, Alg. 6 and Alg. 7 in197

Appx. B.1 as these algorithms are intuitive and easy to understand literally. The time complexity is198

O(n ·m) (a slight notation abuse) where n is the size of each Λt,l
i and m (1 ≤ m ≤ n) is the average199

distance between the level of the given node to the level of the node at the pivot timestep.200

Scheme II: Scheme II is a simplified version of scheme I for scenarios that have multiple-off-beat-201

reward trajectories, which searches the pivot timestep by finding the nearest timestep in the most202

visited path. The node of the nearest timestep has the maximum visitcount in that path. Despite the203

simplicity, it works effective and the time complexity is O(n) where n is the number of paths in Λt,l
i .204

The pseudo code is shown in Alg. 8 in Appx. B.1.205

Given a node at level t, agents collectively search from the node to find the pivot time step (Line 13206

in Alg. 1). The visit count is vital for search methods. In MARL, we use ϵ-greedy [31] for agents to207

explore the environment and collect individual trajectories. The collected trajectories will be used to208

build the memory and train the policy. We apply annealing to ϵ (in Appx. E).209

Ranking the Pivot Timesteps. With our two search schemes, we can search the pivot timesteps210

for each global trajectory τ = {(st, ũt, rt, st+1)}T−1
t=0 . We define the pivot timesteps κ of each211

global trajectory τ as κ = {et}T−1
t=0 , 0 ≤ et ≤ t, where et indicates the pivot timestep of t when212

rt is the consequence of actions committed before timestep t. We first get et by aggregating all the213

searching outcomes (Line 13 in Alg. 1). Then, each agent gets κi = {eit}T−1
t=0 . In order to subserve214

the inter-agent credit assignment [13, 41], κ can be collectively calculated via proximity:215

et = min
eit

[
t− e1t , · · · , t− eNt

]
, i ∈ {1, · · · , N} (1)

The pseudo code is shown in Alg. 1. For each sampled global trajectory τ , we extract τi for each216

agent in Line 7; then we get et for each agent and aggregate κ in line 14 and line 15, respectively.217

5 Reward Redistribution for Off-Beat Multi-Agent Reinforcement Learning218

Searching in LeGEM leverages the collective intelligence [25, 15] in OBMAS. We utilize TD learning219

to train MARL policies. The TD error is the difference between the TD target and the prediction.220

TD targets can be estimated with n-step target, TD(λ) and other techniques [12, 56]. Unfortunately,221

current n-step target and TD(λ) methods are far from accurate estimating TD targets. They even222

incur underestimation with off-beat trajectories. In essence, to train MARL policies in OBMAS, one223

should accurately estimate the TD target where the reward plays the key role [46, 70]. We resolve the224

aforementioned conundrum by redistributing rewards to their pivot timesteps. The key idea is that we225

can pull the outcome of one joint off-beat action back to the timestep when it was committed to the226

environment, which can dramatically enhance learning despite the long-term reward delays incurred227

by off-beat actions. We utilize et to update the reward of the transit (set , ũet , ret , set+1):228

r̂et = 1(et ≥ t) · ret + 1(et < t) · rt, (2)

6

where 1(·) is the indicator function.Such update rule is conducted iteratively from t = 0 to t = T − 1.229

β is a very small positive hyperparameter. To stabilize learning and circumvent the overestimation230

of the TD target, rt is also updated after Eqn. 2 via rt = (1 − 1(et < t) · (1 − β)) · rt. It also231

avoids aggregated biased/wrong estimation of TD target being back propagated in Bellman Equation.232

Formally, we define the reward redistribution operator as ΠΦ, i.e., et = ΠΦρ(r
t, s, ũ), and then233

define the Off-Beat Bellman operator Γ:234

(ΓQtot)(s, ũ) := E[ΠΦR(s, ũ,m) + γmax
ũ′

Qtot(s′, ũ′)] (3)

With the Off-Beat Bellman operator Γ, we propose its contraction property.235

Proposition 1. Γ : Q 7→ Q is a γ-contraction.236

Therefore, we can utilize r̂et for centralized training in TD-learning:237

LTD(θ) := ED′∼D[(ŷtot
et −Q

tot
θ (set , ũet))2], where ŷtotet = r̂et + γmax

ũ′
Qtot

θ̄ (set+1, ũ′). (4)

Our method can be easily incorporated into any model-free MARL method for OBMAS. We present238

the pseudo code of incorporating our method into model-free MARL methods in Alg. 9, Appx. E.239

We also provide a pictorial view of our framework in Fig. 3 to show the whole pipeline.240

6 Experiments241

We perform experiments on various multi-agent scenarios with off-beat actions. We introduce242

off-beat actions in Stag-Hunter Game, Quarry Game, Afforestation Game and StarCraft II microman-243

agement tasks [44] and use them as testbeds in our experiments. We aim to answer the following244

questions: Q1: Can our LeGEM improve the multi-agent coordination of many MARL methods245

in OBMAS? Q2: Can our LeGEM outperform previous parameterized episodic memory (EM) for246

MARL? Q3: Can bootstrapping method of RL help? Q4: Can our LeGEM outperform the multi-agent247

exploration and multi-agent risk-sensitive (Ex-Risk) methods?248

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

Te
st

 C
at

ch
 % QMIX-LeGEM

QMIX

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

QTRAN-LeGEM
QTRAN

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100
IQL-LeGEM
IQL

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100
VDN-LeGEM
VDN

Figure 4: The test catch rate of the stag on the Stag-Hunter Game with off-beat actions.

6.1 Experiment Setup249

hunter 0
hunter 1

stag

farmer 0 farmer 1 farmer 2
agent 0

bomb

agent 1quarry

forest

sandstorm

Quarry Game Afforestation Game

Stag-Hunter Game
desert

Figure 5: Stag-Hunter Game, Quarry Game and Afforesta-
tion Game. More information can be found in Appx. C.

Categories Methods

MARL (Q1)
QMIX [41], VDN [49]
IQL [53], QTRAN [47]
QPLEX [60]

EM (Q2) EMC [71]

Bootstrap (Q3) N-step &λ-Return [51]

Ex-Risk (Q4) MAVEN [28], EMC [71]
RMIX [38]

Table 1: Baseline algorithms.

250

Baselines and scenarios. We list all baselines in table 1, including the corresponding research251

questions to be answered. We implement our method on PyMARL [44] and use 10 random seeds252

to train each method on all environments. We do not use macro-action methods [67, 68] as the253

baseline because it is hard to make a fair comparison between macro-actions methods and our method.254

As discussed in Sec. 1, macro-actions rely on manually designed macro-actions, i.e., designing255

the macro-actions by utilizing the simulator settings and domain knowledge, which is different256

from learning options [52, 3]. Designing macro-actions is not feasible in scenarios where domain257

knowledge and simulator settings are unknown, such as the OBMAS scenarios. In OBMAS, the agent258

has no idea of the durations of other agents’ actions, which is challenging for designing macro-actions.259

We conduct experiments on Stag-Hunter Game, Quarry Game, Afforestation Game (Fig. 5) and260

StarCraft II micromanagement tasks [44] where off-beat action are introduced.261

7

Training settings. We use opensourced code of baselines publicly by the corresponding authors on262

Github in all experiments. We resort to mean-std values as our performance evaluation measurement263

in all figures where the bold line and the shaded area indicate the mean value and one standard264

deviation of the episode return, respectively. Readers can refer to Appx. C, D, E and F for more265

information on our environment, baselines, training method, training platform and empirical results.266

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

Te
st

 C
om

pl
et

io
n

%

IQL-LeGEM
IQL

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

VDN-LeGEM
VDN

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

QTRAN-LeGEM
QTRAN

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

QMIX-LeGEM
QMIX

Figure 6: The test task completion rate of the Quarry Game with off-beat actions.

0 200K 400K 600K 800K 1M
Steps

0
25
50
75

100

Te
st

 C
at

ch
 %

Stage-Hunter Game

0 200K 400K 600K 800K 1M
Steps

0
25
50
75

100

Te
st

 C
om

pl
et

io
n

% Quarry Game

0 200K 400K 600K 800K 1M
Steps

0
25
50
75

100

Te
st

 C
om

pl
et

io
n

% Afforestation Game
QMIX-LeGEM VDN-LeGEM EMC MAVEN QPLEX RMIX

Figure 7: Performance of MARL methods

6.2 Experiment Results267

The Effectiveness of LeGEM. We answer Q1. With LeGEM, MARL methods get enhanced268

performance as shown in Fig. 4. Without LeGEM, all methods perform poorly in Stag-Hunter Game;269

IQL and VDN’s final final results are even 0. By incorporating LeGEM, all of them can get converged270

performance and improved sample efficiency. We are also interested in finding if LeGEM could271

reinforce the performance of simple methods. As depicted in Fig. 7, with LeGEM, both VDN and272

QMIX outperforms QPLEX, which is a state-of-the-art MARL method armed with various advanced273

techniques, including attention network [57], dueling network [64] and advantage function.274

Performance of Episodic Memory method. We answer Q2 by presenting the performance curves275

of EMC in Fig. 7. EMC is an episodic memory MARL method with curiosity-driven exploration. It276

utilizes the episodic memory from RL [74, 17].With LeGEM, QMIX outperforms EMC. EMC even277

fails to converge in Stag-Hunter Game.278

Table 2: Results (mean and std) of n-step return (left) and TD(λ) (right) on Stag-Hunter Game.
n 1 5 10 15 λ 0.8 0.9 0.99 1

QMIX 60.0± 40% 0± 0 0± 0 0± 0 QMIX 100± 0% 100± 0% 89± 10% 61± 37%

VDN 0± 0 0± 0 0± 0 0± 0 VDN 0± 0 0± 0 0± 0 0± 0

Performance of n-step return and TD(λ) methods. To answer Q3, we use n-step return and279

TD(λ) to estimate the TD-target. As shown in Table. 2, with n-step return, both QMIX and VDN280

fail to learn good policies even with n = 15. Surprisingly, with TD(λ), QMIX can achieve good281

performance with λ ∈ {0.8, 0.9, 0.99, 1}. However, we cannot find such outcome on VDN and there282

is no guarantee of good results on using TD(λ).283

0 0.2M 0.4M 0.6M 0.8M 1M
Steps

0

25

50

75

100

Te
st

 W
in

 %

QMIX-LeGEM
VDN-LeGEM
IQL-LeGEM
QTRAN-LeGEM
QMIX
VDN
IQL
QTRAN

Figure 8: The performance of MARL meth-
ods on 2m_vs_1z.

Performance of Multi-Agent Exploration and Risk-284

Sensitive MARL methods. We also provide results of285

exploration methods for MARL and risk-sensitive MARL286

method to answer Q4. MAVEN utilizes mutual information287

to learn latent space for exploration and RMIX aims to288

learning risk-sensitive policies for MARL. In Fig. 7, RMIX289

even fails to learn. Mainly because the potential loss of290

reward is displaced by off-beat actions. Overall, MAVEN291

is stabler than EMC and RMIX. QMIX-LeGEM is stable292

in all scenarios and outperforms MAVEN. With LeGEM,293

even simple method such VDN can perform well and out-294

performs many MARL methods with complex and advanced components. Indeed, exploration295

in OBMAS is beneficial for multi-agent learning. However, the key challenge of temporal credit296

assignment can not be easily addressed merely with exploration.297

SMAC. We also conduct experiments on SMAC [44]. We train MARL methods and our method298

on 2m_vs_1z where are two agents combating with one opponent. To overcome the issue of299

8

high dimension continuous state space, We utilize simhash [9] to calculate the hash value of the300

key. We only select the attack action and set the action duration with 9. As illustrated in Fig. 8,301

incorporated with our novel episodic memory, QMIX, IQL and VDN illustrate enhanced performance,302

demonstrating the superiority of our method on complex multi-agent scenarios.303

7 Related Works304

Action Delay in RL. Conventionally, the execution of actions in RL is instantaneous and the execution305

duration is neglected. Katsikopoulos et al. [20] propose the Delayed MDP where actions have delays306

and Walsh et al [59] propose a model-based method for the Delayed MDP. To optimize the delayed307

MDP, many RL approaches [59, 39, 66, 69] augment the state space with the queuing actions to308

be executed into the environment. However, this state-augmentation trick is intractable [11]. Chen309

et al. [10] extend the delayed MDP [39] and propose a Delayed Markov Game. However, the310

state-augmentation treatment is confined to short delays and neglects the off-beat actions in multi-311

agent scenarios. Recently, Bouteiller et al. [6] apply replay buffer correction method. However, the312

delayed timestep is privileged information. It is not available for agents in many scenarios. Simply313

applying this single-agent trajectory correction in MARL cannot attain satisfactory performance due314

to off-beat actions; devising inter-agent trajectory correction methods for OBMAS is non-trivial.315

Credit Assignment in RL. Credit assignment [50, 52] tackles long-horizon sequential decision-316

making problem by distributing the contribution of each single step over the temporal interval. TD317

learning [51] is the most established credit assignment method, which is the basis of many RL methods.318

RUDDER [2] redistributes the episodic return to key timesteps in the episode [14, 42, 40]. Klissarov319

et al. [22] propose a reward propogation method via graph convolutional neural network [21]. Another320

line of works utilize episodic memory (EM) [37, 5, 73, 27, 74] to recall key events and aggregate321

information of the past for decision-making or learning. However, simply applying EM of RL to322

MARL cannot perform well in OBMAS due to the non-stationarity and the displaced rewards.323

Multi-Agent RL. Many MARL methods focus on factorizing the global Q value to train agents’324

policies via CTDE [13, 49, 41, 47, 60, 63, 35]. However, these existing works assume actions are325

executed synchronously. Messias et al. [30] propose an event-driven, asynchronous formulation of326

the multi-agent POMDP. However, the assumption of free communication [61] is limited and the327

asynchronous execution [34] in the paper is confined to the design of events and did not propose328

methods on solving challenging credit assignment issue in OBMAS. Recently, Amato et al. [1]329

and Xiao et al. [67, 68] propose macro-action methods, which are similar to hierarchical methods.330

Macro-actions are manually designed via abstracting primitive actions. However, macro-action331

methods mainly focus on macro-action selection during multi-timestep decision-making and assume332

the environment can use manually pre-defined methods for state transition. Unfortunately, the above333

works either focus on synchronous actions or defining specific asynchronous execution components334

with human knowledge. Learning coordination in OBMAS remains a challenge.335

8 Conclusion336

In this paper, we investigate model-free MARL with off-beat actions. To address challenges in337

OBMAS, we first propose Off-Beat Dec-POMDP. Then, we propose a new class of episodic memory,338

LeGEM, for model-free MARL algorithms. LeGEM addresses the challenging temporal credit339

assignment problem raised by off-beat actions in TD-learning via the novel reward redistribution340

scheme. We evaluate our method on various OBMAS scenarios. Empirical results show that our341

method significantly boosts the multi-agent coordination and achieves leading performance as well as342

improved sample efficiency.343

Limitations and Future Work. Searching from a graph-structured episodic memory takes much344

overhead in LeGEM. Scaling up LeGEM to complex OBMAS is our future direction. Recently, there345

is a growing interest in model-based planing [45]. Leveraging LeGEM for model-based planning346

is also our future work. Our paper focuses on Dec-POMDP-based MARL methods. We leave it to347

future work for investigating off-beat actions in frameworks like Markov Game [26] and MMDP [7].348

We are also interested in finding the merit of our method in real-world problem in our future work,349

such as scheduling [29] with off-beat settings.350

9

References351

[1] C. Amato, G. Konidaris, L. P. Kaelbling, and J. P. How. Modeling and planning with macro-352

actions in decentralized pomdps. Journal of Artificial Intelligence Research, 64:817–859,353

2019.354

[2] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter.355

RUDDER: Return decomposition for delayed rewards. In Advances in Neural Information356

Processing Systems, volume 32, 2019.357

[3] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI358

Conference on Artificial Intelligence, volume 31, 2017.359

[4] N. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory, 1736-1936. Oxford University Press,360

1986.361

[5] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and D. Hassabis. Reinforce-362

ment learning, fast and slow. Trends in Cognitive Sciences, 23(5):408–422, 2019.363

[6] Y. Bouteiller, S. Ramstedt, G. Beltrame, C. Pal, and J. Binas. Reinforcement learning with364

random delays. In International Conference on Learning Representations, 2020.365

[7] C. Boutilier. Planning learning and coordination in multiagent decision processes. In Proceed-366

ings of the 6th Conference on the Theoretical Aspects of Rationality and Knowledge, pages367

195–210, 1996.368

[8] Y. Cao, W. Yu, W. Ren, and G. Chen. An overview of recent progress in the study of distributed369

multi-agent coordination. IEEE Transactions on Industrial Informatics, 9(1):427–438, 2012.370

[9] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of371

the thiry-fourth Annual ACM Symposium on Theory of Computing, pages 380–388, 2002.372

[10] B. Chen, M. Xu, Z. Liu, L. Li, and D. Zhao. Delay-aware multi-agent reinforcement learning373

for cooperative and competitive environments. arXiv e-prints, pages arXiv–2005, 2020.374

[11] E. Derman, G. Dalal, and S. Mannor. Acting in delayed environments with non-stationary375

Markov policies. In International Conference on Learning Representations, 2020.376

[12] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,377

I. Dunning, et al. Impala: Scalable distributed deep-RL with importance weighted actor-learner378

architectures. In International Conference on Machine Learning, pages 1407–1416, 2018.379

[13] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual multi-agent380

policy gradients. arXiv preprint arXiv:1705.08926, 2017.381

[14] T. Gangwani, Y. Zhou, and J. Peng. Learning guidance rewards with trajectory-space smoothing.382

Advances in Neural Information Processing Systems, 33:822–832, 2020.383

[15] D. Ha and Y. Tang. Collective intelligence for deep learning: A survey of recent developments.384

arXiv preprint arXiv:2111.14377, 2021.385

[16] B. Han, Z. Ren, Z. Wu, Y. Zhou, and J. Peng. Off-policy reinforcement learning with delayed386

rewards. arXiv preprint arXiv:2106.11854, 2021.387

[17] H. Hu, J. Ye, G. Zhu, Z. Ren, and C. Zhang. Generalizable episodic memory for deep388

reinforcement learning. In Proceedings of the 38th International Conference on Machine389

Learning, pages 4380–4390, 18–24 Jul 2021.390

[18] C.-C. Hung, T. Lillicrap, J. Abramson, Y. Wu, M. Mirza, F. Carnevale, A. Ahuja, and G. Wayne.391

Optimizing agent behavior over long time scales by transporting value. Nature Communications,392

10(1):1–12, 2019.393

[19] M. Hüttenrauch, A. Šošić, and G. Neumann. Guided deep reinforcement learning for swarm394

systems. In AAMAS 2017 Autonomous Robots and Multirobot Systems (ARMS) Workshop,395

2017.396

10

[20] K. V. Katsikopoulos and S. E. Engelbrecht. Markov decision processes with delays and397

asynchronous cost collection. IEEE Transactions on Automatic Control, 48(4):568–574, 2003.398

[21] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.399

arXiv preprint arXiv:1609.02907, 2016.400

[22] M. Klissarov and D. Precup. Reward propagation using graph convolutional networks. Advances401

in Neural Information Processing Systems, 33, 2020.402

[23] J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang. Trust region policy403

optimisation in multi-agent reinforcement learning. arXiv preprint arXiv:2109.11251, 2021.404

[24] A. K. Lampinen, S. C. Chan, A. Banino, and F. Hill. Towards mental time travel: a hierarchical405

memory for reinforcement learning agents. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.406

Vaughan, editors, Advances in Neural Information Processing Systems, 2021.407

[25] J. Z. Leibo, E. D. nez Guzmán, A. S. Vezhnevets, J. P. Agapiou, P. Sunehag, R. Koster, J. Matyas,408

C. Beattie, I. Mordatch, and T. Graepel. Scalable evaluation of multi-agent reinforcement409

learning with melting pot. PMLR, 2021.410

[26] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In411

Machine Learning Proceedings 1994, pages 157–163. Elsevier, 1994.412

[27] X. Ma and W.-J. Li. State-based episodic memory for multi-agent reinforcement learning. arXiv413

preprint arXiv:2110.09817, 2021.414

[28] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson. MAVEN: Multi-agent variational415

exploration. In Advances in Neural Information Processing Systems, pages 7613–7624, 2019.416

[29] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh. Learning417

scheduling algorithms for data processing clusters. In Proceedings of the ACM special interest418

group on data communication, pages 270–288. 2019.419

[30] J. V. Messias, M. T. Spaan, and P. U. Lima. Multiagent pomdps with asynchronous execution.420

In Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent421

Systems, pages 1273–1274, 2013.422

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,423

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-424

forcement learning. Nature, 518(7540):529–533, 2015.425

[32] F. A. Oliehoek, C. Amato, et al. A Concise Introduction to Decentralized POMDPs, volume 1.426

Springer, 2016.427

[33] F. A. Oliehoek, M. T. Spaan, and N. Vlassis. Optimal and approximate q-value functions for428

decentralized POMDPs. Journal of Artificial Intelligence Research, 32:289–353, 2008.429

[34] S. Omidshafiei, A.-A. Agha-Mohammadi, C. Amato, and J. P. How. Decentralized control of430

partially observable markov decision processes using belief space macro-actions. In 2015 IEEE431

International Conference on Robotics and Automation (ICRA), pages 5962–5969, 2015.432

[35] L. Pan, T. Rashid, B. Peng, L. Huang, and S. Whiteson. Regularized softmax deep multi-agent433

q-learning. Advances in Neural Information Processing Systems, 34, 2021.434

[36] W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality,435

volume 703. John Wiley & Sons, 2007.436

[37] A. Pritzel, B. Uria, S. Srinivasan, A. P. Badia, O. Vinyals, D. Hassabis, D. Wierstra, and437

C. Blundell. Neural episodic control. In International Conference on Machine Learning, pages438

2827–2836, 2017.439

[38] W. Qiu, X. Wang, R. Yu, R. Wang, X. He, B. An, S. Obraztsova, and Z. Rabinovich. RMIX:440

Learning risk-sensitive policies for cooperative reinforcement learning agents. In Advances in441

Neural Information Processing Systems, 2021.442

11

[39] S. Ramstedt and C. Pal. Real-time reinforcement learning. Advances in Neural Information443

Processing Systems, 32:3073–3082, 2019.444

[40] D. Raposo, S. Ritter, A. Santoro, G. Wayne, T. Weber, M. Botvinick, H. van Hasselt, and445

F. Song. Synthetic returns for long-term credit assignment. arXiv preprint arXiv:2102.12425,446

2021.447

[41] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson. QMIX:448

Monotonic value function factorisation for deep multi-agent reinforcement learning. In Interna-449

tional Conference on Machine Learning, pages 4295–4304, 2018.450

[42] Z. Ren, R. Guo, Y. Zhou, and J. Peng. Learning long-term reward redistribution via randomized451

return decomposition. arXiv e-prints, pages arXiv–2111, 2021.452

[43] R. T. Rockafellar, S. Uryasev, et al. Optimization of conditional value-at-risk. Journal of Risk,453

2:21–42, 2000.454

[44] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung,455

P. H. S. Torr, J. Foerster, and S. Whiteson. The StarCraft Multi-Agent Challenge. CoRR,456

abs/1902.04043, 2019.457

[45] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-458

hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a459

learned model. Nature, 588(7839):604–609, 2020.460

[46] D. Silver, S. Singh, D. Precup, and R. S. Sutton. Reward is enough. Artificial Intelligence,461

299:103535, 2021.462

[47] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi. QTRAN: Learning to factorize with463

transformation for cooperative multi-agent reinforcement learning. In International Conference464

on Machine Learning, pages 5887–5896, 2019.465

[48] T. Suddendorf, D. R. Addis, and M. C. Corballis. Mental time travel and the shaping of466

the human mind. Philosophical Transactions of the Royal Society B: Biological Sciences,467

364(1521):1317–1324, 2009.468

[49] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot,469

N. Sonnerat, J. Z. Leibo, K. Tuyls, et al. Value-decomposition networks for cooperative470

multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.471

[50] R. S. Sutton. Temporal credit assignment in reinforcement learning. PhD thesis, University of472

Massachusetts Amherst, 1984.473

[51] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT press, 2018.474

[52] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal475

abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.476

[53] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vicente.477

Multiagent cooperation and competition with deep reinforcement learning. PLoS ONE, 12(4),478

2017.479

[54] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. Xi Chen, Y. Duan, J. Schulman, F. DeTurck, and480

P. Abbeel. # exploration: A study of count-based exploration for deep reinforcement learning.481

Advances in neural information processing systems, 30, 2017.482

[55] E. Tulving. Memory and consciousness. Canadian Psychology/Psychologie Canadienne,483

26(1):1, 1985.484

[56] H. van Hasselt, S. Madjiheurem, M. Hessel, D. Silver, A. Barreto, and D. Borsa. Expected485

eligibility traces. In Proceedings of the AAAI Conference on Artificial Intelligence, number 11,486

pages 9997–10005, 2021.487

12

[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and488

I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,489

pages 5998–6008, 2017.490

[58] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,491

R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in StarCraft II using multi-agent492

reinforcement learning. Nature, 575(7782):350–354, 2019.493

[59] T. J. Walsh, A. Nouri, L. Li, and M. L. Littman. Learning and planning in environments with494

delayed feedback. Autonomous Agents and Multi-Agent Systems, 18(1):83–105, 2009.495

[60] J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang. QPLEX: Duplex dueling multi-agent q-learning.496

arXiv preprint arXiv:2008.01062, 2020.497

[61] R. Wang, X. He, R. Yu, W. Qiu, B. An, and Z. Rabinovich. Learning efficient multi-agent498

communication: An information bottleneck approach. In International Conference on Machine499

Learning, pages 9908–9918. PMLR, 2020.500

[62] W. Wang, T. Yang, Y. Liu, J. Hao, X. Hao, Y. Hu, Y. Chen, C. Fan, and Y. Gao. Action501

semantics network: Considering the effects of actions in multiagent systems. arXiv preprint502

arXiv:1907.11461, 2019.503

[63] Y. Wang, B. Han, T. Wang, H. Dong, and C. Zhang. DOP: Off-policy multi-agent decomposed504

policy gradients. In International Conference on Learning Representations, 2021.505

[64] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network506

architectures for deep reinforcement learning. In International Conference on Machine Learning,507

pages 1995–2003, 2016.508

[65] C. J. Watkins and P. Dayan. Q-Learning. Machine Learning, 8(3-4):279–292, 1992.509

[66] T. Xiao, E. Jang, D. Kalashnikov, S. Levine, J. Ibarz, K. Hausman, and A. Herzog. Think-510

ing while moving: Deep reinforcement learning with concurrent control. In International511

Conference on Learning Representations, 2019.512

[67] Y. Xiao, J. Hoffman, and C. Amato. Macro-action-based deep multi-agent reinforcement513

learning. In Conference on Robot Learning, pages 1146–1161. PMLR, 2020.514

[68] Y. Xiao, J. Hoffman, T. Xia, and C. Amato. Multi-agent/robot deep reinforcement learning515

with macro-actions (student abstract). In Proceedings of the AAAI Conference on Artificial516

Intelligence, volume 34, pages 13965–13966, 2020.517

[69] Y. Yuan and R. Mahmood. Asynchronous reinforcement learning for real-time control of518

physical robots. arXiv preprint arXiv:2203.12759, 2022.519

[70] T. Zahavy, B. O’Donoghue, G. Desjardins, and S. Singh. Reward is enough for convex mdps.520

Advances in Neural Information Processing Systems, 34, 2021.521

[71] L. Zheng, J. Chen, J. Wang, J. He, Y. Hu, Y. Chen, C. Fan, Y. Gao, and C. Zhang. Episodic522

multi-agent reinforcement learning with curiosity-driven exploration. Advances in Neural523

Information Processing Systems, 34, 2021.524

[72] M. Zhou, J. Luo, J. Villella, Y. Yang, D. Rusu, J. Miao, W. Zhang, M. Alban, I. Fadakar, Z. Chen,525

et al. Smarts: Scalable multi-agent reinforcement learning training school for autonomous526

driving. arXiv preprint arXiv:2010.09776, 2020.527

[73] Y. Zhou, D. E. Asher, N. R. Waytowich, and J. A. Shah. On memory mechanism in multi-agent528

reinforcement learning. arXiv e-prints, pages arXiv–1909, 2019.529

[74] G. Zhu, Z. Lin, G. Yang, and C. Zhang. Episodic reinforcement learning with associative530

memory. In International Conference on Learning Representations, 2020.531

13

Checklist532

1. For all authors...533

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s534

contributions and scope? [Yes] See Sec. 4.535

(b) Did you describe the limitations of your work? [Yes] See Sec. 8.536

(c) Did you discuss any potential negative societal impacts of your work? [No] Our method537

does not have negative social impacts.538

(d) Have you read the ethics review guidelines and ensured that your paper conforms to539

them? [Yes]540

2. If you are including theoretical results...541

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See the542

statements.543

(b) Did you include complete proofs of all theoretical results? [Yes] See Appx. A.544

3. If you ran experiments...545

(a) Did you include the code, data, and instructions needed to reproduce the main ex-546

perimental results (either in the supplemental material or as a URL)? [Yes] See the547

supplementary files.548

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they549

were chosen)? [Yes] See Appx. E.550

(c) Did you report error bars (e.g., with respect to the random seed after running experi-551

ments multiple times)? [Yes] See Sec. 6 and Appx. E.552

(d) Did you include the total amount of compute and the type of resources used (e.g., type553

of GPUs, internal cluster, or cloud provider)? [Yes] See Appx. E.554

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...555

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited, see Sec. 6.556

(b) Did you mention the license of the assets? [Yes] See Appx. E.557

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]558

See the supplementary files.559

(d) Did you discuss whether and how consent was obtained from people whose data you’re560

using/curating? [N/A]561

(e) Did you discuss whether the data you are using/curating contains personally identifiable562

information or offensive content? [N/A]563

5. If you used crowdsourcing or conducted research with human subjects...564

(a) Did you include the full text of instructions given to participants and screenshots, if565

applicable? [N/A]566

(b) Did you describe any potential participant risks, with links to Institutional Review567

Board (IRB) approvals, if applicable? [N/A]568

(c) Did you include the estimated hourly wage paid to participants and the total amount569

spent on participant compensation? [N/A]570

14

A Proofs571

Proposition 1. Γ : Q 7→ Q is a γ-contraction.572

Proof. Recall that the Off-Beat Bellman operator Γ is defined as:573

(ΓQtot)(s, ũ) := E[ΠΦR(s, ũ,m) + γmax
ũ′

Qtot(s′, ũ′)] (5)

The sup-norm is defined as ∥Q∥∞ = sups∈S,ũ∈U |Q(s, ũ)|. We consider the sup-norm contraction:574

575 ∥∥(ΓQtot
(1))(s, ũ)− (ΓQtot

(2))(s, ũ)
∥∥
∞ ≤ γ

∥∥Qtot
(1)(s, ũ)−Qtot

(2)(s, ũ)
∥∥
∞ (6)

We prove:576 ∥∥∥(ΓQtot
(1))(s, ũ)− (ΓQtot

(2))(s, ũ)
∥∥∥
∞

= max
s,ũ

∣∣∣∣γ∑s′
P(s′|s, ũ)(max

ũ′
Qtot

(1)(s
′, ũ′)−max

ũ′
Qtot

(2)(s
′, ũ′))

∣∣∣∣
≤ max

s,ũ
γ
∑

s′
P(s′|s, ũ)

∣∣∣∣max
ũ′

(Qtot
(1)(s

′, ũ′)−Qtot
(2)(s

′, ũ′))

∣∣∣∣
≤ max

s,ũ
γ
∑

s′
P(s′|s, ũ) max

s′′,ũ′

∣∣∣Qtot
(1)(s

′′, ũ′)−Qtot
(2)(s

′′, ũ′)
∣∣∣

= max
s,ũ

γ
∑

s′
P(s′|s, ũ)

∥∥∥Qtot
(1) −Qtot

(2)

∥∥∥
∞

= γ
∥∥∥Qtot

(1) −Qtot
(2)

∥∥∥
∞

(7)

577

Readers may find that with the reward redistribution operator ΠΦ, the reward is ordered. Consequently,578

Off-Beat Bellman equation is reduced to Bellman equation7.579

7When all off-beat rewards are redistributed to the ground true pivot timestep, we can claim this finding.

15

B LeGEM for Off-Beat MARL580

In this section, we list Alg. 4, Alg. 5, Alg. 6 and Alg. 7 in Sec. B.1 and present the training pipline581

for Off-Beat MARL in Alg. 9 in Sec. B.2. We also present lists of symbols for Dec-POMDP, Off-582

Beat Dec-POMDP, MARL, Off-Beat MARL and LeGEMin Tab. 3, 4 and 5. To make pesude code583

easy to read, we use Python-like8 syntax to represent vectors and hashmaps (look-up tables).584

B.1 LeGEM585

We also define the sub-graph set of ϕt
i as Φt,Ω

i = {ϕt,ω
i }Ω−1

ω=0 by using the discretized episode586

return and there are Ω sub-graphs. ϕt,ω
i is the ω-th sub-graph whose episode return is Υ[ω]587

(ω ∈ {0, · · · ,Ω− 1},Υ = [0, · · · , rt,i]) where rt,i is the discretized maximum episode return of ϕt
i.588

Algorithm 3: UpdateLeGEM

1 Input: Agent i’s {τdi }Dd=1 and Φi.
2 for d← 1 to D do
3 Get ϕl

i ← Φi[length(τdi)-1]; // length(τdi)-1 equals l

4 Calculate the discretized episode reward rl,i;
5 Get the index ω from Υ by using rl,i;
6 Get ϕl,ω

i ← Φl,Ω
i [ω];

7 for t← 0 to length(τdi)− 1 do
8 if (oti , ut

i) ∈ ϕl
i then

// There is no need to update the node of sub-graph ϕl,ω
i as it shares

the same node with ϕl
i

9 ψ ← ϕl
i.getNode(o

t
i , u

t
i);

10 ψ.visitCount++;
11 else
12 ψ ← newNode(oti, u

t
i, r

t);
13 ϕl

i.append(ψ);
14 ϕl

i.updatePointers(ψ); // Sub-graph ϕl,ω
i shares the same node with ϕl

i

15 ϕl,ω
i .append(ψ);

16 ϕl,ω
i .updatePointers(ψ);

17 Return: Φi.

589

Alg. 3 shows the whole procedure to construct the graph. To illustrate it, we provide an example590

below (Fig. 9) to show how to construct the graph. Fig. 2 shows the relationship between sub-graphs591

and the graphs.592

Updating 𝜙!" with 𝜏!#

0

1

2

3

4

Level

Before Create new nodes After

Updating 𝜙!" with 𝜏!$

Before Create new nodes After

Figure 9: Updating agent i’s Φi: Agent i’s ϕt
i is updated with agent’s trajectories τ1i and then

updated with τ2i . Solid arrows and circles indicate the pointers and nodes, respectively. Grey dotted
lines indicate pointers to be created and grey circles with dotted outlines indicate nodes to be created.
All the dotted elements (pointers and circles) consist of the a new path in τ1i . All the created pointers
and nodes will be added to ϕt

i.

8https://www.python.org/

16

https://www.python.org/

Algorithm 4: VisitCount

1 Input: Λt,l
i .

2 Initialize: vc← [], an empty vector to store visit count mask for each path in Λt,l
i .

3 foreach path Λt,l
i [j] ∈ Λt,l

i do
4 pathVC← sort(set([node.visitCount for node in Λt,l

i [j]]));
5 Create an empty look-up table tb← {};
6 foreach index k ∈ pathVC do
7 tb[pathVC[k]]← k;
8 Create an empty vector ls← [];
9 foreach node ∈ trajectory Λt,l

i [j] do
10 ls.append(tb[node.visitCount]);
11 vc.append(ls);
12 Return: vc.

593

17

Algorithm 5: UL

1 Input: Λt,l
i [j], vc, τi.

2 Initialize: ei,j,↓t ← −1, res← []. // Initialize the return value and an empty vector
3 vc← vc[:t]; // Slicing the visit count
4 left← 0, right← 1; // Create two pointers
5 while right < size(vc) do
6 if vc[right] = vc[left] then
7 right++; // Non-decreasing pattern
8 else if vc[right] > vc[left] then
9 res.append(right);

10 left← right;
11 right++;
12 else
13 break; // Break the while loop
14 if size(res) = 0 then
15 ei,j,↓t ← −1;
16 else
17 ei,j,↓t ← res[-1]; // Get the last value of res
18 Return: ei,j,↓t .

594

18

Algorithm 6: LU

1 Input: Λt,l
i [j], vc, τi.

2 Initialize: ei,j,↑t ← −1, res← []. // Initialize the return value and an empty vector
3 vc← reverse(vc[:t]); // Slicing the visit count and then reverse
4 left← 0, right← 1; // Create two pointers
5 while right < size(vc) do
6 if vc[right] = vc[left] then
7 right++; // Non-increasing pattern
8 else if vc[right] > vc[left] then
9 res.append(right);

10 left← right;
11 right++;
12 else
13 break; // Break the while loop
14 if size(res) = 0 then
15 ei,j,↑t ← −1;
16 else
17 ei,j,↑t ← res[-1]; // Get the last value of res
18 ei,j,↑t ← size(vc)− ei,j,↑t − 1; // Get the right timestep as vc is reversed
19 Return: ei,j,↑t .

595

19

Algorithm 7: Summarize
1 Input: ei

t. // Receives a vector of pivot timesteps
// Get the pivot timestep with the maximum count
// Since getValueOfMaxCount(·) is easy to implement, for brevity, we do not

present its implementation here
2 eit ← getValueOfMaxCount(ei

t);
3 Return: eit.

596

20

Algorithm 8: Search Scheme II

1 Input: ω, Λt,l
i , τi, rl,i, Υ and Φi.

2 Initialize: eit ← −1; // Initialize the results
3 Initialize: tb← {}; // Initialize a empty look-up table
4 foreach path Λt,l

i [j] ∈ Λt,l
i do

// Search backwards from t− 1 to 0

5 foreach node j = t− 1 ∈ Λt,l
i [j] to 0 do

6 tb[j]← {};
7 if new node then
8 tb[j][node]=1;
9 else

10 tb[j][node]++;
11 if the size of each tb[j] equals the size of Λt,l

i then
12 eit ← −1;
13 else
14 Get the timestep j′ whose length of tb[j′] is the smallest one;
15 eit ← j′;
16 Return: eit.

597

21

B.2 Off-Beat MARL Training598

We present the pseudo code of incorporating LeGEM into model-free MARL method in Alg. 9. Lines599

4-5 show that agents commit actions into the environment and then agents save the trajectories into600

the buffer. Agents update their individual episodic memory in line 6. In lines 7-13, agents’ policies601

are trained with TD learning (line 10) by searching agent’s episodic memories (line 9). We also602

provide a pictorial view of our framework in Fig. 3 to show the whole pipeline of MARL learning.603

Algorithm 9: Off-Beat MARL Training

1 Input: initialize parameters θ̄ and θ of the network and the target network of agents, replay buffer D and Φ;
2 for j ← 1 to max_episode do
3 while episode_not_terminated do
4 All agents commit actions ũt

i into environment;
5 Collect (st, {oti}Ni=1, ũ

t, rt, s′); save it into D;
6 Call UpdateLeGEM (Alg. 3);
7 if update_the_model then
8 Sample a min-batch D′ from D;
9 For each sample in D′, get et by calling SearchPivotTimesteps (Alg. 1) ;

10 Calculate the TD target with Eqn. 2 and 4;
11 Update θ by minimizing the TD loss;
12 if update then
13 Update θ̄: θ̄ ← θ;

14 Return: A well-trained policy for each agent.

B.3 List of Symbols604

Table 3: List of Symbols for Dec-POMDP and Off-Beat Dec-POMDP
Symbol Meaning
S The state space
U The action space
P The transition probability
R The reward function
R The reward space
O The observation function
O The observation space
N The index set agents
s The current global state
u The current action
s′ The next global state
γ The discount factor
i The index of agent i
ui The action of agent i at current timestep
N The number of agents
T The agent’s action-observation-reward history space
τi Agent’s action-observation-reward history
ũ Agent’s off-beat action
mũi

The execution duration of agent i’s action ũi

A The action duration distribution
A The space of the action duration distribution
ũ The joint off-beat action
ũt The joint off-beat action at timestep t
m The execution duration of ũ
mt The execution duration of ũt

22

Table 4: List of Symbols for MARL and Off-Beat MARL
Symbol Meaning
Qi Agent i’s Q value
Qtot The global Q value of all agents
Q∗ The optimal global Q value of all agents
θ The the parameters of the agents (including agent’s network, and networks for learning Qtot)
θ̄ The the parameter of the target network
D′ A sample from the replay buffer
D The replay buffer
et The pivot timestep for rt
Γ The Off-Beat Bellman operator
r̂et The redistributed reward
ΠΦ The reward redistribution operator

Table 5: List of Symbols for LeGEM
Symbol Meaning
τi Agent i’s observation-action-reward trajectory
t
i Agent i’s observation at timesetp t
ũt
i Agent i’s off-beat action at timesetp t

rt The global reward at timestep t
T The length of the τi
Φ The set of LeGEM
Φi The set of agent i’s LeGEM
ϕt
i Agent i’s LeGEMwhose maximum level is t

Ψ The set of nodes
Ξ The set of edges
ω The index of episode return
Ω The length of the episode return list Υ
ϕt,ω
i Agent i’s ω-th sub-graph of which maximum level is t

Φt,Ω
i Agent i’s set of sub-graphs of which maximum level is t

Υ The episode return list
Υ[ω] The ω-th episode return
rt,i The discretized maximum episode return of ϕt

i
l the index of the l-th level in the graph.
Λt
i All the paths from node at level t to node at the level 0

et The pivot timestep for rt
eit Agent i’s pivot timestep for rt
eit The vector of agent i’s pivot timestep of each path in Λt,l

i for rt

23

B.4 Intuition Behind the Search Schemes605

In this subsection, we provide the intuition behind the search schemes. It is worth noting that the606

search schemes in this paper aim to search the pivot time step where the key action was committed607

into the environment and the reward was returned after some time steps.608

Node Co-Occurrence. Intuitively, when an off-beat reward is found in the trajectory, we can search609

backwards and find the actions committed by all agents. This is called Action-Reward Association.610

We restate it (Fact 1) below. In graph, we name it node co-occurrence since the node of the off-611

beat reward and nodes of off-beat actions exist in the graph. The key of the node in LeGEM is a tuple612

of observation and action.613

Fact 1. (Action-Reward Association) When an off-beat reward rt exists in the trajectory τi (i ∈614

{1, · · · , N}), rt ∈ τi, off-beat action ut′ exists (t′ < t) in the trajectory set {τj}Nj=1, where {τj}Nj=1615

constitutes the global trajectory of all agents.616

5

5

5

4 3 4

2 1 3

6

5

4

2 3 4

1 2 2

5

4

Agent 0 Agent 1

0

1

2

3

4

Timestep (Level)

Figure 10: An example of node co-occurrence. There are two graphs. The circle indicates the nodes
and the arrow stands for the edges. The number in each node is the visit count. Nodes in purple are
nodes where off-beat actions are committed or off-beat rewards occur.

5

5

5

4 3 4

2 1 3

6

5

4

2 3 4

1 2 2

5

4

Agent 0 Agent 1

0

1

2

3

4

Timestep (Level)

Figure 11: An example of search.

In Fig. 10, we present an example to showcase the node co-occurrence. The example is a simplified617

two-agent stag-hunter game as depicted in Fig. 1, Sec.1. There are two agents and each agent can618

only select SHOOT or NOOP. The SHOOT action of agent 0 takes the action duration of 2 to hit the619

stag while The SHOOT action of agent 1 takes 4 timesteps to hit the stag. The task is to hit the stag620

at the same time by 2 arrows shot by the two agents. By interacting with the environment, many621

trajectories are collected by the agents and agents’ graphs are built. At timestep 0, agent 1 executes622

an off-beat action (SHOOT) and agent 0 commits an off-beat action (SHOOT) into the environment623

at timestep 2. At timestep 4, the stag is captured and an off-beat reward occurs due to the action624

duration. We can get the observation and the action at timestep 4 and then find the corresponding625

24

nodes (in purple) for agent 0 and agent 1. Nodes that contain the off-beat action are also in purple.626

With the property of the node co-occurrence and Fact 1, we can search the nodes (i.e., timesteps) that627

are related to the off-beat rewards.628

Searching. We can search the nodes (i.e., timesteps) that are related to the off-beat rewards via629

searching methods. As the visit count number provides the information of the occurrence between630

the node of the off-beat reward and the node of the off-beat action, we can utilise this pattern via631

searching backwards. As depicted in Fig.11, the searched timesteps are 2 and 0 for agent 0 and agent632

1, respectively. The search processes are show with dotted red arrows. Now, there are two candidates633

of the pivot timestep and we can redistribute the reward (agents share a global reward) to the chosen634

pivot timestep. We select the candidate timestep that is closest to the timestep of the off-beat reward635

as the pivot timestep. Besides that, we tried two other ranking methods:636

1. We redistribute the reward to the searched pivot time step t, which is the farthest time step637

from the time step of the reward. At time step t, an off-beat action was committed to the638

environment. However, the result is not as good as the one presented in our paper. The639

reasons are (i) the action taken at time step t is not the key action to the reward. In OBMAS,640

for example, in the scenario in Fig. 1 in our paper, action SHOOT is taken by agent one at time641

step 5 is the key action to the reward at time step 9; (ii) In Dec-POMDP MARL methods, we642

use RNN in the policy network to mitigate the issue raised by partial observation. The RNN643

can backpropagate the redistributed reward at the pivot timestep to the time steps before644

it. Besides that, the Bellman update can also backpropagate the redistributed reward to Q645

values of state-action pairs before the pivot timestep.646

2. We redistribute reward at time step t (with LeGEM, the pivot time step is t’) to all time647

steps where off-beat actions were taken. This scheme did not perform well either. The main648

reason is that the redistributed reward to time steps before the time step t’ can overweigh the649

corresponding Q values.650

Therefore, we use the ranking method as introduced in Eqn. 1, Sec. 4.2. Rewards are redistributed in651

Eqn. 2, Sec. 5 for TD-learning in multi-agent reinforcement learning. We also present the pseudo652

code of training in Alg. 9 and a pictorial view of our framework in Fig. 3 (in main text) to show the653

whole pipeline.654

25

C Environments655

hunter 0
hunter 1

stag

farmer 0 farmer 1 farmer 2
agent 0

bomb

agent 1quarry

forest

sandstorm

Quarry GameAfforestation GameStag-Hunter Game

desert

Figure 12: Stag-hunter Game, Quarry Game and Afforestation Game.

C.1 Stag-Hunter Game656

As depicted in Fig. 12, there are n agents whose action durations are different; the task is to catch the657

stag by shooting it simultaneously for all agents. Agents cannot move and the distance between the658

agent and the stag is different. The stag will escape when hit by j ∈ {1, · · · , n− 1} arrows. In this659

case, agents will receive a positive reward given the number of arrows that successfully shoot the660

stag. In Sec. 6, the environment dimension of the Stag-Hunter Game is 15× 15 and maximum time661

steps is 14. At each time step, each agent can only observe its position and the position of the stag. It662

cannot observe the position of other agents. Agents can select SHOOT or NOOP actions. SHOOT means663

shooting the arrow and NOOP means no actions to be executed. For agent 0, the action duration of664

its SHOOT action is 14 while the action duration of agent 1 SHOOT action is 6. When agent 1 shoots665

the arrow at timestep 0, all agents will receive a positive reward at the end of the episode, making it666

challenging for TD learning to calculate the exact contribution of each agent.667

C.2 Quarry Game668

There are n agents in a quarry, as shown in Fig. 12. Agents’ task is to complete the n-explosive669

installation task, and only when all the explosives detonate will agents receive the optimal positive670

reward. After the installation, agents should go to the safe zones. Otherwise, agents will die and671

receive a negative reward when the explosive detonates. Agents will receive a medium-level reward672

given the number of detonated explosives. The explosive has different period to detonate after the673

installation. At each time step, each agent can observe its position, the position of the quarry, the674

position of the explosive set by the agent (if any) and the time seconds left for the explosive set by675

the agent (if any). The agent can select MOVE_LEFT, MOVE_RIGHT, NOOP or INSTALL_EXPLOSIVE676

actions at each time step. Note that each agent cannot observe the status of the other agents and others’677

explosives. Episode ends after the maximum timesteps or the explosive detonates. To complete the678

task, agents should place the explosive at the right timestep and return to the safe zone.679

C.3 Afforestation Game680

In Fig. 12, there are n farmer agents in the farm. To the north of the farm, there is a desert. In the681

early spring, strong sandstorms may gust from the north and destroy the farm. In order to protect682

the farm, farm agents should plant trees in the north of the farm. Only when trees are tall enough683

can they protect the farm. Trees can have different durations to grow, making the off-beatness of the684

planting action. Agents receive the optimal positive reward when there are n trees can protect the685

farm before the sandstorm. Note that agents have partial observations and will receive a reward of686

−0.1 at each timestep in all scenarios shown in Fig. 12. At each time step, each agent can observe its687

position, the position of the trees planted by itself and the status (position and the age of the tree)688

of the sandstorm (if any). The agent cannot observe the other agents’ positions and trees planted by689

other agents. Agents can take MOVE_NORTH, MOVE_SOUTH, NOOP or PLANT_TREE actions. Similar to690

Quarry Game and Stag-Hunter, agents should take the right action at the right timestep to complete691

the task. At the last timestep of the episode, the standstorm will gust and if there are enough trees to692

protect the farm, the task will be success. Note that agents should return to the safe zone when the693

standstorm comes. Otherwise, agents will receive a fraction of the punishment. Agents will receive694

rewards when they fail to return to the safe zone. The reward is proportional to the number of agents695

who fail to return to the safe zone.696

26

C.4 SMAC697

We introduce the off-beat action into SMAC [44]. To make reasonable changes of the environment,698

we select the ATTACK actions as off-beat actions for SMAC scenarios. The rest actions, including699

MOVE, NOOP will be executed immediately into the environment after inference. At each time step,700

agents get local observations within their field of view, which contains information (relative x, relative701

y, distance, health, shield, and unit type) about the map within a circular area for both allied and702

enemy units and makes the environment partially observable for each agent. All features, both in703

the global state and in individual observations of agents, are normalized by their maximum values.704

Actions are in the discrete space: move[direction], attack[enemy id], stop and no-op. The no-op705

action is the only legal action for dead agents. Agents can only move in four directions: north, south,706

east, or west.707

27

D Baselines708

We introduce the baselines evaluated in the experimental section. All baselines are summarized in709

Table 6.710

IQL [53]: IQL is an independent Q-learning method for multi-agent RL. Each agent learns its Q711

values independent with Q-learning [65].712

VDN [49]: VDN uses a linear combination of individual Q values to approximate the Qtot(τ ,u) as713

Qtot =
∑N

i=1 Qi(τi, ui).714

QMIX [41]: QMIX introduces the monotonic constraint on the relationship between Qtot and Qi:715

∂Qtot(τ ,u)

∂Qi(τi, ui)
≥ 0,∀i ∈ {1, 2, . . . , N}

where Qtot(τ ,u) = fm(Q1(τ1, u1), . . . , QN (τN , uN)) and fm is a mixing network used to approxi-716

mate the Qtot.717

QTRAN [47]: QTRAN factorize the Qjt(τ ,u) with transformation:718

N∑
i=1

Qi (τi, ui)−Qjt(τ ,u) + Vjt(τ) =

{
0 u = u
≥ 0 u ̸= u

where Vjt(τ) = maxu Qjt(τ ,u)−
∑N

i=1 Qi (τi, ui).719

QPLEX[60]: Wang et al. [60] utilizes the established dueling structure Q = V +A [64], advantage720

function and attention network [57] and introduces the following factorization:721

Qtot(τ ,u) = Vtot(τ) +Atot(τ ,u)
Vtot(τ) = maxu′ Qtot (τ ,u

′)
Qi (τi, ai) = Vi (τi) +Ai (τi, ai)
Vi (τi) = maxa′

i
Qi (τi, a

′
i)

EMC [71]: EMC is MARL episodic memory method that utilizes episodic memory of RL [74, 17]722

in MARL curiosity-driven exploration.723

N -step Return and TD(λ) methods [50, 51]: N -step Return and TD(λ) are methods for Q value724

prediction.725

MAVEN [28]: MAVEN builds a latent space with multual information for multi-agent exploration.726

RMIX [38]: RMIX aims to learnig risk-sensitive policies for MARL. It replaces the Q value policy727

with CVaR [43] for risk-sensitive policy learning.728

Table 6: Baseline algorithms.
Categories Methods

MARL Baselines (Q1)

QMIX[41]
VDN [49]
IQL [53]
QTRAN [47]
QPLEX [60]

EM (Q2) EMC [71]

Bootstrap (Q3) N-step Return &
λ-Return [51]

Ex-Risk (Q4)
MAVEN [28]
EMC [71]
RMIX [38]

28

E Experiment Settings729

We implement our method on PyMARL [44] and use 10 random seeds to train each method on730

all environments. We use opensourced code of baselines publicly by the corresponding authors on731

Github in all experiments. We use the default settings of PyMARL in our research, including the732

relay buffer, the mixing network, the training hyperparameters. In order to explore, we use ϵ-greedy733

with ϵ annealed linearly from 1.0 to 0.05 over 50K time steps from the start of training and keep it734

constant for the rest of the training for all methods. The discount factor γ = 0.99 and we follow the735

default hyper-parameters used in the original papers of all methods in our research. We carry out736

experiments on NVIDIA A100 Tensor Core GPU and NVIDIA GeForce RTX 3090 24G. We resort737

to mean-std values as our performance evaluation measurement. We use β = 0.00001 in Eqn. 2. To738

create sub-graphs in LeGEM, we first calculate the episode return and keep 1 decimal of it. We then739

use this episode return to create each sub-graph. We list some important hyper-parameters in Tab. 7.740

Table 7: Hyper-parameters

hyper-parameter Value
Optimizer RMSProp

Learning rate 5e-4
RMSProp alpha 0.99

RMSProp epsilon 0.00001
Gradient norm clip 10

Batch size 32
Replay buffer size 5,000

Exploration method ϵ-greedy
ϵ-start 1.0
ϵ-finish 0.05

ϵ-anneal time 50,000 steps
γ 0.99
β 0.00001

Evaluation interval 10,000
Target update interval 200

29

F Experiment Results741

F.1 n-step return and TD(λ)742

We provide additional experiment results on n-step return and TD(λ). As illustrated in Fig. 13 and743

14, QMIX can attain acceptable performance with some specific values of n and λ in Stag-Hunter744

Game. However, there is no convincing improvements of performance of VDN, QTRAN and IQL.745

On Quarry Game (Fig. 15 and 16) and Afforestation Game (Fig. 17 and 18), we can find that TD(λ)746

cannot help to improve the performance of MARL methods. We can conclude that n-step and TD(λ)747

have limited ability on improving the performance of MARL methods on OBMAS.748

In addition to the empirical results of n-step and TD(λ) returns, we present the results of MARL749

methods on Afforestation Game. In Fig. 19, we can find that with LeGEM, all four methods get750

improved performance. We also compare QMIX-LeGEM and VDN-LeGEM with EMC, MAVEN,751

QPLEX, and RMIX. Despite the simple structure of VDN, VDN-LeGEM performs well and even752

outperforms QMIX-LeGEM, demonstrating comparable performance with RMIX as depicted in Fig.753

7. In Afforestation Game, agents will receive reward when they fail to return to the safe zone. The754

reward is proportional to the number of agents who fail to return to the safe zone. Such a clear and755

simple reward rule (i.e., a “hint" for agents) makes learning much easier than that on Quarry and756

Stag-Hunter Game. This is the main reason why RMIX performs well. We can also find that MAVEN757

is also showing good performance due to its latent space learning model, which can efficiently learn758

the environment dynamics of Afforestation Game. QMIX-LeGEM also shows good performance and759

it outperforms EMC and QPLEX.760

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

T
es

t
C

at
ch

%

QMIX n=1

VDN n=1

IQL n=1

QTRAN n=1

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100 QMIX n=5

VDN n=5

IQL n=5

QTRAN n=5

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100 QMIX n=10

VDN n=10

IQL n=10

QTRAN n=10

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100 QMIX n=15

VDN n=15

IQL n=15

QTRAN n=15

Figure 13: Results of n-step return Stag-Hunter Game.

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

T
es

t
C

at
ch

%

QMIX λ=0.8

VDN λ=0.8

IQL λ=0.8

QTRAN λ=0.8

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

QMIX λ=0.9

VDN λ=0.9

IQL λ=0.9

QTRAN λ=0.9

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

QMIX λ=0.99

VDN λ=0.99

IQL λ=0.99

QTRAN λ=0.99

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

QMIX λ=1

VDN λ=1

IQL λ=1

QTRAN λ=1

Figure 14: Results of TD(λ) Stag-Hunter Game.

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

T
es

t
T

as
k

C
om

pl
et

io
n

%

QMIX n=1

VDN n=1

IQL n=1

QTRAN n=1

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

QMIX n=5

VDN n=5

IQL n=5

QTRAN n=5

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

QMIX n=10

VDN n=10

IQL n=10

QTRAN n=10

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100 QMIX n=15

VDN n=15

IQL n=15

QTRAN n=15

Figure 15: Results of n-step return Quarry Game.

30

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100
T

es
t

T
as

k
C

om
pl

et
io

n
% QMIX λ=0.8

VDN λ=0.8

IQL λ=0.8

QTRAN λ=0.8

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100 QMIX λ=0.9

VDN λ=0.9

IQL λ=0.9

QTRAN λ=0.9

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100 QMIX λ=0.99

VDN λ=0.99

IQL λ=0.99

QTRAN λ=0.99

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100 QMIX λ=1

VDN λ=1

IQL λ=1

QTRAN λ=1

Figure 16: Results of TD(λ) Quarry Game.

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

T
es

t
T

as
k

C
om

pl
et

io
n

%

QMIX n=1

VDN n=1

IQL n=1

QTRAN n=1

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100 QMIX n=5

VDN n=5

IQL n=5

QTRAN n=5

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

QMIX n=10

VDN n=10

IQL n=10

QTRAN n=10

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

QMIX n=15

VDN n=15

IQL n=15

QTRAN n=15

Figure 17: Results of n-step return Afforestation Game.

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100

T
es

t
T

as
k

C
om

pl
et

io
n

% QMIX λ=0.8

VDN λ=0.8

IQL λ=0.8

QTRAN λ=0.8

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100 QMIX λ=0.9

VDN λ=0.9

IQL λ=0.9

QTRAN λ=0.9

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100 QMIX λ=0.99

VDN λ=0.99

IQL λ=0.99

QTRAN λ=0.99

0 200K 400K 600K 800K 1M

Steps

0

25

50

75

100 QMIX λ=1

VDN λ=1

IQL λ=1

QTRAN λ=1

Figure 18: Results of TD(λ) Afforestation Game.

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

Te
st

 C
om

pl
et

io
n

%

IQL-LeGEM
IQL

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

VDN-LeGEM
VDN

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100
QTRAN-LeGEM
QTRAN

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

QMIX-LeGEM
QMIX

Figure 19: Results on Afforestation Game.

31

F.2 RUDDER761

We present results of QMIX-RUDDER, VDN-RUDDER, IQL-RUDDER and QTRAN-RUDDER on762

Stag-Hunter Game, Quarry Game, Afforestation Game and SMAC via incorporating RUDDER [2]763

into QMIX, VDN, IQL and QTRAN. As rewards in off-beat Dec-POMDP are not episodic rewards764

(c.f. Remark 3), we convert rewards into episodic rewards via using total rewards of the episode as765

the reward of the last time step of the episode (rewards at other timesteps in the episode are zero) in766

MARL-RUDDER methods. We use 4 random seeds for training each MARL method with RUDDER.767

On Stag-Hunter Game, Quarry Game, Afforestation Game and SMAC scenario 2m_vs_1z, QMIX-768

RUDDER, VDN-RUDDER, IQL-RUDDER and QTRAN-RUDDER all perform poorly as shown769

in Fig. 20, 21, 22 and 23. The performances are all zero. There are three reasons caused the770

poor performance: (i) RUDDER cannot capture the association between off-beat actions and off-771

beat rewards, making it challenging to detect the pivot timesteps and redistribute the episodic reward772

to pivot timesteps; (ii) RUDDER conducts the contribution analysis by estimating the reward of each773

timestep via regression. Due to the sparsity of off-beat rewards and the estimation error of RUDDER,774

RUDDER redistributes the reward to timesteps around the pivot timestep, rendering the failure of TD775

learning; (iii) Our setting is a partial observable multi-agent setting, simply redistributing rewards776

without considering the multi-agent setting can redistribute the reward to the wrong time steps. In TD777

learning, the estimation of the TD target is essential to the learning of the policy (or the Q value).778

However, with off-beat actions, n-step return and TD(λ) fail in Off-Beat MARL as shown in Table779

2 in the main text and Sec. F.1 in Appendix. It is not surprising to see that RUDDER also fails in780

Off-Beat MARL.781

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

Te
st

 C
at

ch
 % IQL-LeGEM

IQL-RUDDER
IQL

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

VDN-LeGEM
VDN-RUDDER
VDN

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

QTRAN-LeGEM
QTRAN-RUDDER
QTRAN

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100
QMIX-LeGEM
QMIX-RUDDER
QMIX

Figure 20: Results of MARL-RUDDER on Stag-Hunter Game.

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

Te
st

 C
om

pl
et

io
n

%

IQL-LeGEM
IQL-RUDDER
IQL

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

VDN-LeGEM
VDN-RUDDER
VDN

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100
QTRAN-LeGEM
QTRAN-RUDDER
QTRAN

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

QMIX-LeGEM
QMIX-RUDDER
QMIX

Figure 21: Results of MARL-RUDDER on Afforestation Game.

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

Te
st

 C
om

pl
et

io
n

%

IQL-LeGEM
IQL-RUDDER
IQL

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

VDN-LeGEM
VDN-RUDDER
VDN

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

QTRAN-LeGEM
QTRAN-RUDDER
QTRAN

0 200K 400K 600K 800K 1M
Steps

0

25

50

75

100

QMIX-LeGEM
QMIX-RUDDER
QMIX

Figure 22: Results of MARL-RUDDER on Quarry Game.

32

0 0.2M 0.4M 0.6M 0.8M 1M
Steps

0

25

50

75

100

Te
st

 W
in

 %

IQL
IQL-LeGEM
IQL-RUDDER

QMIX
QMIX-LeGEM
QMIX-RUDDER

QTRAN
QTRAN-LeGEM
QTRAN-RUDDER

VDN
VDN-LeGEM
VDN-RUDDER

Figure 23: Results of MARL-RUDDER on 2m_vs_1z.

33

	Introduction
	Preliminaries
	Off-Beat Dec-POMDP
	The Journey is the Reward: A Collective Mental Time Travel Method
	LeGEM: A Levelled Graph Episodic Memory for Off-Beat MARL
	Multi-Agent Collective Mental Time Travel with LeGEM

	Reward Redistribution for Off-Beat Multi-Agent Reinforcement Learning
	Experiments
	Experiment Setup
	Experiment Results

	Related Works
	Conclusion
	Proofs
	LeGEM for Off-Beat MARL
	LeGEM
	Off-Beat MARL Training
	List of Symbols
	Intuition Behind the Search Schemes

	Environments
	Stag-Hunter Game
	Quarry Game
	Afforestation Game
	SMAC

	Baselines
	Experiment Settings
	Experiment Results
	n-step return and TD()
	RUDDER

