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Abstract
We study variants of the online linear optimiza-
tion (OLO) problem with bandit feedback, where
the algorithm has access to external information
about the unknown cost vector. Our motivation
is the recent body of work on using such “hints”
towards improving regret bounds for OLO prob-
lems in the full-information setting. Unlike in the
full-information OLO setting, with bandit feed-
back, we first show that one cannot improve the
standard regret bounds of Õ(

√
T ) by using hints,

even if they are always well-correlated with the
cost vector. In contrast, if the algorithm is empow-
ered to issue queries and if all the responses are
correct, then we show O(log T ) regret is achiev-
able. We then show how to make this result more
robust—when some of the query responses can
be adversarial—by using a little feedback on the
quality of the responses.

1. Introduction
Online linear optimization (OLO) is an elegant abstraction
that captures the essence of many online decision mak-
ing problems (Zinkevich, 2003; Hazan, 2016). Informally
speaking, it is a T -round game between an algorithm and
an adversary that is played over a convex domain. In each
time step the algorithm first plays a vector after which an
adversary replies with a cost vector; the loss at this time step
is the inner product of the cost and the played vectors. The
algorithm’s performance, called regret, is measured as the
difference between the total loss incurred by the algorithm
and that of an algorithm that plays the best single vector
in hindsight at all time steps. There are two popular OLO
settings: in the full-information feedback setting, the algo-
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rithm gets to see the cost vector and in the more challenging
bandit feedback setting, only the loss but not the cost vector
is visible to the algorithm. OLO is well-studied in both
these settings, and the optimal regret is known to be Θ(

√
T )

for both (Abernethy et al., 2008).

A substantial body of research aims to understand vari-
ants of OLO where the

√
T regret bound can be improved,

ideally, to log T . A promising such variant is the use of
“hints”: before the algorithm plays a vector, it receives a hint.
There have been recent results achieving logarithmic regret
for OLO, even when each hint is only mildly correlated
(i.e., “good”) with the yet to appear cost vector (Hazan &
Megiddo, 2007; Rakhlin & Sridharan, 2013; Dekel et al.,
2017; Bhaskara et al., 2020). These algorithms are also
robust, namely, their regret gracefully degrades with the
number of time steps in which the hints are “bad” and in
the limit when all hints are bad, the regret is O(

√
T ). An

important detail is that these hint-based algorithms operate
in the full-information setting and crucially depend on the
availability of the cost vector. This poses a natural question:
are there hint-based algorithms for bandit OLO and how
much hints can help with reducing the regret in this case?

In this paper we study this question. Our first result is some-
what surprising and strong: we show that having access to
good hints is insufficient to obtain better than Õ(

√
T ) regret

for bandit OLO; furthermore, this negative result holds even
in two dimensions when the domain is simply the unit ball!
This is in stark contrast with the logarithmic regret that is
possible in the analogous full-information setting, dashing
any hopes of taking advantage of hints for bandit OLO.
The proof is based on constructing a pair of distributions
on the plane and arguing that no low-regret algorithm can
distinguish them (Section 3).

Necessitated by this lower bound, we turn our attention to a
different yet natural way of obtaining hints, namely, answers
to queries. In this model, the algorithm can actively query
the correlation (inner product) of a point of its choice with
the cost vector before playing. We present such an algorithm
that obtains logarithmic regret even if the query points are
chosen at random. The main intuition behind the result
is that a good response to a random query can be used to
provide an unbiased estimate of the cost vector; in addition
it can also be used to construct a proxy hint for the algorithm.
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We also show that the algorithm is robust, i.e., the regret
gracefully degrades if some of the responses to queries are
allowed to be bad/incorrect; however, the degradation is
linear in the number of bad responses (Section 4).

To improve the robustness so that the regret bounds would
still be O(

√
T ) even when all the query responses are bad,

we aid the algorithm with additional binary feedback about
the “goodness” of the response after playing. Exploit-
ing this information is challenging because exploring to
hedge against a potentially “bad” response is in tension
with exploiting a potentially “good” response. This explo-
ration/exploitation tradeoff is more fraught than the standard
one encountered in bandits as we need more “exploitation”
in order to achieve logarithmic rather than

√
T regret. Nev-

ertheless, in this enhanced model, we show that we can
recover the optimal robustness bounds (Section 5).

1.1. Related work

Our work connects naturally with the recent literature on al-
gorithms that can leverage ML-based predictions (e.g., (Lyk-
ouris & Vassilvtiskii, 2018; Kumar et al., 2018)). Much
of this line of work assumes that an ML “oracle” makes
problem-specific predictions, that are used by an algorithm
for obtaining better guarantees, especially for combina-
torial optimization (Gollapudi & Panigrahi, 2019; Jiang
et al., 2020; Rohatgi, 2020; Bamas et al., 2020; Im et al.,
2021; Mitzenmacher, 2020; Kumar et al., 2019; Lavastida
et al., 2021). In the online learning community, this set-
ting has been studied under the name of optimistic regret
bounds (Rakhlin & Sridharan, 2013; Steinhardt & Liang,
2014; Dekel et al., 2017; Wei & Luo, 2018; Bhaskara et al.,
2020). Our query model is different in that the algorithm
interacts with the oracle and is thus able to obtain better
regret. Recently, Bhaskara et al. (2023) introduced a query
model similar to ours, but could only obtain guarantees
in the full-information setting, or in the case of stochastic
multi-armed bandits.

Our model is also related to the “observe before play” model
introduced in Zuo et al. (2019). However, the key differ-
ence is that they consider policy regret, i.e., they compete
against policies that also make observations before playing
an arm, while our work competes against the more classic
benchmark of the best fixed action in hindsight, as in the
work on optimistic regret bounds. Another difference is that
our focus is on adversarial bandits, while Zuo et al. (2019)
primarily study the stochastic case.

One of the challenges we face in Sections 4 and 5 con-
cerns dealing with incorrect query responses. This is a
well-known challenge for learning with bandit feedback, as
a small number of incorrect responses can throw off the esti-
mates that an algorithm uses to maintain information about
the arms. Recent work such as (Lykouris et al., 2018; Gupta

et al., 2019; Ito, 2021; Wei et al., 2020) develop different
techniques to handle this issue. It is an interesting question
to see if such ideas can let us handle incorrect responses
without receiving feedback as in Section 5.

2. Formulation
Let [T ] = {1, . . . , T}. Let Bd = {x ∈ Rd | ∥x∥ ≤ 1}
denote the unit Euclidean ball in d dimensions. Let c⃗ =
c1, . . . , cT denote the sequence of cost vectors, where each
ci ∈ Bd.

The online linear optimization (OLO) problem with limited
feedback, aka, the bandit OLO setting, is a game between
an algorithm A and an adversary over T rounds. In each
time step t ∈ [T ], an adversary chooses the cost vector
ct ∈ Bd; this cost vector is not revealed to the algorithm.
The algorithm plays a point xt ∈ Bd and receives feedback
⟨ct, xt⟩; it is said to incur a loss of ℓt = ⟨ct, xt⟩ in this
time step. The total loss of the algorithm A is defined as
lossA(c⃗) =

∑
t∈[T ] ℓt.

The regret of the algorithm A is the difference between its
total loss and that of the best algorithm that is constrained
to play the same point in Bd at all time steps:

RA(c⃗) = lossA(c⃗)− min
x∈Bd

T∑
t=1

⟨ct, x⟩.

The goal is to design an algorithm with minimum regret.

In this paper we consider the following variants of the bandit
OLO setting.

(i) Hints. Before playing xt, the algorithm receives a hint
ht ∈ Bd. A hint is said to be good if ⟨ht, ct⟩ ≥ α and bad
otherwise; here α is a fixed parameter.

(ii) Queries. Before playing xt, the algorithm can query
an arbitrary point st ∈ Bd and receive a response qt. A re-
sponse is said to be good if qt = ⟨ct, st⟩ and bad otherwise.

(iii) Response Feedback. The setting is same as (ii)—
before playing xt, the algorithm gets a response qt to a
query st. In addition, after it plays xt, it receives feedback
gt, which is 1 if the response qt was good and is 0 otherwise.

2.1. Notation

For a > 0, we define

clipa(x) = max(−a,min(a, x)).

We also let c1:t denote
∑t
i=1 ci and let ∥c∥21:t denote∑t

i=1 ∥ci∥2.

For a distribution D, we let x ∼ D to denote that the ran-
dom variable x is drawn from D. For two distributions
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P,Q, let dtv(P ;Q) denote the total variation distance and
let dKL(P ;Q) denote the KL-divergence. Pinsker’s inequal-
ity states that dtv(P ;Q) ≤

√
dKL(P ;Q)/2. Let N(µ, σ2)

denote the one-dimensional Gaussian distribution with mean
µ and variance σ2.

3. Limitations of Hints
In this section we show it is not possible to reduce the regret
below Õ(

√
T ) for bandit OLO optimization, even if good

hints are available to the algorithm at every step.

Theorem 3.1. For any bandit online learning algorithm
A, there is a distribution over a sequence c1, . . . , cT ∈ Bd
of cost vectors and a sequence h1, . . . , hT ∈ Bd of hint
vectors such that the following hold:

1. ⟨ht, ct⟩ ≥ 1/4 for all t ∈ [T ] (with high probability),
and

2. 1/4 ≤ ∥ct∥ ≤ 1 and ∥ht∥ = 1 for all t ∈ [T ] (with
high probability), and

3. expected regret of A is Ω(
√

T
log T ).

The proof follows the general template of lower bounds in
bandit settings, and proceeds by constructing two distribu-
tions and arguing about whether an algorithm can distin-
guish them or not, and proving a high regret bound in either
case. Our lower bound construction will only require two
dimensions, and so the theorem holds even for d = 2.

Define the following two distributions over cost vectors.
Let ϵ, σ be parameters that will be chosen later. We define
D+ to be the distribution over R2 where a random point is
generated as (N( 12 , σ

2),N(+ϵ, σ2)). Similarly, we define
D− to be the distribution where a random point in R2 is
generated as (N( 12 , σ

2),N(−ϵ, σ2)).

Our construction will use ϵ < 1/4, and σ2 ≤ 1
100 log T . This

will ensure that ct ∼ D+ (or ∼ D−) satisfies 1
4 ≤ ∥ct∥ ≤ 1

for all t, with probability≥ 1−T−4. We also set ht = (1, 0)
for all t. Once again, the choice of σ, ϵ will ensure that
⟨ct, ht⟩ ≥ 1/4 for all t, with probability ≥ 1− T−4.

We now provide an outline of the proof. Consider any (possi-
bly randomized) algorithm that plays the point xt = (at, bt)
and observes loss ℓt at time t. We consider the distribution
of the losses (ℓ1, . . . , ℓT ) under the input distributions D+

and D−. We argue that if the loss distributions in the two
cases are close, then the algorithm must be playing “similar
points” in the two cases, and must therefore incur high re-
gret in one of the two cases. Otherwise, we show that the
algorithm must place a significant mass on bt (in magnitude)
on average, which then leads to a high regret for one of the
two distributions. We now formalize this argument.

Proof of Theorem 3.1. Let A be a (possibly randomized)

algorithm that is constrained to play a point xt = (at, bt) ∈
B2 at every time step. Let ℓt denote the loss that A incurs
at time t. Note that this is a random variable that depends
on the costs at time ≤ t, as well as the randomness in A. If
the ct’s were drawn from D+, then we can write

ℓt =
at
2

+ ϵbt + αtat + βtbt, (1)

where αt, βt ∼ N(0, σ2). We let P be the joint distribution
of (ℓ1, . . . , ℓT ) in the case where ct ∼ D+. Similarly, define
Q to be the joint distribution in the case where ct ∼ D−.
We consider two cases.

Case 1. dtv(P ;Q) ≤ 1/3. Intuitively in this case, A
cannot distinguish between whether ct ∼ D+ or ct ∼ D−.
We now argue that in one of the cases, A needs to incur a
large regret. Let It be the binary variable that indicates if
bt > 0. For convenience, let us write E+[Z] for a random
variable Z to denote the expected value when ct ∼ D+ and
write E−[Z] when ct ∼ D−.

The first observation is that for every t, |E+[It]−E−[It]| ≤
1/3. This is true by the assumption dtv(P ;Q) ≤ 1/3, and
by using the fact that the points played by A (and hence
It) only depend on the losses observed by the algorithm
so far. Thus, if we define N =

∑
t It, we have |E+[N ] −

E−[N ]| ≤ T/3. Thus, we must either have E+[N ] ≥ T/3
or E−[N ] ≤ 2T/3 (because of neither holds, the difference
will be > T/3).

Assume first that E+[N ] ≥ T/3. In this case, we have∑
t E[ℓt] =

∑
t E[

at
2 + ϵbt] (this is because at, bt only

depend on the losses and costs at time steps < t). Since
(at, bt) ∈ B2, we always (i.e., regardless of It) have

at
2

+ ϵbt ≥ −
√

1

4
+ ϵ2,

and furthermore, if It = 1, we get a stronger bound of

at
2

+ ϵbt ≥ −
1

2
≥ −

√
1

4
+ ϵ2 +

ϵ2

2
,

where the second inequality is from Taylor expansion. Next,
note that if E+[N ] ≥ T/3, we must have It = 1 for at least
T/3 steps, and thus∑

t

E[ℓt] ≥ −T
√

1

4
+ ϵ2 +

Tϵ2

6
.

However, the optimal comparator in hindsight incurs an
expected loss of −E[|

∑T
t=1 ct|] ≤ −|E

∑T
t=1 ct| =

−T
√

1
4 + ϵ2 by Jensen’s inequality. This shows that the

expected regret is Ω(Tϵ2). The proof for the case E−[N ] ≤
2T/3 is similar (and here, the argument implies that the
regret is high for ct ∼ D−). Together, this completes the
proof for Case 1.
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Case 2. dtv(P ;Q) > 1/3. By Pinsker’s inequality, note
that we must also have dKL(P ;Q) > 2/9.

Let us now obtain a bound on dKL(P ;Q) using the chain
rule for KL-divergence. For convenience, denote ℓt1 =
(ℓ1, . . . , ℓt). Then we have

dKL(P ;Q) ≤
∑
t

Eℓt−1
1
dKL(ℓt | D+, ℓ

t−1
1 ; ℓt | D−, ℓ

t−1
1 ).

Here, ℓt | D+, ℓ
t−1
1 refers to the distribution of ℓt when ct

is drawn from D+ and we condition over the losses in the
first t − 1 steps. Also note that the expectation over ℓt−1

1

corresponds to ct ∼ D+; this is due to the asymmetry in
the definition of dKL. Since ℓt−1

1 determine the values of
at, bt, we can use the expression in (1) (and the analogous
expression for the case of D−) to obtain:

dKL(ℓt | D+, ℓ
t−1
1 ; ℓt | D−, ℓ

t−1
1 ) =

4ϵ2b2t
σ2(a2t + b2t )

.

(We are using the standard formula for the KL-divergence
between univariate Gaussians (Tsybakov, 2009).)

Whenever a2t + b2t ≥ 1/2, this quantity is ≤ 8ϵ2b2t
σ2 , and

further, it is always≤ 4ϵ2

σ2 . So, if we denote by Jt the binary
variable that indicates if a2t + b2t < 1/2, we have that

4ϵ2b2t
σ2(a2t + b2t )

≤ 4ϵ2

σ2
Jt +

8ϵ2b2t
σ2

.

Let us write M =
∑
t Jt. Then, the bound dKL(P ;Q) >

2/9 implies that

E+[M ] + 2
∑
t

E+[b
2
t ] ≥

σ2

18ϵ2
.

Thus, one of the terms on the LHS must be ≥ σ2

36ϵ2 , and we
consider two sub-cases. For both the cases, we choose the
parameters σ, ϵ such that σ2

36ϵ2 ≥ 40Tϵ2.

Case 2a. E+[M ] ≥ σ2

36ϵ2 . In this case, it is easy to see that
whenever Jt = 1,

at
2

+ ϵbt ≥ −
1√
2

√
1

4
+ ϵ2 > −

√
1

4
+ ϵ2 +

1

3
.

This implies that the total regret in this case is ≥ 40Tϵ2/3.

Case 2b. E+[
∑
t b

2
t ] ≥ σ2

72ϵ2 > 20Tϵ2.

In this case, the idea is to argue that b2t is “too large” on
average, and use this to conclude that we have high regret.
Let (u1, u2) be the unit vector along (−1/2,−ϵ). Thus, to
minimize at

2 + ϵbt, we must have bt = u2. We start with
the following easy claim that quantifies the regret when
bt ̸= u2.

Claim. Suppose v = (x, y), and x2 + y2 ≤ 1. Then,

x

2
+ ϵy ≥ −

√
1

4
+ ϵ2 +

(y − u2)2

4
.

To prove the claim, note that for any given y, in order to
minimize the LHS, x must be made as small as possible,
i.e., we can set x = −

√
1− y2, and thus we may assume

that v is a unit vector. Then, if we denote u = (u1, u2) to
be the unit vector along (−1/2,−ϵ), we have (since both
are unit vectors),

1− ⟨u, v⟩ = ∥u− v∥
2

2
≥ (y − u2)2

2
.

Thus, we have√
1

4
+ ϵ2 +

(x
2
+ ϵy

)
≥
√

1

4
+ ϵ2 · (y − u2)

2

2
,

completing the proof of the claim. □

Using this for all t, we have that the expected regret is at
least E+

[∑
t
(bt−u2)

2

4

]
. To bound this, we note that

(bt − u2)2 ≥

{
0 if b2t ≤ 4u22
b2t/4 otherwise.

Thus, the regret can be lower bounded by
∑
t:b2t≥4u2

2

b2t
16 .

Finally, since ∑
t:b2t<4u2

2

b2t +
∑

t:b2t≥4u2
2

b2t ≥ 20ϵ2T,

and the first sum is at most 4u22T = 4ϵ2T
1
4+ϵ

2 ≤ 16ϵ2T , the

second term must be ≥ 4ϵ2T , and thus the regret is ≥ ϵ2T
4 .

This completes the proof of Case 2, and hence also the proof
of the theorem.

Choice of parameters. Note that in order for all the
inequalities needed in the proof to hold, we can set σ2 =

1
100 log T and ϵ2 = σ

50
√
T

. With this setting, we get a regret

lower bound of Tϵ2/4, i.e., Ω
(√

T
log T

)
.

4. Sublinear Regret with Queries
Theorem 3.1 shows that, unlike the full-information setting
(Bhaskara et al., 2020; 2021), passive hints regarding up-
coming cost vectors are not sufficient to obtain logarithmic
regret guarantees in the bandit setting. Motivated by re-
cent work (Bhaskara et al., 2023), we now consider a setup
where the algorithm can actively query the value of the cost
function at a point of its choice before playing. Our main
result is the following:
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Algorithm 1 Bandit OLO with Queries.

for t = 1, . . . , T do
st ← uniform random vector on unit sphere in Rd
qt ← Q(st) ▷ Query and response
ĉt ← d · qt · st ▷ Estimate cost
αt ← clip 4√

d
(qt)

ht ←
√
d
4 · αt · st ▷ Construct hint

x̄t ← argminx∈Bd ℓ̃1:t−1(x) + ∥x∥2 ▷ FTRL step

Play xt = x̄t +
∥x̄t∥2 − 1

2
· ht

Incur loss ⟨ct, xt⟩
Define ℓ̃t(·) := ⟨ĉt, ·⟩+

√
d
4 ·

qtαt
2

(∥ · ∥2 − 1)

end for

Theorem 4.1. For the bandit OLO problem with queries, Al-
gorithm 1 obtains expected regretO(d3/2 log T+d2 log(B+
1) + dB), where B is the number of bad responses.

In particular, when the responses to all queries are good
(i.e., B = 0), the regret is O(d3/2 log T ). We also remark
that while our algorithm assumes that the query responses
are perfectly accurate (in all but B steps), our methods can
also be used in weaker settings. For example, if we know
that ∥ct∥ = 1 for all t, then simply receiving the sign of
⟨ct, st⟩ suffices. This is because the sign suffices to obtain
the guarantees of Lemma 4.2, and thereby the desired regret
bounds. We omit these details for brevity.

4.1. Algorithm

The algorithm exploits the simple fact that a random query
can be used to get a low variance estimate of the cost vector
as well as to construct a good hint. The details are presented
in Algorithm 1. The random query st and the response qt to
this query are used to obtain an unbiased estimate ĉt of the
cost vector. They are also used to construct a good hint ht.
Note that we also need to “clip” qt for constructing the hint;
this is important for achieving the claimed regret bound but
makes the analysis tricky. The hint ht is then leveraged to
construct a strongly-convex surrogate loss function, as in
prior works (Bhaskara et al., 2020).

4.2. Analysis

We first establish some simple and useful properties of the
estimated cost vector and the constructed hint. Let Et−1[·]
denote the expected value conditioned on the history until
time t− 1. The following lemma relies on properties of a
point sampled uniformly from the unit sphere and we defer
the proof to Appendix A.

Lemma 4.2. In Algorithm 1, the following hold: (i) ∥ht∥ ≤
1 and ∥xt∥ ≤ 1. If the response is good at time t, then

(ii) E[ĉt] = ct,
(iii) Et−1[dα

2
t ] ≥ (1/4)∥ct∥2,

(iv) E[∥ĉt∥2] = d∥ct∥2.

We next bound the regret incurred by Algorithm 1 by the re-
gret incurred by the FTRL procedure against the constructed
surrogate loss functions, during time steps when the query
response is good.

Lemma 4.3. If the response qt at time t is good, then

E[⟨ct, xt − u⟩] ≤ E[ℓ̃t(x̄t)− ℓ̃t(u)], ∀u ∈ Bd.

Proof.

E[ℓ̃t(x̄t)] = E

[
⟨ĉt, x̄t⟩+

√
d

4
· ⟨ct, st⟩αt

2
(∥x̄t∥2 − 1)

]
.

When the response qt is good, from Lemma 4.2(ii), we have
E[ĉt] = ct. Since ĉt and x̄t are independent, the expectation
of the first term is exactly ⟨ct, x̄t⟩. This implies:

E[ℓ̃t(x̄t)] = E[⟨ct, xt⟩].

Next, note that for any ∥u∥ ≤ 1,

E[ℓ̃t(u)] = E
[
⟨ĉt, u⟩+

⟨ct, st⟩αt
2

(∥u∥2 − 1)

]
= ⟨ct, u⟩+ E

[
⟨ct, st⟩αt

2
(∥u∥2 − 1)

]
< ⟨ct, u⟩,

once again because ⟨ct, st⟩αt ≥ 0 if qt = ⟨ct, st⟩. Putting
these together completes the proof of the claim.

So, now all we need to show is that the FTRL procedure
obtains low regret on the surrogate losses ℓ̃t(·).

Lemma 4.4. E[
∑T
t=1 ℓ̃t(x̄t) − ℓ̃t(u)] ≤ O(d3/2 log T +

d2 log(B + 1)) where B denotes the number of time steps
when the response is bad.

Proof. For convenience, let σt :=
√
d
4 qtαt. Then by defini-

tion, ℓ̃t is σt-strongly convex wrt norm ∥ · ∥. Consider the
regularizer r(x) = ∥x∥2.

We have ℓ̃1:t+1+r is (σ1:t+1+2)-strongly convex wrt norm
∥ · ∥. Equivalently ℓ̃1:t+1 + r is 1-strongly convex wrt norm
∥·∥(t) :=

√
σ1:t+1 + 2 ∥·∥. Let ∥·∥(t),⋆ = ( 1√

σ1:t+1+2
)·∥·∥

be the corresponding dual norm.

Let g̃t denote the gradient of ℓ̃t. Then applying (McMahan,
2017, Theorem 1), we get

E

[
T∑
t=1

ℓ̃t(x̄t)− ℓ̃t(u)

]
≤ E

[
r(u) +

1

2

T∑
t=1

∥g̃t∥2(t−1),⋆

]
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= E

[
r(u) +

1

2

T∑
t=1

∥g̃t∥2

2 + σ1:t

]

≤ E

[
r(u) +

1

2

T∑
t=1

∥g̃t∥2

2 + σ1:t−1

]

= E

[
r(u) +

1

2

∑
t∈I

∥g̃t∥2

2 + σ1:t−1
+

1

2

∑
t/∈I

∥g̃t∥2

2 + σ1:t−1

]
,

where I ⊆ T denotes the set of times at which the responses
are bad.

The first term is simply ∥u∥2. For the second term, we note
that even for t ∈ I:

∥g̃t∥2 ≤ 2∥ĉt∥2 + 2σ2
t ≤ 2d2q2t + 2σt ≤ 2(d2 + 1)σt,

where the last inequality uses |qt| ≤
√
d
4 |αt|. Substituting,

we have the following

E

[
1

2

∑
t∈I

∥g̃t∥2

2 + σ1:t−1

]
≤ E

[
1

2

∑
t∈I

∥g̃t∥2

1 +
∑
s≤t|s∈I σs

]

≤ E

[
1

2

∑
t∈I

2(d2 + 1)σt
1 +

∑
s≤t|s∈I σs

]
≤ (d2 + 1)E[log(1 +

∑
t∈I

σt)] ≤ (d2 + 1) log(B + 1).

Finally for the third term, we have:

E

[∑
t/∈I

∥g̃t∥2

2 +
∑
s<t|s/∈I σs

]
= Et−1

[∑
t/∈I

Et−1[∥g̃t∥2]
2 +

∑
s<t|s/∈I σs

]

where Et−1 indicates the expectation given the history
x1, . . . , xt−1, q1, . . . , qt−1 and Et−1 indicates expectation
over only the history x1, . . . , xt−1, q1, . . . , qt−1 so that by
the tower rule, E = Et−1Et−1. The equality follows from
the tower rule of expectation and the fact that

∑
s<t|s/∈I σs

is deterministic given the history x1, . . . , xt−1, so that
Et−1[∥g̃t∥2]

2+
∑

s<t|s/∈I σs
= Et−1

[
∥g̃t∥2

2+
∑

s<t|s/∈I σs

]
. Now, to bound

Et−1[∥g̃t∥2], we utilize the fact that all t /∈ I we have the
following:

∥g̃t∥ ≤ ∥ĉt∥+
√
d

4
qtαt, yielding

Et−1[∥g̃t∥2] ≤ 2Et−1[∥ĉt∥2] +
d

8
Et−1

[
q2tα

2
t

]
.

By Lemma 4.2 (parts (iii) and (iv)), we have Et−1[∥ĉt∥2] =
d∥ct∥2 ≤ 4d2Et−1[α

2
t ]. Also, since q2t ≤ 1, the second

term is at most d8Et−1[α
2
t ]. Thus,

Et−1[∥g̃t∥2] ≤ 8d2Et−1[α
2
t ] +

d

8
Et−1[α

2
t ] ≤ 5d2Et−1[α

2
t ]

= 9d2Et−1

[
αt ·

4σt√
dqt

]
≤ 36d3/2Et−1[σt].

Hence we get,

E

[
T∑
t=1

ℓ̃t(x̄t)− ℓ̃t(u)

]
≤ 1 + (d2 + 1) log(B + 1)

+
1

2
Et−1

[∑
t/∈I

36d3/2Et−1[σt]

2 +
∑
s<t|s/∈I σs

]
since

∑
s<t|s/∈I σs is constant given the history up to time

t− 1, and Et−1Et−1 = E by the tower rule,

≤ 1 + (d2 + 1) log(B + 1) + E

[
1

2

∑
t/∈I

36d3/2σt
2 +

∑
s<t|s/∈I σs

]
since σt ≤ 1,

≤ 1 + (d2 + 1) log(B + 1) + E

[
1

2

∑
t/∈I

36d3/2σt
1 +

∑
s≤t|s/∈I σs

]

≤ 1 + (d2 + 1) log(B + 1) + 18d3/2E

[
log(1 +

∑
s/∈I

σs)

]
,

where the last step follows from the inequality∑T
t=1

at
1+a1:t

≤ log(1 + a1:T ) for any non-negative
real numbers a1, . . . , aT .

Proof of Theorem 4.1. Lemma 4.2, Lemma 4.3, and
Lemma 4.4 complete the proof when there are no bad re-
sponses (i.e., B = 0).

Now we focus on the case when some of the responses can
be bad (i.e., B ̸= 0). The intuitive difficulty in this case is
that if an estimate ĉt is incorrect for a certain time t, the
value x̄t will continue to be “incorrect” even for time steps
after t. Our core observation is that this can be managed.

Define I ⊆ [T ] to be the set of times at which the responses
are bad. First, note that even with bad responses, the al-
gorithm always plays a feasible point xt. We have the
following.

E[
∑
t

⟨ct, xt − u⟩] =
∑
t∈I

E[⟨ct, xt − u⟩]

+
∑
t̸∈I

E[⟨ct, xt − u⟩]

≤2B +
∑
t̸∈I

E[ℓ̃t(x̄t)− ℓ̃t(u)]

≤2B + E

[∣∣∣∣∣∑
t∈I

ℓ̃t(x̄t)− ℓ̃t(u)

∣∣∣∣∣+
T∑
t=1

(ℓ̃t(x̄t)− ℓ̃t(u))

]
.

The last term can, once again, be bounded by Lemma 4.4.
To bound the middle term, note that we always have ℓ̃t(x) ≤
⟨ĉt, x⟩ ≤ ∥ĉt∥ ≤ d. Thus, we have ℓ̃t(x̄t)− ℓ̃t(u) ≤ 2d for
any t ∈ I , and this completes the proof.
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5. Robustness with Response Feedback
In this section we enhance our model in order to improve
our robustness to bad responses. Previously, we achieved
logarithmic regret when all responses are good, with a linear
decay in the number of bad responses B. If B is small this
is still a non-trivial robustness guarantee, but if B = T then
we could simply ignore all responses and run a standard
bandit algorithm to achieve regret O(

√
B). It is interesting

to ask if there is a single algorithm that can achieve this “best
of both worlds” guarantee. Unfortunately, we are not aware
of such an algorithm, and designing one is an interesting
open problem (note that this is known to be possible in
the full-information setting (Bhaskara et al., 2023)). The
challenge arises because in a bandit setting, the algorithm
may never know if a query response was good or bad.

We thus study a new model in which we allow our algorithm
some extra knowledge about the bad responses. Specifically,
the algorithm is told whether a response qt is bad, but only
after it has played xt. Formally, in each time step, the
algorithm first makes a query st, receives a response qt,
and then must play a point xt. After this, the algorithm the
receives the loss ⟨ct, xt⟩ as well as a feedback gt ∈ {0, 1}
such that if gt = 1, then qt = ⟨ct, st⟩.

Even with this extra knowledge, it is unclear how to han-
dle bad responses. Recall that in Algorithm 1, we use the
response to generate an unbiased estimate of the unknown
cost. If the response is revealed to be bad, then we are at
liberty to ignore this corrupted estimate. However, if we
ignore an estimate, then we cannot make an update in that
time step, which again leads to a linear dependence on B.

Ideally, we might hope to divide the time steps into two
groups: those where gt = 1 and those where gt = 0. Then,
we could run a standard bandit algorithm on the time steps
where gt = 0 and use Algorithm 1 on the rest. The problem,
of course, is that we do not know the value of gt before
playing xt, and so we do not know which algorithm to use.

A more nuanced approach would be to instead incorporate
some kind of extra “exploration” into Algorithm 1. That is,
we play x̂t = xt + et for some mean-zero random vector
et on each time step. This is a common tactic in bandit
analysis, and would allow us to form an unbiased estimate
of ct via the one-point regression ĉt = ⟨x̂t, ct⟩E[ete⊤t ]−1et.
The key difficulty is choosing an appropriate distribution for
et such that the variance of the estimate is small.

Intuitively, in standard bandit algorithms, the variance is
kept small by forcing xt not to get too close to the boundary
of the domain, e.g., xt is usually implicitly constrained to be
inside the ball of radius 1− 1√

T
. However, such a constraint

would not allow us to obtain logarithmic regret when all the
query responses are good. Moreover, typically there is a very
intricate relationship between the update step to generate

xt+1 from xt and ĉt and the exploration distribution used to
sample et. Thus, our challenge is to incorporate this careful
exploration alongside exploitation of the queries.

Our approach is again inspired by previous literature on
using hints in the full-information setting, but via the very
different algorithmic construction of Bhaskara et al. (2021).
This more recent construction is designed to make use of
only O(

√
T ) hints, and yet still obtain logarithmic regret.

This is plausibly useful for our purposes because it suggests
that the algorithm’s actions depend only very mildly on the
hints and so are less likely to disturb the delicate balance
required for bandit exploration/exploitation tradeoffs. The
formal specification is provided in Algorithms 2 and 3.

Algorithm 2 Bandit OLO with Response Feedback.

Require: Parameters η, γ ≥ 0

Define ϕ(x) := − log(1−∥x∥2) and r0(x) :=
√
d2

2η ∥x∥
2

x̄1 ← 0
for t = 1, . . . , T do
st ← uniform random vector on unit sphere in Rd
qt ← Q(st) ▷ Query and response
αt ← clip 4√

d
(qt)

ht ←
√
d
4 αtst

wt ← uniform random vector on unit sphere in Rd
zt ← x̄t +∇2ϕ(x̄t)

−1/2wt
Get pt ∈ [0, 1/2] from Algorithm 3
Play xt = −ptht + (1− pt)zt
Incur loss ℓt = ⟨ct, xt⟩
Receive gt ∈ {0, 1}, (gt = 1 if the response is good)

▷ Feedback

ĉt ←
{

dℓt
1−pt · ∇

2ϕ(x̄t)
1/2wt if gt = 0

d · qt · st if gt = 1

Define σt := gt∥ĉt∥2 and rt(x) := δt
2 ∥x∥

2 with δt =
√
d2+σ1:t−

√
d2+σ1:t−1

η

x̄t+1 ← argmin∥x∥≤1⟨ĉ1:t, x⟩+ r0:t(x) + γϕ(x)
Send ⟨ct,−ptht + (1− pt)zt⟩ = ℓt to Algorithm 3
If gt = 1, also send ⟨ct, ht⟩ =

√
d
4 αtqt to Algorithm 3

end for

We informally discuss the main ideas here and defer the
formal proof and technical details to Appendix C. At each
time step, we will play a linear combination:

xt = −ptht + (1− pt)zt
zt = x̄t + et,

where pt ≈ 1/
√
T is a weighting factor, x̄t is the output of

a more “standard” base bandit algorithm, and et is a random
exploration term. Note that since pt is rather small, the algo-
rithm actually does not deviate much from the predictions
of the base bandit algorithm. This property will allow us to
blend bandit analysis with queries.

7
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Algorithm 3 Hint Weight Learner

Require: B = number of bad queries , parameter λ
p1 ← 0
D1 ← λ√

B+4λ
≤ 1/2.

for t = 1, . . . , T do
Play pt
Receive feedback ⟨ct,−ptht + (1− pt)zt⟩
If gt = 1, also receive feedback ⟨ct, ht⟩
Define vt = −⟨ct, ht⟩ − ⟨ct, zt⟩ ▷ for analysis
v̂t ← gtvt ▷ vt can be computed if gt = 1

Define ηt = λ
4λ+B+v̂21:t

Define Dt+1 = min

(
1, λ√

4λ+B+v̂21:t

)
Output pt+1 = max(0, clipDt+1

(pt − ηtv̂t))
end for

In time steps in which gt = 1, we can form a low-variance
estimate of the cost ct via dqtst, exactly as in Algorithm 1.
However, in time steps in which gt = 0, we can still form
an unbiased estimate of ct via ĉt =

⟨ct,xt⟩E[ete⊤t ]−1et
1−pt . As

is typical in bandit OLO, we will rely on tools from self-
concordant analysis to ensure that ⟨ct, xt⟩E[ete⊤t ]−1et does
not have prohibitively high variance, and then rely on the
fact that pt ≈ 1/

√
T , and in particular pt ≤ 1/2, to ensure

that ĉt will continue to not have high variance.

In more detail, x̄t will be set via the FTRL update:

x̄t+1 = argmin
∥x∥≤1

⟨ĉ1:t, x⟩+

√
d2 +

∑t
i=1 gi∥ĉi∥2

4
∥x∥2

− d3/4
√
B log(1− ∥x∥2).

This is an FTRL update with a regularizer that is a mix-
ture of the standard quadratic regularizer popular in full-
information settings and the self-concordant barrier regu-
larizer − log(1− ∥x∥2) popular in bandit settings. The ex-
ploration et is generated by ∇2ϕ(x̄t)

−1/2wt where ϕ(x) =
− log(1− ∥x∥2) and wt is uniform on the unit sphere. This
is the classical Dikin ellipsoid exploration that is ubiquitous
in bandit analysis (Abernethy et al., 2008; Bubeck et al.,
2012; Lattimore & Szepesvári, 2020).

To analyze this procedure, we write the regret as follows:

E

[
T∑
t=1

⟨ct,−ptht + (1− pt)zt − u⟩

]

= E

[
T∑
t=1

pt⟨ct,−ht − zt⟩+
T∑
t=1

⟨ct, zt − u⟩

]

= E

[
T∑
t=1

(pt − p⋆t )⟨ct,−ht − zt⟩+
T∑
t=1

p⋆t ⟨ct,−ht − zt⟩

+

T∑
t=1

⟨ct, xt − u⟩

]
,

where p⋆t is an arbitrary sequence of scalars and we move
from zt to xt in the final equation because E[zt] = xt. Our
analysis then proceeds in several steps.

First, we show that for any sequence p⋆t with p⋆t set to an
unknown constant that is O(1/

√
S) for the first S iterations

and then 0 afterwards, there is a strategy for choosing pt
such that

∑T
t=1(pt − p⋆t )⟨ct,−ht − zt⟩ = Õ(

√
dB). This

is accomplished by choosing pt itself via an OLO algorithm
operating on the linear losses p 7→ p⟨ct,−ht − zt⟩ (de-
scribed formally by Algorithm 3). Critically, when gt = 1
we can exactly compute ⟨ct,−ht − zt⟩. However, for time
steps with gt = 0, we cannot compute this loss, but we
bound the influence of these B time steps by restricting
pt to the range [0, 1/

√
B]. This result is formalized in

Lemma C.1 Thus, after this step is finished, we need only
show that there exists an appropriate p⋆t that causes the
remaining terms to be small.

Next, we consider the regret of the “base” FTRL algorithm:
E
[∑T

t=1⟨ct, zt − u⟩
]
= E

[∑T
t=1⟨ct, x̄t − u⟩

]
. In stan-

dard bandit analysis, we would use exclusively the estimate
ĉt = d⟨ct, zt⟩∇2ϕ(x̄t)

1/2wt. In this case, we instead have
the estimate ĉt = d

1−pt ⟨ct, zt⟩∇
2ϕ(x̄t)

1/2wt when gt = 0
and dqtst when gt = 1. Our analysis will also partition the
iterates by the value of gt. When gt = 0, notice that since
pt ≤ 1/2, the variance of our ĉt is only a factor of 4 worse
than the variance of the standard bandit estimator. There-
fore, classical bandit analysis based on self-concordance
allows us to control the total regret over these time steps
at a rate of Õ(d5/4

√
B) using the −d3/4

√
B log(1− ∥x∥2)

term of the regularizer.

For time steps with good responses, we observe that the vari-
ance of ĉt is bounded by d (and in particular does not depend
on any careful exploration/exploitation tradeoff) so we can
deploy techniques from full-information analysis of FTRL
(e.g., (McMahan, 2017)) based on strong convexity to bound
the regret of the xt using the ∥x∥2 term in the regularizer by
O(
√
dT ). Overall then, we see that the regret of the FTRL

iterates x̄t can be bounded by O(
√
dT + d5/4

√
B). The

d5/4 arises from the d3/4 coefficient on the self-concordant
barrier, and is required to balance a stability term that ap-
pears in the next step of the analysis.

Now, for the final most technical challenge: we need
to show that by an appropriate choice of p⋆t , the term∑T
t=1 p

⋆
t ⟨ct,−ht − zt⟩ will be a negative value that “can-

cels out” the O(
√
dT ) term in FTRL regret. The first step

of this is to actually improve the bound of FTRL. Specif-
ically, we show that if there is a time point S for which

∥
∑t′

t=1 ĉt∥ ≥ Ω(d3/2
√
d2 +

∑t′

t=1 ∥ĉt∥2), ∀t′ ≥ S, then
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the
√
dT term in the FTRL bound may be improved to

√
dS.

The intuition for this result is the following: when the sum

of the costs is Ω(d3/2
√
d2 +

∑t′

t=1 ∥ĉt∥2), then the FTRL
update “looks like” a projection onto a ball of radius roughly
1− d5/4

√
B/t. This d5/4 in the numerator arises from the

d3/4 coefficient in the self-concordant barrier and is in ten-
sion with the d5/4

√
B term in the regret of FTRL, justifying

our use of this non-standard coefficient (rather than the d
one might expect). Now, past analysis of this projection
algorithm (Huang et al., 2017; Bhaskara et al., 2021) show
that the regret accumulated over indices t′ > S will be only
Õ(d3/2). These results are captured in Lemma C.4.

Finally, we choose the correct values for p⋆t . The idea is
to set p⋆t ≈ d3/2/

√
S for t ≤ S, and p⋆t = 0 for t ≥ S.

With this setting, we can show that for the first S steps,
E[
∑S
t=1⟨ct, ht+zt⟩] ≥ Ω(S/d), so that−p⋆t

∑S
t=1⟨ct, ht+

zt⟩ ≤ −
√
dS, which is enough to completely cancel the√

dS term in the regret accumulated by FTRL. The final
Theorem is formally presented in Theorem 5.1:

Theorem 5.1. Suppose we run Algorithm 2 with η = 4,
γ = d3/4

√
B and λ = 3 ·4 ·(32 ·52)2 ·d+(32 ·52)

√
3dB+√

3 · 32 · 52 · d3/2. Suppose also that the number of times
gt = 0 is at most B. Then:

E

[
T∑
t=1

⟨ct, xt − u⟩

]
≤ Õ(d3/2 + d5/4

√
B).

Notice that this result requires an upper bound on B as
input. However, this can be easily removed via a doubling
trick (e.g., see (Shalev-Shwartz et al., 2012)): we maintain a
“guess” for the final value of B, and every time our guess is
violated we restart the algorithm and double the guess. This
will worsen the constants, but not the asymptotics.

6. Conclusions
In this paper we study OLO with bandit feedback when the
algorithm has access to additional information via hints and
queries to the upcoming cost vector. Surprisingly, unlike the
full-information setting, we show that even receiving good
hints at all time steps is not sufficient to obtain regret better
than Õ(

√
T ). We then introduce the query model and show

that it is possible to obtain the desired logarithmic regret
bounds in this setting. Extending our robustness results from
Section 5 when the algorithm does not receive feedback on
the response is an interesting research question.
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A. Missing Proofs
Lemma 4.2. In Algorithm 1, the following hold: (i) ∥ht∥ ≤ 1 and ∥xt∥ ≤ 1. If the response is good at time t, then

(ii) E[ĉt] = ct,
(iii) Et−1[dα

2
t ] ≥ (1/4)∥ct∥2,

(iv) E[∥ĉt∥2] = d∥ct∥2.

Proof. For part (i), we note that ∥ht∥ =
√
d
4 · |αt| ≤ 1 by the definition of αt. To bound ∥xt∥, we use the following simple

argument (e.g., Bhaskara et al., 2020, Lemma 3.2),

∥xt∥ ≤ ∥x̄t∥+
(∥x̄t∥2 − 1)

2
∥ht∥ ≤ ∥x̄t∥+

(∥x̄t∥2 − 1)

2
≤ 1,

where the last inequality uses ∥x̄t∥ ≤ 1.

We next focus on parts (ii)–(iv). Due to rotational symmetry, we may assume that ct = (γ, 0, . . . , 0) ∈ Rd for some fixed
γ ∈ [0, 1]. Also, let us write st = (g1, . . . , gd), for convenience. So we have qt = ⟨ct, st⟩ = γg1. Since st is a unit vector,
gi, gj are not independent for i ̸= j. However, we still have the property that E[gj | g1 = z] = 0 for all z ∈ [−1, 1] and
j ̸= 1. To see part (ii), observe that:

E[ĉt] = E[dqtst] = d · (γE[g21 ],E[g1g2], . . . ,E[g1gd]) = (γ, 0, . . . , 0) = ct,

where because of symmetry, E[g21 ] = E[(g21 + · · ·+ g2d)/d] = 1/d and E[g1gj ] = E[g1E[gj |g1]] = 0, ∀j ̸= 1.

Now, for part (iii), observe that E[dq2t ] = ∥ct∥2, so that it suffices to show E[q2t ]− E[α2
t ] ≤ (3∥ct∥2)/(4d). To this end,

E[q2t − α2
t ] ≤ Pr

[
q2t ∈

(
16 · 20

d
,
16 · 21

d

]]
16 · 21

d
+ Pr

[
q2t ∈

(
16 · 21

d
,
16 · 22

d

]]
16 · 22

d
+ · · ·

≤
∞∑
k=1

Pr

[
q2t >

16 · 2k−1

d

](
16 · 2k

d

)
.

But, by Markov’s inequality, we have

Pr

[
q2t >

16 · 2k−1

d

]
= Pr

[
q4t >

162 · 22k−2

d2

]
≤ E[q4t ] · d2

162 · 22k−2
≤ ∥ct∥2 · 3

162 · 22k−2
,

where the last inequality follows from E[q4t ] = γ4E[g41 ] ≤ γ2 · 3
d(d+2) (see Lemma B.1). Substituting, we get

E[q2t − α2
t ] ≤

(
3∥ct∥2

d

) ∞∑
k=1

16 · 2k

162 · 22k−2
=

3∥ct∥2

4d
.

Finally, for part (iv), we have

E[∥ĉt∥2] = E[d2q2t ] = d2E[γ2g21 ] = dγ2.

B. Properties of Uniform Distribution on the Sphere
Lemma B.1. If (x1, . . . , xd) ∈ Rd is a uniform random point on the unit sphere, then (i) E[x41] = 3

d(d+2) and (ii)
E[x21x22] = 1

d(d+2) .

Proof. It is known that for any i ∈ [d],

x2i ∼ Beta

(
1

2
,
d− 1

2

)
,

see, e.g., (Ranosova, 2021, Theorem 13 and Remark 1) for a proof. Also, if Z ∼ Beta(α, β), then its second moment is

E[Z2] =
α(α+ 1)

(α+ β + 1)(α+ β)
. (2)

11
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Hence, E[x41] is the second moment of x21, which can be computed from (2) setting α = 1/2 and β = (d− 1)/2. This, after
simplification, yields (i). For (ii), notice that since (x1, . . . , xd) is on the unit sphere, we get

1 =

∑
i∈[d]

x2i

2

=
∑
i∈[d]

x4i + 2
∑

i ̸=j∈[d]

x2ix
2
j .

Taking expectation, using (i), and by rotational symmetry, we obtain (ii).

C. Improved Robustness via Response Feedback
Theorem 5.1. Suppose we run Algorithm 2 with η = 4, γ = d3/4

√
B and λ = 3 · 4 · (32 · 52)2 · d + (32 · 52)

√
3dB +√

3 · 32 · 52 · d3/2. Suppose also that the number of times gt = 0 is at most B. Then:

E

[
T∑
t=1

⟨ct, xt − u⟩

]
≤ Õ(d3/2 + d5/4

√
B).

Proof. First, observe that since E[zt] = x̄t, we have for any sequence p⋆1, . . . , p
⋆
T :

E

[
T∑
t=1

⟨ct, xt − u⟩

]
= E

[
T∑
t=1

⟨ct,−ptht − ptzt + x̄t − u⟩

]
= E

[
T∑
t=1

pt(⟨ct,−ht⟩ − ⟨ct, zt⟩) +
T∑
t=1

⟨ct, x̄t − u⟩

]

= E

[
T∑
t=1

ptvt +

T∑
t=1

⟨ct, x̄t − u⟩

]
= E

[
T∑
t=1

vt(pt − p⋆t ) +
T∑
t=1

vtp
⋆
t +

T∑
t=1

⟨ct, x̄t − u⟩

]
.

Let α = 1/(16d3/2) and let S be the smallest index such that ∥ĉ1:t∥ ≥ α(d2 + σ1:t)/η for all t > S. Applying Lemma C.4:

E

[
T∑
t=1

⟨ĉt, x̄t − u⟩

]
≤ E

[
1 +

√
d2 + σ1:S
η

+ γ log(T ) +
16d2B

γ
+

16(η + 1 + γ/d)

α
+

(
8η

α
+ 4

)
log
(
1 +

σ1:t
d2

)]

+ E

[
∥ĉ1:S∥+

S∑
t=1

⟨ĉt, x̄t⟩

]
.

Next, by Lemma C.1, if we set p⋆t such that p⋆t = δ for some fixed δ ≤ DS for all t ≤ S and p⋆t = 0 for t > S, we have:

T∑
t=1

⟨vt, pt − p⋆t ⟩ ≤ λ+ 2λ log(4λ+B + T ) +
√
B,

and for t ≤ S and gt = 1:

E[⟨vt, p⋆t ⟩] = E[δ⟨ct,−ht⟩ − δ⟨ct, zt⟩] = E[δ⟨ct,−ht⟩ − δ⟨ct, x̄t⟩] = E

[
−δ
√
d

4
qtαt − δ⟨ct, x̄t⟩

]

≤ E

[
−δ
√
d

4
α2
t − δ⟨ct, x̄t⟩

]
≤ E

[
− δ

16
√
d
∥ct∥2 − δ⟨ct, x̄t⟩

]
= E

[
− δ

16d3/2
∥ĉt∥2 − δ⟨ct, x̄t⟩

]
= E

[
− δ

16d3/2
σt − δ⟨ct, x̄t⟩

]
,

where the second inequality and the penultimate equality follow using Lemma 4.2. Alternatively, when gt = 0,

E[⟨vt, p⋆t ⟩] ≤ E[2δ] ≤ E [3δ − δ⟨ct, x̄t⟩] ≤ E [3δ − δ⟨ĉt, x̄t⟩] ≤ E
[

3√
B
− δ⟨ĉt, x̄t⟩

]
.

12
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Therefore:

E

[
T∑
t=1

⟨vt, p⋆t ⟩

]
≤ E

[
−δ σ1:S

16d3/2
− δ

T∑
t=1

⟨ĉt, x̄t⟩+ 3
√
B

]
.

Thus, overall we have:

E

[
T∑
t=1

⟨ct, xt − u⟩

]

≤ E
[
1 + γ log(T ) +

16d2B

γ
+

16(η + 1 + γ/d)

α
+

(
8η

α
+ 4

)
log
(
1 +

σ1:t
d2

)]
+ E

[
inf

0≤δ≤DS

√
d2 + σ1:S
η

+ ∥ĉ1:S∥+
S∑
t=1

⟨ĉt, x̄t⟩+ λ+ 2λ log(4λ+B + T ) + 4
√
B − δ σ1:S

16d3/2
− δ

T∑
t=1

⟨ĉt, x̄t⟩

]

≤ E
[
1 + γ log(T ) +

16d2B

γ
+

80 + 16γ/d

α
+

(
32

α
+ 4

)
log
(
1 +

σ1:t
d2

)]
+ E

[
inf

0≤δ≤DS

√
d2 + σ1:S
η

+ ∥ĉ1:S∥+
S∑
t=1

⟨ĉt, x̄t⟩+ λ+ 2λ log(4λ+B + T ) + 4
√
B − δ σ1:S

16d3/2
− δ

T∑
t=1

⟨ĉt, x̄t⟩

]
.

(3)

Further, observe that by Lemma C.3:

∥ĉ1:S∥+
S∑
t=1

⟨ĉt, x̄t⟩ ≤ γ log(S) + 16

(
η +

1

η

)√
d2 + σ1:S +

4d2B

γ
.

With λ = 3 · 4 · (24 · 52)2 · d+ (24 · 52)
√
3dB +

√
3 · 24 · 52 · d3/2, suppose

√
4λ+B + d2 + σ1:S ≤ λ. Then we have:

12

(
η +

1

η

)√
d2 + σ1:S +

√
d2 + σ1:S
η

≤
(
12η +

13

η

)
λ ≤ 52λ,

where the last inequality follows since η = 4. With δ = 0:

√
d2 + σ1:S
η

+ ∥ĉ1:S∥+
S∑
t=1

⟨ĉt, x̄t⟩+ λ+ 2λ log(4λ+B + T ) + 4
√
B − δ σ1:S

d2
− δ

T∑
t=1

⟨ĉt, x̄t⟩

≤ 53λ+ 2λ log(4λ+B + T ) + 4
√
B. (4)

In the remaining argument, we assume
√
4λ+B + d2 + σ1:S > λ. Now, observe that even in this scenario we still have:

√
d2 + σ1:S
η

+ ∥ĉ1:S∥+
S∑
t=1

⟨ĉt, x̄t⟩ ≤ γ log(S) +
(
12η +

13

η

)√
d2 + σ1:S +

4d2B

γ

≤ γ log(S) + 52
√
d2 + σ1:S +

4d2B

γ
.

Our goal will be to show that either the term
√
d2 + σ1:S is small, or that it can be canceled out by negative terms multiplied

by δ. To do this, we consider a few cases. First, suppose that
√
d2 + σ1:S ≤ 10

α . Then, observe that by setting δ = 0:

E

[
T∑
t=1

⟨ct, xt − u⟩

]
≤ E

[
1 + γ log(T ) +

16d2B

γ
+

8400 + 16γ/d

α
+

(
32

α
+ 4

)
log
(
1 +

σ1:t
d2

)]
+ E

[
λ+ 2λ log(4λ+B + T ) + 4

√
B
]
. (5)

13
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Moreover, if alternatively we have
√
d2+σ1:S

η + ∥ĉ1:S∥+
∑S
t=1⟨ĉt, x̄t⟩ ≤

√
d

16 , then we also can set δ = 0 to obtain:

E

[
T∑
t=1

⟨ct, xt − u⟩

]
≤ E

[
1 +

√
d

16
+ γ log(T ) +

16d2B

γ
+

80 + 16γ/d)

α
+

(
8

α
+ 4

)
log
(
1 +

σ1:t
d2

)]
+ E

[
λ+ 2λ log(4λ+B + T ) + 4

√
B
]
. (6)

Let us now consider the situation in which
√
d2 + σ1:S >

10
α and also

√
d2+σ1:S

η + ∥ĉ1:S∥+
∑S
t=1⟨ĉt, x̄t⟩ >

√
d

16 . In this
case, we want to choose δ such that (recalling η = 4):

δ
σ1:S

16d3/2
+ δ

T∑
t=1

⟨ĉt, x̄t⟩ ≥ 12(η + 1/η)
√
d2 + σ1:S = 52

√
d2 + σ1:S .

We claim that in this case (i.e.,
√
d2 + σ1:S >

10
α and also

√
d2+σ1:S

η + ∥ĉ1:S∥+
∑S
t=1⟨ĉt, x̄t⟩ >

√
d

16 ), we have:

E

[
σ1:S

16d3/2
+

S∑
t=1

⟨ĉt, x̄t⟩

]
≥ E

[
1

32d3/2
(d2 + σ1:S)

]
.

To see this claim, suppose otherwise. Then E
[∑S

t=1⟨ĉt, x̄t⟩
]
≤ E

[√
d

32 −
1

32d3/2
σ1:S

]
. This in turn implies (recalling

α = 1/16d3/2 and η = 4 and that ∥ĉ1:S∥ ≤ α(d2+σ1:S)
η by definition of S):

E

[√
d2 + σ1:S
η

+ ∥ĉ1:S∥+
S∑
t=1

⟨ĉt, x̄t⟩

]
≤ E

[√
d2 + σ1:S
η

+
α(d2 + σ1:S)

η
+

√
d

32
− 1

32d3/2
σ1:S

]

= E

[√
d2 + σ1:S

4
+

(d2 + σ1:S)

64d3/2
+

√
d

32
− 1

32d3/2
σ1:S

]
= E

[√
d2 + σ1:S

4
− (d2 + σ1:S)

64d3/2
+

√
d

16

]
≤
√
d

16
,

where the last inequality follows from the assumption
√
d2 + σ1:S >

10
α = 160d3/2. But, this contradicts our assumption

E
[√

d2+σ1:S

η + ∥ĉ1:S∥+
∑S
t=1⟨ĉt, x̄t⟩

]
>

√
d

16 .

Now, we set λ = 3 · 4 · (32 · 52)2 · d+ (32 · 52)
√
3dB +

√
3 · 32 · 52 · d3/2 and δ = λ√

4λ+B+d2+σ1:S
= DS . Notice that

δ < 1 since we previously dispensed with the case λ ≥
√
4λ+B + d2 + σ1:S . Then we have:

λ2(d2 + σ1:S) ≥ 3 · 4 · (32 · 52)2dλ(d2 + σ1:S) ≥ 3 · 4 · (32 · 52)2d3λ,
λ2(d2 + σ1:S) ≥ 3 · (32 · 52)2 · dB(d2 + σ1:S) ≥ 3 · (32 · 52)2Bd3,
λ2(d2 + σ1:S) ≥ 3 · (32 · 52)2d3 · d2(d2 + σ1:S) ≥ 3 · (32 · 52)2d3σ1:T .

Putting these together yields:

λ2(d2 + σ1:S) ≥ 4 · (32 · 52)2λd3 + (32 · 52)2Bd3 + (32 · 52)2d3σ1:S ,

=⇒ λ
√
d2 + σ1:S ≥ (32 · 52)d3/2

√
4λ+B + σ1:S .

Thus, we have:

δ
σ1:S

16d3/2
+ δ

S∑
t=1

⟨ĉt, x̄t⟩ ≥
δ

32d3/2
(d2 + σ1:S) =

λ(d2 + σ1:S)

32d3/2
√
4λ+B + σ1:T

≥ 52
√
d2 + σ1:S .

So that in this last case we obtain:

E

[
T∑
t=1

⟨ct, xt − u⟩

]
≤ E

[
1 + γ log(T ) +

16d2B

γ
+

80 + 16γ/d

α
+

(
32

α
+ 4

)
log
(
1 +

σ1:t
d2

)]

14
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+ E

[√
d2 + σ1:S
η

+ ∥ĉ1:S∥+
S∑
t=1

⟨ĉt, x̄t⟩+ λ+ 2λ log(4λ+B + T ) + 4
√
B − δ σ1:S

d2
− δ

T∑
t=1

⟨ĉt, x̄t⟩

]

≤ E
[
1 + γ log(T ) +

16d2B

γ
+

80 + 16γ/d

α
+

(
32

α
+ 4

)
log
(
1 +

σ1:t
d2

)]
+ E

[
52
√
d2 + σ1:S + λ+ 2λ log(4λ+B + T ) + 4

√
B − δ σ1:S

d2
− δ

T∑
t=1

⟨ĉt, x̄t⟩

]

≤ E
[
1 + γ log(T ) +

16d2B

γ
+

80 + 16γ/d

α
+

(
32

α
+ 4

)
log
(
1 +

σ1:t
d2

)]
+ E

[
λ+ 2λ log(4λ+B + T ) + 4

√
B
]
. (7)

Putting (4), (5), (6), and (7) together, we have:

E

[
T∑
t=1

⟨ct, xt − u⟩

]
≤ E

[
1 + γ log(T ) +

16d2B

γ
+

80 + 16γ/d

α
+

(
32

α
+ 4

)
log
(
1 +

σ1:t
d2

)]

+ E

[
inf
δ

{√
d2 + σ1:S
η

+ ∥ĉ1:S∥+
S∑
t=1

⟨ĉt, x̄t⟩+ λ+ 2λ log(4λ+B + T ) + 4
√
B − δ σ1:S

d
− δ

T∑
t=1

⟨ĉt, x̄t⟩

}]

≤ E

[
1 +

√
d

12
+ γ log(T ) +

16d2B

γ
+

8400 + 16γ/d

α
+

(
8η

α
+ 4

)
log
(
1 +

σ1:t
d2

)]
+ E

[
53λ+ 2λ log(4λ+B + T ) + 4

√
B
]
.

Recalling λ = 3 · 4 · (24 · 52)2 · d + (24 · 52)
√
3dB +

√
3 · 24 · 52 · d3/2, η = 4, α = 1/16d3/2 and γ = d3/4

√
B, we

obtain the desired result.

Lemma C.1. Let (p∗1, . . . , p
∗
T ) be any sequence such that for some time index S, we have p∗t = p∗ ≤ DS ,∀t ≤ S, and

p∗t = 0 for all t > S. Then:

T∑
t=1

vt(pt − p⋆t ) ≤ 2λ+ 2λ log(4λ+B + T ) +
√
B.

Proof. Observe that |vt| ≤ 2. Then |v̂t − vt| ≤ 2, and further |v̂t − vt| = 0 for all but B indices t. Following the standard
analysis of online gradient descent yields:

(pt+1 − p⋆t )2 ≤ (pt − ηtv̂t − p⋆t )2 = (pt − p⋆t )2 − 2ηtv̂t(pt − p⋆t ) + η2t v̂
2
t ,

v̂t(pt − p⋆t ) ≤
(pt − p⋆t )2

2ηt
− (pt+1 − p⋆t )2

2ηt
+
ηtv̂

2
t

2
,

vt(pt − p⋆t ) ≤
(pt − p⋆t )2

2ηt
− (pt+1 − p⋆t )2

2ηt
+
ηtv̂

2
t

2
+Dt|v̂t − vt|.

Using these,

T∑
t=1

vt(pt − p⋆t ) ≤
(p1 − p⋆1)2

2η1
+

T∑
t=2

(pt − p⋆t )2
(

1

2ηt
− 1

2ηt−1

)
+

T−1∑
t=1

(pt+1 − p⋆t+1)
2 − (pt+1 − p⋆t )2

2ηt

+

T∑
t=1

ηtv̂
2
t

2
+D1

T∑
t=1

|v̂t − vt|

≤ D2
1

2η1
+

T∑
t=2

D2
t

(
1

2ηt
− 1

2ηt−1

)
+
p2S+1 − (pS+1 − p⋆S)2

2ηS
+

T∑
t=1

ηtv̂
2
t

2
+BD1

15



Bandit Online Linear Optimization with Hints and Queries

≤ D2
1

2η1
+

T∑
t=2

D2
t

(
1

2ηt
− 1

2ηt−1

)
+
D2
S+1

2ηS
+

T∑
t=1

ηtv̂
2
t

2
+BD1.

We bound each term in the RHS separately as follows:

T∑
t=1

ηtv̂
2
t = λ

T∑
t=1

v̂2t

4λ+B +
∑t
i=1 v̂

2
i

≤ λ log
(
4λ+B + v̂21:T

)
,

D1B ≤
√
B,

1

ηt
− 1

ηt−1
=
v̂2t
λ
,

D2
1

2η1
+
D2
S+1

2ηS
+

T∑
t=2

D2
t

(
1

2ηt
− 1

2ηt−1

)
≤ λ

2

(
4λ+B + v̂21

4λ+B
+ 1 +

T∑
t=2

v̂2t
4λ+B + v̂21:t

)

≤ λ

2

(
4λ+B + v̂21

4λ+B
+ 1 + log

(
4λ+B + v̂21:T

))
≤ 2λ+ λ log(4λ+B + T ).

Putting all these together shows the claim.

Proposition C.2. In Algorithm 2, the following hold for all t ∈ [T ]:

(i) ∥xt∥ ≤ 1.
(ii) σt ≤ d2.

(iii) E[σt] ≤ d.
(iv) E[ĉt|x1, . . . , xt] = ct.
(v) If gt = 1, E[⟨ht, ct⟩] ≤ ∥ct∥2/4

√
d.

(vi) When gt = 0, ĉ⊤t ∇2ϕ(x̄t)
−1ĉt ≤ 4d2.

(vii) For all ∥x∥ ≤ 1,
√
x⊤∇2ϕ(x)−1x ≤ 1

2 .
(viii) δt ≤ σt

η
√
d2+σ1:t

.

Proof. (i) Since |αt| ≤ 4√
d

, it is clear that ∥ht∥ ≤ 1. Therefore, it suffices to show ∥zt∥ ≤ 1. Now, observe ϕ is a
self-concordant barrier for the unit ball, and that by definition zt is on the Dikin ellipsoid centered at x̄t, so that
∥zt∥ ≤ 1.

(ii) By definition, σt = gt∥ĉt∥2. If gt = 0, we have σt = 0. Otherwise, we have σt = ∥ĉt∥2 = d2q2t ≤ d2.

(iii) We have E[σt] ≤ E[d2c⊤t sts⊤t ct] = E
[
d2

c⊤t Ict
d

]
≤ d.

(iv) When gt = 1, we have qt = ⟨ct, st⟩ so that E[ĉt] = E [d · qt · st] = ct by Lemma 4.2. When gt = 0, we instead have:

E[ĉt] = E
[
d
⟨−ptht + (1− pt)x̄t), ct⟩∇2ϕ(x̄t)

1/2wt
1− pt

]
+ E[d∇2ϕ(x̄t)

1/2wtw
⊤
t ∇2ϕ(x̄t)

−1/2ct]

= E
[
d∇2ϕ(x̄t)

1/2 I

d
∇2ϕ(x̄t)

−1/2ct

]
= ct.

(v) When gt = 1, we have

E[⟨ct, ht⟩] =
√
d

4
E
[
⟨ct, st⟩ · clip 4√

d
(⟨ct, st⟩)

]
≤
√
d

4
E[⟨ct, st⟩2] =

√
d

4
E[ct⊤sts⊤t ct] =

√
d

4
E
[
c⊤t
I

d
ct

]
=
∥ct∥2

4
√
d
.

(vi) We have

ĉ⊤t ∇2ϕ(x̄t)
−1ĉt = d2

ℓ2t
(1− pt)2

w⊤
t ∇2ϕ(x̄t)

1/2∇2ϕ(x̄t)
−1∇2ϕ(x̄t)

1/2wt ≤ 4d2w⊤
t wt = 4d2,

where the inequality follows from |ℓt| ≤ 1 and pt ∈ [0, 1/2].
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(vii) A simple calculation shows:

∇2ϕ(x) =
2I

1− ∥x∥2
+

4xx⊤

(1− ∥x∥2)2
.

Clearly, x is an eigenvector of this matrix with eigenvalue 2+2∥x∥2

(1−∥x∥2)2 . Thus,

√
x⊤∇2ϕ(x)−1x =

√
∥x∥2(1− ∥x∥2)2

2 + 2∥x∥2
.

Numerical evaluation of this expression for ∥x∥ ∈ [0, 1] shows that its maximum is less than 0.5.
(viii) By concavity of the square root function:

δt =

√
d2 + σ1:t −

√
d2 + σ1:t−1

η
≤ σt

2η
√
d2 + σ1:t−1

≤ σt

η
√
4d2 + σ1:t−1

≤ σt

η
√
d2 + σ1:t

,

where the last step follows from σt ≤ d2.

Next, we obtain a bound on the regret incurred by Algorithm 2. Since Algorithm 2 is an instance of the classic FTRL, we
can utilize tools from (Bhaskara et al., 2021) for a tight analysis of FTRL.

Lemma C.3. For any S and ∥u∥ ≤ 1:

S∑
t=1

⟨ĉt, x̄t − u⟩ ≤ γ log(S) + 13

(
η +

1

η

)√
d2 + σ1:S +

4d2B

.
γ

Proof. First, define û to be the projection of u to the ball of radius 1− 1/S. Then clearly we have:

E

[
S∑
t=1

⟨ct, x̄t − u⟩

]
≤ E

[
S∑
t=1

⟨ct, x̄t − û⟩+
∥c1:S∥
T

]
≤ E

[
1 +

S∑
t=1

⟨ct, x̄t − û⟩

]
= E

[
1 +

S∑
t=1

⟨ĉt, x̄t − û⟩

]
. (8)

We now focus on bounding
∑T
t=1⟨ĉt, x̄t − û⟩. From (Bhaskara et al., 2021, Lemma B.2), i.e., the FTRL Lemma, we have:

r0:S(x̄S+1) + γϕ(x̄S+1) + ⟨ĉ1:S , x̄S+1⟩+
S∑
t=1

rt(x̄t+1) + ⟨ĉt, x̄t+1⟩ ≤ r0:t(u) + γϕ(û) + ⟨ĉ1:S , u⟩,

so that we have:

S∑
t=1

⟨ĉt, x̄t − û⟩ ≤ γϕ(û) + r0:S(û) +

S∑
t=1

⟨ĉt, x̄t − x̄t+1⟩ ≤ γ log(S) +
√
d2 + σ1:S

2η
+

S∑
t=1

⟨ĉt, x̄t − x̄t+1⟩.

Now by the standard FTRL Lemma, e.g., (Bhaskara et al., 2021, Lemma B.1), we have:

T∑
t=1

⟨ĉt, x̄t − û⟩ ≤ γϕ(û) + r0:T (u) +

T∑
t=1

⟨ĉt, x̄t − x̄t+1⟩ ≤ γ log(T ) +
√
d2 + σ1:T

2η
+

T∑
t=1

⟨ĉt, x̄t − x̄t+1⟩.

By Lemma C.8:

⟨ĉt, x̄t − x̄t+1⟩ ≤ ∥ĉt∥∇2ψ(x̄t)−1∥x̄t − x̄t+1∥∇2ψ(x̄t) ≤ 4∥ĉt∥2∇2ψ(x̄t)−1 +
4σt∥ĉt∥∇2ψ(x̄t)−1

√
η(d2 + σ1:t)3/4

.

When gt = 0, we have σt = 0 and hence

⟨ĉt, x̄t − x̄t+1⟩ ≤ 4∥ĉt∥2∇2ψ(x̄t)−1 .
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We also have by Proposition C.2, ∥ĉt∥2∇2ψ(x̄t)−1 ≤ 4d2

γ , and therefore

∑
gt=0

⟨ĉt, x̄t − x̄t+1⟩ ≤
4d2B

γ
.

When gt = 1, since ∇2ψ(x̄t) ⪰ d2+σ1:t

η I , we have:

∥ĉt∥2∇2ψ(x̄t)−1 ≤
η∥ĉt∥2√
d2 + σ1:t

.

Therefore:

⟨ĉt, x̄t − x̄t+1⟩ ≤ 4∥ĉt∥2∇2ψ(x̄t)−1 +
4σt∥ĉt∥∇2ψ(x̄t)−1

√
η(d2 + σ1:t)3/4

≤ 4ησt√
d2 + σ1:t

+
4σt√

d2 + σ1:t

√
σt√

d2 + σ1:t
≤ (4η + 4)σt√

d2 + σ1:t
.

Thus:

∑
gt=1

⟨ĉt, x̄t − x̄t+1⟩ ≤
S∑
t=1

(4η + 4)σt√
d2 + σ1:t

≤ (8η + 8)
√
d2 + σ1:T ≤

(
12η +

12

η

)√
d2 + σ1:T ,

where the last step follows since 1 ≤ η
2 + 1

2η .

Lemma C.4. Suppose γ ≥ 1, let S be the smallest index such that ∥ĉ1:t∥ ≥ αd
2+σ1:t

η for all t > S and let ∥u∥ ≤ 1 (note
that S is a random variable). Then Algorithm 2 ensures:

E

[
T∑
t=1

⟨ĉt, x̄t − u⟩

]
≤ E

[
1 +

√
d2 + σ1:S
η

+ γ log(T ) +
16d2B

γ
+

16(η + 1 + γ/d)

α
+

(
8η

α
+ 4

)
log
(
1 +

σ1:t
d2

)]

+ E

[
∥ĉ1:S∥+

S∑
t=1

⟨ĉt, x̄t⟩

]
.

Proof. First, define û to be the projection of u to the ball of radius 1− 1/T . Then clearly we have:

E

[
T∑
t=1

⟨ct, x̄t − u⟩

]
≤ E

[
T∑
t=1

⟨ct, x̄t − û⟩+
∥c1:T ∥
T

]
≤ E[1 +

T∑
t=1

⟨ct, x̄t − û⟩] = E[1 +
T∑
t=1

⟨ĉt, x̄t − û⟩]. (9)

We now focus on bounding
∑T
t=1⟨ĉt, x̄t − û⟩. Since ∥ĉ1:S∥ ≥

∑S
t=1⟨ĉt, x̄S+1⟩, it suffices to show that

S∑
t=1

⟨ĉt, x̄S+1 − û⟩+
∑
t>S

⟨ĉt, x̄t − u⟩ ≤
√
d2 + σ1:S
η

+ γ log(T ) +
16d2B

γ
+

16(η + γ)

α
+

(
8η

α
+ 4

)
log
(
1 +

σ1:t
d2

)
.

From (Bhaskara et al., 2021, Lemma B.2), i.e., the FTRL Lemma, we have:

r0:S(x̄S+1) + γϕ(x̄S+1) + ⟨ĉ1:S , x̄S+1⟩+
T∑
t=1

rt(x̄t+1) + ⟨ĉt, x̄t+1⟩ ≤ r0:t(u) + γϕ(û) + ⟨ĉ1:T , u⟩.

Dropping negative terms and observing that ϕ(û) ≤ − log(1− (1− 1/T )2) = log(T 2/(2T − 1))) ≤ log(T ), we have:

⟨ĉ1:S , x̄S+1 − û⟩+
∑
t>S

⟨ĉt, x̄t − û⟩ ≤ r0:S(u) +
∑
t>S

rt(û)− rt(x̄t+1) + γϕ(û) +
∑
t>S

⟨ĉt, x̄t − x̄t+1⟩

=

√
d2 + σ1:S
η

+ γ log(T ) +
∑
t>S

δt
2
(∥û∥2 − ∥x̄t+1∥2) +

∑
t>S

⟨ĉt, x̄t − x̄t+1⟩
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≤
√
d2 + σ1:S
η

+ γ log(T ) +
∑
t>S

δt
2
(1− ∥x̄t+1∥2) +

∑
t>S

⟨ĉt, x̄t − x̄t+1⟩. (10)

Let us focus on bounding first
∑
t>S

δt
2 (1− ∥x̄t+1∥2). The high-level intuition is that for t > S, ∥x̄t+1∥ is close to 1, so

that the ∥û∥2 − ∥x̄t+1∥2 is very small.

To get started on this, we need to understand ∥x̄t+1∥. To this end, observe that since r0:t(x)+ γϕ(x) is a radially-symmetric
function that achieves its minimum at the origin, we must have that x̄t+1 = −k ĉ1:t

∥ĉ1:t∥ for k = ∥x̄t+1∥. Further, since ϕ is a
barrier function, by first-order optimality conditions we have:

ĉ1:t +∇r0:t(x̄t+1) + γ∇ϕ(x̄t+1) = 0,

ĉ1:t +
x̄t+1

η

√
d2 + σ1:t + 2γ

x̄t+1

1− k2
= 0,

−∥ĉ1:t∥+
k

η

√
d2 + σ1:t + 2γ

k

1− k2
= 0.

Let M be the smallest index greater than S such that
√
d2 + σ1:M ≥ 4

α . Then for t ≥M , we have

d+

t∑
i=1

σi√
d2 + σ1:i

≤ 2
√
d2 + σ1:t ≤

α(d2 + σ1:t)

2
.

Thus, for t ≥M , since ∥ĉ1:t∥ > α(d2+σ1:t)
η , we have

2γ
k

1− k2
= ∥ĉ1:t∥ −

k

η

√
d2 + σ1:t ≥ ∥ĉ1:t∥ −

1

η

√
d2 + σ1:t ≥

α(d2 + σ1:t)

2η
,

where the first inequality follows since k ≤ 1. Using k ≤ 1 again, we obtain

2γ
1

1− k2
≥ α(d2 + σ1:t)

2η
=⇒ 1− k2 ≤ 4ηγ

α(d2 + σ1:t)
.

Therefore, using Proposition C.2 which tells us that δt2 ≤
σt

η
√
d2+σ1:t

, we have:

∑
t>S

δt
2
(1− ∥x̄t+1∥2) ≤

M−1∑
t=S+1

√
d2 + σ1:t −

√
d2 + σ1:t−1

2η
(1− ∥x̄t+1∥2) +

∑
t≥M

σt

2η
√
d2 + σ1:t

(1− ∥x̄t+1∥2)

≤
M−1∑
t=S+1

√
d2 + σ1:t −

√
d2 + σ1:t−1

2η
+
∑
t≥M

2γσt
α(d2 + σ1:t)3/2

≤
√
d2 + σ1:M−1 +

2γ

α

∫ ∞

d2

dx

x3/2
≤ 4

α
+

4γ

αd
, (11)

where the last step follows from the definition of M . We focus next on bounding
∑
t>S⟨ĉt, x̄t− x̄t+1⟩. To this end, observe

that by Lemma C.8, we have:

∥x̄t − x̄t+1∥∇2ψt(x̄t) ≤ 4∥ĉt +∇rt(x̄t))∥∇2ψt(x̄t)−1 ≤ 4∥ĉt∥∇2ψt(x̄t)−1 +
4σt√

η(d2 + σ1:t)3/4
,

where ∥x∥2A = x⊤Ax for any matrix A. Thus,

⟨ĉt, x̄t − x̄t+1⟩ ≤ ∥ĉt∥∇2ψt(x̄t)−1∥x̄t − x̄t+1∥∇2ψt(x̄t) ≤ 4∥ĉt∥2∇2ψt(x̄t)−1 +
4σt∥ĉt∥∇2ψt(x̄t)−1

√
η(d2 + σ1:t)3/4

. (12)

Now since ∇2ψt(x̄t) =
√
d2+σ1:t

η I + γ∇2ϕ(x̄t), we can apply Proposition C.2 to obtain:

∥ĉt∥2∇2ψt(x̄t)−1 ≤
1

γ
ĉt∇2ϕ(x̄t)ĉt ≤

4d2

γ
.
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Whenever gt = 0, we have σt = 0 and hence (12) yields:∑
t>S,gt=0

⟨ĉt, x̄t − x̄t+1⟩ ≤
∑
gt=0

16d2

γ
≤ 16d2B

γ
. (13)

For the time steps when gt = 1, we have:

∥ĉt∥2∇2ψt(x̄t)−1 ≤
η∥ĉt∥2√
d2 + σ1:t

≤ η√
d2 + σ1:t

.

Using this in (12), we obtain:

⟨ĉt, x̄t − x̄t+1⟩ ≤ 4∥ĉt∥2∇2ψt(x̄t)−1 +
4σt

d2 + σ1:t
.

Since

T∑
t=1

4σt
d2 + σ1:t

≤ 4 log
(
1 +

σ1:t
d2

)
, (14)

it remains to bound: ∑
t>S, gt=0

4∥ĉt∥2∇2ψt(x̄t)−1 .

Recall that by definition of M , we have
√
d2 + σ1:M−1 ≤ 4

α . Thus:

∑
S<t<M, gt=1

⟨ĉt, x̄t − x̄t+1⟩ ≤
M−1∑
t=1

4∥ĉt∥2∇2ψt(x̄t)−1 ≤
M−1∑
t=1

4η∥ĉt∥2√
d2 + σ1:t

=

M−1∑
t=1

4ησt√
d2 + σ1:t

≤ 4η
√

2d2 + 2σ1:M−1 ≤
16η

α
. (15)

Thus, we need to bound the remaining sum:∑
t≥M, gt=1

⟨ĉt, x̄t − x̄t+1⟩ ≤
∑

S<t<M, gt=1

4∥ĉt∥2∇2ψt(x̄t)−1 .

For these, we recall that 1− ∥x̄t∥2 ≤ 4ηγ
α(d2+σ1:t)

for all t ≥M . Then, we have:

∇2ϕ(x̄t) = 2
I

1− ∥x̄t∥2
+ 4

x̄tx̄
⊤
t

(1− ∥x̄t∥2)2
⪰ α(d2 + σ1:t)

2η
I.

Therefore for all t ≥M and gt = 1:

4∥ĉt∥2∇2ψt(x̄t)−1 ≤ 8η
∥ĉt∥2

α(d2 + σ1:t)
= 8η

σt
α(d2 + σ1:t)

=⇒
∑

t≥M,gt=1

4∥ĉt∥2∇2ψt(x̄t)−1 ≤
8η

α
log
(
1 +

σ1:t
d2

)
. (16)

Combining (10, 11, 13, 14,15, 16), we obtain:

⟨ĉ1:S , x̄S+1 − û⟩+
∑
t>S

⟨ĉt, x̄t − û⟩

≤
√
1 + σ1:S
η

+ γ log(T ) +
∑
t>S

δt
2
(1− ∥x̄t+1∥2) +

∑
t>S

⟨ĉt, x̄t − x̄t+1⟩
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≤
√
1 + σ1:S
η

+ γ log(T ) +
4 + γ/d

α
+

16d2B

γ
+ 4 log

(
1 +

σ1:t
d2

)
+

16η

α
+

8η

α
log
(
1 +

σ1:t
d2

)
≤
√
1 + σ1:S
η

+ γ log(T ) +
16d2B

γ
+

16(η + 1 + γ/d)

α
+

(
8η

α
+ 4

)
log
(
1 +

σ1:t
d2

)
.

So, finally adding back the 1 from (9), we have:

T∑
t=1

⟨ĉt, x̄t − u⟩ ≤ 1 +

√
1 + σ1:S
η

+ γ log(T ) +
16d2B

γ
+

16(η + 1 + γ/d)

α
+

(
8η

α
+ 4

)
log
(
1 +

σ1:t
d2

)
+ ∥ĉ1:S∥+

T∑
t=1

⟨ĉt, x̄t⟩.

For the remainder of this section, let ϕ be a self-concordant barrier on a space Ω. For a symmetric positive-definite matrix
M , define the norm ∥h∥M = h⊤Mh. The following is a standard fact about self-concordant barriers:

Proposition C.5. For all x, x′ ∈ Ω with ∥x− x′∥∇2ϕ(x) < 1 and all vectors h:

∥h∥∇2ϕ(x)(1− ∥x− x′∥∇2ϕ(x)) ≤ ∥h∥∇2ϕ(x′) ≤
∥h∥∇2ϕ(x)

1− ∥x− x′∥∇2ϕ(x)
.

This proposition has the following immediate corollary:

Corollary C.6. For all x, x′ ∈ Ω with ∥x− x′∥∇2ϕ(x) < 1, we have:

∥h∥∇2ϕ−1(x)(1− ∥x− x′∥∇2ϕ(x)) ≤ ∥h∥∇2ϕ(x′)−1 ≤
∥h∥∇2ϕ(x)−1

1− ∥x− x′∥∇2ϕ(x)
.

Proof. Set z′ = ∇2ϕ(x′)−1h
∥h∥∇2ϕ(x′)−1

. Observe that ⟨z′, h⟩ = ∥h∥∇2ϕ(x′)−1 and also ∥z′∥∇2ϕ(x′) = 1. Now, by the Cauchy–
Schwarz inequality,

∥h∥∇2ϕ(x′)−1 = ⟨z′, h⟩ ≤ ∥h∥∇2ϕ(x)−1∥z′∥∇2ϕ(x) ≤ ∥h∥∇2ϕ(x)−1

∥z′∥∇2ϕ(x′)

1− ∥x− x∥∇2ϕ(x)
=

∥h∥∇2ϕ(x)−1

1− ∥x− x∥∇2ϕ(x)
.

Similarly, let z = ∇2ϕ(x)−1h
∥h∥∇2ϕ(x)−1

, so that ⟨z, h⟩ = ∥h∥∇2ϕ(x)−1 and also ∥z∥∇2ϕ(x) = 1. Then:

∥h∥∇2ϕ(x)−1 = ⟨z, h⟩ ≤ ∥h∥∇2ϕ(x′)−1∥z′∥∇2ϕ(x′) ≤ ∥h∥∇2ϕ(x′)−1

∥z′∥∇2ϕ(x)

1− ∥x− x∥∇2ϕ(x)
=

∥h∥∇2ϕ(x′)−1

1− ∥x− x∥∇2ϕ(x)

=⇒ ∥h∥∇2ϕ(x)−1(1− ∥x− x∥∇2ϕ(x)) ≤ ∥h∥∇2ϕ(x′)−1 .

Now, we can generalize this:

Proposition C.7. Let ψ(x) = λ
2 ∥x∥

2 + γϕ(x). Then for all x, x′ ∈ Ω with ∥x− x′∥∇2ϕ(x) < 1 and all vectors h:

∥h∥∇2ψ(x)(1− ∥x− x′∥∇2ϕ(x)) ≤ ∥h∥∇2ψ(x′) ≤
∥h∥∇2ψ(x)

1− ∥x− x′∥∇2ϕ(x)
.

Proof. By Proposition C.5:

∥h∥2∇2ϕ(x)(1− ∥x− x
′∥∇2ϕ(x))

2 ≤ ∥h∥2∇2ϕ(x′) ≤
∥h∥2∇2ϕ(x)

(1− ∥x− x′∥∇2ϕ(x))2
.

Further,

∥h∥2∇2ψ(x′) = λ∥h∥22 + γ∥h∥2∇2ϕ(x′).
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Combining these observations:

λ∥h∥2 + γ∥h∥2∇2ϕ(x)(1− ∥x− x
′∥∇2ϕ(x))

2 ≤ ∥h∥2∇2ψ(x′) ≤ λ∥h∥
2 + γ

∥h∥2∇2ϕ(x)

(1− ∥x− x′∥∇2ϕ(x))2

observing that 1− ∥x− x′∥∇2ϕ(x) ∈ [0, 1):

(λ∥h∥2 + γ∥h∥2∇2ϕ(x))(1− ∥x− x
′∥∇2ϕ(x))

2 ≤ ∥h∥2∇2ψ(x′) ≤
λ∥h∥2 + γ∥h∥2∇2ϕ(x)

(1− ∥x− x′∥∇2ϕ(x))2
,

which implies the desired result.

Now, we prove a some key bounds on x̄t − x̄t+1:

Lemma C.8. Define ψt(x) = r0:t(x) + γϕ(x) for ϕ(x) = − log(1− ∥x∥2). Then:

∥x̄t − x̄t+1∥∇2ψt(x̄t) ≤ 4∥ĉt +∇rt(x̄t))∥∇2ψt(x̄t)−1 ≤ 4∥ĉt∥∇2ψt(x̄t)−1 +
4σt√

η(d2 + σ1:t)3/4
.

Proof. By definition, we have:

x̄t = argmin⟨ĉ1:t−1, x⟩+ ψt−1(x) and x̄t+1 = argmin⟨ĉ1:t, x⟩+ ψt(x).

Therefore, by since lim∥x∥→1 ψt(x) =∞, by first-order optimality conditions we have:

∇ψt−1(x̄t) = −ĉ1:t−1 and ∇ψt(x̄t+1) = −ĉ1:t.

By mean-value theorem, there are two points y and y′ on the line segment connecting x̄t and x̄t+1 such that:

ψt(x̄t) = ψt(x̄t+1) + ⟨∇ψt(x̄t+1), x̄t − x̄t+1⟩+
∥x̄t − x̄t+1∥2∇2ψt(y)

2
.

ψt(x̄t+1) = ψt(x̄t) + ⟨∇ψt(x̄t), x̄t+1 − x̄t⟩+
∥x̄t − x̄t+1∥2∇2ψt(y′)

2

= ψt(x̄t) + ⟨∇ψt−1(x̄t), x̄t+1 − x̄t⟩+ ⟨∇rt(x̄t), x̄t+1 − x̄t⟩+
∥x̄t − x̄t+1∥2∇2ψt(y′)

2
.

Adding these equations and simplifying, we have:

0 = ⟨∇ψt−1(x̄t)− ψt(x̄t+1) +∇rt(x̄t), x̄t+1 − x̄t⟩+
∥x̄t − x̄t+1∥2∇2ψt(y′)+∇2ψt(y)

2

=⇒ ⟨ĉt +∇rt(x̄t), x̄t − x̄t+1⟩ =
∥x̄t − x̄t+1∥2∇2ψt(y′)

2
+
∥x̄t − x̄t+1∥2∇2ψt(y)

2
.

By Lemma C.9, ∥x̄t − x̄t+1∥2∇2ψt(x̄t)
≤ 1

2 , and so ∥x̄t − y∥2∇2ψt(x̄t)
≤ 1

2 and ∥x̄t − y′∥2∇2ψt(x̄t)
≤ 1

2 . Thus by
Proposition C.5:

∥x̄t − x̄t+1∥2∇2ψt(y′)

2
+
∥x̄t − x̄t+1∥2∇2ψt(y)

2
≥
∥x̄t − x̄t+1∥2∇2ψt(x̄t)

8
+
∥x̄t − x̄t+1∥2∇2ψt(x̄t)

8
=

1

4
∥x̄t − x̄t+1∥2∇2ψt(x̄t)

=⇒ 4⟨ĉt +∇rt(x̄t), x̄t − x̄t+1⟩ ≥ ∥x̄t − x̄t+1∥2∇2ψt(x̄t)
.

Now, applying the Cauchy–Schwarz inequality, we have:

∥x̄t − x̄t+1∥2∇2ψt(x̄t)
≤ 4∥ĉt +∇rt(x̄t)∥∇2ψt(x̄t)−1∥x̄t − x̄t+1∥∇2ψt(x̄t)

=⇒ ∥x̄t − x̄t+1∥∇2ψt(x̄t) ≤ 4∥ĉt +∇rt(x̄t)∥∇2ψt(x̄t)−1 .
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Finally, we consider two cases depending on the value of gt. First, if gt = 0, then rt = 0 and so ∥ĉt+∇rt(x̄t))∥∇2ψt(x̄t)−1 =

∥ĉt∥∇2ψt(x̄t)−1 . Alternatively, if gt = 1, then if we define δt =
√
1+σ1:t−

√
1+σ1:t−1

η , we have:

∇rt(x̄t) = δtx̄t =⇒ ∥∇rt(x̄t)∥∇2ψt(x̄t)−1 = δt∥x̄t∥∇2ψt(x̄t)−1 ≤ δt
√

η√
d2 + σ1:t

≤ σt√
η(d2 + σ1:t)3/4

,

where the first inequality follows since∇2ψt(x̄t) ≥
√
d2+σ1:t

η I .

The following technical statement is helpful in the proof of Lemma C.8.
Lemma C.9. Define ψt(x) = r0:t(x) + γϕ(x) for ϕ(x) = − log(1− ∥x∥2). Then ∥x̄t − x̄t+1∥∇2ϕ(x̄t) ≤ 1

2 .

Proof. To prove this, we claim for all v with ∥v∥∇2ϕ(x̄t) = 1
2 , ψt(x̄t + v) + ⟨ĉ1:t, x̄t + v⟩ ≥ ψt(x̄t) + ⟨ĉ1:t, x̄t⟩. This

will establish ∥x̄t − x̄t+1∥∇2ϕ(x̄t) ≤ 1
2 since x̄t+1 = argmin⟨ĉ1:t, x⟩ + ψt(x). To establish the claim, define δt =

√
d2+σ1:t−

√
d2+σ1:t−1

η so that rt(x) = δt
2 ∥x∥

2. Further, notice that ∥v∥ ≤ 1 since the Dikin ellipsoid centered at x̄t must be
contained in the unit ball. Then, we have:

ψt(x̄t + v) + ⟨ĉ1:t, x̄t + v⟩ = ψt−1(x̄t + v) +
δt
2
∥x̄t + v∥2 + ⟨ĉ1:t, x̄t + h⟩

by mean value theorem, there is some y ∈ [x̄t, x̄t + v] such that:

= ψt−1(x̄t) + ⟨∇ψt−1(x̄t), v⟩+
∥v∥2∇2ψt−1(y)

2
+
δt
2
∥x̄t + v∥2 + ⟨ĉ1:t, x̄t + v⟩

= ψt−1(x̄t) + ⟨ĉ1:t, x̄t⟩+
∥v∥2∇2ψt−1(y)

2
+
δt
2
∥x̄t + v∥2 + ⟨ĉt, v⟩

= ψt(x̄t) + ⟨ĉ1:t, x̄t⟩+ δt⟨x̄t, v⟩+
δt∥v∥2

2
+ ⟨ĉt, v⟩+

∥v∥2∇2ψt−1(y)

2

= ψt(x̄t) + ⟨ĉ1:t, x̄t⟩+ δt⟨x̄t, v⟩+
δt∥v∥2

2
+ ⟨ĉt, v⟩+

δ0:t−1∥v∥2 + γ∥v∥2∇2ϕ(y)

2

≥ ψt(x̄t) + ⟨ĉ1:t, x̄t⟩+ δt⟨x̄t, v⟩+
δt∥v∥2

2
+ ⟨ĉt, v⟩+

δ0:t−1∥v∥2

2
+
γ∥v∥2∇2ϕ(x̄t)

2
(1− ∥y − x̄t∥∇2ϕ(x̄t))

2

= ψt(x̄t) + ⟨ĉ1:t, x̄t⟩+ δt⟨x̄t, v⟩+ ⟨ĉt, v⟩+
δ0:t∥v∥2

2
+
γ∥v∥2∇2ϕ(x̄t)

8
,

where the inequality follows from Proposition C.5. Applying the Cauchy–Schwarz inequality:

ψt(x̄t + v) + ⟨ĉ1:t, x̄t + v⟩ ≤ ψt(x̄t) + ⟨ĉ1:t, x̄t⟩+ δt⟨x̄t, v⟩+ ⟨ĉt, v⟩+
δ0:t∥v∥2

2
+
γ∥v∥2∇2ϕ(x̄t)

8

≤ ψt(x̄t) + ⟨ĉ1:t, x̄t⟩ − δt∥x̄t∥∇2ϕ(x̄t)−1∥v∥∇2ϕ(x̄t) − ∥ĉt∥∇2ϕ(x̄t)−1∥v∥∇2ϕ(x̄t) +
δ0:t−1∥v∥2

8
+
γ∥v∥2∇2ϕ(x̄t)

8

= ψt(x̄t) + ⟨ĉ1:t, x̄t⟩ −
δt
2
∥x̄t∥∇2ϕ(x̄t)−1 −

∥ĉt∥∇2ϕ(x̄t)−1

2
+

γ

32
.

From Proposition C.2, we have ∥ĉt∥∇2ϕ(x̄t)−1 ≤ 2
√
d and ∥x̄t∥∇2ϕ(x̄t)−1 ≤ 1/2. Now, notice that δt ≤ σt

η
√
1+σ1:t

≤
√
σt/η ≤ d/η since σt ≤ d2. Therefore, we have:

ψt(x̄t + v) + ⟨ĉ1:t, x̄t + v⟩ ≤ ψt(x̄t) + ⟨ĉ1:t, x̄t⟩ −
d

4η
−
√
d+

γ

32
.

Since γ ≥ 8 dη + 32
√
d, the claim follows.

D. Experimental Results
In this section, we include an experimental evaluation of Algorithm 1 on synthetic data.
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Dependence on the dimension. The regret bound provided by Theorem 4.1 degrades with the dimension. Note that this is
in contrast with the dimension-independent regret guarantees available with hints in the full-information setting (Bhaskara
et al., 2020; 2021). We consider the following experimental setup. For each time step t independently, the cost vector ct is
generated as follows: the first coordinate of ct is fixed to be 0.5, and the remaining d− 1 coordinates are drawn uniformly at
random from a (d− 1)-dimensional sphere of radius

√
1− 0.52 so that each cost vector has unit length. We set B = 0, i.e.,

there are no bad query responses and set the time horizon T = 5000. Figure 1a shows a plot of the regret incurred after
T = 5000 time steps for varying dimensions. Intriguingly, the regret degrades sublinearly with the dimension even though
Theorem 4.1 suggests a superlinear dependence.

(a) Regret degrades with the dimension. (b) Regret scales linearly with the number of bad responses.

(c) Linear regret with adversarially chosen responses. (d) Linear regret with randomly chosen bad responses.

Figure 1. Experimental results.

Dependence on number of bad responses. We now demonstrate that the regret incurred by Algorithm 1 indeed does
depend linearly on the number of bad query responses. Intuitively, since the algorithm only uses the query responses to
construct estimates of the cost vector (and does not use any additional exploration), it is unable to be robust to bad query
responses. We consider the following setup. We fix d = 3 and for each time step t independently, the cost vector ct is
generated as follows: ct = p · (1, 0, 0)+ (1− p) · ut where ut is a uniformly random unit vector on the sphere in R3. We set
the T = 5000 and let the first B = 1000 query responses to be adversarially bad. More precisely, we let Q(st) = ⟨st,−ct⟩
for the first B = 1000 time steps. Figure 1b shows the regret curve obtained for different values of p. As p increases, the
adversarial responses hurt the algorithm more, but in either case the regret increases linearly for the first B time steps.

Non-adversarial bad responses. In this set of experiments, we evaluate the effect of bad but non-adversarial query
responses on the regret obtained by Algorithm 1. The experimental setup is same as the one above but we fix p = 0.5. For
different values of B ∈ {0, 1, . . . , 1000}, we repeat the experiment and record the regret incurred after T = 5000 time
steps. We consider two scenarios as follows: (i) Figure 1c shows the regret incurred when the bad responses are chosen
adversarially (i.e.,Q(st) = ⟨st,−ct⟩); (ii) Figure 1d shows the regret incurred when the bad responses are chosen randomly,
i.e., Q(st) = ⟨st, yt⟩ where yt is a chosen uniformly at random from the unit sphere. In either case, we observe that the
regret increases linearly with the number of bad hints.
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