
Contents of Appendix

A Preliminaries 14

A.1 Meek Rules . 14

B Proof of Exact Matching 14

C Proof of Identifiability 15

C.1 Shift Interventional MEC . 15

C.2 Mean Interventional Faithfulness . 16

D Details of Algorithms 16

D.1 Decomposition of Shift Interventional Essential Graphs 16

D.2 NP-completeness of MinMaxC . 17

D.3 Clique Tree Strategy . 17

D.4 Supermodular Strategy . 18

D.5 Violation of Faithfulness . 19

E Proof of Worst-case Bounds 19

E.1 Proof of Lemma 5 . 19

E.2 Proof of Lemma 6 . 21

E.3 Proof of Theorem 2 . 24

F Numerical Experiments 24

F.1 Experimental Setup . 24

F.2 More Empirical Results . 25

G Discussion of the Noisy Setting 26

13

A Preliminaries

A.1 Meek Rules

Given any Markov equivalence class of DAGs with shared directed and undirected edges, the
corresponding essential graph E can be obtained using a set of logical relations known as Meek rules
(Meek, 1995). The Meek rules are stated in the following proposition.
Proposition 1 (Meek Rules (Meek, 1995)). We can infer all directed edges in E using the following
four rules:

1. If i! j � k and i is not adjacent to k, then j ! k.

2. If i! j ! k and i� k, then i! k.

3. If i� j, i� k, i� l, j ! k, l! k and j is not adjacent to l, then i! k.

4. If i� j, i� k, i� l, j k, l! k and j is not adjacent to l, then i! j.

Figure 6 illustrates these four rules.

(a) R1 (b) R2 (c) R3 (d) R4

Figure 6: Meek Rules.

B Proof of Exact Matching

Proof of Lemma 1. Without loss of generality, assume 1, 2, ..., p is the topological order of the
underlying DAG G, i.e., j 2 paG(i) implies j < i. We will first construct I⇤ such that EPI⇤ (X) =
EQ(X), and then show that I⇤ is unique.

Existence: Denote i1 as the smallest i 2 [p] such that EP(Xi) 6= EQ(Xi). Witout loss of generality
we assume that i1 exists (if i1 does not exists, then I

⇤ = ? suffices since EP(X) = EQ(X)).

Let I1 be the shift intervention with perturbation target i1 and shift values ai1 = EQ(Xi1)�EP(Xi1).
Since PI1(Xi1 = x+ ai1 |XpaG(i1)) = P(Xi1 = x|XpaG(i1)) and PI1(XpaG(i1)) = P(XpaG(i1)) by
definition, we have

PI1(Xi1 = x+ ai1) = P(Xi1 = x).

Thus EPI1 (Xi1) = EP(Xi1) + ai1 = EQ(Xi1). Also EPI1 (Xi) = EQ(Xi) for i < i1. Denote i2

as the smallest i 2 [p] such that EPI1 (Xi) 6= EQ(Xi). If i2 does not exists, then I
⇤ = I1 suffices.

Otherwise i2 > i1.

Let I2 be the shift intervention with perturbation target i1, i2 and corresponding shift values ai1 and
ai2 = EQ(Xi2) � EPI1 (Xi2). We have PI2(Xi2 = x + ai2 |XpaG(i2)) = P(Xi2 = x|XpaG(i2)) =

PI1(Xi2 = x|XpaG(i2)) and PI2(XpaG(i2)) = PI1(XpaG(i2)) by definition, the topological order,
and i2 > i1. Then

PI2(Xi2 = x+ ai2) = PI1(Xi2 = x).

Thus EPI2 (Xi2) = EPI1 (Xi2) + ai2 = EQ(Xi2). Also EPI2 (Xi) = EPI1 (Xi) = EQ(Xi) for
i < i2. By iterating this process, we will reach Ik for some k  p such that there is no i with
EPIk (Xi) 6= EQ(Xk). Taking I

⇤ = Ik suffices.

Uniqueness: If there exists I
⇤
1 6= I

⇤
2 such that E

PI⇤1 (X) = E
PI⇤2 (X) = EQ(X), let i 2 [p] be

the smallest index such that either i has different shift values in I
⇤
1 and I

⇤
2 , or i is only in one

intervention’s perturbation targets. In either case, we have PI⇤
1 (XpaG(i)) = PI⇤

2 (XpaG(i)) by the
topological order and PI⇤

1 (Xi = x|XpaG(i)) = PI⇤
2 (Xi = x + a|XpaG(i)) for some a 6= 0. Thus

PI⇤
1 (Xi = x) = PI⇤

2 (Xi = x+ a) contradicting E
PI⇤1 (Xi) = E

PI⇤2 (Xi).

14

C Proof of Identifiability

C.1 Shift Interventional MEC

Proof of Lemma 2. For any distribution f that factorizes according to G and shift intervention I , let
i 2 I be any source w.r.t. I . By definition, anG(i) \ I = ?. Thus paG(i) contains neither a member
nor a descendant of I , i.e., there does not exists j 2 paG(i) and k 2 I such that there is a direct path
from k to j or k = j. Hence we have f

I(XpaG(i)) = f(XpaG(i)), which gives

f
I(Xi = x+ ai) = f(Xi = x).

Therefore EfI (Xi) = Ef (Xi) + ai.

On the other hand, if i 2 I is not a source w.r.t. I , consider the following linear Gaussian model,

Xj =
X

k2paG(j)

�kjXk + ✏j , 8j 2 [p],

where �kj are deterministic scalars and ✏j ⇠ N (0, 1) are i.i.d. random variables.

Since i is not a source in I , there exists a source i
0 in I such that there is a directed path i

0 =
i0 ! i1 ! · · · ! i`. From above, EfI (Xi0) = Ef (Xi0) + ai0 for ai0 6= 0. Consider setting
�i0,i1 = 2|ai|/ai0 , �ik,ik+1 = 1 for k = 1, . . . , ` � 1, and the remaining edge weights to ✏ > 0.
For ✏ sufficiently small, we have that EfI (Xi) � Ef (Xi) + 1.5|ai|, i.e., we cannot have that
EfI (Xi) = Ef (Xi) + ai.

Proof of Theorem 1. Denote I = {I1, ..., Im}. For k 2 [m] = {1, ...,m}, let Îk and Î
0
k be the

collection of source nodes in Ik in G1 and G2, respectively. From Definition 1, we know that G1

and G2 are in the same shift-I-MEC if and only if they are in the same I-MEC and, for any pair
(f, {f Ik}k2[m]) that is I-Markov w.r.t. both G1 and G2, it satisfies

EfIk (Xi) = Ef (Xi) + ai, 8i 2 Îk, 8k 2 [m], (3)

if and only if it also satisfies

EfIk (Xi) = Ef (Xi) + ai, 8i 2 Î
0
k, 8k 2 [m]. (4)

By Lemma 2, we know that Î 0k ⇢ Îk for all k 2 [m]. Otherwise we can find a pair (f, {f Ik}k2[m])

that violates (4) for i 2 Î
0
k \ Îk. Similarly, we have Îk ⇢ Î

0
k. Therefore Îk = Î

0
k. In this case, (3) is

equivalent to (4).

Hence, G1 and G2 are in the same shift-I-MEC if and only if they are in the same I-MEC and
they have the same source nodes of I for every I 2 I. From Theorem 3.9 in Yang et al. (2018),
we know that G1 and G2 are in the same I-MEC if and only if they share the same skeleton, v-
structures and directed edges {i ! j|i 2 I, j /2 I, I 2 I, i � j}. Therefore, G1 and G2 are
in the same shift-I-MEC if and only if they have the same skeleton, v-structures, directed edges
{i! j|i 2 I, j /2 I, I 2 I, i� j}, as well as source nodes of I for every I 2 I.

Let D be any DAG, suppose that I = {I1, ..., Im} and Îk is the collection of source nodes in Ik in D
for k 2 [m]. Then as a direct corollary of Theorem 1, we can represent a shift interventional Markov
equivalence class with a (general) interventional Markov equivalence class.

Corollary 1. Let Î = I [{Îk|k 2 [m]}; a DAG D0 is shift-I-Markov equivalent to D if and only if
D0 is Î-Markov equivalent to D.

Proof. The proof follws as a direct application of Theorem 1, Theorem 3.9 in Yang et al. (2018), and
the fact that there are no edges between nodes in Îk.

15

C.2 Mean Interventional Faithfulness

Proof of Lemma 3. If Assumption 1 holds, then for any i /2 T , since EP(Xi) = EQ(Xi), then
i /2 I

⇤ and anG(i) \ I
⇤ = ?. Let j 2 T such that there is an edge i � j between i and j.

Since EP(Xj) 6= EQ(Xj), there is either j 2 I
⇤ or anG(j) \ I

⇤ 6= ?. Therefore if j ! i, then
anG(i) \ I

⇤ 6= ?, a contradiction. Thus j i.

Conversely, if Assumption 1 does not hold, then there exists i /2 T (i.e., EP(Xi) = EQ(Xi)) such
that either i 2 I

⇤ or anG(i)\ I⇤ 6= ?. If i 2 I
⇤, then since EP(Xi) = EQ(Xi) and Lemma 2, i must

not be a source in I
⇤. Therefore we only need to discuss the case where i /2 T and anG(i) \ I

⇤ 6= ?.

Let k be a source of anG(i) \ I
⇤, then k must also be a source of I⇤. Otherwise there is a directed

path from k
0 to k where k

0 6= k and k
0 2 I

⇤. By definition of ancestors, we know from k 2 anG(i)
that there is also k

0 2 anG(i). Therefore k
0 2 anG(i) \ I

⇤, which violates k being a source of
anG(i) \ I

⇤.

Since k is a source of I⇤, by Lemma 1 and 2, we know that EP(Xk) 6= EQ(Xk), i.e., k 2 T . Notice
that k 2 anG(i), and thus we must have a directed path from k 2 T to i /2 T . Thus, there exists some
i� j, j 2 T, i /2 T such that j ! i.

Using Lemma 3, we know that we can check the authenticity of Assumption 1 by looking at the
orientation of edges between T and [p] \ T , which is achievable by any (general) intervention on XT

(or X[p]\T).

Corollary 2. Assumption 1 holds if and only if the {T}-essential graph (or {[p]\T}-essential graph)
of G has edges j i for all i� j, j 2 T, i /2 T .

Proof. The proof follows as a direct application of the graphical characterization of interventional
equivalence class in Section 3.1 and the results in Lemma 3.

D Details of Algorithms

D.1 Decomposition of Shift Interventional Essential Graphs

Chain Graph Decomposition: Hauser and Bühlmann (2014) showed that every interventional
essential graph is a chain graph with undirected connected chordal chain components, where the
orientations in one component do not affect any other components. This decomposition also holds
for shift interventional essential graphs, since every shift interventional essential graph is also an
interventional essential graph (Corollary 1). Below, we show an example of this decomposition
(Figure 7).

(a) Essential Graph (b) Chain Component 1 (c) Chain Component 2 (d) Chain Component 3

Figure 7: Chain graph decomposition of the essential graph in (a).

Proof of Lemma 4. Suppose an undirected connected chain component C of the essential graph has
two source nodes i and j w.r.t. C. Since C is connected, there is a path between i and j in C; let
i� k1 � ...� kr � j be the shortest among all these paths. Because i and j are sources of C, there
must be i! k1 and kr j. Therefore, 9l 2 {1, ..., r} such that kl�1 ! kl kl+1 (let k0 = i and
kr+1 = j). By the shortest path definition, there is no edge between kl�1 and kl+1. Therefore there
is a v-structure in C induced by kl�1 ! kl kl+1. Since all DAGs in the same shift interventional
equivalence class share the same v-structures, kl�1 ! kl kl+1 must be oriented in the essential
graph. This violates kl�1, kl, kl+1 belonging to the same undirected chain component C. Thus,
combining this with the fact that C must have one source node, we obtain that C has exactly one
source node w.r.t. C.

16

Next we show that the source node of a chain component is also the source of G if and only if there
are no incoming edges to this component. Let i be the source of the chain component C. On one
hand, i must be the source of G if there is no incoming edges to C. On the other hand, if there is
an incoming edge j ! k for some j /2 C and k 2 C, then since the essential graph is closed under
Meek R1 and R2 (Proposition 1), we know that there must be an edge j ! l for all neighbors l of k.
Following the same deduction and the fact that C is connected, we obtain that j ! l for all l 2 C
(Figure 8). This means that j ! i as well. Therefore i cannot be a source of G.

Figure 8: j ! l for all l 2 C.

D.2 NP-completeness of MinMaxC

It was shown separately in Shen et al. (2012) and Lalou et al. (2018) that the MinMaxC problem is
NP-complete for general graphs and split graphs. Split graphs are a subclass of chordal graphs, where
the vertices can be separated into a clique and an independent set (isolated nodes after removing the
clique). Thus, MinMaxC is also NP-complete for chordal graphs.

D.3 Clique Tree Strategy

The clique tree strategy takes inputs of an undirected connected chordal graph C and the sparsity
constraint S, and outputs a shift intervention with no more than S perturbation targets. If C contains
no more than S nodes, then it returns any shift intervention with perturbation targets in C. If C
contains more than S nodes, it first constructs a clique tree T (C) of C by the maximum-weight
spanning tree algorithm (Koller and Friedman, 2009). Then it iterates through the nodes in T (C)
(which are maximal cliques in C) to find a maximal clique K that breaks T (C) into subtrees with
sizes no more than half of the size of T (C). If K has no more than S nodes, then it returns any shift
intervention with perturbation targets in K. Otherwise, it samples S nodes from K and returns any
shift intervention with these S nodes as perturbation targets. The following subroutine summarizes
this procedure.

Algorithm 2: CliqueTree(C, S)
Input: Chordal chain component C, sparsity constraint S.

1 if C has no more than S nodes then

2 set I as any shift intervention on C with non-zero shift values;
3 else

4 let C(C) be the maximal cliques of the chordal graph C;
5 let T (C) be a maximum-weight spanning tree of C with C(C) as nodes;
6 set K = ?;
7 for K in C(C) do

8 get the subtrees of T (C) after deleting node C;
9 if all subtrees has size  d(|C(C)|� 1)/2e then

10 set K = K;
11 break;
12 end

13 end

14 if |K| > S then

15 set K as a random S-subset of K;
16 end

17 set I as any shift intervention on K with non-zero shift values;
18 end

Output: Shift Intervention I

17

Complexity: Let N represent the number of nodes in C, i.e., N = |C|. All the maximal cliques of
the chordal graph C can be found in O(N2) time (Galinier et al., 1995). We use Kruskal’s algorithm
for computing the maximum-weight spanning tree, which can be done in O(N2 log(N)) (Kruskal,
1956). The remaining procedure of iterating through C(C) takes no more than O(N2) since chordal
graphs with N nodes have no more than N maximal cliques (Galinier et al., 1995) and all subtree
sizes can be obtained in O(N). Therefore this subroutine can be computed in O(N2 log(N)) time.

D.4 Supermodular Strategy

The supermodular procedure takes as input an undirected connected chordal graph C as well as the
sparsity constraint S, and outputs a shift intervention with perturbation targets by solving

min
A⇢VC

max
i2VC

f̂i(A), |A|  S, (5)

with the SATURATE algorithm (Krause et al., 2008). Here VC represents nodes of C and f̂i(A) =P
j2VC

ĝi,j(A) with ĝi,j defined in (2). Algorithm 3 summarizes this subroutine.

Algorithm 3: Supermodular(C, S)
Input: Chordal chain component C, sparsity constraint S.

1 if C has no more than S nodes then

2 set I as any shift intervention on C with non-zero shift values;
3 else

4 let A be the solution of (5) returned by SATURATE (Krause et al., 2008);
5 set I as any shift intervention on A with non-zero shift values;
6 end

Output: Shift Intervention I

Supermodularity: First we give an example showing that fi defined in (1) is not supermodular for
chordal graphs, although it is clearly monotonic decreasing.
Example 2. Consider the chordal graph in Figure 9; we have f1({2})� f1(?) = 3� 4 = �1 >

�2 = 1� 3 = f1({2, 3})� f1({3}). Therefore f1 is not supermodular for this graph.

Figure 9: fi is not supermodular.

Next we prove that f̂i is supermodular and monotonic decreasing.

Proof. Since f̂i(A) =
P

j2VC
ĝi,j(A), we only need to show that every ĝi,j is supermodular and

monotonic decreasing. In the following, we refer to a path without cycles as a simple path.

For any A ⇢ B ⇢ VC , since VC �B is a subgraph of VC �A, then any simple path between i and j

in VC �B must also be in VC �A. Hence mi,j(VC �B)  mi,j(VC �A), which means that
ĝi,j(A) � ĝi,j(B),

i.e., ĝi,j is monotonic decreasing.

For any x 2 VC \ B, the difference mi,j(VC � B)�mi,j(VC � B [{x}) is the number of simple
paths in VC � B between i and j that pass through x. Each of these paths must also be in VC � A,
since VC �B is a subgraph of VC �A. Therefore,

mi,j(VC �B)�mi,j(VC �B [{x})  mi,j(VC �A)�mi,j(VC �A [{x}),
which means that

ĝi,j(A [{x})� ĝi,j(A)  ĝi,j(B [{x})� ĝi,j(B),

i.e., ĝi,j is supermodular.

18

SATURATE algorithm (Krause et al., 2008): Having shown that f̂i is monotonic supermodular,
we solve the robust supermodular optimization problem in (5) with the SATURATE algorithm in
(Krause et al., 2008). SATURATE performs a binary search for potential objective values and uses
a greedy partial cover algorithm to check the feasibility of these objective values; for a detailed
description of the algorithm, see Krause et al. (2008).

Complexity: Let N represent the number of nodes in C, i.e., N = |C|. SATURATE uses at most
O(N2

S log(N)) evaluations of supermodular functions f̂i (Krause et al., 2008). Each f̂i computes
all the simple paths between i and all other j in C. A modified depth-first search is used to calculated
these paths (Sedgewick, 2001), which results in F(N) complexity. For general graphs, this problem is
#P-complete (Valiant, 1979). However, this might be significantly reduced for chordal graphs. We are
unaware of particular complexity results for chordal graphs, which would be an interesting direction
for future work. The total runtime of this subroutine is thus bounded by O(N2F(N)S log(N)).5

D.5 Violation of Faithfulness

From Corollary 2, we know that we can check whether Assumption 1 holds or not by any intervention
on XT (or X[p]\T). However, we can run Algorithm 1 to obtain I

⇤ without Assumption 1 because
lines 2-14 in Algorithm 1 always return the correct I⇤.

Let I ⇢ I
⇤ be the resolved part of I⇤ in line 2, i.e., it is a shift intervention constructed by taking a

subset of perturbation targets of I⇤ and their corresponding shift values. Let I⇤ � I be the remaining
shift intervention constructed by deleting I in I

⇤. Denote TI = {i|i 2 [p],EPI (Xi) 6= EQ(Xi)},
which is returned by line 3. If TI 6= ?, then we have solved I

⇤. Otherwise we have:
Lemma 7. The source nodes w.r.t. TI must be perturbation targets of I⇤� I and their corresponding
shift values are EQ(Xi)� EPI (Xi) (for source node i).

Proof. Let i be a source node w.r.t. I⇤ � I and ai be its corresponding shift value. Since intervening
on other nodes in I

⇤ � I does not change the marginal distribution of i, we must have that ai =
E(PI)I⇤�I (Xi)� EPI (Xi). And because (PI)I

⇤�I = PI⇤
= Q, we know that

ai = EQ(Xi)� EPI (Xi).

From this, we also have that EPI (Xi) 6= EQ(Xi) since ai 6= 0. Therefore, all source nodes i w.r.t.
I
⇤ � I are in TI and their corresponding shift values are EQ(Xi)� EPI (Xi).

Let i be a source w.r.t. TI , then i must also be a source node w.r.t. I⇤� I . Since EPI (Xi) 6= EQ(Xi),
i must be a source node in I

⇤ � I or has a source node in I
⇤ � I as its ancestor. If it is the latter

case, then since all source nodes in I
⇤ � I must be in TI , i cannot be a source node w.r.t. TI , a

contradiction. Therefore the source w.r.t. TI must also be the source w.r.t. I⇤ � I . Combined with
the result in the previous paragraph, we have that all source nodes i w.r.t. TI are perturbation targets
of I⇤ � I and their corresponding shift values are EQ(Xi)� EPI (Xi).

This lemma shows that UT obtained in lines 5-11 of Algorithm 1 must be the perturbation targets of
I
⇤ � I and line 12 gives the correct shift values. Therefore Algorithm 1 must return the correct I⇤.

However, to be able to obtain the shift-I-EG of G, we need mean interventional faithfulness to be
satisfied by I 2 I (replacing I

⇤ with I and Q with PI in Assumption 1) as well as I-faithfulness
(Squires et al., 2020) to be satisfied by (P, {PI}I2I) with respect to G.

E Proof of Worst-case Bounds

E.1 Proof of Lemma 5

To show Lemma 5, we need the following proposition, which states that we can orient any maximal
clique of a chordal graph to be most-upstream without creating cycles and v-structures, and the

5For a more efficient implementation, one could replace the undirected graph with a DAG in its MEC (which
can be found in linear time using L-BFS). All statements hold except that f̂i is no longer necessarily tight for
tree graphs. This replacement results in a total complexity of O(N4

S log(N)) for the subroutine, since directed
simple paths can be counted in O(N2).

19

orientation in this clique can be made arbitrary. It was pointed out in (Vandenberghe and Andersen,
2015) using similar arguments that any clique of a chordal graph can be most-upstream. Here, we
provide the complete proof.
Proposition 2. Let D be any undirected chordal graph and K be any maximal clique of D, for any
permutation ⇡K of the nodes in K, there exists a topological order ⇡ of the nodes in D such that ⇡
starts with ⇡K and orienting D according to ⇡ does not create any v-structures.

Proof. A topological order ⇡ of a chordal graph D, orienting according to which does not create
v-structures, corresponds to the reverse of a perfect elimination order (Hauser and Bühlmann, 2014).
A perfect elimination order is an order of nodes in D, such that all neighbors of i in D that appear after
i in this order must constitute a clique in D. Any chordal graph has at least one perfect elimination
order (Andersson et al., 1997). In the following, we will use the reverse of a perfect elimination order
to refer to a topological order that does not create v-structures.

To prove Proposition 2, we first prove the following statement: if K 6= D, then there exists a perfect
elimination order of nodes in D that starts with a node not in K. To show this, by Proposition 6 in
Hauser and Bühlmann (2014), we only need to prove that if K 6= D, then there is a node not in K,
whose neighbors in D constitute a clique.

We use induction on the number of nodes in D: Consider |D| = 1. Since K is a maximal clique,
K = D. This statement holds trivially. Suppose the statement is true for chordal graphs with size
n � 1. Consider |D| = n. Since D is a chordal graph, it must have a perfect elimination order. If
this perfect elimination order starts with i 2 K, then there is no edge between i and any node j /2 K.
Otherwise, since it is a perfect elimination order starting with i and K 3 i is a clique, there must be
edges j � k for all k 2 K. This is a contradiction to K being a maximal clique.

Consider the chordal graph D0 by deleting i from D, |D0| = n� 1. Let K 0 be the maximal clique in
D0 containing K \ {i}. If K 0 = D0, let j be any node in D \K. Since there is no edge j � i, and
D0 3 j is a clique. j’s neighbors in D must also constitute a clique. If K 0 6= D0, then by induction,
we know that there exists j 2 D0 \K 0 such that j’s neighbors in D0 constitute a clique. Since there is
no edge j � i, j’s neighbors in D must also constitute a clique. Thus the statement holds for chordal
graphs of size n. Therefore the statement holds.

Now, we prove Proposition 2 by induction on the number of nodes in D: Consider |D| = 1. Since K

is a maximal clique, K = D. Thus Proposition 2 holds trivially.

Suppose Proposition 2 holds for chordal graphs of size n� 1. Consider |D| = n. If K = D, then
Proposition 2 holds. If K 6= D, then by the above statement, there exists j 2 D \ K, such that
there exists a perfect elimination order of D starting with j. Let D0 be the chordal graph obtained
by deleting j from D. By induction, there exists ⇡

0, a reverse of perfect elimination order, that
starts with ⇡K . Let ⇡ = (⇡0

, j); we must have that the reverse of ⇡ is a perfect elimination order,
since all neighbors of j in D constitute a clique. Therefore ⇡ gives the wanted topological order and
Proposition 2 holds for chordal graphs of size n. This completes the proof of Proposition 2.

Proof of Lemma 5. Given any algorithm A, let S1, ..., Sk be the first k shift interventions given by
A. By Proposition 2, we know that there exists a feasible orientation of C such that the largest

20

maximal clique K of C is most-upstream and that, for k0 = 1, ..., k, Sk0 \K is most-downstream
of K � [l<k0Sl. For example, in the figure below, suppose algorithm A chooses S1 = {3} based
on (a) and S2 = {2} based on (b). There is a feasible orientation in (d) such that the largest clique
K = {1, 2, 3} is most-upstream and Sk0 \K is most-downstream of K, for k0 = 1, 2.

(a) C (b) A chooses S1 = {3} (c) A chooses S2 = {2} (d) Orientation of C

Since |Sk0 |  S and |K| = mC , in this worst case, it needs at least dmC�1
S e interventions to identify

the source of K, i.e., the source of C (minus 1 because in this case, if there is only one node left, then
it must be the source).

E.2 Proof of Lemma 6

Let K be the clique obtained by lines 7-13 in Algorithm 2; when C has more than S nodes, we refer
to K as the central clique. To prove Lemma 6, we need the following proposition. This proposition
shows that by looking at the undirected graph C, we can find a node in the central clique K satisfying
certain properties, which will become useful in the proof of Lemma 6.
Proposition 3. Let {Ta}a2A be the connected subtrees of T (C) after removing K. For a node k 2 K,
let Ak ⇢ A be the set of indices a 2 A such that the tree Ta is connected to K only through the node
k. Let TAk = {Ta}a2Ak be the collection of all such subtrees. If there exists a 2 A \Ak such that
there is an edge between Ta and k, let T ⇤

k be the one with the largest number of maximal cliques;
otherwise let T ⇤

k = ?. Then there exists a node k such that the number of maximal cliques in the
subgraph induced by the subtrees TAk [{T ⇤

k } and k itself does not exceed d r�1
2 e.

Example 3. As an example, the following figure shows the subtrees that are connected to K only
through node 1, indexed by A1 (blue). The largest subtree in A \ A1 that is adjacent to node 1 is
denoted by T ⇤

1 (undimmed in green).

Figure 12: An example of TAk and T ⇤
k for k = 1.

Proof of Proposition 3. Notice the following facts.

Fact 1: Let T be any subtree in {Ta}a2A; then there must exist a node i 2 K such that there is no
edge between i and T .

Proof of Fact 1: For any two nodes i, i
0 2 K, because C is chordal and T is

connected, either the neighbors of i in T subset that of i0, or the the neighbors of i0
in T subset that of i. Therefore we can order all nodes K, where all neighbors of
i in T subset that of i0 that appear after i. Then if the first node in this order has
some neighbor t 2 T , all nodes in K have t as neighbor, contradicting K being a
maximal clique.

21

(a) Contradicting chordal C (b) Contradicting maximal clique K

Fact 2: Let T̄ be the collection of the subtrees where all edges connecting to K are through a single
node k 2 K. We have that T̄ is the union of disjoint sets TAk , k 2 K.

Proof of Fact 2: This follows directly from the definition of Ak.

Fact 3: Let T ⇤ be the collection of non-empty T ⇤
k , k 2 K. Then T ⇤ \ T̄ = ?. Furthermore, for any

subtree in T ⇤, there is a node i 2 K such that there is no edge between i and this subtree.

Proof of Fact 3: This follows directly from the definition of T ⇤
k and Fact 1.

Now we prove Proposition 3. If T ⇤ = ?, then since K contains at least two nodes (otherwise A = ?
and the proposition holds trivially) and the number of maximal cliques in T̄ does not exceed r � 1,
using Fact 2, we have at least one k 2 K such that the number of maximal cliques in the subgraph
induced by TAk [{T ⇤

k } = TAk and k itself does not exceed d r�1
2 e.

If T ⇤ 6= ?. Let T ⇤
k0 be the subtree with the largest number of maximal cliques in T ⇤. Let k 2

K be the node such that there is no edge between k and the subtree T ⇤
k0 (k exists because of

Fact 3). Now suppose that the proposition does not hold. Then the number of maximal cliques
in the subgraph induced by TAk [{T ⇤

k } and k itself must exceed d r�1
2 e. Also, the number of

maximal cliques in the subgraph induced by TAk0 [{T ⇤
k0} and k

0 itself exceeds d r�1
2 e. Notice that

(TAk[{T ⇤
k })\(TAk0 [{T ⇤

k0}) = ?. Therefore TAk[{Tk} is connected to TAk0 [{T ⇤
k0} only through

K. Hence the sum of numbers of maximal cliques in TAk [{T ⇤
k }[{{k}} and TAk0 [{T ⇤

k0}[{{k0}}
does not exceed r. We cannot have both TAk [{T ⇤

k } [{{k}} and TAk0 [{T ⇤
k0} [{{k0}} having

more than d r�1
2 e maximal cliques. Therefore the proposition must hold.

Proof of Lemma 6. For CliqueTree, we prove this lemma for a “less-adaptive” version for the
sake of clearer discussions. In this “less-adaptive” version, instead of output 1 intervention with S

perturbation targets sampled from the central clique K (when it has more than S nodes) in Algorithm
2, we directly output d |K|�1

S e interventions with non-overlapping perturbation targets in K. Each of
these interventions has no more than S perturbation targets and they contain at least |K|� 1 nodes
in K altogether. Furthermore, we pick these interventions such that if they contain exactly |K|� 1
nodes, then the remaining node satisfies Proposition 3.

After these d |K|�1
S e interventions, we obtain a partially directed C, which is a chain graph, with one

of its chain components without incoming edges as input to CliqueTree in the next iteration of
the inner-loop in Algorithm 1. Denote this chain component as C0. We show that C0 has no more
than

⌃
r�1
2

⌥
maximal cliques each with no more than mC nodes. If d r�1

2 e = 0, then r = 1 and this
trivially holds since the source of C must be identified. In the following, we assume d r�1

2 e > 0.

Size of maximal cliques: The maximal clique in C0 must belong to a maximal clique in C, and thus
has no more than mC nodes.

Number of maximal cliques: If the source node is identified, then C0 only has one node. This
trivially holds. Now consider when the source node is not identified. We proceed in two cases.

Case I: if these d |K|�1
S e interventions contain all nodes in K, then they break the clique tree T (C)

into subtrees each with no more than d r�1
2 e maximal cliques. C0 must belong to one of these subtrees.

Therefore it must have no more than d r�1
2 e maximal cliques.

22

Case II: if these d |K|�1
S e interventions do not contain all nodes in K, then there is exactly one node

left in K that is not a perturbation target, which satisfies Proposition 3. Denote this node as k and the
source node w.r.t. the intervened |K|� 1 nodes as i. From Theorem 1, we have that i is identified
and 8j 2 K, j 6= k, the orientation of edge k � j is identified.

If i ! k, then i is the source w.r.t. K: if i is the source w.r.t. C, then C0 = {i} has no more than
d r�1

2 e maximal cliques; otherwise, there is a unique subtree of T (C) after removing K that has an
edge pointing to i in C (it exists because i is the source of K but not the source of C; it is unique
because there is no edge between subtrees and there is no v-structure at i), and therefore C0 must
belong to this subtree which has no more than d r�1

2 e maximal cliques.

(a) If i! k (b) If i k, Fact 1

If i k, then k is the source w.r.t. K: consider all the subtrees of T (C) after removing K. We have
the following two facts:

Fact 1: Let T 0 be a subtree such that there is an edge between T 0 and K � {k} and all these edges
are pointing towards T 0. Then all edges between k and t 2 T 0 must be oriented as k ! t. Thus
C0 \ T 0 = ?.

Proof of Fact 1: Otherwise, suppose t 2 T 0 and t ! k. Let j 2 K � {k} such
that there is an edge between j and T 0. Since T 0 is connected, there must be a path
from j to t in T 0. Let j = t0 � t1 � ... � tl � tl+1 = t be the shortest of these
path. Since t0 � t1 � ...� tl � tl+1 is shortest, there cannot be an edge between
tl0 and tl00 with l

00 � l
0
> 1. And since all edges between T 0 and K � {k} are

pointing towards T 0, there is an edge j = t0 ! t1. Therefore to avoid v-structures,
it must be j = t0 ! t1 ! ... ! tl ! tl+1 = t. This creates a directed cycle
k ! j ! ...! t! k, a contradiction.

Fact 2: There can be at most one subtree T 0 such that there is an edge pointing from T 0 to K � {k}
and also some t 2 T 0 such that t! k or t� k is unidentified. Therefore at most one subtree T 0 of
this type can have C0 \ T 0 6= ?.

Proof of Fact 2: Otherwise suppose there are two different subtrees T 0
1 , T 0

2 such that
K�{k} 3 j1 t1 2 T 0

1 ,K�{k} 3 j2 t2 2 T 0
2 . Since there is no edge t1�t2,

we have j1 6= j2. Without loss of generality, suppose j1 ! j2. Let t be any node in
T 0
2 with an edge t�k, since T 0

2 is connected, let t = t
0
0�t

0
1� ...�t

0
l�t

0
l+1 = t2 be

the shortest path between t and t2 in T 0
2 . Let l0 be the maximum in 0, 1, ..., l such

that t0l0 t
0
l0+1. If such l

0 does not exist, then t = t
0
0 ! t

0
1 ! ... ! t

0
l+1 = t2.

Since j1 ! j2 and there is no v-structure at j2, there must be an identified edge
j1 � t

0
l+1 = t2. Notice that there is no edge between t2 and t1 and t1 ! j1, to

avoid v-structure, it must be j1 ! t2. The same deduction leads to identified edges
j1 ! t

0
0 = t. Since k ! j1 and there are no cycles, the edge k ! t must be

identified. If l0 exists, since t = t
0
0 � t

0
1 � ...� t

0
l � t

0
l+1 = t2 is the shortest path

and there is no v-structure, we must have t = t
0
0 ... t

0
l0+1. Furthermore, since

l
0 is the largest, t0l0+1 ! ... ! t

0
l+1 = t2. By a similar deduction as in the case

where l
0 does not exist, we must have an identified edge j1 ! t

0
l0+1. Therefore

k ! j1 ! t
0
l0+1 ! ...t

0
0 = t. To avoid directed cycles, k ! t must be identified.

Therefore all edges between k and T 0
2 are identified as pointing to T 0

2 .

23

(a) l0 does not exist (b) l0 exists

Using the above two facts, let T 0 be the unique subtree in Fact 2 (if it exists); if there is no edge
between T 0 and k, then C0 must be in the subgraph induced by k itself and TAk in Proposition 3,
which has no more than d r�1

2 e maximal cliques. If there is an edge between T 0 and k, we know that
C0 must be in the joint set of k, T 0 and TAk . Since the number of maximal cliques in T 0 must be no
more than that of T ⇤

k in Proposition 3, we know that C0 has no more than d r�1
2 e maximal cliques.

Therefore, after d |K|�1
S e  dmC�1

S e interventions, we reduce the number of maximal cliques to at
most d r�1

2 e while maintaining the size of the largest maximal clique  mC . Using this iteratively, we
obtain that CliqueTree identifies the source node with at most dlog2(rC+1)e·dmC�1

S e interventions.

For Supermodular, we do not discuss the gap between ĝi,j and gi,j and how well SATURATE
solves (5). In this case, it is always no worse than the CliqueTree in the worst case over the feasible
orientations of C, since it solves MinMaxC optimally without constraining to maximal cliques.
Therefore, it also takes no more than dlog2(rC + 1)e · dmC�1

S e to identify the source node.

E.3 Proof of Theorem 2

Proof of Theorem 2. This result follows from Lemma 5 and 6. Divide I
⇤ into I1, ..., Ik such that Ik0

is the source node of I⇤ � [l<k0Il. Since shifting Ik0 affects the marginal of subsequent Ik00 with
k
00
> k

0, any algorithm needs to identify I1, ..., Ik sequentially in order to identify the exact shift
values.

Suppose I1, ..., Ik0�1 are learned. For Ik0 , consider the chain components of the subgraph of the
shift-{[l<k0Il}-EG induced by T = {i|i 2 [p],E

(P
[l<k0 Il)

(Xi) 6= EQ(Xi)} with no incoming
edge. Applying Lemma 4 for I = {[l<k0Il} and Observation 1 for this subgraph and Ik0 , we
deduce that there are exactly |Ik0 | such chain components and Ik0 has exactly one member in each of
these chain components. Let mk0,1, ...,mk0,|Ik0 | be the sizes of the largest maximal cliques in these
|Ik0 | chain components. By Lemma 5, we know that any algorithm needs at least

P|Ik0 |
i=1 d

mk0,i�1

S e
number of interventions to identify Ik0 in the worst case. However, since all these chain components
contain no more than r maximal cliques, by Lemma 6, we know that our strategies need at most
dlog2(r + 1)e ·

P|Ik0 |
i=1 d

mk0,i�1

S e to identify Ik0 .

Applying this result for k0 = 1, ..., k, we obtain that our strategies for solving the causal mean
matching problem require at most dlog2(r + 1)e times more interventions, compared to the optimal
strategy, in the worse case over all feasible orientations.

F Numerical Experiments

F.1 Experimental Setup

Graph Generation: We consider two random graph models: Erdös-Rényi graphs (Erdős and Rényi,
1960) and Barabási–Albert graphs (Albert and Barabási, 2002). The probability of edge creation in
Erdös-Rényi graphs is set to 0.2; the number of edges to attach from a new node to existing nodes in
Barabási–Albert graphs is set to 2. We then tested on two types of structured chordal graphs: rooted
tree with root randomly sampled from all the nodes in this tree, and moralized Erdös-Rényi graphs
(Shanmugam et al., 2015) with the probability of edge creation set to 0.2.

24

Multiple Runs: For each instance in the settings of Barabási–Albert graphs with 100 nodes and
S = 1 in Figure 5a, we ran the three non-deterministic strategies (UpstreamRand,CliqueTree,
Supermodular) for five times and observed little differences across all instances. Therefore, we
excluded the error bars when plotting the results as they are visually negligible and the strategies are
robust in these settings.

Implementation: We implemented our algorithms using the NetworkX package (Hagberg et al.,
2008) and the CausalDAG package https://github.com/uhlerlab/causaldag. All code is
written in Python and run on AMD 2990wx CPU.

F.2 More Empirical Results

In the following, we present additional empirical result. The evaluations are the same as in Section 6.
The following figures show that we observe similar behaviors as in Figure 5 across different settings.

Random graphs of size {10, 50, 100}: Barabási–Albert and Erdös-Rényi graphs with number of
nodes in {10, 50, 100}.

(a) (b) (c)

Figure 16: Barabási–Albert graphs with 50 nodes. (a). and (b). S = 1; (c). |I⇤| = 25.

(a) (b) (c)

Figure 17: Barabási–Albert graphs with 10 nodes. (a). and (b). S = 1; (c). |I⇤| = 5.

(a) (b) (c)

Figure 18: Erdös-Rényi graphs with 100 nodes. (a). and (b). S = 1; (c). |I⇤| = 50.

25

https://github.com/uhlerlab/causaldag

(a) (b) (c)

Figure 19: Erdös-Rényi graphs with 50 nodes. (a). and (b). S = 1; (c). |I⇤| = 25.

(a) (b) (c)

Figure 20: Erdös-Rényi graphs with 10 nodes. (a). and (b). S = 1; (c). |I⇤| = 5.

Larger Barabási–Albert graphs of size 1000:

(a) (b) (c)

Figure 21: Larger Barabási–Albert graphs with 1000 nodes (excluding coloring which takes more
than 80 extra interventions). (a). and (b). S = 1; (c). |I⇤| = 100.

Two types of structured chordal graphs:

(a) (b) (c) (d)

Figure 22: Structured chordal graphs. (a). and (b). rooted tree graphs with 50 nodes and S = 1; (c).

and (d). moralized Erdös-Rényi graphs with 10 nodes and S = 1.

G Discussion of the Noisy Setting

In the noisy setting, an intervention can be repeated many times to obtain an estimated essential graph.
Each intervention results in a posterior update of the true DAG G over all DAGs in the observational

26

Markov equivalence class. For a tree graph G, this corresponds to a probability over all possible roots.
To be able to learn the edges, Greenewald et al. (2019) proposed a bounded edge strength condition
on the noise for binary variables. Under this condition, they showed that the root node of a tree graph
can be learned in finite steps in expectation with high probability.

In our setting, to ensure that the source node w.r.t. an intervention can be learned, we need to repeat
this intervention for enough times such that the expectation of each variable Xi can be estimated.
Furthermore, to ensure that the edges in the (general) interventional essential graph can be learned,
we need a similar condition as in (Greenewald et al., 2019) for general chordal graphs and continuous
variables.

References of Appendix

Andersson, S. A., Madigan, D., Perlman, M. D., et al. (1997). A characterization of markov
equivalence classes for acyclic digraphs. Annals of statistics, 25(2):505–541.

Galinier, P., Habib, M., and Paul, C. (1995). Chordal graphs and their clique graphs. In International
Workshop on Graph-Theoretic Concepts in Computer Science, pages 358–371. Springer.

Greenewald, K., Katz, D., Shanmugam, K., Magliacane, S., Kocaoglu, M., Boix Adsera, E., and
Bresler, G. (2019). Sample efficient active learning of causal trees. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc.

Hagberg, A., Swart, P., and S Chult, D. (2008). Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States).

Hauser, A. and Bühlmann, P. (2014). Two optimal strategies for active learning of causal models
from interventional data. International Journal of Approximate Reasoning, 55(4):926–939.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT
press.

Krause, A., McMahan, H. B., Guestrin, C., and Gupta, A. (2008). Robust submodular observation
selection. Journal of Machine Learning Research, 9(12).

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical society, 7(1):48–50.

Lalou, M., Tahraoui, M. A., and Kheddouci, H. (2018). The critical node detection problem in
networks: A survey. Computer Science Review, 28:92–117.

Meek, C. (1995). Causal inference and causal explanation with background knowledge. In Proceed-
ings of the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI’95, page 403–410,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Sedgewick, R. (2001). Algorithms in C, part 5: graph algorithms. Pearson Education.

Shen, S., Smith, J. C., and Goli, R. (2012). Exact interdiction models and algorithms for disconnecting
networks via node deletions. Discrete Optimization, 9(3):172–188.

Squires, C., Wang, Y., and Uhler, C. (2020). Permutation-based causal structure learning with
unknown intervention targets. In Conference on Uncertainty in Artificial Intelligence, pages
1039–1048. PMLR.

Valiant, L. G. (1979). The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421.

Vandenberghe, L. and Andersen, M. S. (2015). Chordal graphs and semidefinite optimization.
Foundations and Trends in Optimization, 1(4):241–433.

Yang, K., Katcoff, A., and Uhler, C. (2018). Characterizing and learning equivalence classes of causal
dags under interventions. In International Conference on Machine Learning, pages 5541–5550.
PMLR.

27

	Introduction
	Related Works

	Problem Setup
	Identifiability
	Shift-interventional Markov Equivalence Class
	Mean Interventional Faithfulness

	Algorithms
	Two Approximate Strategies

	Theoretical Results
	Experiments
	Discussion
	Preliminaries
	Meek Rules

	Proof of Exact Matching
	Proof of Identifiability
	Shift Interventional MEC
	Mean Interventional Faithfulness

	Details of Algorithms
	Decomposition of Shift Interventional Essential Graphs
	NP-completeness of MinMaxC
	Clique Tree Strategy
	Supermodular Strategy
	Violation of Faithfulness

	Proof of Worst-case Bounds
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Theorem 2

	Numerical Experiments
	Experimental Setup
	More Empirical Results

	Discussion of the Noisy Setting

