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6 APPENDIX

6.1 DATASET DESCRIPTION

In this dataset, bees are confronted to a numerical discrimination task. Bees first enter the maze
in an entrance chamber before flying in a hole and facing two images located at the end of each
arm. The image has different number of dots : for example in dataset 1 and 2, one of the image
has two dots while the other have four dots. If the bee chooses the correct image (i.e. the side
with the highest number of dots), it will be rewarded by a sugar reward (50% sugar/water) placed
in pipette in the middle of the image, alternatively if it chooses the incorrect image then it will be
punished finding a bitter tasting solution (quinine solution) within the pipette. Bees cannot detect
(neither visually nor by odor) which solution is located where. Then, they are only able to know
image on each side before to choose. Between each trials the bee will go back to the hive to deliver
the collected sugar, before reaching back the maze for another trial (typically lasting a few minutes).
During this time the experimenter randomly changes the images or not, and varying the position of
the dots. The localization of the correct image alternate between the right and left arm according to
a pseudo-random sequence. Each dataset include 16 bees.

Table 3: Datasets summary

Dataset nb indiv T Location Weather
Dataset 1 16 40 France Cold
Dataset 2 16 22 France Hot
Dataset 3 16 40 France Moderate
Dataset 4 16 40 Australia Cold
Dataset 5 16 30 Australia Hot

(a) Dataset 1 (Cold, France) (b) Dataset 2 (Hot, France) (c) Dataset 3 (Moderate, France)

(d) Dataset 4 (Cold, Australia) (e) Dataset 5 (Hot, Australia)

Figure 9: Proportion of cumulative regret for the five datasets, per bees
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6.2 MSE AND MAE OF MAYA ACCORDING τ

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3.0 2.7 ± 2 1.2 ± 0.7 2.7±2 1.2 ± 0.6 7.4 ± 10 1.9 ± 1
4.0 4.2 ± 4 1.5 ± 0.8 3.0 ± 2 1.3 ± 0.6 8.0 ± 13 1.9 ± 1
5.0 4.0 ± 4 1.4 ± 0.9 3.8 ± 3 1.5 ± 0.6 6.8 ± 7 1.9 ± 0.9
6.0 4.1 ± 2 1.6 ± 0.6 2.8 ± 2 1.2 ± 0.5 7.5 ± 7 2.0 ± 1
7.0 4.2 ± 3 1.5 ± 0.7 2.5 ± 1 1.2 ± 0.5 6.7 ± 7 1.9 ± 1
8.0 5.5 ± 5 1.7 ± 0.9 3.7 ± 3 1.4 ± 0.7 7.2 ± 7.8 2.0 ± 1
9.0 3.9 ± 3 1.4 ± 0.7 2.9 ± 2 1.2 ± 0.6 8.8± 9 2.2 ± 1
10.0 5.5 ± 5 1.7 ± 0.9 4.1 ± 4 1.5 ± 0.8 8.7 ± 10 2.0 ± 1
20.0 5.4 ± 5 1.6 ± 0.8 4.8 ± 5 1.5 ± 0.9 8.7 ± 10 2.1 ± 1
30.0 4.3 ± 3 1.5± 0.6 4.4 ± 3 1.5 ± 0.7 8.4 ± 10 2.0 ± 1
T = 40 5.1 ± 5 1.6 ± 1 4.8 ±6 1.5 ± 0.9 9.7 ± 11 2.2±1

Table 4: Dataset 1 (Cold weather, France)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean mean mean mean mean mean

3.0 1.2± 1 0.7± 0.4 1.3± 1 0.8± 0.4 2.4± 1 1.1± 0.4
4.0 1.3± 0.8 0.8± 0.3 1.5± 1 0.8 ± 0.4 2.7± 2 1.1± 0.6
5.0 2.1± 1 1.0± 0.4 1.9± 2 1.0± 0.5 2.4± 2.7 1.0± 0.6
6.0 2.1± 1 1.0± 0.5 1.5± 1 0.8 ± 0.4 3.5 ± 3 1.3± 0.7
7.0 1.6± 1 0.9± 0.4 1.5± 1 0.8± 0.4 3.0± 3 1.2± 0.6
8.0 1.9± 1 1.0± 0.3 1.8± 1 0.9± 0.4 2.8± 2 1.2± 0.6
9.0 1.8± 1 0.9± 0.4 2.2± 2 1.0± 0.6 2.5± 2 1.1± 0.6
10.0 2.3 ± 2 1.0± 0.5 2.1± 2 1.0± 0.6 2.7± 1 1.2± 0.6
20.0 2.3± 1 1.0± 0.4 2.6± 1 1.1± 0.3 2.0± 1 1.0± 0.4
T = 22 3.2± 3 1.2± 0.6 2.8± 1 1.2± 0.4 2.1± 1 1.0± 0.5

Table 5: Dataset 2 (Hot weather, France)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3.0 3.0±2 1.3±0.6 4.0±4 1.4 ±0.8 8.4±12 2.0±1.4
4.0 4.4±4 1.5±0.9 3.9±4 1.4±0.8 7.4±11 1.9±1
5.0 4.3±4 1.5±0.7 3.0±3 1.2±0.7 7.3±11 1.9±1
6.0 4.4±4 1.5±0.8 3.1±2 1.3±0.6 7.7±9 2.0±1
7.0 3.7±3 1.4±0.6 2.6±1 1.2±0.5 5.7±5 1.8±0.8
8.0 4.1±3 1.5±0.7 2.5±1 1.1±0.4 8.3±9 2.1±1
9.0 5.8±5 1.8±0.8 4.2±2 1.6±0.6 8.1±8 2.1±1
10.0 3.6±3 1.4±0.7 4.9±5 1.6±1 7.1±9 1.9±1
20.0 5.3±4 1.7±0.8 5.2±5 1.7±0.7 6.5±8 1.9±1
30.0 3.6±2 1.4±0.5 4.4±3 1.6±0.7 8.7±9 2.2±1
T = 40 4.2 ± 4 1.5 ± 0.8 3.45±3 1.3±0.6 9.3 ± 11 2.2±1

Table 6: Dataset 3 (Moderate weather, France)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3.0 4.5 ± 4 1.6 ± 0.9 3.0 ± 4 1.2 ±0.9 7.1 ± 10 1.8 ± 1.3
4.0 3.8 ± 3 1.5±0.7 3.6 ±3 1.5 ± 0.6 7.1 ± 9 1.9 ± 1
5.0 4.9 ± 3 1.7 ±0.7 2.6 ± 3 1.2 ± 0.7 7.6±11 1.9 ±1
6.0 4.1±3 1.5 ± 0.7 2.6 ± 1 1.2 ± 0.4 7.8±9 2.0 ± 1
7.0 3.7±3 1.4±0.6 3.6±2 1.5 ±0.5 8.3 ±10 2.1 ±1
8.0 6.2±8 1.7 ±1 3.4±2 3.4±2 6.2±7 1.8 ± 1
9.0 4.6 ±3 1.6 ±0.7 3.1 ±2 1.3±0.5 8.1±7 2.1 ±1
10.0 7.7±7 2.0 ±1 4.8±4 1.6±0.8 8.4±10 2.0±1
20.0 5.4 ±4 1.7 ±0.8 4.4 ± 2 1.6 ±0.5 8.5 ± 11 2.1 ±1.2
30.0 5.5 ±4 1.7±0.7 6.7 ±7 1.9 ±0.9 9.0 ±12 2.1 ± 1
T = 40 4.2 ± 5 1.4 ± 0.8 3.3 ± 2 1.3 ± 0.6 9.0 ± 10 2.2 ± 1

Table 7: Dataset 4 (Cold weather, Australia)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3 6.6 ± 9 1.6 ± 1 6.3 ± 9 1.6 ± 1 8.6 ± 10 1.9 ± 1
4 8.1 ± 8 2.0 ± 1 10.4 ± 12 2.2 ± 1 9.4 ± 8 2.1 ± 1
5 4.3 ± 5 1.4 ± 0.9 8.4 ± 10 2.0 ± 1 10.4 ± 12 2.2 ± 1
6 3.6 ± 3 1.4 ± 0.7 3.9 ± 8 1.2 ± 1 12.0 ± 11 2.3 ± 1
7 3.4± 3 1.2 ± 0.9 4.5 ± 5 1.5 ± 1 10.3 ± 11 2.1 ± 1
8 4.1 ±3 1.5±0.6 4.4±5 1.5±0.9 10.3 ± 12 2.2±1
9 5.5±8 1.6±1 5.7±6 1.7±1 12.9 ± 16 2.4 ± 1
10 3.3 ± 3 1.3 ± 0.6 3.3 ± 3 1.3 ± 0.7 9.6 ± 10 2.1 ± 1
20 6.4±6 1.8 ±1 4.7 ± 5 1.5 ±0.8 11.8±13 2.3 ± 1
T = 30 6.1±5 1.8±0.9 6.1±5 1.8±0.9 9.2±10 2.1±1

Table 8: Dataset 5 (Hot weather, Australia)

Table 9: MSE and MAE of MAYA as a function of the window size τ . The T row denotes the
no-window setting (τ = T ), where at each trial the full trajectory up to time t is used.
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7 UNDERSTANDING THE LEARNING PROCESS

7.1 MAYA EXPLAINABILITY WITH τ = 7

Figure 10: MAYA-KL Figure 11: MAYA-Wass Figure 12: MAYA-DTW

Figure 13: For bee 1 (fast learner, low regret) from dataset 2 we report choice interpretability for
MAYA-variants (τ = 7).

Figure 14: MAYA-KL Figure 15: MAYA-Wass Figure 16: MAYA-DTW

Figure 17: For bee 15 (slow learner, high regret) from dataset 2 we report choice interpretability for
MAYA-variants (τ = 7).
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7.2 MAYA EXPLAINABILITY WITH τ = 3

Figure 18: MAYA-KL Figure 19: MAYA-Wass Figure 20: MAYA-DTW

Figure 21: For bee 1 (fast learner, low regret) from dataset 2 we report choice interpretability for
MAYA-variants (τ = 3).

Figure 22: MAYA-KL Figure 23: MAYA-Wass Figure 24: MAYA-DTW

Figure 25: For bee 15 (slow learner, high regret) from Dataset 2 we report choice interpretability for
MAYA-variants (τ = 3).

Figure 26: Bee 1 Figure 27: Bee 15

Figure 28: Regret modelization for bee 1 (lower cumulative regret) and bee 15 (higher cumulative
regret) of Dataset 2, with τ = 3
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8 COMPARATIVE METHODES DESCRIPTION

• Generative Adversarial Imitation Learning (GAIL) GAIL learns a policy by simultaneously
training it with a discriminator that aims to distinguish expert trajectories against trajecto-
ries from the learned policy. Ho & Ermon (2016)

• Behavioral Cloning (BC) Behavioral cloning directly learns a policy by using supervised
learning on observation-action pairs from expert demonstrations. It is a simple approach
to learning a policy, but the policy often generalizes poorly and does not recover well from
errors. Foster et al. (2024).

• AIRL, similar to GAIL, adversarially trains a policy against a discriminator that aims to
distinguish the expert demonstrations from the learned policy. Unlike GAIL, AIRL recov-
ers a reward function that is more generalizable to changes in environment dynamics. Fu
et al. (2018).

• DAgger (Dataset Aggregation) iteratively trains a policy using supervised learning on a
dataset of observation-action pairs from expert demonstrations (like behavioral cloning),
runs the policy to gather observations, queries the expert for good actions on those obser-
vations, and adds the newly labeled observations to the dataset. DAgger improves on be-
havioral cloning by training on a dataset that better resembles the observations the trained
policy is likely to encounter, but it requires querying the expert online Ross et al. (2011).

• Density-based reward modeling is an inverse reinforcement learning (IRL) technique that
assigns higher rewards to states or state-action pairs that occur more frequently in an ex-
pert’s demonstrations. The key intuition behind this method is to incentivize the agent to
take actions that resemble the expert’s actions in similar states Dumoulin et al. (2024).

• Maximum Causal Entropy Inverse Reinforcement Learning (MCE IRL) : The principle of
maximum causal entropy is a method that extends the classical maximum entropy idea
to sequential settings. Instead of considering probabilities in isolation, it uses causally
conditioned probabilities, which means that the model explicitly accounts for the fact that
information is revealed step by step over time. This allows us to properly capture how side
information becomes available and how it influences decisions at each stage Biernaskie
et al. (2009).

• Preference Comparisons : The preference comparison algorithm learns a reward function
from preferences between pairs of trajectories. The comparisons are modeled as being
generated from a Bradley-Terry (or Boltzmann rational) model, where the probability of
preferring trajectory A over B is proportional to the exponential of the difference between
the return of trajectory A minus B. In other words, the difference in returns forms a logit
for a binary classification problem, and accordingly the reward function is trained using a
cross-entropy loss to predict the preference comparison. Christiano et al. (2023).

• Soft Q Imitation Learning (SQIL) : Soft Q Imitation learning learns to imitate a policy from
demonstrations by using the DQN algorithm with modified rewards. During each policy
update, half of the batch is sampled from the demonstrations and half is sampled from the
environment. Expert demonstrations are assigned a reward of 1, and the environment is
assigned a reward of 0. This encourages the policy to imitate the demonstrations, and to
simultaneously avoid states not seen in the demonstrations Reddy et al. (2020).

• GLM : A Generalized Linear Model (GLM) is a statistical framework that extends linear
regression to response variables with non-Gaussian distributions. In our setting, the regret
trajectoryR(π, 1, T ) is modeled as a function of time,R(π, 1, T ) ∼ f(t), where f is linked
to a linear predictor through a canonical link function. A Poisson GLM is employed when
the noise structure is count-like, while a Gamma GLM is used to capture multiplicative
noise. This allows us to statistically frame the evolution of regret as a stochastic pro-
cess, while accounting for heterogeneous variability across agents. Nelder & Wedderburn
(1972).

• Contextual GLM : The contextual variant incorporates side information (e.g., environmen-
tal or experimental conditions) into the predictor, enabling the model to capture how context
modulates regret dynamics. Then R(π, 1, T ) ∼ f(t, xt) McCullagh & Nelder (1989).
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8.1 MAE COMPARISON OF METHODS

Table 10: MAE comparison of methods across the five datasets. Values are reported as mean ±
standard deviation. We fix τ = 7 for all MAYA variant

Dataset GAIL BC AIRL Dagger DBR MCE Pref-Comp SQIL GLM (no ctx) GLM (ctx) MAYA-KL MAYA-Wass MAYA-DTW
1 3.75± 2.5 1.61 ± 0.79 0 ± 0 2.9 ± 2.8 4.3± 3.8 10.38 ± 1.60 8.35± 3.25 3.71±1 1.4 ± 0.3 1.4 ± 0.3 1.5 ± 0.7 1.2 ± 0.5 1.9 ± 1
2 3.69±1.8 1.24± 0.72 0 ± 0 1.93 ± 1.7 2.72 ± 1.89 6.04 ± 1.0 3.7 ± 1.9 2.18±0.9 0.8 ± 0.5 0.8 ± 0.5 1.4 ±0.6 1.5 ±0.5 2.1 ± 1
3 3.62±2.4 1.79 ± 0.98 0 ± 0 2.6 ± 3.1 3.4 ± 4.1 8.13 ± 1.10 9.76 ± 1.75 3.2±1 1.4 ± 0.4 1.4 ± 0.4 3.7 ± 3 2.6 ± 1 1.8 ± 0.8
4 3.1±2.8 1.65 ± 0.86 0 ± 0 3.0 ± 2.7 4.60 ± 4.8 10± 1.6 9.7 ± 1.7 3.2±1 2.1 ± 1 2.1 ± 1 1.4± 0.6 1.5 ± 0.5 2.1 ± 1
5 4.9 ± 2.8 3.23 ± 3 0 ± 0 6.5± 5.1 5.5 ± 7.8 15.0 ± 7.6 14.3 ± 6.92 4.52±2 8.0 ± 8 2.2 ± 1 1.2 ± 0.9 1.3 ± 0.7 2.1 ± 1

9 FINETUNING IMITATION LEARNING

We present ablations over the fine-tuning budget of the IRL methods. As the tuning knobs differ
across methods, we use the unified notation b for the method-specific budget (see Tab 11). The best
results are summarized in the main text.

b(GAIL) b(BC) b(Dagger) b(DBR) b(MCE) b(PrefComp) b(PrefComp)

epochs epochs env. steps epochs epochs # envs eval episodes

Table 11: Hyperparameters of each comparative methods.

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 29.6 +/- 41 3.75+/-2.5 29.6 +/- 41 3.75+/-2.5 29.6 +/- 41 3.75+/-2.5
BC 23.2 +/- 30.8 3.26 +/- 2.74 19.8 +/- 26.5 3.1+/-2.3 5.16+/-3.94 1.61+/-0.79
AIRL 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0
Dagger 22.8+/- 32.9 2.9+/-2.8 36.9+/-52.0 3.7 +/- 3.8 32.5 +/- 50.6 3.7+/- 3.3
Density based reward 43.1 +/- 54.81 4.3+/-3.8 43.1 +/- 54.8 4.3+/-3.8 43.1 +/- 54.8 4.3+/-3.8
MCE 148.83 +/- 38.47 10.38 +/- 1.60 148.83 +/- 38.47 10.38 +/- 1.60 148.83 +/- 38.47 10.38 +/- 1.60
Pref-Comp 120.25 +/- 52.1 9.17 +/- 2.99 114 +/- 53 8.9 +/- 2.9 104.5 +/- 57 8.35 +/- 3.25
SQIL 26.2 +/-19 3.75 +/- 1 26.2 +/-19 3.75 +/- 1 26.2 +/-19 3.75 +/- 1

Table 12: Dataset 1 (Cold weather, France)

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 23.2 +/- 17 3.69 +/- 1.8 23.2 +/- 17 3.69 +/- 1.8 23.2 +/- 17 3.69 +/- 1.8
BC 12.1+/-12.1 2.54+/-1.74 7.3+/-7.7 1.99+/-1.3 2.86 +/- 2.95 1.24 +/- 0.72
AIRL 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0
Dagger 15.63 +/- 19.2 2.54+/-2.2 11.8 +/- 16.5 2.1+/-2.0 9.67+/- 12.6 1.93 +/-1.7
Density based reward 15.26 +/- 16.43 2.72 +/- 1.89 15.26 +/- 16.43 2.72 +/- 1.89 15.26 +/- 16.43 2.72 +/- 1.89
MCE 49.5 +/- 14.2 6.04 +/- 1.0 49.5 +/- 14.2 6.04 +/- 1.0 49.5 +/- 14.2 6.04 +/- 1.0
Pref-Comp 24.54+/-18.3 3.7 +/-1.9 30.15 +/-17.3 4.49 +/- 1.53 28.84 +/- 16.13 4.46 +/- 1.30
SQIL 9.80 +/-6 2.18+/-0.9 9.80 +/-6 2.18+/-0.9 9.80 +/-6 2.18+/-0.9

Table 13: Dataset 2 (Hot weather, France)

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 27.5 +/- 40 3.62 +/-2.5 27.5 +/- 40 3.62 +/-2.5 27.5 +/- 40 3.62 +/-2.5
BC 15.9+/-24 2.67 +/- 2.26 22.0+/-25 3.55+/-2.1 5.5+/-4.1 1.79+/-0.98
AIRL 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0
Dagger 35.4+/- 61.8 3.3 +/-3.7 34.5+/-48.2 3.5 +/- 3.4 21.6 +/-46.0 2.6 +/-3.1
Density based reward 41.38 +/- 51.1 3.4+/-4.1 41.38 +/- 51.1 3.4+/-4.1 41.38 +/- 51.1 3.4+/-4.1
MCE 140.3 +/-34.7 8.13 +/-1.10 140.3 +/-34.7 8.13 +/-1.10 140.3 +/-34.7 8.13 +/-1.10
Pref-Comp 130.98 +/-44.7 9.98 +/-1.98 134.12+/-37 10.12 +/-1.39 125.70 +/- 44.1 9.76 +/- 1.75
SQIL 22.65+/-15 3.2+/-1 22.65+/-15 3.2+/-1 22.65+/-15 3.2+/-1

Table 14: Dataset 3 (Moderate weather, France)
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MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 25.3 +/-39 3.1 +/- 2.8 25.3 +/-39 3.1 +/- 2.8 25.3 +/-39 3.1 +/- 2.8
BC 23.2 +/- 28.6 3.4+/-2.4 22.3 +/- 26.1 3.5 +/-2.2 5.35+/-4.17 1.65 +/-0.86
AIRL 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0
Dagger 22.9 +/-34.0 3.0 +/- 2.7 45.3 +/- 52.8 4.6 +/- 3.6 24.4 +/- 24.2 3.2 +/- 2.7
Density based reward 46.06 +/-55 4.60+/-4.8 46.06 +/-55 4.60+/-4.8 46.06 +/-55 4.60+/-4.8
MCE 148.2 +/- 39.6 10.3 +/-1.6 148.2 +/- 39.6 10.3 +/-1.6 148.2 +/- 39.6 10.3 +/-1.6
Pref-Comp 124.1 +/-52 9.4 +/- 2.78 128.29 +/- 42.7 9.86 +/- 1.68 125.68 +/- 44.19 9.7 +/- 1.7
SQIL 25.3 +/-20 3.2 +/- 1 25.3 +/-20 3.2 +/- 1 25.3 +/-20 3.2 +/- 1

Table 15: Dataset 4 (Cold weather, Australia)

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 45.71 +/- 45.7 4.9 +/- 2.8 45.71 +/- 45.7 4.9 +/- 2.8 45.71 +/- 45.7 4.9 +/- 2.8
BC 124.4 +/- 186.46 6.94 +/- 7.05 39.7+/- 70 3.91+/-3 26.7+/-42.7 3.23 +/- 3.17
AIRL 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0
Dagger 113.4 +/-247.5 6.0+/-7.1 93.2 +/-115.9 6.5 +/- 5.1 25.8 +/- 47.1 6.5 +/- 5.1
Density based reward 115.7 +/- 242.51 5.5 +/-7.8 115.7 +/- 242.51 5.5 +/-7.8 115.7 +/- 242.51 5.5 +/-7.8
MCE 374 +/-311.9 15.0+/-7.6 374 +/-311.9 15.0+/-7.6 374 +/-311.9 15.0+/-7.6
Pref-Comp 284 +/-254 12.9 +/- 7 335.6 +/-271 14.5 +/- 332.8 +/- 272.29 14.3 +/-6.92
SQIL 25 +/- 16 4.52+/-2 25 +/- 16 4.52+/-2 25 +/- 16 4.52+/-2

Table 16: Dataset 5 (Hot weather, Australia)
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10 CLUSTERING : OTHER VARIANTS

Figure 29: Bees trajectories Figure 30: MAYA-Wass Figure 31: MAYA-KL Figure 32: MAYA-DTW

Figure 33: Centroı̈des of two clustering of 80 bees trajectories (in Fig29) and 80 MAYA-variant
(Fig30, Fig31 and Fig32) simulated trajectories (with τ = 7). Clustering are done with Euclidean
method (Clustering I).

Figure 34: Bees trajectories Figure 35: MAYA-Wass Figure 36: MAYA-KL Figure 37: MAYA-DTW

Figure 38: Centroı̈des of two clustering of 80 bees trajectories (in Fig34) and 80 MAYA-variant
(Fig35, Fig36 and Fig37) simulated trajectories (with τ = 7). Clustering are done with DBAmethod
(Clustering II).

Figure 39: Cluster 0 (I) Figure 40: Cluster 1 (I) Figure 41: Cluster 0 (II) Figure 42: Cluster 1 (II)

Figure 43: Average difference between MAYA-Wass (τ = 7) predictions and real trajectories
(R(πMAYA, 1, t)−R(πbee, 1, t)) (z-axis) for Euclidean (I) and DBA (II) Clustering according 0 and 1
Cluster. Red range correspond to ±σ (standard deviation).
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Figure 44: Cluster 0 (I) Figure 45: Cluster 1 (I) Figure 46: Cluster 0 (II) Figure 47: Cluster 1 (II)

Figure 48: Average difference between MAYA-KL (τ = 7) predictions and real trajectories
(R(πMAYA, 1, t)−R(πbee, 1, t)) (z-axis) for Euclidean (I) and DBA (II) Clustering according 0 and 1
Cluster. Red range correspond to ±σ (standard deviation).

Figure 49: Cluster 0 (I) Figure 50: Cluster 1 (I) Figure 51: Cluster 0 (II) Figure 52: Cluster 1 (II)

Figure 53: Average difference between MAYA-DTW (τ = 7) predictions and real trajectories
(R(πMAYA, 1, t)−R(πbee, 1, t)) (z-axis) for Euclidean (I) and DBA (II) Clustering according 0 and 1
Cluster. Red range correspond to ±σ (standard deviation).
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11 MAYA ALGORITHM

Algorithm 1 MAYA : Multi Agent Y-maze Allocation

Require: Logged bee regret trajectory R(πbee, 1, T )
Require: Set P of N bandit policies π1, . . . ,πN
Require: Window size τ such that t ≥ τ
Require: A similarity metric 
1: ξ = ()Tt=1
2: Init πθ

3: for t ∈ 2, . . . , τ − 1 do
4: Observe R(πbee, 1, t− 1)
5: Observe a context information xt

6: for i = 1 to N do
7: Simulate policy agent πi(st−1xt)
8: Compute cumulative regret R(πi, 1, t− 1)
9: end for

10: ξt = argminπ∈P (πbee,π, t)
11: πθ(atst−1) ← πξ(atst−1)
12: Select At ∼ πθ(atst−1)
13: Receive reward rt
14: Update πi ∀πi ∈ P
15: ξ[t] ← ξt
16: end for
17: for t ∈ τ, . . . , T do
18: Observe R(πbee, τ, 1, t− 1)
19: Observe a context information xt

20: for i = 1 to N do
21: Simulate policy agent πi(st−1xt)
22: Compute cumulative regret R(πi, τ, 1, t− 1)
23: end for
24: ξt = argminπ∈P (πbee,π, τ, t)
25: πθ(atst−1) ← πξ(atst−1)
26: Select At ∼ πθ(atst−1)
27: Receive reward rt
28: Update πi ∀πi ∈ P
29: ξ[t] ← ξt
30: end for
31: return πθ
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12 MICE DATASET EXPERIMENT

Dataset and setup. We use the dataset of Ashwood et al. (2020a), which reports trial-by-trial
changes in mice policy and decomposes those updates into a learning component and a noise com-
ponent (see Fig. 54a). Unlike their original analysis, which simulates an average trajectory across
individuals, our method (MAYA) simulates one trajectory per individual. The dataset contains 19
rats with between 1500 and 6000 trials each. To control the computational cost of DTW and to align
with our bee experiments, we reduce the number of individual at 100.

Selecting the memory horizon τ . According with Tab 17, Fig 54b shows MAE and MSE as a
function of the memory window τ . MAYA-KL clearly identifies an optimal range around τ ∈ [6, 7],
whereas MAYA-Wass suggests τ ∈ [8, 10] when balancing MAE and MSE. For consistency with
previous experiments, we set τ = 7 in all subsequent analyses.

Explanations and performance. With τ = 7, Fig. 63 and Fig. 59 provides MAYA explanations
for the rats with the lowest and highest cumulative regret (see Fig. 55). For slow learners, all MAYA
variants behave similarly (Fig. 65); for fast learners, MAYA-KL achieves the best fit, capturing
rapid policy changes better than MAYA-Wass (Fig. 64). A plausible explanation is that, under KL
similarity, MAYA acts more often from LinUCB-like behavior than with Wasserstein similarity (see
Tab18b). As in previous datasets, MAYA-DTW tends to act more like Epsilon-Greedy, likely due to
DTW’s alignment properties. Overall, all MAYA variants outperform GLM baselines (Table 18a).

side window MSE MAYA-KL MAE MAYA-KL MSE MAYA-Wass MAE MAYA-Wass MSE MAYA-DTW MAE MAYA-DTW
mean std mean std mean std mean std mean std mean std

3 5760 3894 59 24 8083 5012 72 25 5790 5683 55 29
4 3868 3493 46 25 6547 3672 64 23 5815 5770 55 30
5 3046 3307 40 24 5724 3803 59 23 5819 5788 55 29
6 2763 3090 37 23 5276 3511 57 21 5830 5758 55 29
7 2786 3161 38 23 4640 3382 53 22 5822 5747 55 29
8 2974 3197 39 23 4728 3722 53 23 5851 5777 55 29
9 3114 3424 40 24 4231 3403 50 22 5819 5740 55 29
10 3223 3378 41 25 4197 3576 49 24 5810 5701 54 29
20 4710 6689 47 33 3491 3515 43 25 5771 5725 54 29
30 5618 8543 50 38 3453 3896 41 27 5760 5724 54 29

Table 17: MSE and MAE of MAYA as a function of the window size τ for Mice Dataset.

(a) According Ashwood et al. (2020a), on each trial,
a sinusoidal grating (with contrast values between 0
and 100%) appears on either the left or right side of
a screen. Mice must report the side of the grating by
turning a wheel (left or right) in order to receive a
water reward.

(b) Comparative study of the best window size τ by
average MSE and MAE. ⋆ symbol refers as best per-
formance according standard deviation and average
reward (see Tab.17 for the full results). MSE is dis-
played as ×102.

Figure 54: Left : experimental description of the Mice Dataset. Right : Comparative study of the
best window size τ for Mice Dataset.
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Figure 55: Proportion of cumulative regret for the Mice dataset, per mice

MSE MAE
Mean Std Mean Std

MAYA KL 2786 3161 38 23
MAYA-Wass 4640 3382 53 22
MAYA-DTW 5822 5777 55 29
GLM 6427 4137 63 21
GLM Contextual 6416 4133 63 21

(a)

Epsilon-Greedy Lin-UCB UCB Uniform
MAYA-KL 30%±2.5 2%±1.1 29%±1.3 36%±2.2
MAYA-W 27%±1.8 10%±1 28%±1 33%±1.5
MAYA-DTW 28%±3 0.5%±1 56%±4 15%±3

(b)

Table 18: Left : MSE and MAE comparison of MAYA (with τ = 7 ) and GLM variants. Right :
MAYA explainability for all MAYA choices (τ = 7)

MAYA-KL MAYA-Wass MAYA-DTW
ClusterAcc (Euclidean, Max L = 1400) 90% 85% 75%
ClusterAcc (DBA, Max L = 6000) 80% 75% 65%

Table 19: ClusterAcc (%) for Mice Datset)

Figure 56: MAYA-KL Figure 57: MAYA-Wass Figure 58: MAYA-DTW

Figure 59: MAYA explainability for mouse 20 (fast learner, low regret) from Mice dataset. We
report choice interpretability for MAYA-variants (τ = 7).

Figure 60: MAYA-KL Figure 61: MAYA-Wass Figure 62: MAYA-DTW

Figure 63: MAYA explainability for mouse 2 (slow learner, high regret) from Mice dataset. We
report choice interpretability for MAYA-variants (τ = 7).
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Figure 64: Mouse 20 Figure 65: Mouse 2

Figure 66: Regret modelization for mouse 20 (best) and mice 2 (worst) from Mice 2, with τ = 7

Figure 67: Mouse’ trajectories Figure 68: MAYA-KL trajectories

Figure 69: Centroides of Clustering (I) of 100 mice’ (Left) and MAYA-KL (τ = 7) (Right) trajec-
tories.

Figure 70: Cluster 0 Figure 71: Cluster 1

Figure 72: Average difference between MAYA-KL (τ = 7) predictions and real trajectories
(R(πMAYA, 1, t) − R(πmice1, t)) (z-axis) for Euclidean (I) Clustering according 0 and 1 Cluster. Red
range correspond to ±σ (standard deviation).
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13 COMPLEMENTARY INFORMATION ABOUT THE BIOLOGY INTEREST

We share with other vertebrates a basic ability for abstract number representation, the number
sense Dehaene (2011). As early as two days postnatally Izard et al. (2009), this ability enables us
to evaluate numbers as concepts: three books are perceived as similar to three cups, even though
they differ completely in their visual features (i.e., sensory information). To evaluate quantity,
both numerical and sensory information can be used. For example, when visually comparing two
quantities, the larger set will often contain more items (i.e., numerosity), but may also exhibit
greater density, a larger total surface area, or a wider convex hull encompassing all elements.
Neuronal encoding of sensory information occurs early in the primary cortex, whereas numbers are
computed in higher integrative areas by what Nieder et al. identified as number neurons Nieder
(2016).

Quantity discrimination is necessary in contexts as diverse as evaluating food patches, regulating
social attraction, or competing for resources Nieder (2020). From sharks to mammals, all major ver-
tebrate clades appear capable of discriminating between different quantities, either spontaneously or
in learning tasks Vila Pouca et al. (2019). By carefully designing protocols that control for sensory
cues, researchers have demonstrated that several non-human species are capable of performing
quantity discrimination based on the abstract evaluation of numbers Cantlon & Brannon (2006).
Among them is an insect: the honeybee (Apis mellifera). Beyond discriminating numerosities of
up to eight items, these insects, with brains of fewer than one million neurons, can also manipulate
numbers, performing simple addition, subtraction, and symbolic tasks Dacke & Srinivasan (2008);
Gross et al. (2009); Howard et al. (2018; 2019); Giurfa et al. (2022).

Later experiments required a Y-maze: a three-armed apparatus shaped like the letter Y, commonly
used to study memory, learning, and decision-making in rodents Kraeuter et al. (2018) (see Fig. 73).
These mazes required bees to inhibit their spatial memory Menzel et al. (2005) (e.g., recalling that
the last reward was in the left arm) and to focus instead on the visual stimuli displayed at the end
of each arm. The balance between exploring new options and exploiting previously rewarded ones
is key to their foraging behavior and likely plays a crucial role in their learning performance within
these devices Kembro et al. (2019); Lochner et al. (2024).

Figure 73: Y-maze for bees experiments
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14 MATHEMATICAL PROOF OF MAYA ACCORDING τ

Stationary case (1) : upper bound of MAYA error Consider the case of two policies π1 that
achieves the highest regret i.e. R(π1, 1, T ) = T and π0 that achieves a zero regret i.e. R(π0, 1, T ).In
this case

∆π1,t −∆π0,t ≤ 1 ∀t
as the reward is in 0, 1. The maximal bound of R(πMAYA, 1, T ) − R(πbee, 1, T ) corresponds to
the case where R(πbee, 1, T ) is always centered between R(π1, 1, T ) and R(π0, 1, T ) (see Fig74a).
Let’s define ∗t the agent who act the closest of the bee at t and t the agent chosen by MAYA at t.
Then

P[t = ∗t ] = 0.5 ∀t
as no best agent are better from the other one. This case corresponds to an equality between the two
possible agent (with extreme regret values) and leads to the worst scenario of a stationary case when
the similarity distance d() are when define. Then the maximal cumulative gap betweenMAYA-regret
and Bee-regret in stationary case are :

T

t=1

∆MAYA,t −∆Bee,t ≤
1

2

T

t=1

∆π1,t −∆Bee,t+
1

2

T

t=1

∆π0,t −∆Bee,t

≤
T

t=1

t

2

≤
T
2 (

T
2 + 1)

2

≤ 1

8
(T (T + 2)) (1)

Stationary case (2) : upper bound of the worst policy Consider the case where πMAYA always
chose like π1 and πbee always chose like π0 (see Fig 74b). Then the similarity distance d() fails to
provide a correct measure and MAYA chose the agent with the largest regret gap relative to the bee’s
regret. Then for all t

P[t ̸= ∗t ] = 1.

Then the maximal cumulative gap between MAYA-regret and Bee-regret in the worst policy in
stationary case are :

T

t=1

∆MAYA,t −∆Bee,t ≤
T

t=1

∆π1,t −∆π0,t

≤ T · (T + 1)

2
(2)

The alternative case where πMAYA always chooses as π0 and πbee always chooses as π1 is equivalent.

Cyclic case : upper bound of MAYA error with no windows (τ = T ) policy Consider that after
S trials the bee moves from π1 to π0 (alternative cases are equivalent, see Fig 75a). Consider that
the distances are well defined, as in the stationary case (1). Then :

S

t=1

∆MAYA,t −∆Bee,t ≤
1

8
(S × (S + 2)) (3)

The time required for MAYA to act like π0 is 2S + 1 but at t = 2S + 1, the bee changes from π0 to
π1 and MAYA continues to act like π1 (see Fig.75a). Recursively, MAYA always act like π1 from
t = 1 until t = T . Then

P[t = π1] = 1 ∀t
and

P[t = ∗t ] =
N∗(T )

T
, ∀t
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(a) Distance d(·) provide a cor-
rect measure, R(π1, 1, T ), and
R(π2, 1, T ) has the maximal distance
from R(πbee, 1, T ).

(b) Distance d(·) fails to provide a cor-
rect measure. MAYA alawys selects
actions as the agent whose behavior is
farthest from that of the bee.

Figure 74: Maximal cumulative gap between MAYA-regret and Bee-regret in stationary case ac-
cording the distance d(·) abilities to provide a correct measure

Where

N∗(T ) = qS +min(S, r),

q =

õ
T

2S

û
,

r = T − 2Sq ∈ [0, 2S).

A minimal bound of N∗ are :

N∗(T ) ≥
T

2

Then the maximal cumulative gap between MAYA-regret and Bee-regret in a cyclic case with no
windows is :

T

t=1

∆MAYA,t −∆Bee,t ≤
N∗(T )

T

1

8
(T.(T + 2)) + (1− N∗(T )

T
)
T.(T + 1)

2

≤ T

2

1

T

1

8
(T.(T + 2)) + (1− T

2

1

T
)
T.(T + 1)

2

=
T (5T + 6)

16
(4)

Cyclic case : upper bound of MAYA error with windows τ = S Assume that S are even.
Consider that after S trials, the bee moves from π1 to π0 (alternative cases are equivalent, see
Fig75b). Consider that the distance is well define like in the stationary case (1). From time t = 1
until S, MAYA act as the best agent :

S

t=1

∆MAYA,t −∆Bee,t ≤
1

8
(S × (S + 2)) (5)

and
P[t = ∗t ] = 1 ∀t ∈ 1, . . . , S.

From time S + 1 until S + S
2 , MAYA acts as the worst policy (start cycle)

S+S
2

t=S+1

∆MAYA,t −∆Bee,t ≤
S+S

2

t=S+1

t (6)

≤ S(5S + 2)

8
(7)
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and
P[t ̸= ∗t ] = 1 ∀t ∈ S + 1, . . . , S +

S

2
.

And from t = S + S
2 + 1 until t = 2S MAYA acts with the best policy (end cycle):

2S

t=S+S
2 +1

∆MAYA,t −∆Bee,t ≤
2S

t=S+S
2 +1

t

2

≤ S(7S + 2)

16
(8)

and
P[t = ∗t ] = 1 ∀t ∈ S +

S

2
+ 1, . . . , 2S.

Consider a full cycle, the event t = ∗t appears S − S
2 times. Let’s set

q =
max(0, T − S)

S


, r = max(0, T − S)− qS ∈ [0, S).

Here q is the number of full cycle S in t > S, and r is the rest of a potential unfinished tail segment
of the started cycle. Let N∗(T ) =

T
t=1 1εt=ε∗ with N∗(T ) ≤ T equal to

N∗(T ) = min(T, S) + q · S
2
+ max(0, r − S

2
)

If S is even and T > S then

N∗(T ) ≥
T

2
+

S

4
(9)

Proof:
With T = S + qS + r :

N∗(T )− (
T

2
+

S

4
) =

S

2
− r

2
+ max(0, r − S

2
) ≥ 0,

where the minimum are archived with r = S
2 .

P[t = ∗t ] =
N∗(T )

T
≥ 1

2
+

S

4T
(10)

In the cases where S is not not even

q =

T−S
S


, r = T − S − qS ∈ [0, S).

then

N∗(T ) = S +
q(S + 1)

2
+ max


0, r − S − 1

2


.

As T = S + qS + r, we have

N∗(T )−
T

2
=

S

2
+

q

2
+ max


0, r − S − 1

2


− r

2
.

and for any r ∈ [0, S),

min
r


max(0, r − S−1

2 )− r
2


= − S − 1

4
.

Then
N∗(T ) ≥ S

2
+

q

2
− S − 1

4
+

T

2
=

S + 1

4
+

q

2
+

T

2
≥ S + 1

4
+

T

2
.

N∗(T ) ≥ T

2
+

S + 1

4
≥ T

2
+

S

4
. (11)
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Which are better to the S parity case.
Then the maximal cumulative gap between MAYA-regret and Bee-regret with windows τ = S is

T

t=1

∆MAYA,t −∆Bee,t ≤
N∗(T )

T

T (T + 2)

8
+ (1− N∗(T )

T
)
T (T + 1)

2

≤ (
T

2
+

S

4
).
1

T
.
T (T + 2)

8
+ (1− (

T

2
+

S

4
).
1

T
)
T (T + 1)

2

≤ 10T 2 + 12T − 3ST − 2ST

32
(12)

(a) τ = T (b) τ = S (c) τ ∈ {S
2
+ 1; . . . , S − 1}

Figure 75: Maximal cumulative gap between MAYA regret and bee regret in a non-stationary case,
measured with respect to window τ . The purple arrow highlights the period during which MAYA
chooses actions in accordance with the agent whose behavior is most distant from that of the bee.

Cyclic case : upper bound of MAYA error with windows τ ∈ S
2 +1; . . . , S−1 . We consider

the case where S
2 + 1 ≤ τ < S (see Fig75c). Assume that S are even. From time t = 1 until S,

MAYA act as the best agent (stationary case 1) :

S

t=1

∆MAYA,t −∆Bee,t ≤
1

8
(S × (S + 2)) (13)

and
P[t = ∗] = 1 ∀t ∈ 1, . . . , S.

From time S + 1 until S + τ
2 , MAYA acts as the worst policy (start cycle)

S+ τ
2

t=S+1

∆MAYA,t −∆Bee,t ≤
S+ τ

2

t=S+1

t

≤ τ

4
(2S + 1 +

τ

2
)

≤ τ2

8
+

Sτ

2
+

τ

4
(14)

and
P[t ̸= ∗] = 1 ∀t ∈ S + 1, . . . , S +

τ

2
.

And from t = S + τ
2 + 1 until t = 2S, MAYA acts as the best policy (end cycle) with :

2S

t=S+ τ
2 +1

∆MAYA,t −∆Bee,t ≤
2S

t=S+ τ
2 +1

t

2

≤ (3S + τ
2 + 1)(S − τ

2 )

4
(15)
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and
P[t = ∗t ] = 1 ∀t ∈ S +

τ

2
+ 1, . . . , 2S.

Consider a full cycle, the event t = ∗t appears S − τ
2 times. Let’s set

q = ⌊T − S

S
⌋ r = (T − S)− qS ∈ [0, S).

Let N∗(T ) =
T

t=1 1εt=ε∗ with N∗(T ) ≤ T equal to

N∗(T ) = S + q(S − τ

2
) + max(0, r − τ

2
).

and

P[t = ∗t ] =
N∗(T )

T
(16)

The maximal cumulative gap between MAYA-regret and Bee-regret with windows τ ∈ S
2 +

1; . . . , S − 1 with S parity is

T

t=1

∆MAYA,t −∆Bee,t ≤
N∗(T )

T
· T (T + 2)

8
+


1− N∗(T )

T


· T (T + 1)

2

≤ S + q(S − τ
2 ) + max(0, r − τ

2 ).

T
· T (T + 2)

8

+ (1− S + q(S − τ
2 ) + max(0, r − τ

2 ).

T
) · T (T + 1)

2

As N∗(T ) ≥ T (1 − τ
2S ) without any condition on S parity, the maximal cumulative gap between

the MAYA-regret and the Bee-regret with windows τ ∈ S
2 + 1; . . . , S − 1 is

T

t=1

∆MAYA,t −∆Bee,t ≤
T (T + 2)

8
+

(3T + 2)T

16

τ

S
(17)

Cyclic case : upper bound of MAYA with windows τ < S
2 +1 In this case, there is no way to be

sure that the distance d() do not fails to identify the best agent. It’s equivalent to choose randomly
and the worst case corresponds to the upper bound of the worst policy. Then the maximal cumulative
gap between MAYA regret and Bee-regret with τ < S

2 + 1 in cyclic case are equivalent to Eq. 2.

Cyclic case : upper bound of MAYA with windows τ > S In this case, the time required to
change the policy is over a cycle S > 1. Then, the bee switch two times in τ and MAYA allows it
to act as the same agent. Then it is equivalent to act as a cyclic case with no windows (τ = T ) Then
the maximal cumulative gap between MAYA regret and Bee-regret with τ > S in cyclic case are
equivalent to Eq. 4.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

15 DISCLOSURE OF LLM USE

Large Language Models (LLMs) were used in a limited capacity during the preparation of this paper.
Their use was restricted to (i) spelling and phrasing assistance (to support a dyslexic co-author), and
(ii) suggesting improvements to Python scripts for graph generation and visualization. No part of
the scientific content, analyses, or conclusions was produced by LLMs.
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