Under review as a conference paper at ICLR 2026

6 APPENDIX

6.1 DATASET DESCRIPTION

In this dataset, bees are confronted to a numerical discrimination task. Bees first enter the maze
in an entrance chamber before flying in a hole and facing two images located at the end of each
arm. The image has different number of dots : for example in dataset 1 and 2, one of the image
has two dots while the other have four dots. If the bee chooses the correct image (i.e. the side
with the highest number of dots), it will be rewarded by a sugar reward (50% sugar/water) placed
in pipette in the middle of the image, alternatively if it chooses the incorrect image then it will be
punished finding a bitter tasting solution (quinine solution) within the pipette. Bees cannot detect
(neither visually nor by odor) which solution is located where. Then, they are only able to know
image on each side before to choose. Between each trials the bee will go back to the hive to deliver
the collected sugar, before reaching back the maze for another trial (typically lasting a few minutes).
During this time the experimenter randomly changes the images or not, and varying the position of
the dots. The localization of the correct image alternate between the right and left arm according to
a pseudo-random sequence. Each dataset include 16 bees.

Table 3: Datasets summary

Dataset nbindiv 1 Location Weather
Dataset 1 16 40 France Cold
Dataset 2 16 22 France Hot
Dataset 3 16 40 France Moderate
Dataset 4 16 40 Australia Cold
Dataset 5 16 30 Australia Hot
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6.2 MSE AND MAE OF MAYA ACCORDING T

side.window Al AYA.I ‘ass A Wass [ MAYALDDTW [ MAYALDDTW
mean MSE | mean MAE | mean MSE mean MAE mean MSE mean MAE

3.0 12407 12106 7.4+ 10 19+ 1

4.0 2+ 15508 E3 13406 8.0 L 13 S

50 404 T4£09 T [T5+£06 K

6.0 4.1£2 1.6 £ 0.6 12+05

7.0 42+3 1.5+0.7 12+05

.0 55E5 17109 NEX 14£0. i i 2041

9.0 T4£07 [29%2 12£06 819 221

10.0 55+£5 1.7+£09 4.1+4 1.5+£08 87+ 10 20+ 1

20.0 54+5 1.6 £ 0.8 48+ 5 1.5+ 0.9 8.7+ 10 21+1
[30.0 433 1.5 0.6 EEE] T5£0. A £ 10 2041

T =10 RAE] 1.6 +1 4856 15109 9.7 £ 11 2.2%1

Table 4: Dataset 1 (Cold weather, France)

side.window | MAYA_KL | MAYAKL | MAYA_Wass [ MAYA_Wass | MAYA.DTW | MAYA.DTW
‘mean ‘mean ‘mean ean mean ‘mean
3.0 0704 .8+ 0.4 24+ 1 1.1+ 04
4.0 0.8+03 .8 + 0.4 2.7+2 1.1+ 0.6
.0 NER 1.0+ 04 1.9+ 0£0.5 24E72 1.0+ 0.6
6.0 211 1.0£ 0.5 8 +0.4 35+3 1.3+ 0.7
7.0 1.6+ 1 0.9+ 04 .8+ 0.4 3.0+£3 1.2+ 0.6
.0 19T 1.0+ 03 1.8+ .9+ 0.4 28+7 12+0.6
9.0 1.8+ 1 0.9+ 0.4 22+2 1T.0£ 0.6 25+2 1.1+ 0.6
10.0 2342 1.0+ 0.5 2.1+2 1.0+ 0.6 27+ 1 1.2+ 0.6
20.0 23ET 10+ 04 26+T T1£03 1.0+ 04
T =22 32+3 121 0.6 2.8+ 1 1.2+ 04 1.0+ 0.5

Table 5: Dataset 2 (Hot weather, France)

Side.window | MAYA_KL | MAYAKL MAYA.DTW | MAYADTW ide.window | MAYA_KL | MAYAKL MAYA.Wass | MAYADTW | MAYADTW
‘mean ‘mean MA [ mean MSE__| mean ‘mean MA ‘mean ‘mean ‘mean

30 1306 ZE3V] 20514 30 T6E09 12509

70 4444 15209 TAEIT TO=1 70 T5£0.7 1506 191

50 ERE=Y 15207 T3 T9=1 50 1.7 £0.7 T2£07 | 7.6=11 [KES

60 EEEz T30 2051 60 15£07 12504 [7859 [20=T

70 3753 1406 T8E08 70 T4E06 | 3.0+ 1505 3E10 21=1

80 113 T520.7 pAES] 80 6.218 T7 L1 3412 3412 6217 F

90 RRES T8Z0. [21ET 50 1623 .6 £0. EAE) 13205 BI1L7 A3

0.0 1407 1.9£1 0.0 B ES] 87 T.650. AE10 201

20.0 5344 17208 To=1 20.0 REE 17508 [44%2 1605 ERESII 21=12
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T=10 = T3E0 34553 T3F06 |93 E11 [ 22E0 T=10 EVER] T4£08 [33%72 3206 90 £ 10 pRES]

Table 6: Dataset 3 (Moderate weather, France)

Table 7: Dataset 4 (Cold weather, Australia)

side_window [ MAYA_KL | MAYA_KL [ MAYA_Wass | MAYA_Wass [ MAYALDTW [ MAYA.DTW
mean MSE | mean MAE | mean MSE mean MAE mean MSE mean MAE

3 6.6£9 1.6 £1 63£9 1.6 £ 1 19+1

4 81+£8 20+ 1T 104+ 12 22+ 1 94+38 21+1

5 43+E5 1.4+£09 8.4+ 10 20£1 10.4 £ 12 22%1

6 3.6+3 1.4 £0.7 12+1 120 £ 11 23£1

7 12£09 [45+£5 1.5+1 103 + 11 21F1

8 +3 1.5+0.6 | 44£5 1.5+0.9 103 £ 12 2.2+1

9 5.5£8 1.6£1 5.7£6 1.7£1 129 £ 16 24+£1

10 1.3 £0.6 13+£07 9.6 £ 10 PAEE

20 6.4+6 1.8 £1 47+E5 1.5 £0.8 11.8+13 23+1

T =30 | 6.1£5 | 1.8409 [ 6.1£5 | 1.8£0.9 2.1%1

Table 8: Dataset 5 (Hot weather, Australia)

Table 9: MSE and MAE of MAYA as a function of the window size 7. The 1" row denotes the

no-window setting (7 = 7T), where at each trial the full trajectory up to time ¢ is used.
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7 UNDERSTANDING THE LEARNING PROCESS

7.1 MAYA EXPLAINABILITY WITHT = 7
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Figure 10: MAYA-KL Figure 11: MAYA-Wass Figure 12: MAYA-DTW

Figure 13: For bee 1 (fast learner, low regret) from dataset 2 we report choice interpretability for
MAYA-variants (7 = 7).

V4 . e s AN
\ \\\ \
\\ P // h \\ /
Figure 14: MAYA-KL Figure 15: MAYA-Wass Figure 16: MAYA-DTW

Figure 17: For bee 15 (slow learner, high regret) from dataset 2 we report choice interpretability for
MAYA-variants (7 = 7).
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7.2 MAYA EXPLAINABILITY WITHT = 3

Figure 18: MAYA-KL Figure 19: MAYA-Wass Figure 20: MAYA-DTW

Figure 21: For bee 1 (fast learner, low regret) from dataset 2 we report choice interpretability for
MAYA-variants (7 = 3).

Figure 22: MAYA-KL Figure 23: MAYA-Wass Figure 24: MAYA-DTW

Figure 25: For bee 15 (slow learner, high regret) from Dataset 2 we report choice interpretability for
MAYA-variants (7 = 3).

Cumulative Regret as a Function of the Number of Trials

Cumulative Regret as a Function of the Number of Trials

Cumulative Regret

Figure 26: Bee 1 Figure 27: Bee 15

Figure 28: Regret modelization for bee 1 (lower cumulative regret) and bee 15 (higher cumulative
regret) of Dataset 2, with 7 = 3
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8 COMPARATIVE METHODES DESCRIPTION

* Generative Adversarial Imitation Learning (GAIL) GAIL learns a policy by simultaneously
training it with a discriminator that aims to distinguish expert trajectories against trajecto-
ries from the learned policy. Ho & Ermon (2016)

* Behavioral Cloning (BC) Behavioral cloning directly learns a policy by using supervised
learning on observation-action pairs from expert demonstrations. It is a simple approach
to learning a policy, but the policy often generalizes poorly and does not recover well from
errors. Foster et al. (2024).

* AIRL, similar to GAIL, adversarially trains a policy against a discriminator that aims to
distinguish the expert demonstrations from the learned policy. Unlike GAIL, AIRL recov-
ers a reward function that is more generalizable to changes in environment dynamics. Fu
et al. (2018).

* DAgger (Dataset Aggregation) iteratively trains a policy using supervised learning on a
dataset of observation-action pairs from expert demonstrations (like behavioral cloning),
runs the policy to gather observations, queries the expert for good actions on those obser-
vations, and adds the newly labeled observations to the dataset. DAgger improves on be-
havioral cloning by training on a dataset that better resembles the observations the trained
policy is likely to encounter, but it requires querying the expert online Ross et al. (2011).

* Density-based reward modeling is an inverse reinforcement learning (IRL) technique that
assigns higher rewards to states or state-action pairs that occur more frequently in an ex-
pert’s demonstrations. The key intuition behind this method is to incentivize the agent to
take actions that resemble the expert’s actions in similar states Dumoulin et al. (2024).

* Maximum Causal Entropy Inverse Reinforcement Learning (MCE IRL) : The principle of
maximum causal entropy is a method that extends the classical maximum entropy idea
to sequential settings. Instead of considering probabilities in isolation, it uses causally
conditioned probabilities, which means that the model explicitly accounts for the fact that
information is revealed step by step over time. This allows us to properly capture how side
information becomes available and how it influences decisions at each stage Biernaskie
et al. (2009).

* Preference Comparisons : The preference comparison algorithm learns a reward function
from preferences between pairs of trajectories. The comparisons are modeled as being
generated from a Bradley-Terry (or Boltzmann rational) model, where the probability of
preferring trajectory A over B is proportional to the exponential of the difference between
the return of trajectory A minus B. In other words, the difference in returns forms a logit
for a binary classification problem, and accordingly the reward function is trained using a
cross-entropy loss to predict the preference comparison. Christiano et al. (2023).

* Soft Q Imitation Learning (SQIL) : Soft Q Imitation learning learns to imitate a policy from
demonstrations by using the DQN algorithm with modified rewards. During each policy
update, half of the batch is sampled from the demonstrations and half is sampled from the
environment. Expert demonstrations are assigned a reward of 1, and the environment is
assigned a reward of 0. This encourages the policy to imitate the demonstrations, and to
simultaneously avoid states not seen in the demonstrations Reddy et al. (2020).

¢ GLM : A Generalized Linear Model (GLM) is a statistical framework that extends linear
regression to response variables with non-Gaussian distributions. In our setting, the regret
trajectory R(m, 1,T') is modeled as a function of time, R(w, 1,T) ~ f(t), where f is linked
to a linear predictor through a canonical link function. A Poisson GLM is employed when
the noise structure is count-like, while a Gamma GLM is used to capture multiplicative
noise. This allows us to statistically frame the evolution of regret as a stochastic pro-
cess, while accounting for heterogeneous variability across agents. Nelder & Wedderburn
(1972).

* Contextual GLM : The contextual variant incorporates side information (e.g., environmen-
tal or experimental conditions) into the predictor, enabling the model to capture how context
modulates regret dynamics. Then R(w,1,T) ~ f(¢, z) McCullagh & Nelder (1989).
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8.1

MAE COMPARISON OF METHODS

Table 10: MAE comparison of methods across the five datasets. Values are reported as mean £
standard deviation. We fix 7 = 7 for all MAYA variant

Dataset GAIL BC AIRL Dagger DBR MCE Pref-Comp SQIL GLM (no ctx) GLM (ctx) [ MAYA-KL  MAYA-Wass MAYA-DTW
1 375£25 1.61£079 00 29+28 43+38 1038+ 1.60 835325 371+l 1403 14103 15507 12105 19+£T

2 3.69+1.8 1.24+072 00 193+17 272+189 604+1.0 37+19  218+09 0.8+05 0.8+05 1.4 +0.6 1.5 +0.5 21+1

3 3.62424 179+£098 0+0 2.6+3.1 34+4.1 813 £1.10 976+ 1.75 3.2+1 1.4+£04 1404 37+3 26+1 1.84+0.8
4 3.1+28 1.65+086 00 30+£27 4.60+48 10+ 1.6 9.7+1.7 3.2+1 21+1 21+1 1.4+ 0.6 1.5+£05 2.1+1

5 49+28 323+3 0+0 65451 55+78 15.0+7.6 1434+6.92 45242 80+38 22+1 12409 1.34+0.7 2141

9

FINETUNING IMITATION LEARNING

We present ablations over the fine-tuning budget of the IRL methods. As the tuning knobs differ
across methods, we use the unified notation b for the method-specific budget (see Tab 11). The best
results are summarized in the main text.

p(GAIL)

pBO

p(Dagger)

pDBR)

pMCE)

b(Pref Comp)

b(PrefComp)

epochs

epochs

eny. steps

epochs

epochs

# envs

eval episodes

Table 11: Hyperparameters of each comparative methods.

MSE (b=1) MAE (b=1) | MSE (b=10) MAE (b=10) | MSE (b=50) MAE (b=50)
GAIL 20.6 +/- 41 3775+/-2.5 29.6 +/- 41 3775425 20.6 +/- 41 375425
BC 232 +-3038 326+-2.74 | 198 +-265 314123 5.16+/-3.94 1.61+/-0.79
AIRL 0+-0 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0
Dagger 22.8+/-32.9 2.9+/-2.8 36.9+/-52.0 37 +1-3.8 325 +-50.6 37+-33
Density based reward | 43.1 +/- 54.81 43+/38 431 +-548 43+/38 431 +-5438 43+/-3.8
MCE T48.83 +/- 38.47 | 10.38 +/- 1.60 | 148.83 +/- 3847 | 10.38 +/- 1.60 | 148.83 +/- 38.47 | 10.38 +/- 1.60
Pref-Comp 12025 +/-52.1 | 9.17 +/-2.99 | 114 +/-53 8.9 +/-2.9 1045 +/- 57 835 +/-3.25
SQIL 26.2 +/-19 3775 +- 1 26.2 +/-19 3775 +- 1 26.2 +/-19 3775 +- 1
Table 12: Dataset 1 (Cold weather, France)

MSE (b=1) MAE (b=1) | MSE (b=10) MAE (b=10) | MSE (b=50) MAE (b=50)
GAIL 232 +/- 17 3.69 +/- 1.8 232 +/- 17 3.69 +/- 1.8 232 +/- 17 3.69 +/- 1.8
BC 12.1+/-12.1 2.54+/-1.74 7.3+/-7.7 1.99+/-1.3 2.86 +/- 2.95 1.24 +/- 0.72
AIRL 0 0+/-0 0+/-0 0+/-0 0+/-0 0+4/-0
Dagger 15.63 +/- 19.2 2.54+/-2.2 11.8 +/- 16.5 2.1+/-2.0 9.67+/- 12.6 1.93 +/-1.7
Density based reward | 15.26 +/- 16.43 | 2.72 +/- 1.89 | 15.26 +/- 16.43 | 2.72 +/- 1.89 | 15.26 +/- 16.43 | 2.72 +/- 1.89
MCE 49.5 +/- 14.2 6.04 +/- 1.0 49.5 +/- 14.2 6.04 +/- 1.0 49.5 +/- 14.2 6.04 +/- 1.0
Pref-Comp 24.54+/-18.3 3.7+/-1.9 30.154+/-17.3 4.49 +/-1.53 | 28.84 +/- 16.13 | 4.46 +/- 1.30
SQIL 9.80 +/-6 2.18+/-0.9 9.80 +/-6 2.18+/-0.9 9.80 +/-6 2.18+/-0.9

Table 13: Dataset 2 (Hot weather, France)

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) | MSE (b=50) MAE (b=50)
GAIL 27.5 +/- 40 3.62 +/-2.5 27.5 +/- 40 3.62 +/-2.5 27.5 +/- 40 3.62 +/-2.5
BC 15.9+/-24 2.67 +/-2.26 | 22.0+/-25 3.55+/-2.1 5.5+/-4.1 1.79+/-0.98
AIRL 0+4/-0 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0
Dagger 35.4+/- 61.8 3.3 +/-3.7 34.5+/-48.2 35+/-34 21.6 +/-46.0 2.6 +/-3.1
Density based reward | 41.38 +/- 51.1 | 3.4+/-4.1 41.38 +/-51.1 | 3.4+/-4.1 41.38 +/-51.1 3.4+/-4.1
MCE 140.3 +/-34.7 8.13 +/-1.10 | 140.3 +/-34.7 | 8.13 +/-1.10 140.3 +/-34.7 8.13 +/-1.10
Pref-Comp 130.98 +/-44.7 | 9.98 +/-1.98 | 134.12+4/-37 10.12 +/-1.39 | 125.70 +/-44.1 | 9.76 +/- 1.75
SQIL 22.65+/-15 3.2+4/-1 22.65+/-15 3.2+4/-1 22.65+/-15 3.2+4/-1

Table 14: Dataset 3 (Moderate weather, France)
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MSE (b=1) MAE (b=1) | MSE (b=10) MAE (b=10) | MSE (b=50) MAE (b=50)
GAIL 253 +/-39 31+-2.8 | 25.3 +/-39 31+-238 253 +/-39 31+-28
BC 232+/-28.6 | 3.4+/2.4 | 223 +-26.1 35422 535+/-4.17 1.65 +/-0.86
AIRL 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0
Dagger 229+/340 | 3.0+-27 | 453+-52.8 | 46+/-3.6 244 +]- 242 32+-2.7
Density based reward | 46.06 +/-55 4.60+/-4.8 46.06 +/-55 4.60+/-4.8 46.06 +/-55 4.60+/-4.8
MCE 148.2 +/-39.6 | 10.3+/-1.6 | 148.2 +/-39.6 10.3 +/-1.6 148.2 +/- 39.6 10.3 +/-1.6
Pref-Comp 1241+/-52 | 9.4 +/-2.78 | 12829 +/-42.7 | 9.86 +/- 1.68 | 125.68 +/-44.19 | 9.7 +/- 1.7
SQIL 25.3 +/-20 3241 25.3 +/-20 32+-1 25.3 +/-20 3241
Table 15: Dataset 4 (Cold weather, Australia)

MSE (b=1) MAE (b=1) | MSE (b=10) MAE (b=10) | MSE (b=50) MAE (b=50)
GAIL 4571 +/-457 | 49+/-28 | 45.71+/-457 | 49+/-28 | 85.71+-457 | 49+/-28
BC 124.4 +/- 186.46 | 6.94 +/- 7.05 | 39.7+/- 70 3.91+/-3 26.7+1-42.7 323 +1-3.17
AIRL 0+7-0 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0
Dagger 1134 +-2475 | 6.0+-7.1 932 +/-115.9 65+-51 | 25.8+-47.1 65+-5.1
Density based reward | 115.7 +/- 242.51 | 5.5 +/-7.8 115.7 +/- 24251 | 5.5 +/-1.8 115.7 +/-242.51 | 5.5 +/-1.8
MCE 374 +/-311.9 15.0+/-7.6 | 374 +/-311.9 15.0+/-7.6 | 374 +/-311.9 15.0+/-7.6
Pref-Comp 284 +/-254 12.9+/-7 335.6 +/-271 145 +/- 332.8 +/-272.29 | 143 +/-6.92
SQIL 25 +/- 16 152412 25 +/- 16 452412 25 +/- 16 452412

Table 16: Dataset 5 (Hot weather, Australia)
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10 CLUSTERING : OTHER VARIANTS

Time series Euchdean KMeans Time series Euclidean KMeans

........

Y e
&

Figure 29: Bees trajectories Figure 30: MAYA-Wass Figure 31: MAYA-KL Figure 32: MAYA-DTW
Figure 33: Centroides of two clustering of 80 bees trajectories (in Fig29) and 80 MAYA-variant

(Fig30, Fig31 and Fig32) simulated trajectories (with 7 = 7). Clustering are done with Euclidean
method (Clustering I).

ime series dustering with DBA k-means Time series clustering with DBA k-means

Custer 0 — dustero =1

Figure 34: Bees trajectories Figure 35: MAYA-Wass Figure 36: MAYA-KL Figure 37: MAYA-DTW

Figure 38: Centroides of two clustering of 80 bees trajectories (in Fig34) and 80 MAYA-variant
(Fig35, Fig36 and Fig37) simulated trajectories (with 7 = 7). Clustering are done with DBA method
(Clustering II).

Figure 39: Cluster 0 (I) Figure 40: Cluster 1 (I) Figure 41: Cluster 0 (II) Figure 42: Cluster 1 (II)

Figure 43: Average difference between MAYA-Wass (1 = 7) predictions and real trajectories
(R(muaya, 1,t) — R(Thee, 1, t)) (z-axis) for Euclidean (I) and DBA (II) Clustering according 0 and 1
Cluster. Red range correspond to o (standard deviation).
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Figure 44: Cluster 0 (I) Figure 45: Cluster 1 (I) Figure 46: Cluster 0 (II) Figure 47: Cluster 1 (II)

Figure 48: Average difference between MAYA-KL (7 = 7) predictions and real trajectories
(R(muaya, 1,t) — R(Thee, 1, t)) (z-axis) for Buclidean (I) and DBA (II) Clustering according 0 and 1
Cluster. Red range correspond to o (standard deviation).

Figure 49: Cluster 0 (I) Figure 50: Cluster 1 (I) Figure 51: Cluster 0 (IT) Figure 52: Cluster 1 (IT)

Figure 53: Average difference between MAYA-DTW (7 = 7) predictions and real trajectories
(R(mumaya, 1,t) — R(Tpee, 1, t)) (z-axis) for Buclidean (I) and DBA (IT) Clustering according 0 and 1
Cluster. Red range correspond to +o (standard deviation).
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11 MAYA ALGORITHM

Algorithm 1 MAYA : Multi Agent Y-maze Allocation

Require: Logged bee regret trajectory R(mpee, 1,7")
Require: Set P of N bandit policies {7y, ..., 7n}
Require: Window size 7 such thatt > 7
Require: A similarity metric 0

1 &= ()im

2: Init g

3 forte{2,...,7—1} do

4: Observe R(mpee, 1,t — 1)
5: Observe a context information x;
6: fori =1to N do
7: Simulate policy agent 7;(s¢—1|z)
8: Compute cumulative regret R(m;, 1,t — 1)
9: end for
10: & = argmin_cp 6(Tpee, 7, 1)
11: mo(ar|si—1) < me(ar|si—1)
12: Select At ~ g ((It ‘St—l)
13: Receive reward r;

14: Update m; Vm; € P

15: E[t] « &

16: end for

17: fort € {7,...,T} do

18: Observe R(mpee, 7, 1,t — 1)

19: Observe a context information x;

20: fori=1to N do

21: Simulate policy agent 7;(s¢—1|x)

22: Compute cumulative regret R(m;, 7,1,t — 1)
23: end for

24: & = argmin_p 6(Tpee, 7, 7, 1)

25: 7T9(at|8t,1) — 7T§((lt|8t,1)

26: Select At ~ Tg (at ‘St_1)

27: Receive reward r;

28: Update r; Vm; € P
209: £t &

30: end for

31: return my
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12 MICE DATASET EXPERIMENT

Dataset and setup. We use the dataset of Ashwood et al. (2020a), which reports trial-by-trial
changes in mice policy and decomposes those updates into a learning component and a noise com-
ponent (see Fig. 54a). Unlike their original analysis, which simulates an average trajectory across
individuals, our method (MAYA) simulates one trajectory per individual. The dataset contains 19
rats with between 1500 and 6000 trials each. To control the computational cost of DTW and to align
with our bee experiments, we reduce the number of individual at 100.

Selecting the memory horizon 7. According with Tab 17, Fig 54b shows MAE and MSE as a
function of the memory window 7. MAYA-KL clearly identifies an optimal range around 7 € [6, 7],
whereas MAYA-Wass suggests 7 € [8, 10] when balancing MAE and MSE. For consistency with
previous experiments, we set 7 = 7 in all subsequent analyses.

Explanations and performance. With 7 = 7, Fig. 63 and Fig. 59 provides MAYA explanations
for the rats with the lowest and highest cumulative regret (see Fig. 55). For slow learners, all MAYA
variants behave similarly (Fig. 65); for fast learners, MAYA-KL achieves the best fit, capturing
rapid policy changes better than MAYA-Wass (Fig. 64). A plausible explanation is that, under KL
similarity, MAYA acts more often from LinUCB-like behavior than with Wasserstein similarity (see
Tab18b). As in previous datasets, MAYA-DTW tends to act more like Epsilon-Greedy, likely due to
DTW’s alignment properties. Overall, all MAYA variants outperform GLM baselines (Table 18a).

side_.window | MSE MAYA-KL | MAE MAYA-KL | MSE MAYA-Wass | MAE MAYA-Wass | MSE MAYA-DTW | MAE MAYA-DTW
mean | std mean | std mean | std mean | std mean | std mean | std
3 5760 | 3894 59 24 8083 | 5012 72 25 5790 | 5683 55 29
4 3868 | 3493 46 25 6547 | 3672 64 23 5815 | 5770 55 30
5 3046 | 3307 40 24 5724 | 3803 59 23 5819 | 5788 55 29
6 2763 | 3090 37 23 5276 | 3511 57 21 5830 | 5758 55 29
7 2786 | 3161 38 23 4640 | 3382 53 22 5822 | 5747 55 29
8 2974 | 3197 39 23 4728 | 3722 53 23 5851 | 5777 55 29
9 3114 | 3424 40 24 4231 | 3403 50 22 5819 | 5740 55 29
10 3223 | 3378 41 25 4197 | 3576 49 24 5810 | 5701 54 29
20 4710 | 6689 47 33 3491 | 3515 43 25 5771 | 5725 54 29
30 5618 | 8543 50 38 3453 | 3896 41 27 5760 | 5724 54 29

Table 17: MSE and MAE of MAYA as a function of the window size 7 for Mice Dataset.

All metrics vs, side window — Dataset Mices {MSE=solid shown x10%, MAE=dashed)

bias — tone A — tone B

(a) According Ashwood et al. (2020a), on each trial, (b) Comparative study of the best window size 7 by
a sinusoidal grating (with contrast values between 0  average MSE and MAE. x symbol refers as best per-
and 100%) appears on either the left or right side of ~ formance according standard deviation and average
a screen. Mice must report the side of the grating by =~ reward (see Tab.17 for the full results). MSE is dis-
turning a wheel (left or right) in order to receive a played as x10?.

water reward.

Figure 54: Left : experimental description of the Mice Dataset. Right : Comparative study of the
best window size 7 for Mice Dataset.
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Figure 55: Proportion of cumulative regret for the Mice dataset, per mice

MSE MAE

M Std M Std
MAYA KL 27?16“ l 3161 3 Sean l 73 | Epsilon-Greedy  Lin-UCB  UCB Uniform

MAYA-KL 30%+2.5 2%+1.1 29%+1.3  36%+2.2
MAYA-Wass 4640 3382 | 53 22
MAYADTW 3302 5777 | 55 39 MAYA-W 27%+1.8 10%+1 28%+1 33%=+1.5
GIM o7 137 1T 63 o MAYA-DTW | 28%43 0.5%+1 56%+4 15%+3
GLM Contextual 6416 4133 63 21 (b)
(a)

Table 18: Left : MSE and MAE comparison of MAYA (with 7 = 7 ) and GLM variants. Right :
MAYA explainability for all MAYA choices (7 = 7)

| MAYA-KL MAYA-Wass MAYA-DTW
ClusterAcc (Euclidean, Max L = 1400) | 90% 85% 75%
ClusterAcc (DBA, Max L = 6000) 80% T5% 65%

Table 19: ClusterAcc (%) for Mice Datset)

Figure 56: MAYA-KL Figure 57: MAYA-Wass Figure 58: MAYA-DTW

Figure 59: MAYA explainability for mouse 20 (fast learner, low regret) from Mice dataset. We
report choice interpretability for MAYA-variants (7 = 7).

// \\
\\ /.'
Figure 60: MAYA-KL Figure 61: MAYA-Wass Figure 62: MAYA-DTW

Figure 63: MAYA explainability for mouse 2 (slow learner, high regret) from Mice dataset. We
report choice interpretability for MAYA-variants (7 = 7).
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Cumulative Regret as a Function of the Number of Trials Cumulative Regret as a Function of the Number of Trials
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Figure 64: Mouse 20 Figure 65: Mouse 2

Figure 66: Regret modelization for mouse 20 (best) and mice 2 (worst) from Mice 2, with 7 =7
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Figure 67: Mouse’ trajectories Figure 68: MAYA-KL trajectories

Figure 69: Centroides of Clustering (I) of 100 mice’ (Left) and MAYA-KL (7 = 7) (Right) trajec-
tories.

Figure 70: Cluster 0 Figure 71: Cluster 1
Figure 72: Average difference between MAYA-KL (r = 7) predictions and real trajectories

(R(muaya, 1,t) — R(Tmice1,t)) (z-axis) for Euclidean (I) Clustering according 0 and 1 Cluster. Red
range correspond to +¢ (standard deviation).
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13 COMPLEMENTARY INFORMATION ABOUT THE BIOLOGY INTEREST

We share with other vertebrates a basic ability for abstract number representation, the number
sense Dehaene (2011). As early as two days postnatally Izard et al. (2009), this ability enables us
to evaluate numbers as concepts: three books are perceived as similar to three cups, even though
they differ completely in their visual features (i.e., sensory information). To evaluate quantity,
both numerical and sensory information can be used. For example, when visually comparing two
quantities, the larger set will often contain more items (i.e., numerosity), but may also exhibit
greater density, a larger total surface area, or a wider convex hull encompassing all elements.
Neuronal encoding of sensory information occurs early in the primary cortex, whereas numbers are
computed in higher integrative areas by what Nieder et al. identified as number neurons Nieder
(2016).

Quantity discrimination is necessary in contexts as diverse as evaluating food patches, regulating
social attraction, or competing for resources Nieder (2020). From sharks to mammals, all major ver-
tebrate clades appear capable of discriminating between different quantities, either spontaneously or
in learning tasks Vila Pouca et al. (2019). By carefully designing protocols that control for sensory
cues, researchers have demonstrated that several non-human species are capable of performing
quantity discrimination based on the abstract evaluation of numbers Cantlon & Brannon (2006).
Among them is an insect: the honeybee (Apis mellifera). Beyond discriminating numerosities of
up to eight items, these insects, with brains of fewer than one million neurons, can also manipulate
numbers, performing simple addition, subtraction, and symbolic tasks Dacke & Srinivasan (2008);
Gross et al. (2009); Howard et al. (2018; 2019); Giurfa et al. (2022).

Later experiments required a Y-maze: a three-armed apparatus shaped like the letter ¥, commonly
used to study memory, learning, and decision-making in rodents Kraeuter et al. (2018) (see Fig. 73).
These mazes required bees to inhibit their spatial memory Menzel et al. (2005) (e.g., recalling that
the last reward was in the left arm) and to focus instead on the visual stimuli displayed at the end
of each arm. The balance between exploring new options and exploiting previously rewarded ones
is key to their foraging behavior and likely plays a crucial role in their learning performance within
these devices Kembro et al. (2019); Lochner et al. (2024).

Figure 73: Y-maze for bees experiments
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14 MATHEMATICAL PROOF OF MAYA ACCORDING T

Stationary case (1) : upper bound of MAYA error Consider the case of two policies 7; that
achieves the highest regreti.e. R(m1,1,T) = T and 7y that achieves a zero regreti.e. R(mo,1,7T).In
this case

App— Ayt <1 Wt

as the reward is in {0, 1}. The maximal bound of R(myaya, 1,7) — R(pee, 1, T) corresponds to
the case where R(mpee, 1, T) is always centered between R(my, 1,T) and R(m, 1,T) (see Fig74a).
Let’s define ¢ the agent who act the closest of the bee at ¢ and €, the agent chosen by MAYA at ¢.
Then

Ple; =¢;] =0.5 Vt
as no best agent are better from the other one. This case corresponds to an equality between the two
possible agent (with extreme regret values) and leads to the worst scenario of a stationary case when

the similarity distance d() are when define. Then the maximal cumulative gap between MAYA-regret
and Bee-regret in stationary case are :

T LT LT
|[Amava,t — Apeet| < = Azt — Apeet| + = |A gt — Apeet]
2 2

t=1 t=1 t=1

] =

wo¥1T o1

<

S

+1)

IN

< 2(T(T+2) (D

| =

Stationary case (2) : upper bound of the worst policy Consider the case where myaya always
chose like 71 and 7, always chose like 7 (see Fig 74b). Then the similarity distance d() fails to
provide a correct measure and MAYA chose the agent with the largest regret gap relative to the bee’s
regret. Then for all ¢

Ple, # ] = 1.
Then the maximal cumulative gap between MAYA-regret and Bee-regret in the worst policy in
stationary case are :

T T
Z |AMAYA,t - ABee,tl é Z ‘Aﬁl,t - A7ro,t|

t=1 t=1
< T (T2 +1)

The alternative case where myiaya always chooses as 7y and 7,e. always chooses as 7y is equivalent.

2

Cyclic case : upper bound of MAYA error with no windows (7 = T') policy Consider that after
S trials the bee moves from m; to 7 (alternative cases are equivalent, see Fig 75a). Consider that
the distances are well defined, as in the stationary case (1). Then :

s
1
Z |Amayva,t — Apee,t| < g(s X (S+2)) 3)

t=1

The time required for MAYA to act like 7 is 25 4 1 but at ¢ = 25 + 1, the bee changes from 7 to
w1 and MAYA continues to act like m; (see Fig.75a). Recursively, MAYA always act like 7; from
t =1untilt =T. Then
P[Et = ﬂ'ﬂ =1 Vt
and
N.(T)

Pler = €] = T , Vt
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R(m,1,t) R(m,1,t)
A A
T T

: A | | wrg})’iet
T

; t
T
(a) Distance d(-) provide a cor- (b) Distance d(-) fails to provide a cor-
rect measure, R(m1,1,7T), and rect measure. MAYA alawys selects
R(m2,1,T) has the maximal distance actions as the agent whose behavior is
from R(7oee, 1,T). farthest from that of the bee.

Figure 74: Maximal cumulative gap between MAYA-regret and Bee-regret in stationary case ac-
cording the distance d(-) abilities to provide a correct measure

Where
N.(T) = ¢S + min(S, 1),
T
=55
r=T-25q € [0,25).

A minimal bound of N, are :
N.(T) >

ST

Then the maximal cumulative gap between MAYA-regret and Bee-regret in a cyclic case with no
windows is :

T
Z |Amava,t — Apee,t| < N;T) é(T (T +2)+(1— N*;T))T-(T2+ 1)
t=1

<Illrgiaysa-LLIOED
T(5T +6)

- = (4)

Cyclic case : upper bound of MAYA error with windows 7 = S Assume that S are even.
Consider that after S trials, the bee moves from 7; to 7 (alternative cases are equivalent, see
Fig75b). Consider that the distance is well define like in the stationary case (1). From time ¢t = 1
until S, MAYA act as the best agent :

S

1
Z |AMAYA,t - ABee,t| S g(S X (S + 2)) (5)
t=1

and
Ple,=¢f]=1 Vte{l,...,S}

From time S + 1 until S + %, MAYA acts as the worst policy (start cycle)

S+5 S+§
Z |Amava,t — ABeet| < Z t (6)

t=5+1 t=5+1
. 5(558 +2) o
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and g
Ple; #£¢;] =1 Vte{S+1,...,S+§}.

And fromt = S + g + 1 until £ = 25 MAYA acts with the best policy (end cycle):

25 25

t
Z |[Amava,t — Apee,t| < Z 3
t=S+5+1 t=S+5+1
< S(75 +2) ®
16

and 5
Ple, =¢f] =1 Vte{S+§+1,...,28}.

Consider a full cycle, the event €, = £} appears S — % times. Let’s set
0,T—-S
q= {%J, r=max(0,7 —S) —¢S €10,9).

Here g is the number of full cycle S'in ¢ > .S, and r is the rest of a potential unfinished tail segment
of the started cycle. Let N, (T') = Zle 1e,—e+ with N, (T') < T equal to

N.(T) =min(T,S) +q- g + max(0,r — g)

If Sisevenand T" > S then

T S
N.(T)> —+ —
( )*2+4
9
Proof:
WithT =S+ qS +1r:
T S S r S
N*T__ - )= 5 3 7__>a
(T) (2+4) 5 2+max(0r 2) 0
where the minimum are archived with r = %
N.(T) 1 S
=¥l = >
Ple; = €f] T~ 25+ 7 (10)
In the cases where S is not not even
q:{%J, r=T-S-¢S€]0,9).
then 61 6 1
N.(T)=85+ %—i—max(o, r— %)
AsT =S5+ ¢S + r, we have
T S g S—-1 r
and for any r € [0, S),
S—1
: S— T
mﬁn(max(o,r — 221y~ 5) -0
Then s S—1 T S§+1 T S+1
q — q
>Z 442 - - 2t i, s 2T
N*(T)—2+2 4 2 1 Tata 2 Tty
T S+1 T S
" > 4210 s 42
NAT) 2 S+=—— > S+7 (11
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Which are better to the S parity case.
Then the maximal cumulative gap between MAYA-regret and Bee-regret with windows 7 = S'is

T
N.(T)T(T+2) N.(T), T(T+1)
A - A < —_— 1—
;| MAVYA, ¢ Bee | S 7 3 + ( T ) 5
T S, 1T(T+2) T S, 1.T7T(T+1)
<(=+2). =2 (=45 )/
_(2+4)T 8 +( (2+4)T) 2
1072 — —
< 07< + 12T — 35T — 25T (12)
32
R(m, 1,t)
A
m™ T
1+
e
T .I.I I Thee Thee

t

S 28 28 T

r=S5 ©re{f+1...,5-1}

Figure 75: Maximal cumulative gap between MAYA regret and bee regret in a non-stationary case,
measured with respect to window 7. The purple arrow highlights the period during which MAYA
chooses actions in accordance with the agent whose behavior is most distant from that of the bee.

Cyclic case : upper bound of MAYA error with windows 7 ¢ {% +1;...,8—1} . We consider

the case where % + 1 < 7 < S (see Fig75c). Assume that S are even. From time ¢ = 1 until S,
MAYA act as the best agent (stationary case 1) :

s
1
Z |Amava,t — ABee,t| < g(S x (8 +2)) (13)

t=1

and
Ple,=¢"]=1 Vte{l,...,S}.

From time S + 1 until S + 7, MAYA acts as the worst policy (start cycle)

S+3 S+z
Z |Amaya,t — Apee,t| < Z t
t=S+1 t=S+1
T
<—-(25+1+ <
4( i 2)
2 St T
<—-+—+- 14
<gts t3 (14)
and -
Ple, #e*]=1 Vte{S+1,...,5+ 5}
And from ¢ = § + 5 + 1 until £ = 2.5, MAYA acts as the best policy (end cycle) with :
25 25,
> |Amavar = Dpeet| <Y 3
t=5+7%+1 t=S+%+1
3S+Z+1)(S-3
L BS+51(S-3) )

- 4
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and .
Ple; =¢f] =1 Vte{S—|—§+1,...,QS}.

Consider a full cycle, the event ¢, = &7 appears S — 5 times. Let’s set

=115 = (T-8)-4Sen.S)

Let N.(T) = Zthl 1e,—e+ with N, (T') < T equal to
N(T)=S+q(S - g) + max(0,r — %)
and
N.(T)
T

Ple, = €f] = (16)
The maximal cumulative gap between MAYA-regret and Bee-regret with windows 7 & {% +
1;...,8 — 1} with S parity is

T
N(T) T(T+2

Z|AMAYA,t—ABee,t|S T() (8 )+<1—

=1

N*(T)) T(T+1)
T 2

< S+q(S— %) +max(0,r — F). T(T +2)

- T 8
S+q(S—7%)+max(0,r - F).. T(T+1)

- T )73

As N.(T) > T(1 — 53) without any condition on S parity, the maximal cumulative gap between

the MAYA-regret and the Bee-regret with windows 7 € {% +1;...,5—1}is

+(1

T
T
Z |Amava,t — ABee,t| <

t=1

(T+2) , BT+2Tr
6 S

a7

Cyclic case : upper bound of MAYA with windows 7 < % +1 In this case, there is no way to be
sure that the distance d() do not fails to identify the best agent. It’s equivalent to choose randomly
and the worst case corresponds to the upper bound of the worst policy. Then the maximal cumulative
gap between MAYA regret and Bee-regret with 7 < % + 1 in cyclic case are equivalent to Eq. 2.

Cyclic case : upper bound of MAYA with windows 7 > S In this case, the time required to
change the policy is over a cycle S > 1. Then, the bee switch two times in 7 and MAYA allows it
to act as the same agent. Then it is equivalent to act as a cyclic case with no windows (7 = T") Then
the maximal cumulative gap between MAYA regret and Bee-regret with 7 > S in cyclic case are
equivalent to Eq. 4.
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15 DISCLOSURE OF LLM USE

Large Language Models (LLMs) were used in a limited capacity during the preparation of this paper.
Their use was restricted to (i) spelling and phrasing assistance (to support a dyslexic co-author), and
(ii) suggesting improvements to Python scripts for graph generation and visualization. No part of
the scientific content, analyses, or conclusions was produced by LLMs.
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