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Abstract

Despite the impressive success achieved in vari-
ous domains, deep reinforcement learning (DRL)
is still faced with the sample inefficiency prob-
lem. Transfer learning (TL), which leverages prior
knowledge from different but related tasks to ac-
celerate the target task learning, has emerged as
a promising direction to improve RL efficiency.
The majority of prior work considers TL across
tasks with the same state-action spaces, while trans-
ferring across domains with different state-action
spaces is relatively unexplored. Furthermore, such
existing cross-domain transfer approaches only en-
able transfer from a single source policy, leaving
open the important question of how to best transfer
from multiple source policies. This paper proposes
a novel framework called Cross-domain Adaptive
Transfer (CAT) to accelerate DRL. CAT learns the
state-action correspondence from each source task
to the target task and adaptively transfers knowl-
edge from multiple source task policies to the tar-
get policy. CAT can be easily combined with exist-
ing DRL algorithms and experimental results show
that CAT significantly accelerates learning and out-
performs other cross-domain transfer methods on
multiple continuous action control tasks. The code
for this project are released, under the project page
of https://github.com/TJU-DRL-LAB/transfer-and-
multi-task-reinforcement-learning.

1 INTRODUCTION

Deep reinforcement learning (DRL) combining deep neu-
ral networks with RL algorithms [Sutton and Barto, 1998]
has achieved impressive success in multiple domains like
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game playing [Mnih et al., 2015, Silver et al., 2016] and
continuous control [Lillicrap et al., 2016]. However, DRL
is still faced with sample inefficiency problem that requires
large amounts of interactions with the environment. Transfer
learning (TL), as a technique to accelerate the learning pro-
cess of RL by leveraging prior knowledge, has become one
popular research direction to significantly reduce sample
complexity [Taylor and Stone, 2009, Zhu et al., 2020, Yang
et al., 2020a, 2021].

One major branch of transfer in RL focuses on leveraging ex-
ternal knowledge from pre-trained policies on source tasks,
which we call policy transfer. These approaches either distill
knowledge from source policies by imitation learning [Rusu
et al., 2016, Schmitt et al., 2018, Parisotto et al., 2016, Yang
et al., 2020a,b, Tao et al., 2021], or reuse source policies for
exploration based on the evaluation of source policies on
the target environment [Fernández and Veloso, 2006, Li and
Zhang, 2018]. However, all these methods require the same
assumption that source tasks share the same state-action
space with the target task so that the source policies can be
directly imitated or reused. Previous works transfer knowl-
edge between tasks with different state-action spaces based
on the hand-coded or learnt mapping [Taylor et al., 2007,
2008] in tabular settings, which can not be applied to more
complex tasks. In practice, tasks in real-world scenarios
may exhibit many differences, not only in the dynamics and
rewards but also in the mismatch between the state-action
space. An ideal method should be capable of handling such
a mismatch and realize more generalized transfer learning.

Recently, a few approaches consider how to deal with the
mismatch in the state-action space by mapping state spaces
into a common feature space using a state encoder [Gupta
et al., 2017, Wan et al., 2020]. However, these methods
suffer either of the following limitations, e.g., Gupta et al.
[2017] requires paired data of two tasks collected by pre-
trained policies or human labeling to train the encoder,
which is a strong assumption and usually expensive for
real-world problems. MIKT [Wan et al., 2020] only con-
siders the relevance of the state embedding and the target
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state to train the encoder, which makes the state embeddings
unable to reflect the correlation with the source state, and
finally influences the transfer performance. Some works
[Chen et al., 2019, Zhang et al., 2021] focus on learning
both the mapping between the state spaces and action spaces
for transfer. However, the former method can only deal with
discrete action spaces. The latter method adopts zero-shot
transfer through the mapping, which can not achieve opti-
mal performance on the target task. Furthermore, all above
methods only consider learning a one-to-one mapping and
transferring a single source policy. This paper instead tackles
the more difficult case of learning to transfer from multiple
tasks with different state-action spaces.

To this end, we propose a novel framework called Cross-
domain Adaptive Transfer (CAT), which adaptively transfers
multiple source policies with different state-action spaces.
Different from previous works, we do not require paired
data to learn the state-action correspondence or learn insuffi-
ciently trained state correspondence. Instead, CAT learns the
state-action correspondence from each source domain to the
target domain through a state encoder, action encoder, and
reverse state encoder using the trajectories of source poli-
cies. Since the source environment is inaccessible for more
information, we do not need reverse action encoders to get
the actions on the source environment. Besides, CAT learns
the state embeddings which can satisfy the properties pro-
posed in Section 3.2 to achieve better transfer performance
by proposing extra optimization objectives. Further, CAT
evaluates each source policy on the target task and learns
how helpful each source policy is to the target policy, and
then uses the performance as the measurement to determine
when and which source policies should be transferred. In
this way, CAT can adaptively transfer multiple cross-domain
policies into the target policy. In summary, our contributions
are as follows:

• Our novel transfer framework, CAT, consists of three
main components: an agent module, a self-adaptive
module, and a correction module, to solve the problem
of adaptive knowledge transfer from multiple source
policies with different state-action spaces.

• CAT learns more sufficiently trained state embeddings
and action embeddings using the correction module
and the agent module, which serves as the basis of the
following transfer process.

• CAT combines knowledge from source policy net-
works with the target policy network using an adaptive
weighting factor generated by the self-adaptation mod-
ule.

• CAT can be easily combined with existing DRL algo-
rithms and experimental results show that CAT effi-
ciently accelerates RL and outperforms other related
transfer methods on continuous control tasks with dif-
ferent state-action spaces.

2 BACKGROUND

This section introduces notation and defines our problem
setting. We typically model RL problems with a Markov
decision process (MDP), which can be described as a tuple
M = 〈S,A,R, T , γ〉, where S and A are the sets of states
and actions, respectively; T : S × A × S 7→ [0, 1] is the
state transition probability function;R : S ×A× S 7→ R

is the reward function which gives returns on the agent’s
performance; and γ is the discount factor for future rewards.
A policy π : S×A 7→ [0, 1] is defined as a state-conditioned
probability distribution over actions and the objective of
the agent is to find an optimal policy π∗ maximizing the
expected discounted return R =

∑T
i=t γ

i−tri.

Policy Gradient (PG) Algorithms. Policy gradient meth-
ods are widely used to directly optimize the policy π parame-
terized by θ. Proximal policy optimization (PPO, Schulman
et al. [2017]) is currently one of the most efficient PG meth-
ods. In each iteration, PPO tries to calculate a new policy
πθ and ensure that the difference between πθ and the rollout
policy πθold is not too large by adding a constraint during
the training process. The following loss is minimized over
multiple epochs:

LθPPO = −Eτ
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
where rt(θ) = πθ(at|st)

πθold (at|st)
is the ratio of the action probabil-

ities under the rollout policy and current policy and Ât is
the estimated advantage. The value network Vψ is updated
with temporal difference learning: LψPPO = −Eτ [(Vψ(st)−
V targ
t )2]. The overall PPO minimization objective is:

LPPO(θ, ψ) = LθPPO + LψPPO (1)

Problem Settings. Same-domain transfer learning consid-
ers a source MDPMsource = 〈S,A,Rsource, Tsource, γ〉 and
a target MDPMtarget = 〈S,A,Rtarget, Ttarget, γ〉, where the
two MDPs have the same state and action spaces, but other
properties such asR or T may be different. A standard ob-
jective is to accelerate learning the target task by leveraging
Msource (relative to learning from scratch).

In cross-domain transfer, the state and action spaces can be
different:Msource = 〈Ssource,Asource,Rsource, Tsource, γsource〉
and Mtarget = 〈Starget,Atarget,Rtarget, Ttarget, γtarget〉. How-
ever, current TL methods are only able to successfully distill
knowledge from a single source policy. This paper consid-
ers the problem of cross-domain transfer between multiple
source tasks and a target task. We denote this as a series
of source MDPs ΠM = {M1,M2, · · · ,Mn} and a target
MDP Mtarget where Mi represents the i-th source MDP
for convenience. We generally assume there are some high-
level commonalities between the MDPs (e.g., a quadruped,
hexapod, and octopod robots may have qualitatively similar
gaits). In this work, our objective is to adaptively transfer
knowledge from ΠM to accelerate the learning process.



Figure 1: An illustration of our Cross-domain Adaptive Transfer framework which contains three main components:
(a) Self-adaptation Module. (b) Correction Module. (c) Agent Module. The state encoders φn are updated using
{LPPO, LMI, Lcyc, Lcorr}. The reverse state encoders φ−n are updated using {Lcyc, Lcorr}. The action encoders en are updated
using {Lcorr}. Note that we only show the target policy network, and the value network is the same.

3 METHODOLOGY

In this section, we first introduce our whole framework and
each component. Then, we describe how to learn state and
action embeddings and how to adaptively transfer multiple
cross-domain source policies to the target task. Finally, we
describe CAT combining with a specific DRL algorithm,
PPO [Schulman et al., 2017] in detail.

3.1 FRAMEWORK OVERVIEW

Figure 1 illustrates the proposed Cross-domain Adaptive
Transfer framework (CAT) which contains three compo-
nents. The three components described are not completely
novel. However, we integrate them into CAT to better solve
the cross-domain transfer problem and our empirical abla-
tion studies validate their effectiveness and importance (see
Section 4.2).

Correction Module Instead of only considering the rel-
evance between state embedding and the target state in
MIKT [Wan et al., 2020], we propose four properties that
the learned state embedding should satisfy and build two
extra optimization objectives to learn state and action em-
beddings in the correction module, described in Section 3.2.
A newly proposed correction module (see Figure 1(b)) is
used to learn state embeddings that can satisfy these proper-
ties and to learn action embeddings that can better capture
the semantics of actions of the source and target tasks, both
of which are described in Section 3.2. The goal of the cor-
rection module is to learn embeddings to distill knowledge
from multiple source policies into the target task.

Self-Adaptation Module Inspired by existing same-
domain transfer methods (e.g., Fernández and Veloso
[2006]), we want our method to decide when and which
source policy is better to transfer by evaluating them on
the target environment. The self-adaptation module (see
Figure 1(a)) evaluates the source policies (via the relevant
embeddings) for a fixed number of steps in the target envi-
ronment. The average performance lets us set weighting fac-
tors so that we can combine these different source policies.
We explain this idea in the context of CAT in Section 3.3.

Agent Module Once the embeddings are trained (via the
correction module) and the source task policies are weighted
(via the self-adaptation module), the agent is now ready to
learn from both environmental interaction and guidance
from the transferred policies. The agent module allows our
agent to distill knowledge from source policies, select ac-
tions to execute in the target environment, and learn a high-
performing policy. See Figure 1(c) and Section 3.3.

3.2 LEARNING STATE-ACTION
CORRESPONDENCE

This section considers how to learn meaningful state and
action correspondences. We first introduce a set of state
embedding spaces parameterized by a set of encoder func-
tions {φ1, φ2, · · · , φn}. Each state embedding is defined as
Sembi := {φi(s)|s ∈ Starget, φi(s) ∈ Ssourcei}, which will
be used to map useful knowledge from source policies into
the target policy.

In order to extract more useful knowledge, each state em-



bedding Sembi should satisfy the following four properties:
(1) The embeddings should be task-aligned to maximize the
cumulative discount rewards in the target MDP. (2) The in-
put states and state embeddings should be highly correlated
so that the agent can receive the most appropriate guidance
from source policies in the current state. (3) The embed-
dings should preserve enough information about the source
task so that φi(s) can be reconstructed to the target task as
consistently as possible. (4) In addition to the correspon-
dence on the single state, ss and st, the state embedding
should keep the correspondence between state sequences of
the source and target tasks.

To achieve property (1), we use the policy gradient to up-
date the state encoder parameters [Wan et al., 2020, Chen
et al., 2019]. Property (2) can be achieved by maximizing
the mutual information between states and embeddings to
achieve a high correlation as follows [Wan et al., 2020]:

I(s; e) = H(s)−H(s|φ(s))

= H(s) +Es,e[log p(s|e)]
= H(s) +Es,e[log qω(s|e)]
+Ee [DKL(p(s|e)||qω(s|e))]
≥ H(s) +Es,e[log qω(s|e)]

where H denotes the differential entropy. The above opti-
mization goal is known as a variational information maxi-
mization algorithm and the variational distribution qω(s|e)
approximates the true conditional distribution p(s|e). So the
final optimization goal can be written as:

LMI(φ) = −Es∼ρs
[
logqω

(
s|φ(s)

)]
(2)

where ρs denotes the state distribution of the target policy.

However, relying only on the above two properties does not
guarantee good enough transfer performance of the state em-
beddings. Property (3) is also applied in Gupta et al. [2017],
and Chen et al. [2019] only satisfies property (4) by keeping
the correspondence on the single state. Instead, we argue
that state embeddings that satisfy all four properties will
achieve better transfer performance — this is empirically
verified in our experiments.

To this end, in addition to using policy gradient and mu-
tual information to train state embeddings, we propose the
correction module (Figure 1(b)) to satisfy the remain-
ing two properties. We introduce a set of reverse state
embeddings parameterized by a set of decoder functions
{φ−1 , φ

−
2 , · · · , φ−n } and each reverse state embedding is de-

fined as S−embi := {φ−i (s)|s ∈ Ssource, φ
−
i (s) ∈ Starget}.

In our method, we use the reverse state embeddings in two
ways to build two types of optimization objectives corre-
sponding to properties (3) and (4), respectively. Firstly, a
pair of meaningful mapping functions φ and φ− should be
as invertible as possible: φ−

(
φ(st)

)
≈ st, φ

(
φ−(ss)

)
≈ ss,

so that the state embeddings Semb can preserve as much
information about the source domain as possible [Gupta
et al., 2017]. Therefore, it is expected that state embeddings
Semb can map from the embedding spaces back to their
original state spaces. To satisfy property (3), we define the
cycle-consistency loss as follows:

Lcyc(φ, φ
−) = Est

[
||φ−

(
φ(st)

)
− st||2

]
+Ess∼τs

[
||φ
(
φ−(ss)

)
− ss||2

] (3)

where τs denotes the trajectories of the source policies. Sec-
ondly, we minimize the deviation between the mapping state
sequence and the real state sequence to satisfy the prop-
erty (4). Specifically, trajectories 〈ssT , asT , ssT+1

〉 sampled
from source buffers which are collected during the training
of source policies are mapped to the target environment
〈φ−(ssT ), e(asT ), φ−(ssT+1

))〉 through the reverse state
encoders and action encoders. Then, given the initial state
ss0 of each source trajectory, we can obtain a true trajectory
〈〈φ−(ss0), e(as0), st1)〉, . . . , 〈stT , e(asT ), stT+1

)〉〉, start-
ing with the mapped initial state φ−(ss0), by interacting
with the target environment using each mapped action
e(asT ) at each following state. Figure 2 shows the first
step derivation calculation process. To satisfy property (4),
the correction loss calculates the total derivation over trajec-
tories as follows:

Lcorr(φ, φ
−, e) = Ess∼τs,st∼τt

[
||φ−(ssT+1

)− stT+1
||22
]

(4)

where τs and τt denote the sampled trajectory and the true
trajectory, respectively. Note that it is not necessary for
the reverse state embeddings to satisfy properties (1) and
(2) since they just need to make sure the successful recon-
struction of state embeddings and keep the correspondence
between state sequences. Therefore, the reverse state en-
coders are updated only using the cycle-consistency loss
and the correction loss in the correction module.

Next, we introduce how to learn meaningful action corre-
spondence which can capture the semantics of actions in
the correction module. We introduce a set of action embed-
ding spaces parameterized by a set of encoder functions
{e1, e2, · · · , en}. We follow the main idea that the seman-
tics of actions can be reflected by their effects on the en-
vironment, which can be measured by the state transition
probability in RL [Chen et al., 2019]. The action embed-
dings can satisfy the property that the distance should be
adjacent if the actions have similar effects by minimizing
their effects on the environment, which can be reflected
in Equation 4. Therefore, the action encoders are updated
using the correction loss in the correction module.



Figure 2: The first step of computing the distance of the
obtained trajectory and the real trajectory.

3.3 ADAPTIVE POLICY TRANSFER

In this section, we describe how to transfer knowledge adap-
tively from multiple source policies with learned state-action
correspondence through the correction module. The first is-
sue is how to determine when and which source policy
should be transferred to the target task. This is achieved
through the self-adaptation module, which evaluates the
source policies and generates the weights for transferring
different source task policies (Figure 1(a)). Specifically, the
self-adaptation module first evaluates each source policy’s
performance on the target environment and uses the total
return ui on a fixed number of episodes as the weight of
each source policy in the next iteration after passing through
the softmax function:

wi =
exp(ui)∑N
n=1 exp(un)

This approach is common but the most intuitive and in-
terpretive way to measure each source policy. With the
weighting factor generated by the self-adaptation module,
the agent module (Figure 1(c)) makes decisions by adap-
tively drawing out suitable knowledge from multiple source
policies and value networks, denoted as πθ′i and Vψ′

i
respec-

tively. In general, we assume the source and target policy
and value networks to have the same number of hidden
layers Nπ for ease of exposition. Specifically, the agent
module serves the current state st and feeds it to the set
of encoders to produce state embeddings Semb, which can
be readily passed through the source networks to extract
{zjθ′i , z

j
ψ′
i
, 1 ≤ j ≤ Nπ, 1 ≤ i ≤ N}, representing the pre-

activation outputs of the j-th hidden layers of the i-th source
policy and value networks. To get the pre-activation repre-
sentations {zjπθ , z

j
Vψ
} in the target networks, we used two

weighted linear combinations, one for the outputs from the
source and target networks and the other for outputs from
multiple source policy networks:

zπjθ
=pzjθ + (1− p)

N∑
i=1

wiz
j
θ′i

zV jψ
=pzjψ + (1− p)

N∑
i=1

wiz
j
ψ′
i

(5)

where wi is the weight of source policy πi. p ∈ [0, 1] is an

increasing factor over time that controls the decrease of the
influence of source policies on the target policy — A higher
value of pmeans the lesser influence. Besides, a higher value
of wi means the average performance of the corresponding
source policy on the target task is higher. Such a source
policy can provide more beneficial knowledge. Meanwhile,
at the beginning of the training, the agent selects an action
relying more on source policies to gain assistance. As the
training continues, the agent should focus more on the target
task to avoid negative transfer. In this way, CAT more fully
combines knowledge from multiple source task policies to
facilitate more efficient learning.

3.4 CAT-PPO

This section details CAT-PPO, where we integrate PPO
[Schulman et al., 2017] into our framework. As shown in
Algorithm 1, other DRL algorithms could easily be incor-
porated instead. CAT-PPO first initializes all the network
parameters needed in the learning process (Line 1). In each
iteration, the correction module first samples trajectories
from each source task buffer to train all encoders following
Section 3.2 (Lines 4-6). Then, the self-adaptation module
evaluates each source policy and gets the corresponding
weight through state and action embeddings (Line 8). Next,
the agent module outputs actions by combining knowledge
from the target policy network and source policy networks
(see Section 3.3). These actions are executed in the envi-
ronment to collect trajectories (Line 10). Finally, the agent
module computes the RL loss (Equation 1) and the mutual
information loss (Equation 2) for the update (Lines 11-13).

Algorithm 1: CAT-PPO

1 Initialize: state encoder parameters φi, reverse state
encoder parameters φ−i , action encoder parameters ei,
target policy and value network parameters θ, ψ,
source buffer Di

2 repeat
3 // Correction module
4 Sample a batch of trajectories from each Di
5 Update each φi, φ−i . see Eq. (3)
6 Update each φi, φ−i , ei . see Eq. (4)
7 // Self-adaptation module
8 Evaluate each source policy πi and calculate wi
9 // Agent module

10 Collect trajectories τ by combining the target policy
network and source policy networks using wi .
see Eq. (5)

11 for each batch m ∈ τ do
12 Update θ, ψ with∇θ,ψLPPO(θ, ψ, φ)
13 Update each φi with

∇φLMI(φ) +∇φLPPO(θ, ψ, φ)

14 until reaching maximum training steps;



4 EXPERIMENTS

In this section, we conduct extensive experiments to verify
the effectiveness of our proposed algorithm compared with
previous cross-domain transfer methods. Further, we design
several ablation studies to analyze the contribution of each
proposed module to the transfer performance. We also test
the influence of different transfer manners in CAT on the
final performance to validate the choice in this paper, which
is detailed in the Appendix. Results are averaged over 5 dif-
ferent random seeds and each seed with 2 million timesteps
of environment interactions. Please see Appendix for the
network structure and parameter settings used in this paper.

Environments: We use a series of environments provided
by Wang et al. [2018], which have a similar physical struc-
ture to a centipede. In these environments, the Centipede
agent consists of repetitive torso bodies, each of which has
two legs, and needs to learn to run in a particular direction.
The agent is rewarded for running speed and whether it
runs within a valid range and penalized for energy cost and
resistance obstruction from the ground. To make the experi-
ment more convincing, we consider the CrippleCentipede
agent, which has two back legs disabled and we denote it as
CpCentipede. In addition, we also considered the standard
Ant-v2 task from the MuJoCo suite. Figure 3 shows an il-
lustration of all the different scenarios mentioned above. All
the source policies are obtained by learning from scratch
using the standard DRL method PPO. Please see Appendix
for a more detailed description.

Baselines: Because the cross-domain transfer methods men-
tioned in Section 1 suffer various limitations and can not
tackle our more difficult setting, we consider the following
three baselines:

• Standard DRL method PPO [Schulman et al., 2017],
which learns from scratch in the target task;

• MIKT [Wan et al., 2020], which realizes cross-domain
knowledge transfer with a single source policy;

• MIKT-MULTI, which is an extended version of MIKT
to the setting of multiple source policies. MIKT-
MULTI uses a fixed weighting factor to extract knowl-
edge from each source policy, which can be seen as a
version of CAT without the self-adaptation module and
correction module.

4.1 EXPERIMENTAL RESULTS

In our experiments, we design six different combinations
of environments to extensively validate the efficiency of
our proposed method. For example, “4,6-8” represents Cen-
tipedeFour and CentipedeSix transfer to CentipedeEight
in Figure 4(a). All the source policies are trained from
scratch on source tasks. We plot the average episodic re-
turns on the y-axis (mean and standard deviation). In each

(a) CentipedeFour (b) CentipedeSix (c) CentipedeEight

(d) CpCentipedeSix (e) CpCentipedeEight (f) Ant

Figure 3: Our continuous control tasks on MuJoCo:
Centipede-{4,6,8}, CpCentipede-{6,8} and Ant-v2.

plot, we only consider the source policy which can achieve
better transfer performance of MIKT since MIKT can only
transfer a single source policy. For example, only “6-8” is
plotted in Figure 4(a) since the source policy from Cen-
tipedeSix provides better transfer performance.

Figure 4 shows the performance of CAT and the other three
baselines in different combinations of environments. We
can see that the performance of PPO learning from scratch
is the worst because of the sample inefficiency and the lack
of the help of expert knowledge. Although MIKT achieves
better performance than PPO, it is worse than CAT in terms
of learning speed and final performance. MIKT-MULTI per-
forms even worse than MIKT in most cases. This indicates
that using fixed (or manually adjusted) transfer weights
among multiple source policies limits access to more ben-
eficial knowledge or even causes negative transfer, which
is exactly what our proposed method aims to solve. This
phenomenon further validates the importance of our self-
adaptation module and correction module. Finally, we can
see that our method (CAT) significantly outperforms all
baselines and achieves the highest average rewards with the
fastest speed. This is because CAT learns more sufficiently
trained state correspondence by satisfying our proposed
properties at the same time to lay the foundation for our
transfer framework. In addition, it effectively leverages the
evaluation performance as the weights of different source
policies in the target environment so that it can infer when
and which source policy is more beneficial to achieve adap-
tive knowledge transfer.

Other domains and more than two source tasks: In addi-
tion to Centipede-x, we have some other series of environ-
ments, such as InvPendulum-x, Reacher-x, and Snake-x,
where x represents the number of joints. In each series of
environments, the robotics share an inherent structure that
could be exploited for transfer learning. In these environ-



(a) Target Env: CentipedeEight (b) Target Env: CpCentipedeEight (c) Target Env: CentipedeSix

(d) Target Env: CentipedeSix (e) Target Env: CentipedeEight (f) Target Env: CentipedeEight

Figure 4: Performance of our proposed algorithm (CAT) and other methods (PPO, MIKT, and MIKT-MULTI) on different
combinations of continuous control tasks. We plot the number of timesteps of environment interaction on the x-axis and the
average episodic returns on the y-axis (the curves and shadow areas represent the mean and standard deviation, respectively).
“x, y − z” represents x and y transfer to z, while “x− z” is transfer from x to z.

ments, the centipede robotics have the most complex physi-
cal structures and CAT can solve these tasks well. Therefore,
we have sufficient reasons to believe that CAT can achieve
significant performance in other domains.

To prove this, we choose Snake-x as the additional environ-
ment, which has a similar structure to a snake. The goal of
the agent is to move as fast as possible but the average re-
wards will eventually converge to around 400. We consider
400 as the solved score for SnakeSix and take the average
required timesteps (M means one million steps) required
for convergence as the evaluation criterion. We supplement
the experiments with three source policies to verify that
CAT can scale to more source tasks. Besides, we also add
one source policy Ant with a completely different physi-
cal structure to verify the ability of CAT to avoid negative
transfer.

Table 1 shows the performance of CAT and learning from
scratch in our additional experiments, where “3,4,5-6” rep-
resents SnakeThree, SnakeFour, and SnakeFive transfer
to SnakeSix. As the result shows, CAT can extract knowl-
edge from more source policies. From experience, robots
with more similar morphology can provide more knowledge,
corresponding to robots with a similar number of joints in
our experimental setting. CAT can provide accurate weights
of each source policy based on the self-adaptation module
when using more than two source tasks. Therefore, we only
use two source policies for simplicity in our main experi-
ments. Besides, CAT can also significantly improve learning
efficiency even if there is one policy Ant which is expected

to provide negative transfer. This is because CAT has two
mechanisms to avoid negative transfer. First, if a source
policy that may cause negative transfer is added, it will get a
particularly small weight, which will not affect the transfer
performance. Second, CAT uses two weighted linear combi-
nations. At the beginning of the training, the agent selects
an action relying more on source policies to gain assistance
but focuses more on the target task as the training continues.
In this way, CAT can effectively avoid negative transfer.

Table 1: Performance of CAT and PPO on Snake-6, where
‘M’ denotes million training steps.

Method Time to Threshold Rewards

PPO 1.34M (±0.10) 449.44 (±15.01)
CAT(3,4,5-6) 0.70M (±0.09) 452.10 (±17.12)

CAT(3,4,Ant-6) 0.80M (±0.07) 458.70 (±17.55)

4.2 ABLATION STUDIES

To better illustrate the effectiveness of our proposed method,
we analyze the contribution of the mutual information loss
to verify the necessity of the correction module for the state
embedding learning. Besides, we remove the correction
module to see whether the CAT agent can achieve good
performance only by relying on the self-adaptation module
and state embeddings that can not satisfy properties (3) and
(4). The ablation studies are designed as follows:



(a) Target Env: CentipedeEight (b) Target Env: CpCentipedeEight (c) Target Env: CentipedeSix

(d) Target Env: CentipedeSix (e) Target Env: CentipedeEight (f) Target Env: CentipedeEight

Figure 5: Ablation studies on the contribution of the mutual information loss and the correction module: CAT w/o MI and
CAT w/o corr.

• CAT w/o MI: Update state encoders without LMI.

• CAT w/o corr: Update state encoders without
{Lcyc, Lcorr}.

• CAT w/o corr and adapt: Note that MIKT-MULTI can
be seen as a version of CAT without the self-adaptation
module and correction module, which we have shown
in Figure 4.

Figure 5 shows the influence of these different parts on the
performance of CAT-PPO. Before analyzing the experimen-
tal results, we note that it is usually harder to learn in the
early stages of training for MIKT w/o MI, which removes
the mutual information loss, as discussed earlier in Wan
et al. [2020]. But we can see that CAT w/o MI still has
very impressive performance compared to CAT w/o corr in
most cases. This indicates it still achieves good transfer per-
formance even without the mutual information loss, which
confirms the effectiveness of our proposed properties and
correction module. Besides, CAT w/o corr has a significant
improvement compared to MIKT-MULTI, which confirms
the effectiveness of the self-adaptation module. It is obvious
that CAT is the most performant in all methods. This sup-
ports our view that the sufficiently trained state embeddings
can indeed improve the transfer performance by satisfying
the four properties at the same time.

Table 2 shows the average episode rewards without different
modules in centipede 4,6-8 including the self-adaptation
module. Note that for simplicity we do not analyze the
contribution of the self-adaptation module separately in Fig-
ure 5, which can be verified by comparing the performance
of CAT w/o corr and MIKT-MULTI. As the result shows,
CAT is the most performant in all methods. All above re-

sults confirm that each component in CAT is necessary and
important for effective and efficient transfer in DRL.

Table 2: Contributions of different modules of CAT in
Centipede4,6-8.

Method Average Return

PPO 1660.7 (±284.5)
MIKT (6-8) 2940.0 (±357.0)
CAT 4684.4 (±452.1)
CAT w/o MI 3972.1 (±312.0)
CAT w/o corr 3097.8 (±289.8)
CAT w/o self-adapt 3381.4 (±286.7)
MIKT-MULTI (w/o corr and self-
adapt)

2441.5 (±413.5)

5 RELATED WORK

Same-domain transfer and cross-domain transfer
In same-domain transfer, one mainstream method to ac-
celerate DRL is policy distillation, which is extended by
Rusu et al. [2016]. Parisotto et al. [2016] mimics the be-
havior of source policies during the target policy learning
process. However, this method highly relies on the task sim-
ilarity, which restricts its generality. Schmitt et al. [2018]
presents an auxiliary objective which distills knowledge
from source policies by minimizing the cross-entropy loss
between the source and target policy distributions over ac-
tions. However, this method uses an evolution strategy to
adjust the hyperparameters which increases the computa-
tional complexity. Tao et al. [2021] propose to combine



multiple transfer manners, like policy distillation and value
function reuse to facilitate more efficient DRL. However,
they assume that the reward function of the target task is
known, which is difficult to achieve in our problem setting.
Successor features and generalized policy improvement also
reuse source policies (value functions) directly in the target
task [Barreto et al., 2017, 2019]. However, all these meth-
ods share the same limitation that cannot be applied to tasks
with different state-action spaces which is more practical in
real-world scenarios. Recently, Gupta et al. [2017] learns
invariant state feature spaces and matches the distributions
of optimal trajectories in the source task to transfer skills
between different agents. However, they need paired data
to train embedding functions which is very expensive in
real-world problems. Zhang et al. [2021] learn the mapping
between the state-action space to reuse the source policy
directly, which may not achieve optimal performance on the
target task. Our work is most relevant to Mutual Informa-
tion Based Knowledge Transfer (MIKT) [Wan et al., 2020].
Although MIKT is a successful approach for cross-domain
transfer, it is still faced the problem of insufficiently trained
state embeddings and the limitation of being able to transfer
only a single source policy. CAT firstly proposes the proper-
ties that state embeddings should satisfy at the same time
and achieves adaptive knowledge transfer from multiple
source policies with different state-action spaces.

Domain Randomization and Domain Adaptation in RL
Domain randomization aims to learn a policy with gen-
eralization capability which is trained on multiple source
domains, hoping to perform well in the target domain [To-
bin et al., 2017, Slaoui et al., 2019]. It focuses more on
common features between domains by training on multiple
source domains. However, this kind of method requires mul-
tiple source domains to be available for training, which is
a strong assumption compared to the requirement that only
pre-trained source policies are needed. Besides, domain ran-
domization is very sensitive to changes in the number of
domains, which greatly affects the complexity of training.
Some domain adaptation works in RL use image-to-image
translation to pair the pixel-based states in the source and
target domain, but it has additional computational cost over-
head for the image translation [Pan et al., 2017, Gamrian
and Goldberg, 2019]. Other works focus on learning a com-
mon state representation to solve the problems mentioned
above [Xing et al., 2021, Roy and Konidaris, 2021]. How-
ever, works in this field do not have a clear benchmark for
the difference between the two domains and most of them
focus on the problem of observation adaptation. While the
source domain Dsource and target domain Dtarget have differ-
ent state space S (visual observations), the action space A
and other properties should remain the same or have some
similarity. The main difficulty in our work is how to achieve
knowledge transfer among totally different MDPs, which is
a more difficult task that these methods cannot be applied.

6 CONCLUSION AND FUTURE WORK

In this work, we firstly propose a novel framework called
Cross-domain Adaptive Transfer (CAT) which adaptively
transfers knowledge from multiple cross-domain policies.
CAT is composed of three main components: the agent mod-
ule, the self-adaptation module, and the correction module.
Using the agent module and correction module, we firstly
propose four properties that the learned state-action corre-
spondence should satisfy. Then we design the corresponding
optimization objectives to learn state and action embeddings
to deal with the mismatch in the state-action space of source
and target tasks. The self-adaptation module learns to de-
cide when and which source policy is better to transfer by
evaluating them on the target environment. The average
performance is used to derive the weighting factors so that
we can combine these different source policies. The agent
module allows our agent to distill knowledge from source
policies, select actions to execute in the target environment
and learn a high-performing policy. Experimental results
show that CAT significantly accelerates RL and outperforms
other cross-domain transfer methods. In this paper, we use
the average performance over a fixed number of episodes
as the weight of each source policy in the next entire itera-
tion. However, each source policy may only be helpful in a
part of the state space. It’s worthwhile investigating which
source policy performs better in which region to facilitate
fine-grained transfer. Another direction is to learn a unified
embedding space for all source domains and the target do-
main to improve the generalizability of the method. Besides,
leveraging prior human knowledge Zhang et al. [2020] or
synthesizing white-box knowledge Cao et al. [2022] for a
better transfer learning is worth further study.
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