
KS-GNN: Keywords Search over Incomplete Graphs
via Graphs Neural Network

Yu Hao
University of New South Wales

NSW, Australia
yu.hao@unsw.edu.au

Xin Cao∗
University of New South Wales

NSW, Australia
xin.cao@unsw.edu.au

Yufan Sheng
University of New South Wales

NSW, Australia
yufan.sheng@unsw.edu.au

Yixiang Fang
Chinese University of Hong

Kong, Shenzhen, China
fangyixiang@cuhk.edu.cn

Wei Wang
The Hong Kong University of Science

and Technology, Guangzhou, China
weiwcs@ust.hk

A Additional Experimental Details

For PCA-based methods, the dimensionality reduction is performed via singular value decomposition
(SVD) of the input one-hot encoding matrix X. As mentioned above, we utilize grid search for
tuning the hyper-parameters. In particular, for the learning-based methods, including GraphSAGE
and KS-GNN, the learning rates are selected from {0.1, 0.01, 0.001, 0.0001}. For the convolutional
neural networks (i.e. GraphSAGE, SAT, Conv-PCA, KS-PCA, KS-GNN), we swept the number of
hidden layers in the set {1, 2, 3, 4, 5}. For the other hyper-parameters used in KS-GNN, such as
λ1, λ2 and λ3, we tune them from 0.1 to 1 with a step of 0.1. As for the margin hyper-parameter
m in Eq.(6), we search it from {0, 0.1, 0.5, 1, 2.5, 5, 10}. For SAT, we follow the hyper-parameter
setting in [1], such as tuning λ3c from 0.1 to 100. In the conducted experiments, the default hidden
dimension is selected from {128, 256, 512} according to the result of grid search, while the default
dimension of output node embedding is 64.

B Datasets

CiteSeer 2 is a citation network, where each node represents a document and edge represents a
citation [2, 3]. The keywords on each node are extracted by stemming and stop word removal.

Video & Toy 3 are two co-purchase networks, which are sampled from Amazon Video Games and
Amazon Toys respectively [4]. The nodes represent the products, and the keywords represent the
features. Two nodes are connected if they are both purchased by one customer. However, there are
some differences between the two datasets. Video contains more keywords while Toy has more
connections.

∗Corresponding author.
2https://github.com/kimiyoung/planetoid/raw/master/data
3http://deepyeti.ucsd.edu/jianmo/amazon/index.html

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/kimiyoung/planetoid/raw/master/data
http://deepyeti.ucsd.edu/jianmo/amazon/index.html

DBLP 4 is a co-author network from DBLP. The nodes represent the researchers, while the keywords
associated with each node are extracted from the abstracts of the author’s work. The edges represent
the co-authorship between the authors.

Table 1 presents detailed overview of the relevant statistics.

Table 1: Statistics of experimental datasets.
Datasets #Nodes #Edges #Keywords
CiteSeer 3,327 9,104 3,703
Video 20,882 66,003 11,514
Toy 20,682 224,603 4,114
DBLP 32,361 69,448 4,094

C Baseline Methods

GraphSAGE [5] is a representative GNN-based graph embedding method, which aggregates neigh-
bor information by multiple convolution layers. To address keyword search, GraphSAGE needs an
additional encoder before the forward propagation. Therefore, we add an MLP encoder, denoted by
ψ, for GraphSAGE, and this encoder can also be used to generate query embedding with ψ(xq). To
be compared with KS-GNN, GraphSAGE employs the max-pooling operator in this work.

BLINK+SAT is a combination method, which is based on a conventional keyword search method
BLINK [6] and a state-of-the-art missing-data completion GNN model SAT [1]. This baseline method
leverages SAT to predict and complete the missing keywords and edges first and then utilises BLINK
to process keyword search on the new graph.

PCA [7] reduces the dimensions of the input one-hot encoding feature matrix X from M to d by
learning the basis U with Xp = XU>. For the query process, given a query q, the query embedding
hq equals xqU

>. The query answers are returned according to the similarity scores directly computed
by Xpx

>
q .

Conv-PCA is a naive method proposed in Section 4.1. In addition, based on the discussion of
KS-GNN, we further propose a variant of Conv-PCA that leverages U to reconstruct M -dimension
embedding from hv , namely KS-PCA. Formally, the aggregation of KS-PCA is:

hl+1
v = max({αhl

uU,∀u ∈ N (v)} ∪ {hl
vU})U>. (1)

The query process of KS-PCA is the same as that of Conv-PCA.

D Searching for Subgraph Algorithm

Algorithm 1 is a BFS-based algorithm that searches for a subgraph when given a returned root node
vr by KS-GNN and a query q. When checking a node embedding, Algorithm 1 needs a threshold
parameter σ which can help indicate if the node contains a keyword. Specifically, for a node v, the
original keyword information can be restored from its node embedding with g(zv) ∈ RM . For each
element in g(zv), we assume that the node v contains a word wi if and only if when g(zv)[i] > σ.
Based on this, we can leverage the BFS algorithm to check the neighbors of the root node vr, thereby
getting a subgraph when all keywords in the query have been found or all nodes have been visited.

E Additional Experimental Results

E.1 Query Processing Efficiency

As discussed above, our proposed KS-GNN is able to answer the query within the time complexity
of O(dN). Figure 1 shows the time efficiency experiments conducted on DBLP dataset. In each

4https://dblp.uni-trier.de

2

https://dblp.uni-trier.de

Algorithm 1: Search for Subgraph
Input: The trained output node embedding Z, query q = (wq1 , wq2 , ..., wqm), root node vr,

encoder f , decoder g, threshold σ
Output: The subgraph SGr.
SGr := ∅ ;
Sn := vr);
// initialize Sn

S′ := ∅ ;
// the set of nodes having been visited
while q 6= ∅ and SGr 6= ∅ do

for wi ∈ q do
u, swi

= IndexMax({g(zu)[wi], u ∈ Sn});
if swi

> σ then
q := q.delete(wi);
SGr := SGr.add(u);

if q = ∅ then
break;

S′.update(Sn);
Sn := {N (v), v ∈ Sn}/S′;

return SGr;

experiment, we set d to 64 and change the number of nodes from 102 to 107. The experiments are
conducted based on the RTX 2080 Ti GPU and PyTorch. When the nodes in DBLP are not sufficient,
we add some synthetic nodes to meet the number requirements. As the figure shows, KS-GNN is able
to process the query linearly, and the run-time changes slightly when the number of nodes changes
from 102 to 107.

102 104 106
0

5

10

15

Nodes

Ti
m

e
(m

s)

Figure 1: Query processing time in seconds (ms).

E.2 Performance of Keyword Search

Table 2 and Table 3 shows the results of experiments on keyword search in graphs with only missing
keywords for Hits@10 and Hits@50 scores, respectively. From the tables, we can find that the results
are consistent with the experimental results shown in Section 5.3, where our proposed KS-GNN
significantly outperforms the baseline methods. We further include the variances of the results of
KS-GNN varying the seed of edge and keyword sampling as shown in Table 4 and Table 5. These
tables show the robustness of our proposed method.

In addition, it is worth noting that answering keyword search queries with high Hits@10 scores is
more challenging than that of Hits@100. However, KS-GNN is able to achieve a Hits@10 score of
42.5% on the Video dataset with rw = 0.3 for 9-keyword queries, while the best keyword search
performance of other compared methods is achieved by KS-PCA, which is only 7.2% on the same
task. It can also be found that GraphSAGE cannot return a good answer when the number of answers

3

Table 2: Method performance by Hits@10 in graphs with only missing keywords.

Datasets rw 0.3 0.5 0.7

nq 3 5 7 9 3 5 7 9 3 5 7 9

CiteSeer

GraphSAGE 0.20 0.10 0.50 0.15 0.05 0.40 0.65 0.00 0.40 0.85 0.70 0.50

BLINK+SAT 3.96 4.40 4.86 4.03 2.75 2.54 3.78 2.71 1.94 1.39 1.65 1.02

PCA 6.80 3.50 2.00 1.60 5.90 2.80 1.00 1.60 7.40 3.90 3.10 2.80

Conv-PCA 0.80 2.30 1.90 1.10 1.11 1.40 2.60 2.60 2.90 2.10 1.50 2.60

KS-PCA 8.20 7.70 10.20 14.20 5.40 8.80 9.01 10.70 6.50 7.10 9.10 11.20

KS-GNN 8.30 10.80 15.19 14.95 7.72 10.68 16.68 17.48 8.11 11.27 16.19 17.87

Video

GraphSAGE 0.10 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BLINK+SAT 1.53 1.26 1.43 2.03 1.18 0.96 1.20 0.85 0.22 0.25 0.65 0.31

PCA 0.00 0.00 0.10 0.00 0.50 0.20 0.10 0.00 1.10 0.10 0.00 0.10

Conv-PCA 1.00 0.30 0.70 0.50 0.30 0.50 0.50 0.50 0.10 0.40 0.60 0.70

KS-PCA 2.40 5.30 7.00 7.20 1.50 4.30 7.20 8.80 2.80 5.20 9.90 13.30

KS-GNN 15.30 18.90 16.70 42.50 15.40 13.80 24.20 45.10 8.30 15.10 21.39 41.20

Toy

GraphSAGE 0.00 0.10 0.00 0.20 0.00 0.10 0.00 0.00 0.10 0.00 0.10 0.00

BLINK+SAT 2.51 2.90 1.20 2.80 1.00 1.10 2.50 0.18 1.70 1.60 1.98 0.20

PCA 0.30 0.20 0.10 0.00 0.70 0.30 0.10 0.00 0.30 0.00 0.00 0.12

Conv-PCA 3.60 3.20 3.90 5.00 2.90 2.70 3.20 4.20 1.70 1.60 3.00 2.06

KS-PCA 6.10 4.90 5.30 7.60 3.50 4.70 4.30 6.70 2.70 2.40 3.10 2.73

KS-GNN 7.10 5.60 7.20 8.80 9.10 5.70 5.30 6.40 5.10 3.60 6.70 6.90

DBLP

GraphSAGE 0.00 0.00 0.00 0.00 0.05 0.00 0.20 0.00 0.00 0.00 0.00 0.00

BLINK+SAT 2.46 1.13 3.13 4.14 0.93 0.33 1.73 2.78 0.33 3.20 0.46 3.11

PCA 1.60 1.10 1.01 0.70 1.40 1.50 0.50 0.40 1.50 0.70 0.60 0.60

Conv-PCA 3.20 6.30 8.80 8.20 0.80 4.10 3.20 4.20 3.05 5.20 3.80 9.20

KS-PCA 5.90 11.90 19.70 23.80 4.50 8.90 18.20 22.40 4.00 8.60 15.70 19.70

KS-GNN 10.21 20.56 27.78 33.36 7.89 24.50 31.82 36.06 8.13 23.42 30.82 38.22

is limited to 10 on the large-scale datasets, such as Video and Toy. PCA is able to achieve better
performance than GraphSAGE and Conv-PCA on CiteSeer, and the reason might be the query
keywords locate on the same node and Conv-PCA cannot well capture the latent keyword information
in a sparse graph like the CiteSeer dataset. In contrast, our proposed KS-GNN is able to generate
informative node embedding for handling keyword search problem in incomplete graphs.

E.3 Sensitivity Analysis of Number of Convolutional Layers

The proposed KS-GNN aggregates the information of neighbors based on the convolution layer, and
the amount of aggregated information depends on the number of layers. Therefore, to figure out
how the number of convolutional layers affects KS-GNN’s performance. Specifically, we conduct
experiments of KS-GNN with different layer numbers changing from 1 to 5 on CiteSeer and DBLP,
which are small and large datasets, respectively. We set both re and rw to 0.3. For each query, the
number of keywords is set to nq = 5. The results are shown in Fig. 2. As the figure shows, the
number of layers influences KS-GNN’s performance. In general, setting the number of layers to 3 can
achieve better performance than others. This also indicates that it is not necessary to make KS-GNN
as deep as possible.

E.4 Impact of d

We further conduct experiments on the CiteSeer dataset to investigate the impact of changing the
output dimension of node embedding (d). To thoroughly observe the impact of d, we set the dimension
of hidden layers as 512 and change d from 32 to 512. The results are shown in Fig. 3. As the figure
shows, larger d can help KS-GNN increase the performance. However, for other baseline methods,
changing d cannot improve their performance significantly, especially for PCA and GraphSAGE.

4

Table 3: Method performance by Hits@50 in graphs with only missing keywords.

Datasets rw 0.3 0.5 0.7

nq 3 5 7 9 3 5 7 9 3 5 7 9

CiteSeer

GraphSAGE 2.29 3.22 1.69 2.41 1.83 2.69 2.10 0.84 4.83 3.75 2.11 3.92

BLINK+SAT 4.17 5.29 5.18 6.89 3.74 3.86 3.39 2.65 0.89 1.28 2.01 1.17

PCA 8.66 5.06 5.01 2.94 8.28 4.60 4.62 3.54 6.74 4.80 4.72 3.50

Conv-PCA 4.56 1.86 5.98 1.66 5.54 5.52 5.32 5.50 4.02 4.90 3.42 5.06

KS-PCA 13.46 18.10 22.06 22.86 14.52 14.80 19.56 21.46 13.70 16.06 21.86 23.42

KS-GNN 16.71 20.72 22.87 26.91 18.63 21.14 23.89 26.59 16.11 20.22 22.53 26.28

Video

GraphSAGE 0.21 0.15 0.00 0.15 0.03 0.06 0.12 0.00 0.21 1.20 0.78 0.84

BLINK+SAT 4.34 3.78 4.56 5.22 3.39 2.71 3.67 3.28 2.29 1.98 1.55 1.20

PCA 1.20 0.72 0.72 0.48 1.23 0.57 0.48 0.24 1.44 0.54 0.45 0.33

Conv-PCA 5.85 4.47 3.96 4.50 4.89 6.90 6.15 9.66 6.21 7.50 6.84 8.52

KS-PCA 8.60 8.29 11.66 10.60 6.53 6.25 9.99 12.43 5.94 7.02 7.04 9.37

KS-GNN 9.27 9.05 12.53 17.67 10.23 8.15 12.75 20.92 8.27 8.57 16.77 19.58

Toy

GraphSAGE 0.74 0.88 5.11 4.21 4.24 12.49 6.50 6.10 1.45 4.39 6.71 0.09

BLINK+SAT 9.46 9.58 9.57 9.66 7.208 11.5 9.30 12.02 7.44 8.96 10.09 6.48

PCA 1.15 0.68 0.63 0.51 1.01 0.69 0.51 0.44 0.67 0.47 0.44 0.30

Conv-PCA 21.34 21.99 23.76 25.4 19.17 19.72 20.21 25.22 16.99 21.61 23.95 24.90

KS-PCA 27.23 27.73 31.58 33.79 25.78 28.94 31.04 32.82 18.35 22.03 25.50 26.25

KS-GNN 28.56 26.85 30.55 34.28 26.65 27.76 32.27 32.25 21.78 27.41 25.55 30.17

DBLP

GraphSAGE 0.02 0.00 0.04 0.66 0.10 0.44 0.16 0.10 0.04 0.00 0.00 0.00

BLINK+SAT 3.99 4.53 3.28 3.72 2.23 0.64 0.46 0.30 1.74 3.31 3.21 9.01

PCA 2.38 1.90 1.76 1.46 2.26 2.00 1.54 1.36 2.24 1.62 1.40 1.16

Conv-PCA 7.42 9.48 9.84 15.02 4.06 6.04 7.40 7.94 4.12 8.28 11.56 13.68

KS-PCA 11.82 19.32 21.42 32.42 11.30 19.18 21.02 30.12 10.40 18.14 19.62 26.40

KS-GNN 12.71 28.01 30.39 35.79 14.61 22.41 29.62 31.70 12.55 23.40 28.47 29.62

Table 4: Variances of KS-GNN results in graph with only missing keywords.

Datasets rw 0.3 0.5 0.7

nq 3 5 7 9 3 5 7 9 3 5 7 9

CiteSeer Hit@100 30.84 37.86 38.07 42.61 31.43 38.79 38.86 42.62 28.69 35.25 35.61 38.64

Variance 0.43 0.53 0.37 0.27 0.27 0.45 0.81 0.96 0.23 0.55 0.41 0.25

Video Hit@100 21.43 23.36 22.92 26.79 22.54 22.57 30.41 33.41 21.01 16.48 22.01 28.47

Variance 0.09 0.21 0.12 0.41 0.12 0.31 0.16 0.46 0.11 0.24 0.24 0.44

Toy Hit@100 28.56 29.85 29.55 34.28 24.65 29.16 31.27 33.25 21.78 27.41 25.55 30.17

Variance 0.25 0.17 0.18 0.16 0.28 0.25 0.19 0.18 0.12 0.18 0.39 0.35

DBLP Hit@100 16.21 24.94 29.55 33.51 16.52 22.73 26.85 30.69 15.57 24.15 27.12 29.06

Variance 0.46 0.12 0.23 0.15 0.15 0.22 0.22 0.16 0.09 0.12 0.13 0.08

Table 5: Variances of KS-GNN results in graph with both missing keywords and edges (re = 0.3).

Datasets rw 0.3 0.5 0.7

nq 3 5 7 9 3 5 7 9 3 5 7 9

CiteSeer Hit@100 30.57 37.88 38.15 41.80 26.80 34.70 34.37 36.75 24.47 31.19 35.82 34.96

Variance 0.22 0.47 0.47 0.66 0.62 0.91 0.79 0.83 0.29 0.51 0.43 0.42

Video Hit@100 8.08 8.34 12.88 11.82 6.84 7.68 4.18 11.12 6.37 10.31 13.92 10.07

Variance 0.05 0.15 0.32 0.12 0.02 0.24 0.17 0.12 0.04 0.24 0.19 0.12

Toy Hit@100 13.82 13.28 14.38 15.22 12.51 12.54 12.68 12.59 9.41 8.99 12.83 11.15

Variance 0.13 0.22 0.05 0.07 0.05 0.07 0.04 0.11 0.13 0.06 0.12 0.04

DBLP Hit@100 15.91 20.49 25.09 29.04 15.79 19.86 22.15 29.71 12.07 17.18 19.23 24.19

Variance 0.38 0.09 0.16 0.21 0.45 0.08 0.11 0.13 0.17 0.21 0.17 0.11

5

1 2 3 4 5
0

10

20

30

40

Layers

H
its

@
10

0

CiteSeer DBLP

Figure 2: Sensitivity study of the number of layers for KS-GNN.

100 200 300 400 500
0

10

20

30

d

H
its

@
10

0

GraphSAGE BLINK+SAT PCA
Conv-PCA KS-PCA KS-GNN

Figure 3: Sensitivity study of the output dimension of node embedding (d).

E.5 Impact of re

To investigate the impact of re, We further conduct experiments on the CiteSeer dataset, where re
changes from 0 to 0.5 with a step of 0.1, and other hyper-parameters are fixed according to the grid
search algorithm results. The experiments results are shown in Fig. 4. From the figure, it can be
observed that the performance of KS-GNN and KS-PCA decreases slightly with the increase of
re. Other baseline methods with low performance are also not affected much by the increase of
re. However, the performance of BLINK+SAT decreases significantly, as its link prediction model
cannot accurately complete the missing edges.

E.6 Analysis of Keyword Frequency Awareness

As discussed in Section 4.2, we propose a novel learning objective for training KS-GNN that aims
to enhance its ability of keyword frequency awareness. Therefore, in the incomplete graph with
rw = 0.3 and re = 0, we conduct experiments which show the relation between the keyword
frequency ci and the length of keyword embedding ||f(Ii)||2. We compare the results by setting λ3
to 1 or 0, which indicates whether to minimize L3 or not.

6

0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

re

H
its

@
10

0

GraphSAGE BLINK+SAT PCA
Conv-PCA KS-PCA KS-GNN

Figure 4: Impact of re on CiteSeer.

As the figure shows, by minimizing L3, KS-GNN can significantly learn the keyword frequency
awareness, which is reflected by the length of keyword embedding. It is presented that the keywords
with high frequencies turn to be less important than before minimizing L3. Because compared with
the long keyword embedding, shorter keyword embedding tends to be ignored during the query
process. It is also interesting to notice that the lengths of some low-frequency keywords decrease.
This is exactly what we expect since there are many low-frequency keywords in the graph, therefore
it is meaningful to distinguish them according to their importance.

0 200 400
ci

0.5

1.0

1.5

||f
(I i

)||
2

(a) Without L3

0 200 400
ci

0.5

1.0

1.5

||f
(I i

)||
2

(b) With L3

Figure 5: Comparison of the ability of keyword frequency awareness by whether using L3 or not.

F Case Study

To show the ability of proposed KS-GNN to search a subgraph centered at the returned root node, we
conduct a case study on the dataset Video with re = 0.3 and rw = 0.3. We compare the subgraph
retrieved by BLINK with that of KS-GNN. Specifically, when utilizing KS-GNN to search the
subgraph, we can first find a root node vr which has the largest similar score to the query. Then, we
use a BFS-based algorithm to check the neighbors of vr. The details of this algorithm can be found
in the Appendix. The results are shown in Fig. 6.

Given a query {Nintendo, Xbox, PC}, we aim to find a root node and a subgraph that covers the nodes
containing the query keywords, and the best answer should have the minimum sum of the distances
from the keywords to the root node. For instance, in Fig. 6 (a), the root node is B0001WN0MW
and the subgraph is <B0001WN0MW, (B00005CFHJ, B00005MDZK)>. When we miss the edge
between B00005CFHJ and B0001WN0MW as well as the keywords of B0001WN0MW as shown

7

Query = {Nintendo, Xbox, PC}

{Practice mode, tournament,

Link-cable support, Xbox}{Nintendo}

{Practice mode,

tournament, Xbox}
B00005U21V B0000DK33I

B00005UOS9

B00004TN2U

B00005QB4E B0001WN0VI

B0001WN0MW

B00005MDZKB00005CFHJ

B00005NVD8

{…}

{PC, Huge Cities, PS One}

{…}

{…}

{Nintendo}{PC, PlayStation, Robin Hood}

{…}

(a) The red circles and lines represent the best subgraph answer in the complete graph G.
Query = {Nintendo, Xbox, PC}

{Nintendo}

{Practice mode,

tournament, Xbox}
B00005U21V B0000DK33I

B00005UOS9

B00004TN2U

B00005QB4E B0001WN0VI

B0001WN0MW

B00005MDZKB00005CFHJ

B00005NVD8

{…}

{PC, Huge Cities, PS One}

{…}

{…}

{PC, PlayStation, Robin Hood}

{…}

{Nintendo}

(b) The dark red circles and lines represent the subgraph retrieved by KS-GNN in the incomplete graph G′,
while the yellow ones represent the subgraph retrieved by BLINK.

Figure 6: A case study which shows the answer subgraphs retrieved by BLINK and KS-GNN in G′.

in G′ of Fig. 6 (b), BLINK cannot retrieve the information on the node having missing keywords
(i.e. B0001WN0MW), thus return a subgraph which is much different from the expected answer.
However, our proposed KS-GNN is still able to retrieve the information on B0001WN0MW, and
returns a similar subgraph which covers the expected answer as shown in Fig. 6 (b).

References
[1] Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W Tsang. Learning

on attribute-missing graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2020.

[2] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proc. of ICML, pages 40–48, 2016.

[3] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, et al. Collective classification in network data.
AI magazine, 29(3):93–93, 2008.

[4] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In EMNLP/IJCNLP, 2019.

[5] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proc. of NeurIPS, 2017.

[6] Hao He, Haixun Wang, Jun Yang, and Philip S Yu. Blinks: ranked keyword searches on graphs.
In SIGMOD, pages 305–316, 2007.

[7] Jan J Gerbrands. On the relationships between svd, klt and pca. Pattern recognition, 14(1-6):375–
381, 1981.

8

	Additional Experimental Details
	Datasets
	Baseline Methods
	Searching for Subgraph Algorithm
	Additional Experimental Results
	Query Processing Efficiency
	Performance of Keyword Search
	Sensitivity Analysis of Number of Convolutional Layers
	Impact of d
	Impact of re
	Analysis of Keyword Frequency Awareness

	Case Study

