KS-GNN: Keywords Search over Incomplete Graphs
via Graphs Neural Network

Yu Hao Xin Cao*
University of New South Wales University of New South Wales
NSW, Australia NSW, Australia
yu.hao@unsw.edu.au xin.cao@unsw.edu.au
Yufan Sheng Yixiang Fang
University of New South Wales Chinese University of Hong
NSW, Australia Kong, Shenzhen, China
yufan.sheng@unsw.edu.au fangyixiang@cuhk.edu.cn
Wei Wang

The Hong Kong University of Science
and Technology, Guangzhou, China
weiwcs@ust.hk

A Additional Experimental Details

For PCA-based methods, the dimensionality reduction is performed via singular value decomposition
(SVD) of the input one-hot encoding matrix X. As mentioned above, we utilize grid search for
tuning the hyper-parameters. In particular, for the learning-based methods, including GraphSAGE
and KS-GNN, the learning rates are selected from {0.1, 0.01, 0.001, 0.0001}. For the convolutional
neural networks (i.e. GraphSAGE, SAT, Conv-PCA, KS-PCA, KS-GNN), we swept the number of
hidden layers in the set {1, 2, 3, 4, 5}. For the other hyper-parameters used in KS-GNN, such as
A1, A2 and A3, we tune them from 0.1 to 1 with a step of 0.1. As for the margin hyper-parameter
m in Eq.(6), we search it from {0, 0.1, 0.5, 1, 2.5, 5, 10}. For SAT, we follow the hyper-parameter
setting in [1], such as tuning A3, from 0.1 to 100. In the conducted experiments, the default hidden
dimension is selected from {128, 256, 512} according to the result of grid search, while the default
dimension of output node embedding is 64.

B Datasets

CiteSeer E] is a citation network, where each node represents a document and edge represents a
citation 2 3]. The keywords on each node are extracted by stemming and stop word removal.

Video & ToyE]are two co-purchase networks, which are sampled from Amazon Video Games and
Amazon Toys respectively [4]. The nodes represent the products, and the keywords represent the
features. Two nodes are connected if they are both purchased by one customer. However, there are
some differences between the two datasets. Video contains more keywords while Toy has more
connections.

*Corresponding author.
*https://github.com/kimiyoung/planetoid/raw/master/data
*http://deepyeti.ucsd.edu/jianmo/amazon/index.html

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/kimiyoung/planetoid/raw/master/data
http://deepyeti.ucsd.edu/jianmo/amazon/index.html

DBLPE]is a co-author network from DBLP. The nodes represent the researchers, while the keywords
associated with each node are extracted from the abstracts of the author’s work. The edges represent
the co-authorship between the authors.

Table [T|presents detailed overview of the relevant statistics.

Table 1: Statistics of experimental datasets.
Datasets #Nodes #Edges #Keywords

CiteSeer 3,327 9,104 3,703
Video 20,882 66,003 11,514
Toy 20,682 224,603 4,114
DBLP 32,361 69,448 4,094

C Baseline Methods

GraphSAGE [J] is a representative GNN-based graph embedding method, which aggregates neigh-
bor information by multiple convolution layers. To address keyword search, GraphSAGE needs an
additional encoder before the forward propagation. Therefore, we add an MLP encoder, denoted by
1, for GraphSAGE, and this encoder can also be used to generate query embedding with ¢ (x,). To
be compared with KS-GNN, GraphSAGE employs the max-pooling operator in this work.

BLINK+SAT is a combination method, which is based on a conventional keyword search method
BLINK [6] and a state-of-the-art missing-data completion GNN model SAT [[1]]. This baseline method
leverages SAT to predict and complete the missing keywords and edges first and then utilises BLINK
to process keyword search on the new graph.

PCA [7]] reduces the dimensions of the input one-hot encoding feature matrix X from M to d by
learning the basis U with X,, = XU For the query process, given a query ¢, the query embedding
hq equals quT. The query answers are returned according to the similarity scores directly computed
by pr;r.

Conv-PCA is a naive method proposed in Section 4.1. In addition, based on the discussion of
KS-GNN, we further propose a variant of Conv-PCA that leverages U to reconstruct M -dimension
embedding from h,,, namely KS-PCA. Formally, the aggregation of KS-PCA is:

h! " = maz({oh! U,Vu € N(v)} U {hiU}HUT. (1)
The query process of KS-PCA is the same as that of Conv-PCA.

D Searching for Subgraph Algorithm

Algorithm T]is a BFS-based algorithm that searches for a subgraph when given a returned root node
v, by KS-GNN and a query ¢. When checking a node embedding, Algorithm [T|needs a threshold
parameter o which can help indicate if the node contains a keyword. Specifically, for a node v, the
original keyword information can be restored from its node embedding with g(z,) € R™. For each
element in g(z,), we assume that the node v contains a word w; if and only if when g(z,)[i] > o.
Based on this, we can leverage the BFS algorithm to check the neighbors of the root node v,., thereby
getting a subgraph when all keywords in the query have been found or all nodes have been visited.

E Additional Experimental Results

E.1 Query Processing Efficiency

As discussed above, our proposed KS-GNN is able to answer the query within the time complexity
of O(dN). Figure |l shows the time efficiency experiments conducted on DBLP dataset. In each

*https://dblp.uni-trier.de

https://dblp.uni-trier.de

Algorithm 1: Search for Subgraph

Input: The trained output node embedding Z, query g = (wgq, , Wqy, .-, Wq,,), Foot node v,
encoder f, decoder g, threshold o
Output: The subgraph SG,.
SG, =0
Sp = vp);
// initialize S,
S =0
// the set of nodes having been visited
while ¢ # 0 and SG,. # 0 do
for w; € g do
U, S, = IndexMazx({g(z,)[wi],u € Sp});
if s,,, > o then
q = q.delete(w;);
L SG, == SG,.add(u);

if ¢ = () then
L break;

S’ update(Sy,);
| Sni={N(),v e S}/5"

return SG,;

experiment, we set d to 64 and change the number of nodes from 102 to 10”. The experiments are
conducted based on the RTX 2080 Ti GPU and PyTorch. When the nodes in DBLP are not sufficient,
we add some synthetic nodes to meet the number requirements. As the figure shows, KS-GNN is able
to process the query linearly, and the run-time changes slightly when the number of nodes changes
from 102 to 107.

15F 7

g w0f 1

Q

E

= 5 1
| | |

102 104 106
Nodes

Figure 1: Query processing time in seconds (ms).

E.2 Performance of Keyword Search

Table [2 and Table [3|shows the results of experiments on keyword search in graphs with only missing
keywords for Hits@ 10 and Hits@50 scores, respectively. From the tables, we can find that the results
are consistent with the experimental results shown in Section 5.3, where our proposed KS-GNN
significantly outperforms the baseline methods. We further include the variances of the results of
KS-GNN varying the seed of edge and keyword sampling as shown in Table 4] and Table[5] These
tables show the robustness of our proposed method.

In addition, it is worth noting that answering keyword search queries with high Hits@ 10 scores is
more challenging than that of Hits@ 100. However, KS-GNN is able to achieve a Hits@ 10 score of
42.5% on the Video dataset with r,, = 0.3 for 9-keyword queries, while the best keyword search
performance of other compared methods is achieved by KS-PCA, which is only 7.2% on the same
task. It can also be found that GraphSAGE cannot return a good answer when the number of answers

Table 2: Method performance by Hits@ 10 in graphs with only missing keywords.

Datasets Tw 0.3 05 0.7
ng 3 5 7 9 3 5 7 9 3 5 7 9

GraphSAGE 020 0.10 050 015 005 040 065 000 040 085 070 050
BLINK+SAT 396 440 486 403 275 254 378 271 194 139 165 1.02
PCA 680 350 200 160 59 280 100 160 740 390 3.10 280

CiteSeer
Conv-PCA 080 230 190 1.10 1.11 140 260 2,60 290 210 150 2.60
KS-PCA 820 7.70 1020 1420 540 880 9.01 1070 650 7.10 9.10 11.20
KS-GNN 830 10.80 15.19 1495 7.72 10.68 16.68 17.48 8.11 11.27 16.19 17.87
GraphSAGE 0.10 0.00 0.00 000 010 0.00 0.00 000 000 0.00 0.00 0.00
BLINK+SAT 153 126 143 203 1.18 096 120 0.85 022 025 065 031
Video PCA 0.00 0.00 0.10 000 050 020 0.10 000 110 0.10 0.00 0.10
Conv-PCA .00 030 070 050 030 050 050 050 0.10 040 0.60 0.70
KS-PCA 240 530 7.00 720 150 430 720 880 280 520 990 13.30
KS-GNN 15.30 1890 16.70 42.50 1540 13.80 24.20 45.10 830 1510 21.39 41.20
GraphSAGE 000 0.10 0.00 020 000 0.10 0.00 000 010 0.00 0.10 0.00
BLINK+SAT 251 290 120 280 1.00 1.10 250 0.18 1.70 160 198 0.20
Toy PCA 030 020 0.10 000 070 030 0.10 000 030 0.00 0.00 0.12
Conv-PCA 360 320 390 500 290 270 320 420 170 1.60 3.00 206
KS-PCA 6.10 490 530 760 350 470 430 670 270 240 3.10 273
KS-GNN 710 560 720 880 910 570 530 640 510 3.60 6.70 6.90
GraphSAGE 000 0.00 0.00 000 005 0.00 020 000 000 0.00 0.00 0.00
BLINK+SAT 246 1.13 3.13 414 093 033 173 278 033 320 046 3.11
DBLP PCA .60 1.10 101 070 140 150 050 040 1.50 0.70 0.60 0.60

Conv-PCA 320 630 880 820 080 410 320 420 305 520 380 920
KS-PCA 590 11.90 19.70 2380 450 890 1820 2240 4.00 8.60 1570 19.70
KS-GNN 10.21 20.56 27.78 3336 7.89 2450 31.82 36.06 8.13 2342 30.82 38.22

is limited to 10 on the large-scale datasets, such as Video and Toy. PCA is able to achieve better
performance than GraphSAGE and Conv-PCA on CiteSeer, and the reason might be the query
keywords locate on the same node and Conv-PCA cannot well capture the latent keyword information
in a sparse graph like the CiteSeer dataset. In contrast, our proposed KS-GNN is able to generate
informative node embedding for handling keyword search problem in incomplete graphs.

E.3 Sensitivity Analysis of Number of Convolutional Layers

The proposed KS-GNN aggregates the information of neighbors based on the convolution layer, and
the amount of aggregated information depends on the number of layers. Therefore, to figure out
how the number of convolutional layers affects KS-GNN'’s performance. Specifically, we conduct
experiments of KS-GNN with different layer numbers changing from 1 to 5 on CiteSeer and DBLP,
which are small and large datasets, respectively. We set both 7. and r,, to 0.3. For each query, the
number of keywords is set to n, = 5. The results are shown in Fig. Q As the figure shows, the
number of layers influences KS-GNN’s performance. In general, setting the number of layers to 3 can
achieve better performance than others. This also indicates that it is not necessary to make KS-GNN
as deep as possible.

E.4 Impactof d

We further conduct experiments on the CiteSeer dataset to investigate the impact of changing the
output dimension of node embedding (d). To thoroughly observe the impact of d, we set the dimension
of hidden layers as 512 and change d from 32 to 512. The results are shown in Fig. [3] As the figure
shows, larger d can help KS-GNN increase the performance. However, for other baseline methods,
changing d cannot improve their performance significantly, especially for PCA and GraphSAGE.

Table 3: Method performance by Hits@50 in graphs with only missing keywords.

Datasets Tw 03 05 07

ng 3 5 7 9 3 5 7 9 3 5 7 9

GraphSAGE 229 322 169 241 183 269 210 084 483 375 211 392

BLINK+SAT 417 529 518 689 374 386 339 265 0.8 1.28 201 1.17

CiteSeer PCA 8.66 506 501 294 828 460 462 354 674 480 472 350

Conv-PCA 456 1.86 598 1.66 554 552 532 550 402 490 342 5.06

KS-PCA 1346 18.10 22.06 22.86 14.52 1480 19.56 21.46 1370 16.06 21.86 23.42

KS-GNN 16.71 2072 22.87 2691 18.63 21.14 23.89 26.59 16.11 20.22 22.53 26.28

GraphSAGE 021 0.5 000 0.5 003 006 012 000 021 120 078 0.84

BLINK+SAT 434 378 456 522 339 271 3.67 328 229 1.98 1.55 1.20

Video PCA 120 072 072 048 123 057 048 0.24 1.44 054 045 033

Conv-PCA 585 447 396 450 48 690 615 966 621 750 6.84 8.52

KS-PCA 8.60 829 11.66 1060 653 625 999 1243 594 7.02 7.04 937

KS-GNN 927 9.05 1253 17.67 1023 815 1275 2092 827 857 16.77 19.58

GraphSAGE 074 0.88 511 421 424 1249 650 610 145 439 671 0.09
BLINK+SAT 946 958 957 966 7208 115 930 1202 744 896 10.09 648
Toy PCA 1.15 068 063 051 101 069 051 044 067 047 044 030

Conv-PCA 2134 2199 2376 254 19.17 19.72 2021 2522 1699 21.61 2395 24.90

KS-PCA 2723 27.73 31.58 3379 2578 2894 31.04 32.82 1835 2203 2550 26.25

KS-GNN 28.56 26.85 30.55 34.28 26.65 27.76 32.27 3225 21.78 2741 2555 30.17

GraphSAGE 0.02 0.00 004 066 010 044 016 0.10 0.04 000 0.00 0.00

BLINK+SAT 399 453 328 372 223 064 046 030 174 331 321 9.01

PCA 2.38 1.90 176 146 226 200 154 136 224 162 140 1.16

PBLP Conv-PCA 742 948 984 1502 406 604 740 7.94 412 828 1156 13.68
KS-PCA 11.82 1932 2142 3242 1130 19.18 21.02 30.12 1040 18.14 19.62 26.40
KS-GNN 1271 2801 3039 3579 14.61 2241 29.62 3170 1255 2340 2847 29.62

Table 4: Variances of KS-GNN results in graph with only missing keywords.

Datasets Tw 03 05 07
ng 3 5 7 9 3 5 7 9 3 5 7 9
CiteSeer Hit@100 3084 37.86 3807 42.61 3143 3879 3886 42.62 28.69 3525 3561 38.64
Variance 043 053 037 027 027 045 081 096 023 055 041 025
Video Hit@100 2143 2336 2292 2679 22.54 22.57 3041 3341 21.01 1648 2201 2847
Variance 009 021 0.2 041 012 031 016 046 011 024 024 044
Toy Hit@100 28.56 29.85 29.55 34.28 24.65 29.16 3127 3325 2178 2741 2555 30.17
Variance 025 0.17 018 016 028 025 019 018 012 018 039 035
ppLp Hit@100 1621 2494 2955 3351 1652 2273 2685 30.69 1557 2415 27.12 29.06

Variance 046 012 023 0.5 0.5 022 022 016 009 012 0.13 0.08

Table 5: Variances of KS-GNN results in graph with both missing keywords and edges (r. = 0.3).

Datasets "w 03 05 07

ng 3 5 7 9 3 5 7 9 3 5 7 9

. Hit@100 30.57 37.88 38.15 41.80 26.80 34.70 3437 36.75 2447 31.19 3582 3496
CiteSeer

Variance 022 047 047 066 062 091 079 083 029 051 043 042

Hit@100 8.08 834 1288 11.82 684 7.68 4.18 11.12 637 1031 1392 10.07

Video Variance 0.05 0.15 032 012 0.02 024 017 012 0.04 024 019 0.12
Toy Hit@100 13.82 13.28 1438 1522 1251 1254 1268 1259 941 899 12.83 11.15
Variance 0.13 022 0.05 0.07 005 007 004 0.11 0.13 0.06 0.12 0.04

DBLP Hit@100 1591 2049 2509 29.04 1579 19.86 22.15 29.71 12.07 17.18 19.23 24.19

Variance 038 009 016 021 045 0.08 0.1 013 017 021 017 0.11

—=— CiteSeer —— DBLP

40 + N
30 + N
S
S
% 20 | A\/A\A—A 7
=
10 - N
| | | | |
0 1 2 3 4)
Layers

Figure 2: Sensitivity study of the number of layers for KS-GNN.

—— GraphSAGE BLINK+SAT PCA
—&— Conv-PCA —— KS-PCA —— KS-GNN
I I I I I
30 - KO———Q/H/’O |
=) e ° ¢ -
= 90f 2
®
T
10 - o e N
A—BD—
+-—a— = o
0

| | | | |
100 200 300 400 500
d

Figure 3: Sensitivity study of the output dimension of node embedding (d).

E.5 Impactof r.

To investigate the impact of r., We further conduct experiments on the CiteSeer dataset, where 7,
changes from 0 to 0.5 with a step of 0.1, and other hyper-parameters are fixed according to the grid
search algorithm results. The experiments results are shown in Fig. f] From the figure, it can be
observed that the performance of KS-GNN and KS-PCA decreases slightly with the increase of
re. Other baseline methods with low performance are also not affected much by the increase of
re. However, the performance of BLINK+SAT decreases significantly, as its link prediction model
cannot accurately complete the missing edges.

E.6 Analysis of Keyword Frequency Awareness

As discussed in Section 4.2, we propose a novel learning objective for training KS-GNN that aims
to enhance its ability of keyword frequency awareness. Therefore, in the incomplete graph with
rw = 0.3 and r. = 0, we conduct experiments which show the relation between the keyword
frequency ¢; and the length of keyword embedding || f(I;)||2. We compare the results by setting A3
to 1 or 0, which indicates whether to minimize £3 or not.

—&=— GraphSAGE BLINK+SAT PCA
—— Conv-PCA —e— KS-PCA —— KS-GNN

@-/‘0‘9‘0—_9\0

20 *

30

Hits@100

10+ A——Aa—— X

0 0.1 02 03 04 05

Te

Figure 4: Impact of 7. on CiteSeer.

As the figure shows, by minimizing £3, KS-GNN can significantly learn the keyword frequency
awareness, which is reflected by the length of keyword embedding. It is presented that the keywords
with high frequencies turn to be less important than before minimizing £3. Because compared with
the long keyword embedding, shorter keyword embedding tends to be ignored during the query
process. It is also interesting to notice that the lengths of some low-frequency keywords decrease.
This is exactly what we expect since there are many low-frequency keywords in the graph, therefore
it is meaningful to distinguish them according to their importance.

[[F(1)]]2
|7(17)]]2

400 400

(a) Without L3 (b) With L3

Figure 5: Comparison of the ability of keyword frequency awareness by whether using L3 or not.

F Case Study

To show the ability of proposed KS-GNN to search a subgraph centered at the returned root node, we
conduct a case study on the dataset Video with r, = 0.3 and r,, = 0.3. We compare the subgraph
retrieved by BLINK with that of KS-GNN. Specifically, when utilizing KS-GNN to search the
subgraph, we can first find a root node v,- which has the largest similar score to the query. Then, we
use a BFS-based algorithm to check the neighbors of v,.. The details of this algorithm can be found
in the Appendix. The results are shown in Fig. [

Given a query {Nintendo, Xbox, PC}, we aim to find a root node and a subgraph that covers the nodes
containing the query keywords, and the best answer should have the minimum sum of the distances
from the keywords to the root node. For instance, in Fig. [6](a), the root node is BOOO1WNOMW
and the subgraph is <BO001 WNOMW, (BOO0O05CFHJ, BOOO0SMDZK)>. When we miss the edge
between BOOOOSCFHJ and BOOOIWNOMW as well as the keywords of BOOOIWNOMW as shown

Query = {Nintendo, Xbox, PC}

{PC, PlayStation, Robin Hood} {Nintendo}
| BooooscrHy | | BoooosMDZK |

{Practice mode, tournament,

{Nintendo} ink-cable support, Xbox}
BOOOOSNVDS | BO0D04TN2U | | Booorwnomw |
)
(
-} [B0OOO5UOSY | | BOOOOSQB4E —— BOODIWNOVI |
{...} {Practice mode,

tournament, Xbox
| B00005U21Y —— B000ODK3I ...} }

{PC, Huge Cities, PS One}
(a) The red circles and lines represent the best subgraph answer in the complete graph G.

{PC, PlayStation, Robin Hood} {Nintendo}
[BooooscrHy | [BoooosmDZK |

B00004TN2U BOOOZWNOMW
T

B00005QB4E B0O001IWNOVI

{...} {Practice mode,
tournament, Xbox}

{Nintendo}
B00005NVD8

{---} B00005UOS9

N\

B00005U21V —— BOOOODK3I ...}

{PC, Huge Cities, PS One}
(b) The dark red circles and lines represent the subgraph retrieved by KS-GNN in the incomplete graph G’,
while the yellow ones represent the subgraph retrieved by BLINK.

Figure 6: A case study which shows the answer subgraphs retrieved by BLINK and KS-GNN in G'.

in G’ of Fig. |§| (b), BLINK cannot retrieve the information on the node having missing keywords
(i.e. BOOOITWNOMW), thus return a subgraph which is much different from the expected answer.
However, our proposed KS-GNN is still able to retrieve the information on BOOO1WNOMW, and
returns a similar subgraph which covers the expected answer as shown in Fig. [6] (b).

References

[1] Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W Tsang. Learning
on attribute-missing graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2020.

[2] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proc. of ICML, pages 40-48, 2016.

[3] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, et al. Collective classification in network data.
Al magazine, 29(3):93-93, 2008.

[4] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In EMNLP/IJCNLP, 2019.

[5] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proc. of NeurIPS, 2017.

[6] Hao He, Haixun Wang, Jun Yang, and Philip S Yu. Blinks: ranked keyword searches on graphs.
In SIGMOD, pages 305-316, 2007.

[7] JanJ Gerbrands. On the relationships between svd, klt and pca. Pattern recognition, 14(1-6):375—
381, 1981.

	Additional Experimental Details
	Datasets
	Baseline Methods
	Searching for Subgraph Algorithm
	Additional Experimental Results
	Query Processing Efficiency
	Performance of Keyword Search
	Sensitivity Analysis of Number of Convolutional Layers
	Impact of d
	Impact of re
	Analysis of Keyword Frequency Awareness

	Case Study

