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ABSTRACT

Seismic advances in generative AI algorithms for imagery, text, and other data
types have led to the temptation to use AI-synthesized data to train next-generation
models. Repeating this process creates an autophagous (“self-consuming”) loop
whose properties are poorly understood. We conduct a thorough analytical and
empirical analysis using state-of-the-art generative image models of three fam-
ilies of autophagous loops that differ in how fixed or fresh real training data
is available through the generations of training and whether the samples from
previous-generation models have been biased to trade off data quality versus di-
versity. Our primary conclusion across all scenarios is that without enough fresh
real data in each generation of an autophagous loop, future generative models are
doomed to have their quality (precision) or diversity (recall) progressively decrease.
We term this condition Model Autophagy Disorder (MAD), by analogy to mad
cow disease, and show that appreciable MADness arises in just a few generations.

Generation t = 1 t = 3 t = 5 t = 7 t = 9

Figure 1: Training generative artificial intelligence (AI) models on synthetic data progressively
amplifies artifacts. As AI-synthesized data proliferates in standard datasets and the Internet, future
AI models will train on both real and synthetic data, forming autophagous (“self-consuming”) loops.
We highlight a potential unintended consequence of autophagous training. We trained a sequence of
StyleGAN2 (Karras et al., 2019a) models wherein the model at generation t ≥ 2 trains only on data
synthesized by the model at generation t− 1. This forms a fully synthetic loop (Figure 3) without
sampling bias (λ = 1). Note how the cross-hatched artifacts (possibly an architectural fingerprint
(Karras et al., 2021)) are progressively amplified at each generation. Appendix D has more samples.

1 INTRODUCTION

Synthetic data1 from generative artificial intelligence (AI) models like Stable Diffusion (Rombach
et al., 2022) and ChatGPT (OpenAI, 2023) is rapidly proliferating on the Internet. Indeed, there will
soon be much more synthetic data than real data on the Internet.

∗Equal contribution.
1By “synthetic” we mean AI-synthesized data, as opposed to data synthesized via physics-based simulations.
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Figure 2: Today’s large-scale image training datasets contain AI-generated data. Datasets like
LAION-5B (Schuhmann et al., 2022), which trains popular models like Stable Diffusion (Rombach
et al., 2022), contain AI-synthesized images. Here are LAION-5B (haveibeentrained.com) samples
containing data synthesized by (left to right) AICAN (Elgammal et al., 2017), Pix2Pix (Isola et al.,
2017), StyleGAN (Karras et al., 2019a), and DALL-E (Ramesh et al., 2021). Generative models using
LAION-5B thus close an autophagous (“self-consuming”) loop (see Figure 3) that can progressively
amplify artifacts (Figure 1) and lower quality (precision) and diversity (recall).

Since the training datasets for generative AI models tend to be sourced from the Internet, today’s
AI models are unwittingly being trained on increasing amounts of AI-synthesized data. Figure 2
confirms that the popular LAION-5B dataset (Schuhmann et al., 2022), used to train state-of-the-art
models like Stable Diffusion, contains synthetic images from several earlier generations of generative
models. AI is generating formerly human-sourced data, like reviews (Gault, 2023), websites (Cantor,
2023), and data annotations (Veselovsky et al., 2023), often with no indication of its origin (Christian,
2023). As the use of generative models continues to grow rapidly, this situation will only accelerate.

Moreover, throwing caution to the wind, AI-synthesized data is increasingly used by choice for
training because it is convenient, especially in data-scarce applications like medicine (Pinaya et al.,
2022) and geophysics (Deng et al., 2022), and because it can protect privacy (Luzi et al., 2024; Klemp
et al., 2023) in sensitive data applications like medicine (Packhäuser et al., 2022; DuMont Schütte
et al., 2021). Most importantly, as deep learning models become increasingly enormous (Azizi et al.,
2023; Burg et al., 2023), we are simply running out of real data on which to train them (Economist,
2023a;b; Villalobos et al., 2022).

The witting or unwitting use of synthetic data to train generative models departs from standard AI
training practice in one important respect: repeating this process for generation after generation of
models forms an autophagous (“self-consuming”) loop (Figure 3). Different autophagous loop
variations arise depending on how existing real and synthetic data are combined into future training
sets. Additional variations arise depending on the model sampling biases used to trade off perceptual
quality (fidelity or coherence) versus diversity (variety or heterogeneity).2

The potential ramifications of autophagous loops on the properties and performance of generative
models is poorly understood. In one direction, autophagy might progressively amplify the biases and
artifacts present in any generative model as fingerprints. In Figure 1, autophagy progressively ampli-
fies cross-hatching artifacts (reminiscent of aliasing (Karras et al., 2021)) in subsequent generations
of StyleGAN2 models. In another direction, autophagous loops featuring generative models tuned
to produce high quality syntheses at the expense of diversity (such as Karras et al. (2019a); Ho and
Salimans (2021)) might progressively dilute the diversity of the data on the Internet.3 By analogy to
mad cow disease (Nathanson et al., 1997), we term these and other symptoms of autophagy as Model
Autophagy Disorder (MAD).

Contributions. We conduct a careful theoretical and empirical study of AI autophagy with generative
image models. The concepts developed herein apply to any data type, including text. We also unify
the results of contemporaneous work. Our three key contributions establish that, without enough
fresh real data each generation, future generative models are doomed to go MAD. Moreover, we
demonstrate that appreciable MADness can occur in only a handful of generations.

1. Realistic models for autophagous loops. We propose three families of self-consuming loops that
realistically model how real and synthetic data are used to train generative models (recall Figure 3):

2We quantify quality and diversity via precision and recall, respectively (Kynkäänniemi et al., 2019).
3Similar to diversity exposure in recommender systems, where maximizing click rates discourages exposure

to diverse ideas (Stroud, 2011; Dylko et al., 2017; Beam, 2014; Bakshy et al., 2015; O’Callaghan et al., 2015).
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Figure 3: Recursively training generative models on syn-
thetic data from other models produces an autophagous
(“self-consuming”) loop. In this paper, we study three au-
tophagous loop variants (defined in Section 2): the fully
synthetic loop (only synthetic data), the synthetic augmenta-
tion loop (synthetic + fixed real data), and the fresh data loop
(synthetic + fresh real data). Each generation samples with a
bias λ that trades off sample quality versus diversity.

• The fully synthetic loop (Section 3), where the training dataset for each generation’s model
consists solely of synthetic data sampled from previous generations’ models, such as by training
a generative model on its own outputs (followfox.ai, 2023). We show that either the quality
(precision) or the diversity (recall) of the generative models decreases over generations.

• The synthetic augmentation loop (Section 4), where each generation’s training data includes
syntheses from previous generations and a fixed set of real data, such as by training on real and
self-generated data (Huang et al., 2022). We show that fixed real training data only delays the
inevitable degradation of the quality or diversity of the generative models over generations.

• The fresh data loop (Section 5), where each generation’s training data includes syntheses from
previous generations plus some fresh real data, which models the common practice of scraping
the Internet for training data, which finds both real and synthetic data (recall Figure 2). We are
the first to propose and study this flavor of autophagy. We show that, with enough fresh real data,
model convergence is independent of initialization, with quality and diversity that do not degrade
over generations.

2. Sampling bias plays a key rôle in autophagous loops. Practitioners often favor high-quality
syntheses, whether through curation or automatic quality-diversity tradeoffs (Ho and Salimans, 2021;
Karras et al., 2020). We show that, without these sampling biases, MADness degrades quality and
diversity, while with them, quality can be maintained but diversity degrades even faster.

3. Autophagous loop behaviors hold across a wide range of generative models and datasets,
including Gaussian, Gaussian mixture, diffusion (DDPM, Ho et al., 2020), StyleGAN2 (Karras et al.,
2020), Wasserstein GAN (WGAN, Gulrajani et al., 2017a), and Normalizing Flow (Kobyzev et al.,
2020) models trained on datasets like FFHQ (Karras et al., 2019b) and MNIST (Deng, 2012).

Related work. We define a cohesive autophagy framework, supported empirically by state-of-the-art
models, that unifies and significantly extends contemporaneous results that consider fragmented
aspects of MADness. Shumailov et al. (2023) study autophagous loops without sampling bias
and show that MADness ensues from variational autoencoders and Gaussian mixture models in
fully synthetic and language models in synthetic augmentation loops. However, the absence of
quality-diversity tradeoffs (sampling biases) in their models limits the applicability of their findings
to real-world scenarios. Furthermore, in each generation they only fine-tune their language models,
while we train our models from scratch. Martínez et al. (2023a) also consider unbiased synthetic
augmentation loops, but only show qualitative evidence of MADness on a small dataset. Martínez
et al. (2023b) focus only on fully synthetic loops and report that sampling bias can prevent degradation
of image quality in small datasets. Finally, Huang et al. (2022); Hataya et al. (2022) and others have
considered synthetic data augmentation, but not in the context of autophagous loops.

2 SELF-CONSUMING GENERATIVE MODELS

Consider a sequence of generative models (Gt)t∈N, where each model approximates a reference
probability distribution Pr. At each generation t ∈ N, the model Gt trains from scratch on the dataset
Dt = (Dt

r,Dt
s) containing both nt

r real samples Dt
r from Pr and nt

s synthetic samples Dt
s from

trained generative model(s). The first-generation model G1 trains only on real data: n1
s = 0, D1

s = ∅.
Definition. An autophagous generative process is a sequence of distributions (Gt)t∈N where each
generative model Gt is trained on data that includes samples from previous models (Gτ )t−1

τ=1.
Definition. Let dist(·, ·) denote a distance metric on distributions. A MAD generative process is a
sequence of distributions (Gt)t∈N such that E[dist(Gt,Pr)] grows with t.
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Claim. Under mild conditions, an autophagous generative process is a MAD generative process.

Two critical aspects affect whether a sequence of generative models goes MAD: the balance of
real and synthetic training data and how the generative models synthesize data. We study three
realistic autophagous mechanisms, each of which includes synthetic data and potentially real data in
a feedback loop (recall Section 1 and Figure 3):

• The fully synthetic loop: Each model Gt for t ≥ 2 trains exclusively on synthetic data sampled
from models (Gτ )t−1

τ=1 from previous generations, i.e., Dt = Dt
s.

• The synthetic augmentation loop: Each model Gt for t ≥ 2 trains on a dataset Dt = (Dr,Dt
s):

a fixed set of real data Dr from Pr, plus synthetic data Dt
s from previous generations’ models.

• The fresh data loop: Each model Gt for t ≥ 2 trains on a dataset Dt = (Dt
r,Dt

s): a fresh set of
real data Dt

r drawn from Pr, plus synthetic data Dt
s from previous generations’ models.

Metrics for MADness. Throughout this paper we measure the distance between the synthetic data
and the real data (reference distribution) using the Fréchet inception distance (FID) (Heusel et al.,
2017),4 the quality of the synthetic data using precision, and the diversity of the synthetic data using
recall (Kynkäänniemi et al., 2019). See Appendix A.4 for more details.

2.1 BIASED SAMPLING IN AUTOPHAGOUS LOOPS

While the above three autophagous loops realistically mimic real-world generative model training
scenarios that involve synthetic data, it is also critical to consider how each generation’s synthetic
data is produced in practice. In particular, most syntheses are to some degree biased to maximize
perceptual quality, whether through manual curation (“cherry-picking”) or common techniques that
automatically boost quality and sacrifice diversity by sampling closer to the modes of the synthetic
distribution of the generative model (OpenAI, 2023; Ho and Salimans, 2021; Karras et al., 2020;
Brock et al., 2019; Humayun et al., 2022). We refer to this common practice as sampling bias. We
employ a number of generative models in our experiments below; each has a unique controllable
parameter to increase sample quality. We unify these parameters in the universal sampling bias
parameter λ ∈ [0, 1], where λ = 1 corresponds to unbiased sampling and λ = 0 corresponds to
sampling from the modes of the generative distribution Gt with zero variance. The exact interpretation
of λ differs across various models, but in general synthetic sample quality will increase and diversity
will decrease as λ is decreased from 1. Below we provide specific definitions for λ for the various
generative models we consider in this paper:

Gaussian models: To implement biased sampling from an estimated distribution N (µ,Σ), we
sample from N (µ, λΣ). As λ decreases, we draw samples closer to the mean µt.

Generative adversarial networks: In our StyleGAN2 experiments, we decrease the truncation
parameter Ψ ∈ [0, 1] to increase sample quality (Karras et al., 2020). Thus, λ = Ψ.

Diffusion models: For DDPMs, we use a classifier-free diffusion guidance factor w (with 10%
conditioning dropout) (Ho and Salimans, 2021) and define λ = 1

1+w .

3 THE FULLY SYNTHETIC LOOP: TRAINING EXCLUSIVELY ON SYNTHETIC
DATA LEADS TO MADNESS

First, we analyze the fully synthetic loop, where each model trains on synthetic data from previous
generations. We focus on the inter-generational propagation of non-idealities resulting from estimation
errors and sampling biases and characterize the convergence of the autophagous loop. The fully
synthetic loop’s simplicity primarily reflects niche examples like training generative models on
their own high-quality outputs (followfox.ai, 2023). Nevertheless, this loop represents a worst-case
scenario that provides insights into the more practical autophagous loops discussed in subsequent
sections. Our analysis and experiments support our main conclusion for the fully synthetic loop: either
the quality (precision) or the diversity (recall) of the synthetic data deteriorates over generations.

4We calculate MNIST FIDs via LeNet (Lecun et al., 1998) features instead of Inception features.
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Figure 4: Training generative models in a fully synthetic loop reduces both the quality and
diversity of synthetic data, depending on sampling bias. We plot the FID, precision (quality), and
recall (diversity) of the synthetic FFHQ and MNIST images from a fully synthetic loop with unbiased
(λ = 1) and biased (λ < 1) StyleGAN2 and DDPM models. See Figure 1 for StyleGAN2 samples
demonstrating that the fully synthetic loop amplifies sample artifacts. In all cases, FID increases and
diversity decreases. However, sampling bias can salvage quality (at the expense of diversity).

Gaussian fully synthetic loop: random walks and variance collapse. We first show that these loops
have a martingale nature that causes MADness. Consider a reference distribution Pr = N (µ0,Σ0),
where µ0 ∈ Rd and Σ0 ∈ Rd×d, and a Gaussian generative process Gt = N (µt,Σt). At each
time t ∈ N, we sample ns vectors from Gt−1 with bias λ ≤ 1; i.e., we draw x1

t , . . . ,x
ns
t

iid∼
N (µt−1, λΣt−1). From these vectors we construct the unbiased parameters of the next model Gt:

µt =
1

ns

ns∑
i=1

xi
t, Σt =

1

ns − 1

ns∑
i=1

(xi
t − µt)(x

i
t − µt)

⊤. (1)

It is straightforward to see that µt and Σt are (super)martingale processes (Williams, 1991) that take
random walks. For Σt, we also have the following result that is proved in Appendix B.

Proposition. For the random process defined in Equation (1), for any λ ≤ 1, we have Σt
a.s.−−→ 0.

That is, when we repeatedly fit a distribution to data sampled from that distribution, we should
not only expect some modal drift because of the random walk in µt (reduction in quality) but also
inevitably a collapse of the variance Σt (vanishing of diversity).

The key takeaway is that these effects—the random walk and the variance collapse—are solely
due to the estimation error of fitting the model parameters using random data. Importantly, this
result holds true even when there is no sampling bias (λ = 1). The magnitudes of the steps of the
random walk in µt are determined by two main factors: the number of samples ns and the covariance
Σt. Unsurprisingly, the larger the ns, the smaller the steps of the random walk, since there will
be less estimation error. This will also slow the convergence of Σt to 0. Meanwhile, Σt can be
controlled using a sampling bias factor λ < 1. The smaller the choice of λ, the more rapidly Σt will
converge to 0, stopping the random walk of µt (as illustrated in Figure 15). Thus, the sampling bias
factor λ provides a trade-off to preserve quality at the expense of diversity. Shumailov et al. (2023)
recently showed that the expected Wasserstein-2 distributional distance E[dist(Gt,Pr)] increases in
this process, supporting our conclusion that Gt is a MAD generative process.

We now empirically study the fully synthetic loop using FFHQ-trained StyleGAN2 and MNIST-
trained DDPM models; see Appendix A.1 for the experimental details.

Unbiased sampling degrades synthetic data quality and diversity. Figure 4 plots the FID, precision,
and recall for FFHQ-StyleGAN2 and MNIST-DDPM models in fully synthetic loops with (λ < 1)
and without (λ = 1) sampling bias. In the latter case, the synthetic data distributions undergo random
walks that deviate from the reference distribution because each generation’s training data is finite.
Consequently, the models go MAD: FID increases, while precision and recall steadily decrease.

Biased sampling can boost synthetic data quality, but at the expense of diversity. As for the
biased FFHQ-StyleGAN2 and MNIST-DDPM models (λ = 0.7 and 0.5) in fully synthetic loops
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Generation t = 1 t = 3 t = 5

Figure 5: Training generative models on biased synthetic data in a fully synthetic loop progres-
sively loses diversity. We repeat the experiment from Figures 1 and 4 but with sampling bias λ = 0.7.
The randomly selected syntheses clearly lose diversity. Appendix E displays additional samples.

Generation t = 3 t = 10 Generation t = 3 t = 10
λ = 1 λ = 0.8

Figure 6: In the fully synthetic loop, unbiased sampling loses quality, while biased sampling
loses diversity. 2D UMAP projections of 784-dimensional MNIST-DDPM samples from fully
synthetic loops without (left, λ = 1) and with (right, λ < 1) sampling bias. Without sampling bias,
the synthetic digits become so unrealistic (low-quality) that they are easily distinguishable from real
digits, while with sampling bias, the digits remain realistic but progressively lose diversity. See
Appendix F for the synthesized samples.

(see Figure 4), sampling bias increases precision but also accelerates losses in recall (shown clearly
in Figure 5) compared to unbiased models. Moreover, the FID still increases, indicating a MAD
generative process. See Figure 14 in Appendix C.3 for results with different MNIST-DDPM sampling
bias values, which follow the same trend.

Synthetic mode behavior depends on the sampling bias. To visualize MAD generative processes,
in Figure 6 we reduced the dimensionality of the real and synthetic MNIST-DDPM fully synthetic
loop samples from Figure 4 via Uniform Manifold Approximation and Projection (UMAP) (McInnes
et al., 2018). With unbiased sampling, the ten modes of the synthetic distribution (one for each digit)
progressively drift away from the real distribution modes, despite originating from a conditional
model, and eventually merge into one large cluster. By generation t = 10, the synthetic digits are
illegible (Figure 24 in Appendix F). In sharp contrast to the unbiased case, UMAP reveals that biased
sampling successfully keeps syntheses on the real data manifold (high precision), but contracts the
synthetic support around a single set of ten digits (zero recall). Appendix C confirms these trends for
Gaussian mixtures, WGANs, and Normalizing Flows.

4 THE SYNTHETIC AUGMENTATION LOOP: FIXED REAL TRAINING DATA CAN
DELAY BUT NOT PREVENT MADNESS

While analysis of the fully synthetic loop is straightforward, practitioners will use real data when it is
available. We now explore the synthetic augmentation loop, where a fixed real dataset is augmented
with autophagous synthetic data. Synthetic data augmentation can improve classification (Luzi et al.,
2024; Burg et al., 2023), but the impact of autophagous data augmentation is unclear—does increasing
training data volume enhance synthesis, even if the added samples stray from reality? We find that, in
the synthetic augmentation loop, fixed real training data only delays the inevitable degradation of the
quality or diversity of synthetic data over generations.
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Figure 7: Training generative models in a synthetic augmentation loop without sampling bias
reduces synthetic quality and diversity, albeit more slowly than in the fully synthetic loop.
We plot the FID, precision (quality), and recall (diversity) of FFHQ-StyleGAN2 syntheses from a
synthetic augmentation loop, wherein generative models train on both synthetic and real data, and
a fully synthetic loop from Figure 4 for comparison. Both loops have no sampling bias (λ = 1).
Qualitative examples (Appendix G) show the same artifacts as in Figure 1, albeit less prominently.
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synthetic augmentation loop: λ = 1 λ = 0.8 λ = 0.66 λ = 0.5

Figure 8: When incorporating real data in the synthetic augmentation loop, sampling bias still
affects MADness. We plot the FID, precision (quality), and recall (diversity) of MNIST-DDPM
images synthesized in synthetic augmentation loops with different sampling biases λ. All three
metrics exhibit the same, albeit less pronounced, behavior as in the biased fully synthetic loops
depicted in Figure 4.

Keeping the original real dataset in the synthetic augmentation loop only slows MADness.
Figure 7 shows that keeping the full FFHQ dataset in a StyleGAN25 synthetic augmentation loop
still produces the same symptoms (albeit more slowly) as the fully synthetic loop: the distance
from the real dataset (FID) increases, while the quality (precision) and diversity (recall) of synthetic
samples still decrease without sampling bias. (See Appendix A.2 for the experimental details.) In
fact, in Appendix G we see the same artifacts as in Figure 1 and Appendix D. Additionally, sampling
bias λ impacts MNIST-DDPM synthetic augmentation loops (Figure 8) in the same way it impacts
fully synthetic loops: FID still increases, but λ < 1 can increase quality (precision) in exchange for
diversity (recall). Additional synthetic augmentation loop experiments can be found in Appendix H.

5 THE FRESH DATA LOOP: FRESH REAL DATA CAN PREVENT MADNESS

Our most elaborate autophagous loop model obtains training data from two sources: unseen (fresh)
real data and synthetic data from previously trained models. A clear instance of this is the LAION-5B
dataset (Schuhmann et al., 2022), which contains both real and AI-synthesized images from the
Internet (Figure 2). We seek to understand how generative models evolve in the fresh data loop,
which alters the synthetic augmentation loop by incorporating fresh (instead of fixed) real samples at

5Unique to our StyleGAN2 synthetic augmentation loop, we linearly grow a pool of synthetic data to assess
whether access to all previous generations’ synthetic data could help future generations learn (see Appendix A.2).
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Figure 10: In a fresh data loop, the admissible amount of synthetic data does not increase with
the amount of real data. As the real data count nr increases, the synthetic data count ns for which
ne ≥ nr (green area) converges. Synthetic data is only likely to be helpful for small nr.

each iteration. We imagine that a fraction p ∈ (0, 1) of a corpus of data (e.g., the Internet) is real,
and the remainder 1− p is synthetic. Independently sampling nt data points from this corpus yields
nt
r = pnt real and nt

s = (1− p)nt synthetic data points to train the t-th generation model.

The fresh data loop reveals two intriguing phenomena. First, asymptotic performance converges
independently of initial performance, depending only on the ratio of real-to-synthetic training data.
Second, limited amounts of synthetic data can actually improve performance in the fresh data loop—
since synthetic data propagates information from previously seen real data and thus increases the
effective dataset size—but too much synthetic data can still cause MADness. Overall, our fresh data
loop analyses and experiments establish that, with enough fresh real data, the quality and diversity of
synthetic data do not degrade over generations.

Initial models will eventually be forgotten in the fresh data loop. First we show that the initial
model does not affect the behavior of the fresh data loop. We train the initial model on nini real
samples and subsequent models with nr new real and ns synthetic (with bias λ) samples from the
previous model; see Appendix A.3 for the details. Interestingly, for both the Gaussian and MNIST-
DDPM and models, the Wasserstein distance and FID converge independently of nini after a few
iterations (Figure 9). In other words, we observe that models in a fresh data loop converge to a limit
point that depends on nr, ns, and λ, but not on the initial model G1 or its dataset size nini:

lim
t→∞

E[dist(Gt,Pr)] =: WD(nr, ns, λ). (2)

For autophagy, this brings some hope: with fresh real data at each generation, E[dist(Gt,Pr)] does
not necessarily increase with t. In other words, a fresh data loop does not necessarily go MAD.

The fresh data loop exhibits a phase transition. Since fresh real data can mitigate MADness, one
might suspect that synthetic data can provoke fresh data loop MADness. However, the truth is that
modest amounts of synthetic data in fresh data loops can actually boost performance; only when the
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amount of synthetic data exceeds a critical threshold do models suffer. We formalize this observation
through Monte-Carlo simulation of the fresh data loop limit point (Equation (2)) in Gaussian models.
For comparison, we compute the effective sample size ne that an alternative model would need to
reach the same performance as the asymptote from scratch:

Find ne s.t. E[dist(G(ne),Pr)] = WD(nr, ns, λ). (3)

That is, ne captures the asymptotic sample efficiency of the fresh data loop.

Figure 10 depicts how the ratio ne/nr changes with nr, ns, and λ. When ne/nr ≥ 1, we say the
amount of synthetic data ns is admissible because it effectively increases the number of real samples.
For ne/nr < 1, synthetic data effectively reduces the number of real samples.

First, we confirm that, given nr and λ < 1, there exists a phase transition in ns. If ns exceeds
the admissibility threshold, then the effective sample size ne drops below the fresh sample size nr,
meaning that synthetic data does not asymptotically improve performance. However, the synthetic-to-
real ratio ns/nr needed to achieve ne/nr ≥ 1 is not constant. In fact, in Figure 10 we see that the
admissible amount of synthetic data ns (such that ne/nr ≥ 1) can be quite high for small values of
nr, but as nr grows, the admissible ratio of synthetic-to-real data ns/nr shrinks.

Second, we find that the admissible threshold value for ns depends strongly on the sampling bias λ.
Perhaps surprisingly, stronger bias (smaller λ) actually reduces the number of synthetic samples that
can be used without harming performance. Taking the limit λ → 1 for unbiased sampling appears
to ensure that the effective number of samples is always increased (ne/nr is always greater than 1).
Whether this limiting behavior extends beyond Gaussian models is an open question. As we discussed
in Section 2.1, it is unlikely that practical generative models synthesize without bias, and so it is better
to draw conclusions from the λ < 1 case. See Appendix I for additional fresh data loop experiments.

6 DISCUSSION

Our theoretical and empirical analyses have enabled us to extrapolate what might happen as generative
models become ubiquitous and train future models in autophagous (self-consuming) loops. Using
state-of-the-art generative image models and datasets, we have studied three families of autophagous
loops and identified the key rôle of sampling bias. Some ramifications are clear: without enough fresh
real data, future generative models are doomed to Model Autophagy Disorder (MAD), progressively
losing quality (precision) or diversity (recall) and amplifying generative artifacts. One doomsday
scenario is that, if left uncontrolled, MAD could poison the entire Internet’s data quality and diversity.
After all, our autophagous loops went appreciably MAD after just 5 generations (Figure 1). It seems
inevitable that AI autophagy’s unintended consequences could arise in the near future.

Practitioners who deliberately use synthetic training data should heed our warning. For those in
truly data-scarce applications, our results suggest how much real data can prevent MADness. For
example, future training of a medical image generator on inter-institutional anonymous syntheses
(DuMont Schütte et al., 2021) should ensure that all synthetic images are artifact-free and diverse (see
Section 3), and that real (preferably new) data is maximally present in training (see Sections 4 and 5).

Practitioners who unknowingly train on synthetic data could try controlling the ratio of real-to-
synthetic training data by identifying and rejecting synthetic data. Some identifiers find telltale
patterns of AI synthesis (Guarnera et al., 2020; Mitchell et al., 2023; Tang et al., 2023). Others
make synthetic data steganographically idenfiable via watermarking (Kirchenbauer et al., 2023a;b;
Zhao et al., 2023; Peng et al., 2023; Wen et al., 2023; Fernandez et al., 2023; Fei et al., 2022).
However, watermarking deliberately introduces hidden artifacts that could be uncontrollably or
harmfully amplified by autophagy. In the fresh data loop, modest amounts of synthetic data can
boost performance (ne/nr > 1 in Figure 10). Future research could develop autophagy-aware
watermarking that helps identify synthetic data while avoiding the amplification of its own artifacts.

Future research directions include combining our three prototypical autophagous loops into more
complex loops, examining how MADness affects downstream tasks (e.g., classification), and models
for other data types. We have focused here on imagery, but autophagy and MADness can occur in
any data type. For example, autophagous language models (Huang et al., 2022; Wang et al., 2022;
Taori et al., 2023) can also go MAD, losing quality (coherence or correctness) or diversity (variety).
Shumailov et al. (2023) have reached similar conclusions, but there is much work to do in this vein.
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A EXPERIMENT SETUPS

Here are detailed descriptions of our experiments.

A.1 THE FULLY SYNTHETIC LOOP

We empirically study the fully synthetic loop using two representative deep generative models and
two practical training datasets. After training an initial model G1 with a fully real dataset containing
n1
r samples from the (unknown) reference distribution, subsequent models (Gt)∞t=2 are trained using

nt
s synthetic samples from the immediately preceding model Gt−1, where each synthetic sample is

produced with sampling bias λ. Our primary experiments are organized as follows:

• Generative adversarial network: We use an unconditional StyleGAN2 model (Karras et al.,
2020) and initially train it on n1

r = 70k samples from the FFHQ dataset (Karras et al., 2019b).
We downsized the FFHQ images to 128× 128 (using Lanczos PyTorch anti-aliasing filtering as
in Karras et al. (2020)) to reduce the computational cost. We set nt

s = 70k for t ≥ 2.
• Diffusion model: We use a conditional DDPM (Ho et al., 2020) with T = 500 diffusion time

steps and initially train it on n1
r = 60k real samples from the MNIST dataset. We set nt

s = 60k for
t ≥ 2. To calculate FIDs, we use the features extracted by a LeNet (Lecun et al., 1998) rather than
an Inception network, because numerical digits are not exactly natural images. For consistency,
we continue to use the term “FID” in this case.

A.2 THE SYNTHETIC AUGMENTATION LOOP

We simulate the synthetic augmentation loop using the same deep generative models and experimental
conditions as in Appendix A.1. Recall that we first require training an initial model G1 with a fully
real dataset of n1

r samples. All subsequent models (Gt)∞t=2 are trained using nt
s synthetic samples

from the previous model(s) and all of the original n1
r samples used to train G1. Note that each

synthetic sample is always produced with sampling bias λ. Our experiments are organized as follows:

• Generative adversarial network: We use an unconditional StyleGAN2 architecture Karras
et al. (2020) trained on the FFHQ-128×128 dataset Karras et al. (2019b). Like the StyleGAN
experiment in Appendix A.1, at each generation t ≥ 2 we sample 70k images with no sampling
bias (λ = 1) from the immediately preceding model Gt−1. However, now the synthetic dataset
Dt

s includes samples from all the previously models (Gτ )t−1
τ=1, producing a synthetic data pool

of size nt
s = (t− 1)70k that grows linearly with respect to t. The real FFHQ dataset is always

present at every generation: D1
r = Dt

r and n1
r = nt

r = 70k for every generation t.
• Diffusion model: We use a conditional MNIST-DDPM Ho et al. (2020) with T = 500 diffusion

time steps. In this experiment the synthetic dataset Dt
s is only sampled from the previous

generation Gt−1 with sampling bias λ, and n1
r = nt

s = 60k for all t ≥ 2. The original real
MNIST dataset is also available at every generation: D1

r = Dt
r and n1

r = nt
r = 60k for all t.

A.3 THE FRESH DATA LOOP

As in previous autophagous loop variants, we assume that all models are initially trained solely on
real samples, with the number of real samples denoted here as n1

r = nini. In subsequent generations
(i.e., for t ≥ 2) the generative models are trained with a fixed number of real samples, denoted as
nt
r = nr, and a fixed number of synthetic samples, denoted by nt

s = ns. In the fresh data loop, the
dataset Dt

r is independently sampled from the reference probability distribution Pr, while the dataset
Dt

s is sampled exclusively from the previous generation Gt−1, with a sampling bias represented as λ.

We simulate the fresh data loop using different values for nini, nr, ns, and λ. The Gaussian example
enables examination of the fresh data loop in greater detail, especially in the asymptotic regime.
Meanwhile, our MNIST-DDPM example demonstrates the impact of fresh data loop on more realistic
dataset and model.

• Gaussian model: We consider a normal reference distribution Pr = N (0d, Id) with a dimension
of d = 100. For modeling the Gaussian distribution, we utilize an unbiased moment estimation
approach, as described in Equation (1).

14



Published as a conference paper at ICLR 2024

• Diffusion model: We use a conditional DDPM Ho et al. (2020) with T = 500 diffusion time
steps. We consider the MNIST dataset as our reference distribution.

A.4 METRICS FOR MADNESS

Ascertaining whether an autophagous loop has gone MAD or not (recall Definition 2) requires that
we measure how far the synthesized data distribution Gt has drifted from the true data distribution Pr

over the generations t. We use the notion of the Wasserstein distance as implemented by the Fréchet
Inception Distance (FID) for this purpose. We will also find the standard concepts of precision and
recall useful for making rigorous the notions of quality and diversity, respectively.

Wasserstein distance, or earth mover’s or optimal transport distance (Kantorovich, 1960), measures
the minimum work required to move the probability mass of one distribution to another. Computing
the Wasserstein distance between two datasets (e.g., real and synthetic images) is prohibitively
expensive. As such, standard practice employs the FID (Heusel et al., 2017) as an approximation,
which calculates the Wasserstein-2 distance between Inception feature distributions of real and
synthetic images. For our MNIST experiments we calculate FIDs using the features from a LeNet
(Lecun et al., 1998) rather than an Inception network, because numerical digits are not exactly natural
images.

Precision quantifies the portion of synthesized samples that are deemed high quality or visually
appealing. We use precision as an indicator of sample quality. We compute precision by calculating
the fraction of synthetic samples that are closer to a real data example than to their k-th nearest
neighbor (Kynkäänniemi et al., 2019). We use the default k = 5 in all experiments.

Recall estimates the fraction of samples in a reference distribution that are inside the support of the
distribution learned by a generative model. High recall scores suggest that the generative model
captures a large portion of diverse samples from the reference distribution. We compute recall in
a manner similar to precision (Kynkäänniemi et al., 2019). Given a set of synthetic samples from
the generative model, we calculate the fraction of real data samples that are closer to any synthetic
sample than its k-th nearest neighbor. In Appendix C.1 we demonstrate how recall captures synthetic
diversity in an autophagous loop more accurately than variance.

B PROOF OF SYNTHETIC GAUSSIAN MARTINGALE VARIANCE COLLAPSE

We now prove that for the process described in Equation (1), Σt
a.s.−−→ 0.

Proof. First write xi
t =

√
λΣ

1/2
t−1z

i
t + µt−1 for zit ∼ N (0d, Id). Then consider the process tr[Σt],

which is a lower bounded submartingale:

tr[Σt] = λtr

[
Σ

1/2
t−1

(
1

N − 1

N∑
i=1

(zit − µz
t )(z

i
t − µz

t )
⊤

)
Σ

1/2
t−1

]
, (4)

where µz
t = 1

N

∑N
i=1 z

i
t. By Doob’s martingale convergence theorem (Williams, 1991, Ch. 11),

there exists a random variable w such that tr[Σt]
a.s.−−→ w, and we now show that we must have w = 0.

Without loss of generality, we can assume that Σt−1 is diagonal, in which case it becomes clear that
tr[Σt] is a generalized χ2 random variable, being a linear combination of d independent χ2 random
variables with N − 1 degrees of freedom, mixed with weights λdiag(Σt−1). Therefore, we can
write tr[Σt] = λyttr[Σt−1], where yt is a generalized χ2 random variable with the same degrees of
freedom but with mixing weights diag(Σt−1)/tr[Σt−1], and E[yt|Σt−1] = 1. This implies that at
least one mixing weight is greater than 1/D for each t, which means that for any 0 < ϵ < 1, there
exists c > 0 such that Pr(|yt − 1| > ϵ) > c. Now consider the case λ = 1. Since |yt − 1| > ϵ

infinitely often with probability one, the only w that can satisfy limt→∞ tr[Σ0]
∏t

s=1 ys = w is
w = 0. For general λ ≤ 1, tr[Σt] is simply the product of the process for λ = 1 and the sequence
λt−1, and so the product must also converge to zero almost surely. Finally, since tr[Σt]

a.s.−−→ 0, we
also must have Σt

a.s.−−→ 0, where convergence is defined with any matrix norm.
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C ADDITIONAL EXPERIMENTS FOR THE FULLY SYNTHETIC LOOP

Here we present additional experiments for the fully synthetic loop.

C.1 RECALL VERSUS VARIANCE: GMMS IN AN UNBIASED FULLY SYNTHETIC LOOP

We also trained 2D GMMs in an unbiased fully synthetic loop using the same 25-mode distribution
as (Che et al., 2020). In Figure 11 we see that the fully synthetic loop gradually reduces the number
of modes covered by the synthetic distribution. Various metrics could measure this loss in diversity,
so in Figure 12 we explore how well each metric reflects the dynamics of the fully synthetic loop,
finding that recall is best-equipped to measure diversity in multimodal datasets.

t = 1 t = 200 t = 2000

λ=1 λ=1

Figure 11: The fully synthetic loop gradually causes mode collapse. Estimated GMM (Che et al.,
2020) distributions after 1, 200, and 2k iterations of an unbiased fully synthetic loop. Notice that the
modes are lost asymptotically.
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Figure 12: Recall is the most suitable commonly accepted metric for diversity in an autophagous
loop. For GMMs in a fully synthetic loop (Figure 11), there are three primary potential metrics
of diversity: variance,7 average modal variance (the average variance of each mode), and recall
(Kynkäänniemi et al., 2019). We observe that the overall variance (left) does not reflect the loss of
modes that we see in Figure 11 as smoothly as recall (right) and average modal variance (middle).
Recall is therefore a suitable choice for measuring diversity in multimodal datasets and, unlike
average modal variance, is compatible with distributions where the number of modes is not tractable
(e.g., natural images).

C.2 WASSERSTEIN GANS IN AN UNBIASED FULLY SYNTHETIC LOOP

In this experiment we trained Wasserstein GANs (with gradient penalty) (Gulrajani et al., 2017a) on
the MNIST dataset in a fully synthetic loop for 100 generations. As shown in Figure 13, the FID
monotonically increases, while quality (precision) and diversity (recall) monotonically decrease.

7For multidimensional datasets, we calculate variance as the trace of covariance.
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Figure 13: The negative effects of the fully synthetic loop are monotonic and inescapable. The
FID (left), quality (precision, middle), and diversity (recall, right) of synthetic FFHQ and MNIST
images produced by MNIST Wasserstein GANs.

C.3 ADDITIONAL MNIST-DDPM FULLY SYNTHETIC LOOP RESULTS

In Figure 4 we showcased the results of training MNIST-DDPMs in a fully synthetic loop with
various sampling bias factors λ. In Figure 14 we have the results (FID, precision, and recall) more
generations t and different sampling biases λ.
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DDPMs on an MNIST fully synthetic loop: λ = 1 λ = 0.8 λ = 0.66 λ = 0.5

Figure 14: In a fully synthetic loop, sampling bias λ < 1 can mitigate distributional drift and
losses in quality, but only at the cost of rapid losses in diversity The FID (left), quality (precision,
middle), and diversity (recall, right) of synthetic images from an MNIST-DDPM fully synthetic loop.

C.4 NORMALIZING FLOW FULLY SYNTHETIC LOOP

We implemented the fully synthetic loop using normalizing flows (Dinh et al., 2016; Kingma and
Dhariwal, 2018) for generative modeling of the two-dimensional Rosenbrock reference distribution
(Pagani et al., 2022) in order to visualize the outcome of this particular scenario in a controlled setting.
Normalizing flows are unique in that they enable exact evaluation of the likelihood of the estimated
distribution due to their invertibility (Dinh et al., 2016). This leads to a relatively straightforward
training procedure compared to GANs, which often require careful balancing between the generator
and discriminator networks to avoid mode collapse (Gulrajani et al., 2017b). Therefore, by using
a low-dimensional reference distribution, this setup allows us to demonstrate the fully synthetic
loop while eliminating potential training imperfections. We implemented this example using the
InvertibleNetworks.jl (Orozco et al., 2023) package for normalizing flows.

According to the fully synthetic loop setup, we start with a training dataset of 104 samples from
the 2D Rosenbrock distribution with the density function Pr(x1, x2) ∝ exp

(
− 1

2x
2
1 −

(
x2 − x2

1

)2)
(Pagani et al., 2022), which is plotted on the left-hand side of Figure 15. The subsequent generations
of normalizing flow models are trained using synthetic data generated by the previous pre-trained
normalizing flow for 16 generations, both with and without sampling bias. We employ the GLOW
normalizing flow architecture (Kingma and Dhariwal, 2018) with eight coupling layers (Kingma
and Dhariwal, 2018) and a hidden dimension of 64. The training is carried out for 20 epochs with
a batch size of 256 for each generation, ensuring convergence as determined by monitoring the
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model’s likelihood over a validation set. Figure 15 summarizes the results of this fully synthetic
loop setup. To incorporate sampling bias, we sample from N (0d, λId) from the latent space of the
model, where d = 2. As shown, regardless of the presence of sampling bias, the resulting distribution
after 16 generations loses the tails of the reference distribution, indicating a loss of diversity. This
phenomenon becomes more pronounced when sampling bias is present (λ < 1).

Ground Truth

t = 1 t = 16

λ=1

λ=0.75

λ=1

λ=0.75

Figure 15: Normalizing flows are not immune to the fully synthetic loop. The fully synthetic loop
implememted with a formalizing flow (Dinh et al., 2016) applied to the 2D Rosenbrock distribution
(Pagani et al., 2022). Sampling with or without bias still loses the tails of the distribution (i.e.,
diversity). Using λ < 1 accelerates this loss of diversity.
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D FFHQ UNBIASED FULLY SYNTHETIC LOOP IMAGES

We show additional randomly chosen synthetic samples produced by the same FFHQ-StyleGAN2
unbiased fully synthetic loop as in Figure 1.

Figure 16: Generation t = 1 of a fully synthetic loop with bias λ = 1. i.e., synthetic samples from
the first model G1.

Figure 17: Generation t = 3 of a fully synthetic loop with bias λ = 1
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Figure 18: Generation t = 5 of a fully synthetic loop with bias λ = 1

Figure 19: Generation t = 7 of a fully synthetic loop with bias λ = 1
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Figure 20: Generation t = 9 of a fully synthetic loop with bias λ = 1

E FFHQ BIASED FULLY SYNTHETIC LOOP IMAGES

We show additional randomly chosen synthetic samples produced by the same FFHQ-StyleGAN2 for
biased (λ = 0.7) fully synthetic loop as in Figure 5.

Figure 21: Generation t = 1 of a fully synthetic loop with bias λ = 0.7
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Figure 22: Generation t = 3 of a fully synthetic loop with bias λ = 0.7

Figure 23: Generation t = 5 of a fully synthetic loop with bias λ = 0.7
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F MNIST-DDPM FULLY SYNTHETIC LOOP IMAGES

Here we show randomly chosen samples from each generation of an MNIST-DDPM in a fully
synthetic loop for different sampling biases.

Gen. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 24: Without sampling bias, synthetic data modes drift from real modes and merge
together. Randomly selected synthetic MNIST images of each generation without sampling bias
(λ = 1). See Figure 6 for more details.

Gen. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 25: With sampling bias, synthetic data modes drift and contract around just a few
high-quality data points. Randomly selected synthetic MNIST images of each generation without
sampling bias (λ = 0.8). See Figure 6 for more details.
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G FFHQ UNBIASED SYNTHETIC AUGMENTATION LOOP IMAGES

Figure 26: Generation t = 3 of a synthetic augmentation loop with bias λ = 1. See Figure 16 for the
samples from t = 1 (in any autophagous loop the first model G1 always trains on purely real data,
see Section 2).

Figure 27: Generation t = 6 of a synthetic augmentation loop with bias λ = 1
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H ADDITIONAL RESULTS FOR THE SYNTHETIC AUGMENTATION LOOP

H.1 THE MNIST-DDPM SYNTHETIC AUGMENTATION LOOP

In this section, we repeat the experiment in Fig 8 and described in A.2 using all synthetic data
from previous generations, i.e, at each iteration t we used nt

s = (t− 1)60k synthetic samples from
(Gτ )t−1

τ=1, combined with the initial real data we had. The results are shown in Figure 28. We see the
same trend as in Figure 8. For a better comparison between using synthetic samples from all previous
generations vs only using from the previous generation is shown in Figure 29. Using synthetic data
from all previous generations only slows down the process the degradation in models with respect to
only using data from previous generations.
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synthetic augmentation loop: λ = 1 λ = 0.8 λ = 0.66 λ = 0.5

Figure 28: Using samples from all previous generative models in synthetic augmentation loop
will not stop MADness. We show the FID, precision (quality), and recall (diversity) of MNIST-
DDPM images synthesized in synthetic augmentation loops with different sampling biases λ. All
three metrics exhibit the same behavior as in the case we only sample from the previous generation
shown in Figure 8.

5 10

0.8

1

1.2

1.4

Generations

FI
D

λ = 0.8

5 10

1

2

3

4

Generations

FI
D

λ = 0.66

5 10
0

2

4

6

8

10

Generations

FI
D

λ = 0.5

Synthetic data origin in MNIST-DDPM synthetic augmentation loop: (Gτ )t−1
τ=1 Gt−1

Figure 29: Using samples from all previous generative models in synthetic augmentation loop
slows the degradation of models more. We show the FID of MNIST-DDPM images synthesized in
synthetic augmentation loops with different sampling biases λ using synthetic data from all previous
generation and only the last generation.
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H.2 THE GAUSSIAN SYNTHETIC AUGMENTATION LOOP

In this section, we replicate the Gaussian experiment in Section 5 for synthetic augmentation loops.

In particular, we sample nr real data from the reference distribution Pr = N (0d, Id) with a dimension
of d = 100 to train the first model G1. For the next generations, we sample ns synthetic data from
model Gt−1 with sampling bias λ, and combine it with the same nr real samples we used to train G1.
We report ne

nr
with ne defined in Equation 3.

We report the results for this experiment in Figure 30 and 31. We observe that for any values of
nr > d with d = 100, the presence of synthetic samples reduces effective number of samples
progressively. However, when the problem is ill-posed, i.e. nr < d, ne can be increased with respect
to nr if some sampling bias λ is present in the system. However, in our experiments we observe that
ne cannot surpass nr for any values of λ or ne, as it will always corresponds to an ill-posed problem
ne < d.
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Figure 30: In a synthetic augmentation loop, we always see a decrease in ne with respect to nr,
except for very small values of nr < d = 100, where the distribution estimation problem in ill-posed.
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Figure 31: In a synthetic augmentation loop, we always see a decrease in ne with respect to nr.
Smaller values of λ result in faster decay of ne as ns increases.
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I ADDITIONAL RESULTS FOR THE FRESH DATA LOOP

Here we provide three additional Gaussian experiments investigating the convergence of the fresh
data loop.

Experiment 1: In Figure 10 we showed how Gaussian fresh data loop convergence depends on ns

and nr for a few different values of λ. Now we depict how convergence depends on ns and λ for a
few different values of nr.
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Figure 32: In a fresh data loop, sampling bias reduces the admissible synthetic sample size. For
strong sampling bias (small λ), the maximum synthetic data count ns for which ne ≥ nr (green
area) decreases.

Experiment 2: In Section 5 we assumed that we only sample from the previous generation Gt−1 for
creating the synthetic dataset Dt

s. In this experiment we sample randomly from K previous models
(Gτ )t−1

τ=t−1−K . Here nr = 103, ns = 104, and λ = 1. In Figure 33 we see how ne

nr
varies with respect

to K. Increasing the memory K in sampling from previous generations can boost performance,
however the rate of improvement becomes slower as K increases. However the rate of improvement
on ne is sublinear with respect to K.
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Figure 33: The effective sample size ne divided by the real sample size nr for different numbers of
accessed previous generations K.

Experiment 3: Here we assume that we are sampling from an environment where p percent of data
is real, and the rest is synthetic data from the previous generation Gt−1 with sampling bias λ. We
change the total number of data in the dataset n = |Dt|, with nr = p× n and ns = (1− n)× p. We
show the Wasserstein distance for different p and λ in Figure 34.

Let us first examine the dynamics of the Gaussian fresh data loop without sampling bias (λ = 1).
We observe in Figure 34 (left) that the Wasserstein distance (WD) decreases with respect to dataset
size n. However, the presence of synthetic data (p < 100%) decreases the rate at which the WD
decreases, and increases the overall WD each generation in the fresh data loop. This means that with
presence of synthetic data in the Internet, the progress of generative models will become slower
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In the presence of sampling bias (λ < 1, Figure 34 right), we see that even for close values of λ to 1,
the Wasserstein distance follows a sub-linear trend, meaning that eventually the rate of progress in
generative models will effectively stop, no matter how much (realistically) the total dataset size is
increased.
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Figure 34: The Wasserstein distance (WD) versus the whole dataset size n, for different values of p
(left) and sampling bias λ (right).
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