
Supplementary Materials

Anonymous Author(s)
Affiliation
Address
email

1 More Discussions on Real2Sim1

1.1 Why not use video tracking?2

One may be curious about why not use video tracking to extract a tie’s motion in our work. We test3

co-tracker [1] and DINO-Tracker [2] on our tie-knotting demonstration videos. Please move to the4

folder ”./video tracking results” to see example outputs. We can find that even the state-of-the-art5

video tracking model cannot track accurate tying motion.6

1.2 Experiment on out-of-distribution issue of keypoints detection7

To illustrate the necessity of iteratively updating the detection model, we train a neural network with8

the same structure on a randomly sampled tie’s shape based on the initial shape. We trained our9

iterative keypoint detection model on 14 different shapes separately. For each shape, we randomly10

generate 500 similar shapes for training. For the random sampled method, we randomly generate11

7000 shapes from the initial tie’s shape to train a single keypoint detection model. We compare12

the result of Ours with random sample RS result in Fig. 1. Compared to the human annotation13

result, RS’s predictions have larger errors than Ours. RS method encounters an out-of-distribution14

problem. The test shape of the tie cannot be easily sampled, so RS cannot generalize to this test15

case.16

RGB image Point Cloud Ours RS Human Annotation

Figure 1: Prediction results of the oriented keypoints on real image and point cloud.

We also test the iterative global keypoint detection and RS method in simulation with ground truth17

annotation. The quantitative results are listed in Tab. 1.18

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



Table 1: Quantitative results of iterative keypoint detection on simulation data

Position Error(m) Z-axis Error(◦) X-axis Error(◦)

Ours 0.028 10.68 14.41
RS 0.183 49.00 68.76

1.3 Implementation details of keypoints detection19

1.3.1 keypoint positions prediction20

1) data generation We first load the mesh model into DiffClothAI [3], choose keypoint as control21

vertices, and apply random perturbations to these vertices to generate different shapes of the tie.22

Then, we load generated mesh models into PyBullet [4] to render point clouds. We use the same23

camera intrinsics as demonstrated video and similar camera pose to render point clouds. We generate24

500 point clouds as training data.25

To annotate training data, we first compute the geodesic distance of all points in the point cloud to26

keypoints. Then, we convert the geodesic distance to probability using equation 1. d is the geodesic27

distance, σ is a hyperparameter, p is the probability to evaluate how likely the point is to be a28

keypoint. In our experiments, we use σ = 0.15. Thus, if a point is close to one of five keypoints, the29

probability corresponding to that keypoint will be high.30

p = exp−
d2

2σ2 (1)

2) training details Different from the original pointnet++ semantic segmentation model [5], we31

change the last layer to sigmoid. The training parameters are listed in Tab. 2.32

parameter name parameter value

loss function L2(for keypoint positions and offsets prediction)
L1(for normal and middle line direction prediction)

data augmentation gaussian noise, random scale, random rotation
training epochs 80

batch size 24
learning rate 1e-4

optimizer Adam
scheduler cosine annealing with 10 epochs warm-up
Table 2: Hyperparameters for training global keypoint prediction

3) inference details Our model takes a point cloud as input and outputs a probability matrix P ∈33

(0, 1)N×5, N is the number of points in the point cloud. Each entry Pi,j represents the probability34

of point i to be keypoint j. To decode the predicted keypoints positions, we first select points with35

the top 5% probability as inlier for each column of P . Then, we assign other points’ probability to36

zero and normalize the probability for each column of P . Now we get the normalized probability37

distribution of each keypoint, denoted as P̂ . Finally, we compute the average positions of all points38

weighted by normalized probability, xk =
∑N

i=1 P̂i,k · xi. This is the final prediction for keypoint39

positions.40

1.3.2 normal(z axis) prediction41

1) data generation We generate data the same way as keypoint positions. For annotation, we first42

compute the normal direction of each face of the mesh. Then, we assign these values to points in the43

point cloud according to the nearest faces.44

2) training details We also remove the log softmax layer in pointnet++ [5]. We use L1 distance45

as the loss function. The other training parameters are the same as keypoint position prediction.46

2



3) inference details With predicted keypoints positions and predicted normal directions of all47

points, we compute the normal of each keypoint as the average of neighboring points normal direc-48

tions.49

1.3.3 middle line(x axis) prediction50

1) data generation Same as normal prediction, just change the annotation from normal direction51

to middle line direction.52

2) training details It’s the same as normal prediction.53

3) inference details It’s the same as normal prediction.54

1.4 Results of local feature matching and keypoints detection on real data55

We present some examples of local feature matching and keypoints detection on two tie-knotting56

tasks and a towel-folding task, shown in Fig 2.57

1.5 Ablation study of HFM on real data58

We demonstrate the effectiveness of hierarchical matching in cloth state estimation in Fig. 3. In the59

first test case, we aim to illustrate the importance of global keypoint detection. Therefore, we chose60

two images that show differences in positions and orientations. In the third column, Ours method61

successfully flips the tie and moves forward a little, as shown in the images. Our w/o KP and Ours62

w/o LF cannot move forward as expected. Because, in this case, local feature matching cannot find63

correspondences in the tie’s left part.64

In the second test case, we aim to illustrate the importance of local feature matching. We chose two65

images that contain an operation of lifting a side of a ring in the air. This action requires detailed66

information to achieve accurate estimation. The last column shows the result of Ours w/o FM.67

Our framework cannot accurately estimate the shape only with global keypoint positions and local68

frames. This global information can only provide general structure guidance instead of detailed69

shape information.70

2 More discussions on Learn@sim71

2.1 How to control tie in DiffClothAI72

Modeling grasping in DiffClothAI [3] is not simply selecting one vertex on the mesh as the control73

vertex. Because controlling one vertex is not enough to simulate rotation in DiffClothAI, knotting74

a tie requires some rotation actions. Therefore, we select one central vertex and its surrounding75

vertices as control vertices, shown in Fig.4. By controlling a small region instead of a single vertex,76

we can simulate rotation actions in DiffClothAI.77

2.2 Implementation details of teach-student training paradigm78

2.2.1 Teacher policy79

We model the grasping point selection as MDP and use model-free RL to learn the proper grasping80

point. To simplify the problem, we sample 40 vertices on the middle line of the mesh model as our81

candidates. vertices directly connected to these candidates in left, right, up, and down are defined as82

their neighbors.83

In practice, we evenly sample 40 vertices on the middle line of the mesh model as our candidates.84

The state s is a 40 × 6 matrix. The action a is a 820 × 1 one-hot vector, which contains grasping85

one vertex(40) and two vertices(40× 39/2 = 780).86

3



(a) Local feature matching and keypoints
detection results on real-world tie-knotting
demonstration

(b) Local feature matching and keypoints detection re-
sults on another real-world tie-knotting demonstration

(c) Local feature matching results on another real-world towel-folding demonstration

Figure 2: We test local feature matching and keypoints detection on real-world demonstrations. It
shows that our method works for most tie shapes.

4



Image t Image t+1 Ours Ours w/o KP Ours w/o LF Ours w/o FM

(a) Ablation study mainly on keypoint prediction.

Image t Image t+1 Ours Ours w/o KP Ours w/o FMOurs w/o LF

top view

front horizontal view

(b) Ablation study mainly on local feature matching.

Figure 3: Ablation study on hierarchical feature matching for state estimation.

Figure 4: Illustration of control vertices in DiffClothAI.

To learn to select grasping points, we use PPO implemented in stable-baseline3 [6]. The hyperpa-87

rameters are shown in Tab 3 for all trajectories.88

2.2.2 Student policy89

Our student policy learns to predict grasping point positions from the point cloud. The training90

details are the same as training keypoints prediction, only changing the number of keypoints from91

5 to 2. We follow the same training hyperparameters as grasping point prediction for placing point92

position detection, only changing the pointnet++ semantic segmentation model to the classification93

model.94

2.3 More results on ATM baseline95

We first illustrate example outputs of ATM baseline on two different ties in Fig. 5. We can see that96

without explicit mesh modeling, ATM will quickly deviate from correct trajectories.97

5

https://github.com/DLR-RM/stable-baselines3


parameter name parameter value
learning rate 0.0003

batch size 64
γ 0.99

gae lambda 0.95
clip range 0.2

C1 5

fitting threshold {0.9, 1.5, 2.0, 3.0, 3.0, 1.9}
(listed in subgoals order)

C2 30
C3 30

Table 3: Hyperparameters for learning grasping points settings

Normal tie

Larger tie

Figure 5: Illustration of ATM rollouts in simulation.

To further examine whether the long-horizon property or points trajectories representations lead to98

the failure of ATM on tie-knotting tasks, we further conduct experiments on some shorter tasks to99

see if ATM can work. Specifically, we divide the whole tie-knotting task into 6 subtasks, training100

and testing ATM on each subtask separately. The results are shown in Fig. 6. We can see that ATM’s101

results look better for the first 3 subtasks. But ATM still cannot complete the last 3 subtasks, which102

involve complex topology and subtle dynamics. This experiment demonstrates that using points103

trajectory representation cannot handle such complex tasks even with a shorter horizon.104

initial target step1 step2 step3 step4 step5 step6

exp1

exp2

exp3

exp4

exp5

exp6

Figure 6: Illustration of ATM results on 6 subtasks.

3 Real world experiments105

3.1 Experiment setup106

We set up the real-world experiment with a dual-arm robot as shown in Fig. 7. The MOVO robot [7]107

has two 7 DoF arms and a Kinect RGB-D camera overhead. We perform position controls and use108

RangedIK [8] for solving inverse kinematics. he success state is defined in Fig. 8.109

6



initial

step1 step2 step3 step4

step5 step6 step7 step8

camera

working 
space

Figure 7: Illustration of real-world experiment settings.

Figure 8: Illustration of the success state of knotting a tie.

7



3.2 Failure cases and analysis110

Two major failure cases in real-world experiments are shown in Fig. 9. One is the robot fails to111

rotate the whole ring structure of the tie, another is the robot fails to insert the little end of the tie112

into the whole shown in Fig. 8.113

The first case is caused by the subtle dynamics of the tie. To rotate the ring structure, the tie should114

be a bit harder so that the ring structure will not crumple during the rotation process, while it should115

not be so hard so that the rotation action won’t interfere with other parts of the tie. This places a116

high demand on both the tie and the robot. It’s hard to solve from the algorithm side.117

The second case is caused by partial observation of this task. We use one camera on the top of the118

robot for perception. It cannot perceive the little end of the tie in this case. Thus, the robot has to act119

blindly, lowering the success rate.120

For more fail cases, please move to the folder ”./fail cases”.121

(a) Fail to rotate the ring structure. (b) Fail to insert little end of the tie.

Figure 9: Illustration of two major failure cases

8



References122

[1] N. Karaev, I. Rocco, B. Graham, N. Neverova, A. Vedaldi, and C. Rupprecht. CoTracker: It is123

better to track together. 2023.124

[2] N. Tumanyan, A. Singer, S. Bagon, and T. Dekel. Dino-tracker: Taming dino for self-supervised125

point tracking in a single video, March 2024.126

[3] X. Yu, S. Zhao, S. Luo, G. Yang, and L. Shao. Diffclothai: Differentiable cloth simulation with127

intersection-free frictional contact and differentiable two-way coupling with articulated rigid128

bodies. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).129

IEEE, 2023.130

[4] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics131

and machine learning. http://pybullet.org, 2016–2021.132

[5] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point133

sets in a metric space. arXiv preprint arXiv:1706.02413, 2017.134

[6] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:135

Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22136

(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.137

[7] Kinova. Kinova-movo. URL https://docs.kinovarobotics.com/kinova-movo/138

Concepts/c_movo_hardware_overview.html.139

[8] Y. Wang, P. Praveena, D. Rakita, and M. Gleicher. Rangedik: An optimization-based robot140

motion generation method for ranged-goal tasks. arXiv preprint arXiv:2302.13935, 2023.141

9

http://pybullet.org
http://jmlr.org/papers/v22/20-1364.html
https://docs.kinovarobotics.com/kinova-movo/Concepts/c_movo_hardware_overview.html
https://docs.kinovarobotics.com/kinova-movo/Concepts/c_movo_hardware_overview.html
https://docs.kinovarobotics.com/kinova-movo/Concepts/c_movo_hardware_overview.html

	More Discussions on Real2Sim
	Why not use video tracking?
	Experiment on out-of-distribution issue of keypoints detection
	Implementation details of keypoints detection
	keypoint positions prediction
	normal(z axis) prediction
	middle line(x axis) prediction

	Results of local feature matching and keypoints detection on real data
	Ablation study of HFM on real data

	More discussions on Learn@sim
	How to control tie in DiffClothAI
	Implementation details of teach-student training paradigm
	Teacher policy
	Student policy

	More results on ATM baseline

	Real world experiments
	Experiment setup
	Failure cases and analysis


