o g B~ W

10
11
12
13
14
15
16

17
18

Supplementary Materials

Anonymous Author(s)
Affiliation
Address

email

1 More Discussions on Real2Sim

1.1 Why not use video tracking?

One may be curious about why not use video tracking to extract a tie’s motion in our work. We test
co-tracker [1] and DINO-Tracker [2] on our tie-knotting demonstration videos. Please move to the
folder ”./video tracking results” to see example outputs. We can find that even the state-of-the-art
video tracking model cannot track accurate tying motion.

1.2 Experiment on out-of-distribution issue of keypoints detection

To illustrate the necessity of iteratively updating the detection model, we train a neural network with
the same structure on a randomly sampled tie’s shape based on the initial shape. We trained our
iterative keypoint detection model on 14 different shapes separately. For each shape, we randomly
generate 500 similar shapes for training. For the random sampled method, we randomly generate
7000 shapes from the initial tie’s shape to train a single keypoint detection model. We compare
the result of Ours with random sample RS result in Fig. 1. Compared to the human annotation
result, RS’s predictions have larger errors than Ours. RS method encounters an out-of-distribution
problem. The test shape of the tie cannot be easily sampled, so RS cannot generalize to this test
case.

RGB image Point Cloud Ours RS Human Annotation

Figure 1: Prediction results of the oriented keypoints on real image and point cloud.

We also test the iterative global keypoint detection and RS method in simulation with ground truth
annotation. The quantitative results are listed in Tab. 1.

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

20

21
22
23
24
25

26
27
28
29
30

31
32

33
34
35
36
37
38
39
40

41

42
43
44

45
46

Table 1: Quantitative results of iterative keypoint detection on simulation data

‘ Position Error(m) Z-axis Error(°) X-axis Error(°)

Ours 0.028 10.68 14.41
RS 0.183 49.00 68.76

1.3 Implementation details of keypoints detection
1.3.1 Kkeypoint positions prediction

1) data generation We first load the mesh model into DiffClothAl [3], choose keypoint as control
vertices, and apply random perturbations to these vertices to generate different shapes of the tie.
Then, we load generated mesh models into PyBullet [4] to render point clouds. We use the same
camera intrinsics as demonstrated video and similar camera pose to render point clouds. We generate
500 point clouds as training data.

To annotate training data, we first compute the geodesic distance of all points in the point cloud to
keypoints. Then, we convert the geodesic distance to probability using equation 1. d is the geodesic
distance, o is a hyperparameter, p is the probability to evaluate how likely the point is to be a
keypoint. In our experiments, we use o = 0.15. Thus, if a point is close to one of five keypoints, the
probability corresponding to that keypoint will be high.

42

p=exp 2% (1

2) training details Different from the original pointnet++ semantic segmentation model [5], we
change the last layer to sigmoid. The training parameters are listed in Tab. 2.

parameter name parameter value
loss function L2(for keypoint pos}tions .and (')ffse'ts predic'tio.n)
L1(for normal and middle line direction prediction)
data augmentation gaussian noise, random scale, random rotation
training epochs 80
batch size 24
learning rate le-4
optimizer Adam
scheduler cosine annealing with 10 epochs warm-up

Table 2: Hyperparameters for training global keypoint prediction

3) inference details Our model takes a point cloud as input and outputs a probability matrix P €
(0,1)N*5, N is the number of points in the point cloud. Each entry P; ; represents the probability
of point ¢ to be keypoint j. To decode the predicted keypoints positions, we first select points with
the top 5% probability as inlier for each column of P. Then, we assign other points’ probability to
zero and normalize the probability for each column of P. Now we get the normalized probability
distribution of each keypoint, denoted as P. Flnally, we compute the average positions of all points
weighted by normalized probability, x; = ZZ 1 PZ k - T;. This is the final prediction for keypoint
positions.

1.3.2 normal(z axis) prediction

1) data generation We generate data the same way as keypoint positions. For annotation, we first
compute the normal direction of each face of the mesh. Then, we assign these values to points in the
point cloud according to the nearest faces.

2) training details We also remove the log_softmax layer in pointnet++ [5]. We use L1 distance
as the loss function. The other training parameters are the same as keypoint position prediction.

47
48
49

50

51
52

53

54

55

56
57

58

59
60
61
62
63
64

65
66
67
68
69
70

71

72

73
74
75
76
77

78

79

80
81
82
83

84
85
86

3) inference details With predicted keypoints positions and predicted normal directions of all
points, we compute the normal of each keypoint as the average of neighboring points normal direc-
tions.

1.3.3 middle line(x axis) prediction

1) data generation Same as normal prediction, just change the annotation from normal direction
to middle line direction.

2) training details It’s the same as normal prediction.
3) inference details It’s the same as normal prediction.

1.4 Results of local feature matching and keypoints detection on real data

We present some examples of local feature matching and keypoints detection on two tie-knotting
tasks and a towel-folding task, shown in Fig 2.

1.5 Ablation study of HFM on real data

We demonstrate the effectiveness of hierarchical matching in cloth state estimation in Fig. 3. In the
first test case, we aim to illustrate the importance of global keypoint detection. Therefore, we chose
two images that show differences in positions and orientations. In the third column, Ours method
successfully flips the tie and moves forward a little, as shown in the images. Our w/o KP and Ours
w/o LF cannot move forward as expected. Because, in this case, local feature matching cannot find
correspondences in the tie’s left part.

In the second test case, we aim to illustrate the importance of local feature matching. We chose two
images that contain an operation of lifting a side of a ring in the air. This action requires detailed
information to achieve accurate estimation. The last column shows the result of Ours w/o FM.
Our framework cannot accurately estimate the shape only with global keypoint positions and local
frames. This global information can only provide general structure guidance instead of detailed
shape information.

2 More discussions on Learn @sim

2.1 How to control tie in DiffClothAl

Modeling grasping in DiffClothAl [3] is not simply selecting one vertex on the mesh as the control
vertex. Because controlling one vertex is not enough to simulate rotation in DiffClothAl, knotting
a tie requires some rotation actions. Therefore, we select one central vertex and its surrounding
vertices as control vertices, shown in Fig.4. By controlling a small region instead of a single vertex,
we can simulate rotation actions in DiffClothAl.

2.2 Implementation details of teach-student training paradigm
2.2.1 Teacher policy

We model the grasping point selection as MDP and use model-free RL to learn the proper grasping
point. To simplify the problem, we sample 40 vertices on the middle line of the mesh model as our
candidates. vertices directly connected to these candidates in left, right, up, and down are defined as
their neighbors.

In practice, we evenly sample 40 vertices on the middle line of the mesh model as our candidates.
The state s is a 40 x 6 matrix. The action a is a 820 x 1 one-hot vector, which contains grasping
one vertex(40) and two vertices(40 x 39/2 = 780).

Matches: 388

Matches: 269

Matches: 231

Matches: 273

Matches: 252

Matehes: 275 % é ! Matches: 191
Matches: 177

(a) Local feature matching and keypoints (b) Local feature matching and keypoints detection re-
detection results on real-world tie-knotting sults on another real-world tie-knotting demonstration
demonstration

Matches: 266

Matches;

Matches: 1424

Matches: 1156

(c) Local feature matching results on another real-world towel-folding demonstration

Figure 2: We test local feature matching and keypoints detection on real-world demonstrations. It
shows that our method works for most tie shapes.
4

87
88

89

90
91
92
93
94

95

96
97

A A AL LA

Image t Image t+1 Ours Ours w/o KP Ours w/o LF Ours w/o FM

(a) Ablation study mainly on keypoint prediction.

' S GO U

- o ‘-_e \ A VN N E e

Image t Image t+1 Ours Ours w/o KP Ours w/o LF Ours w/o FM

top view

front horizontal view

(b) Ablation study mainly on local feature matching.

Figure 3: Ablation study on hierarchical feature matching for state estimation.

Heﬂwr

target local frame simulation tie’s local frame after the alignment
before the alignment

Figure 4: Illustration of control vertices in DiffClothAl.

To learn to select grasping points, we use PPO implemented in stable-baseline3 [6]. The hyperpa-
rameters are shown in Tab 3 for all trajectories.

2.2.2 Student policy

Our student policy learns to predict grasping point positions from the point cloud. The training
details are the same as training keypoints prediction, only changing the number of keypoints from
5 to 2. We follow the same training hyperparameters as grasping point prediction for placing point
position detection, only changing the pointnet++ semantic segmentation model to the classification
model.

2.3 More results on ATM baseline

We first illustrate example outputs of ATM baseline on two different ties in Fig. 5. We can see that
without explicit mesh modeling, ATM will quickly deviate from correct trajectories.

https://github.com/DLR-RM/stable-baselines3

98

99
100
101
102
103
104

105

106

107
108
109

parameter name parameter value
learning rate 0.0003
batch size 64
vy 0.99
gae_lambda 0.95
clip range 0.2
Cy 5
. 09,15,2.0,3.0,3.0,1.9
fitting threshold {(listed in subgoals order)}
Cs 30
Cs 30

Table 3: Hyperparameters for learning grasping points settings

Figure 5: Illustration of ATM rollouts in simulation.

To further examine whether the long-horizon property or points trajectories representations lead to
the failure of ATM on tie-knotting tasks, we further conduct experiments on some shorter tasks to
see if ATM can work. Specifically, we divide the whole tie-knotting task into 6 subtasks, training
and testing ATM on each subtask separately. The results are shown in Fig. 6. We can see that ATM’s
results look better for the first 3 subtasks. But ATM still cannot complete the last 3 subtasks, which
involve complex topology and subtle dynamics. This experiment demonstrates that using points
trajectory representation cannot handle such complex tasks even with a shorter horizon.

initial target step1 step2 step3 step4 step5 step6

Figure 6: Illustration of ATM results on 6 subtasks.

3 Real world experiments

3.1 Experiment setup

We set up the real-world experiment with a dual-arm robot as shown in Fig. 7. The MOVO robot [7]
has two 7 DoF arms and a Kinect RGB-D camera overhead. We perform position controls and use
RangedIK [8] for solving inverse kinematics. he success state is defined in Fig. 8.

N —— Working

Figure 8: Illustration of the success state of knotting a tie.

110

111
112
113

114
115
116
117

118
119
120

121

3.2 Failure cases and analysis

Two major failure cases in real-world experiments are shown in Fig. 9. One is the robot fails to
rotate the whole ring structure of the tie, another is the robot fails to insert the little end of the tie
into the whole shown in Fig. 8.

The first case is caused by the subtle dynamics of the tie. To rotate the ring structure, the tie should
be a bit harder so that the ring structure will not crumple during the rotation process, while it should
not be so hard so that the rotation action won’t interfere with other parts of the tie. This places a
high demand on both the tie and the robot. It’s hard to solve from the algorithm side.

The second case is caused by partial observation of this task. We use one camera on the top of the
robot for perception. It cannot perceive the little end of the tie in this case. Thus, the robot has to act
blindly, lowering the success rate.

For more fail cases, please move to the folder ”./fail cases”.

y

(a) Fail to rotate the ring structure. (b) Fail to insert little end of the tie.

Figure 9: Illustration of two major failure cases

122

123
124

125
126

127
128
129
130

131
132

133
134

135
136
137

138
139

140
141

References

(1]

(2]

(3]

[4]

N. Karaev, I. Rocco, B. Graham, N. Neverova, A. Vedaldi, and C. Rupprecht. CoTracker: It is
better to track together. 2023.

N. Tumanyan, A. Singer, S. Bagon, and T. Dekel. Dino-tracker: Taming dino for self-supervised
point tracking in a single video, March 2024.

X. Yu, S. Zhao, S. Luo, G. Yang, and L. Shao. Diffclothai: Differentiable cloth simulation with
intersection-free frictional contact and differentiable two-way coupling with articulated rigid
bodies. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2023.

E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016-2021.

C.R.Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. arXiv preprint arXiv:1706.02413, 2017.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1-8,2021. URL http://jmlr.org/papers/v22/20-1364.html.

Kinova. Kinova-movo. URL https://docs.kinovarobotics.com/kinova-movo/
Concepts/c_movo_hardware_overview.html.

Y. Wang, P. Praveena, D. Rakita, and M. Gleicher. Rangedik: An optimization-based robot
motion generation method for ranged-goal tasks. arXiv preprint arXiv:2302.13935, 2023.

http://pybullet.org
http://jmlr.org/papers/v22/20-1364.html
https://docs.kinovarobotics.com/kinova-movo/Concepts/c_movo_hardware_overview.html
https://docs.kinovarobotics.com/kinova-movo/Concepts/c_movo_hardware_overview.html
https://docs.kinovarobotics.com/kinova-movo/Concepts/c_movo_hardware_overview.html

	More Discussions on Real2Sim
	Why not use video tracking?
	Experiment on out-of-distribution issue of keypoints detection
	Implementation details of keypoints detection
	keypoint positions prediction
	normal(z axis) prediction
	middle line(x axis) prediction

	Results of local feature matching and keypoints detection on real data
	Ablation study of HFM on real data

	More discussions on Learn@sim
	How to control tie in DiffClothAI
	Implementation details of teach-student training paradigm
	Teacher policy
	Student policy

	More results on ATM baseline

	Real world experiments
	Experiment setup
	Failure cases and analysis

