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ABSTRACT

Transformers are widely used as generic backbones in computer vision, despite
initially introduced for natural language processing. Recently, the Long Short-
Term Memory (LSTM) has been extended to a scalable and performant architec-
ture – the xLSTM – which overcomes long-standing LSTM limitations via expo-
nential gating and parallelizable matrix memory structure. In this paper, we intro-
duce Vision-LSTM (ViL), an adaption of the xLSTM building blocks to computer
vision. ViL comprises a stack of xLSTM blocks where odd blocks process the
sequence of patch tokens from top to bottom while even blocks go from bottom to
top. ViL achieves strong performances on classification, transfer learning and seg-
mentation tasks as well as a beneficial pre-training cost-to-performance trade-off.
Experiments show that ViL holds promise to be further deployed as new generic
backbone for computer vision architectures.
Project page: https://nx-ai.github.io/vision-lstm/
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Figure 1: The efficient and scalable design of Vision-LSTM shows strong performances, uses less
FLOPS than Transformer/Mamba counterparts and scales linear to higher resolutions. Performance
is averaged over ImageNet accuracy, ADE20K mIoU and VTAB-1K accuracy.

1 INTRODUCTION

Language modeling architectures — such as Transformers (Vaswani et al., 2017; Achiam et al.,
2023; Team et al., 2023) or more recently State Space Models (Gu et al., 2021; Gupta et al., 2022)
such as Mamba (Gu & Dao, 2023) — are commonly adapted to the domain of computer vision to
make use of their powerful modeling capabilities. However, in natural language processing, an in-
put sentence is typically encoded into tokens that represent words or common subwords (Bostrom
& Durrett, 2020) via a discrete vocabulary. To encode images into a set of tokens, Vision Trans-
former (Dosovitskiy et al., 2021) (ViT) proposed to group an input image into non-overlapping
patches (of e.g. 16x16 pixel), linearly project them into a sequence of so-called patch tokens and
add positional information to these tokens. This sequence can then be processed by language mod-
eling architectures.
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Figure 2: Schematic overview of Vision-LSTM (ViL). Following ViT (Dosovitskiy et al., 2021),
an input image is split into patches and linearly projected. Then, a learnable vector is added per
position to the patches, producing a sequence of patch tokens. This sequence is then processed
by alternating mLSTM blocks where even blocks flip the sequence before and after the mLSTM
layer. For classification, ViL uses the concatenation of the first and the last patch as input to a linear
classification head. ViL is an isotropic architecture, i.e., all blocks have the same input and output
dimension and no downsampling layers are used except the initial patch embedding. Projection
layers process each patch individually and the mLSTM exchanges information between patches.

The Extended Long Short-Term Memory (xLSTM) family (Beck et al., 2024) was recently intro-
duced as a new architecture for language modeling. It demonstrates the resurgence of LSTM in the
LLM era, performing favorably against the likes of Transformers and State Space Models (SSMs).
Analogous to existing vision versions of Transformers or SSMs, e.g., ViT (Dosovitskiy et al., 2021)
or Vision Mamba (Zhu et al., 2024), which have produced great results in various computer vision
tasks (Singh et al., 2023; Kirillov et al., 2023; Oquab et al., 2023; Peebles & Xie, 2023; Alkin et al.,
2024b), we introduce Vision LSTM (ViL) – a generic computer vision backbone that uses xLSTM
blocks as its core components. To adjust xLSTM (an autoregressive model) to computer vision (an
often non-autoregressive domain), we employ a stack of alternating mLSTM blocks (Beck et al.,
2024) where odd blocks process patches row-wise from top left to bottom right and even blocks
go from bottom right to top left. This simple alternating design allows ViL to efficiently process
non-sequential inputs, such as images, without introducing additional computations.

Similar to vision adaptions of SSMs (Liu et al., 2024; Zhu et al., 2024; Wang et al., 2024), ViL
can exhibit linear computational and memory complexity w.r.t. sequence length which makes it
appealing for tasks that benefit from high-resolution images such as medical imaging (Chen et al.,
2021; Hatamizadeh et al., 2022; Valanarasu et al., 2021; Xu et al., 2024), segmentation (Kirillov
et al., 2023; Cheng et al., 2022), or physics simulations (Bi et al., 2023; Nguyen et al., 2023; Bodnar
et al., 2024; Alkin et al., 2024a). In contrast, ViT’s computational complexity scales quadratically
due to the self-attention mechanism, rendering them costly to apply to high-resolution tasks.

Our contributions summarize as follows:

• We introduce Vision-LSTM (ViL), an adaption of the mLSTM to computer vision tasks
that can serve as a generic vision backbone with linear complexity.

• We show modeling capacity and generalization in the common vision benchmark of pre-
training models on ImageNet-1K, followed by fine-tuning on transfer classification and
semantic segmentation tasks.

• We ablate various architectural design choices to evaluate their impact on performance and
provide insights into the model design.

• We discuss potential future directions and current limitations that, once addressed, will
improve ViL even further.
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2 METHOD

Vision-LSTM (ViL) introduces xLSTM (Beck et al., 2024) to computer vision, similar to other
vision adaptions of sequence modeling architectures, e.g., Vision Transformers (Dosovitskiy et al.,
2021), Vision Mamba (Zhu et al., 2024), or Vision RWKV (Duan et al., 2024).

2.1 PRELIMINARIES

In the notation of sequence modeling, we consider a series of input vectors xt ∈ RD. This series
is created by reshaping an image X̃ ∈ RHI×WI×Cin into a sequence of flattened 2D patches X̄ ∈
RT×(HP ·WP ·Cin) and then projected to X ∈ RT×D via a shared linear projection. D is the hidden
dimension, (HI ,WI) is the image resolution, Cin is the number of image channels, T is the number
of patches and (HP ,WP ) is the patch size. After creating a sequence of patches, ViL iteratively
refines the features of the patch sequence by processing it with a stack of mLSTM blocks where the
sequence is flipped within every second block.

The key innovations of the mLSTM (Beck et al., 2024) are the enhanced storage capacity compared
to the classical LSTM (Hochreiter & Schmidhuber, 1997) by using a matrix memory cell C ∈ Rd×d

instead of a scalar memory cell c ∈ R and introducing exponential gates (instead of sigmoid gates)
to the input and forget gates, where d is the hidden dimension within the mLSTM block (typically
d = 2D).

Intuitively, the mLSTM is a more expressive and faster version of the classical LSTM that can be
efficiently parallelized on modern hardware. In ViL, the mLSTM is used to process dependencies
between patches, similar to how the attention exchanges information between patches in a ViT. The
mLSTM is embedded into a gated MLP architecture, as shown on the right of Figure 2, where the
weight matrices of the MLP process each patch individually and the mLSTM exchanges information
between patches. For completeness, we outline the forward pass of the mLSTM in the following
paragraphs.

The mLSTM (Beck et al., 2024) is a recurrent neural network, which maps a state
(ht−1,Ct−1,nt−1) to a successor state (ht,Ct,nt) given input xt−1. Thereby, ht ∈ Rd denotes
the hidden state, Ct ∈ Rd×d is the cell state and nt ∈ Rd corresponds to a normalizer state. The
full forward pass of the mLSTM is as follows (Beck et al., 2024):

Ct = ft Ct−1 + it vt k
⊤
t cell state (1)

nt = ft nt−1 + it kt normalizer state (2)

ht = ot ⊙ h̃t h̃t = Ctqt / max
{
|n⊤

t qt|, 1
}

hidden state (3)

qt = Wq xt + bq query input (4)

kt =
1√
d
Wk xt + bk key input (5)

vt = Wv xt + bv value input (6)

it = exp
(̃
it
)

ĩt = w⊤
i xt + bi input gate (7)

ft = exp
(
f̃t
)

f̃t = w⊤
f xt + bf forget gate (8)

ot = σ
(
f̃ot

)
õt = Wo xt + bo output gate (9)

As exponential activation functions can lead to large activations, the input and forget gates are sta-
bilized with an additional state mt:

mt = max
(
log(ft) +mt−1, log(ft)

)
stabilizer state (10)

i′t = exp
(
log(it)−mt

)
= exp

(
ĩ−mt

)
stabilized input gate (11)

f ′
t = exp

(
log(ft) +mt−1 −mt

)
stabilized forget gate (12)
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As the mLSTM has no memory mixing, i.e, interactions between hidden states from one timestep
to the next, it can be fully parallelized for fast computation on modern hardware. For a detailed
discussion and theory of the cell state update, further details to the mLSTM we refer to the original
work (Beck et al., 2024).

2.2 VISION-LSTM (VIL)

Vision-LSTM (ViL) is a generic backbone for computer vision tasks, which is residually built from
mLSTM blocks, as visualized in Figure 2. Following ViT (Dosovitskiy et al., 2021), ViL first splits
an image into non-overlapping patches via a shared linear projection, then adds learnable positional
embeddings to each patch token. At the core of ViL are alternating mLSTM blocks, which are fully
parallelizable and equipped with a matrix memory combined with a covariance update rule. Odd
mLSTM blocks process patch tokens from top left to bottom right while even blocks go from bottom
right to top left.

Formally, the forward pass of a pair of ViL blocks is:

Y ′ = X + Blockθ(X) (13)

Y = Y ′ + Flip(Blockϕ(Flip(Y ′))) (14)

Where “Flip” reverses the sequence and “Blockθ” and “Blockϕ” corresponds to mLSTM blocks
with parameters θ and ϕ (shown in Figure 2, right).

A key motivation of ViL is that the autoregressive mLSTM can operate in a recurrent, parallel or
chunkwise mode, each with distinct FLOPS and runtime characteristics. Given a sequence length T
and hidden dimension d, the complexity of the recurrent mode is O(Td2) and needs to be processed
sequentially, whereas the parallel mode has complexity O(T 2d) and is fully parallelizable. The
chunkwise mode combines the advantages of the other modes by introducing a chunksize S where
the parallel mode is used within chunks and the recurrent mode between chunks. This allows high
parallelization, minimal operations and linear scaling with T . Complexity wise, the chunkwise mode
has O(TSS

2d+ T
S d

2) or O(TSd+ T
S d

2) where T
S corresponds to the number of chunks.

3 EXPERIMENTS
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Figure 3: Performance overview of ImageNet-1K pre-trained models in relation to pre-training com-
pute. ViL shows strong performances across classification (ImageNet-1K), semantic segmentation
(ADE20K) and transfer classification (VTAB-1K) tasks.

We pre-train models on ImageNet-1K (Deng et al., 2009), which contains 1.3M training images and
50K validation images where each image belongs to one of 1000 classes. ViL models are trained
for 800 epochs (tiny) or 400 epochs (small, base) on 192x192 resolution with a learning rate of 1e-3
using a cosine decay schedule. Afterwards, the model is fine-tuned on 224x224 resolution for 20
epochs using a learning rate of 1e-5. Detailed hyperparameters can be found in Appendix Table 10.

We then transfer the pre-trained models to serveral benchmark tasks: ImageNet-1K classification
on the validation set, ADE20K (Zhou et al., 2019) semantic segmentation and VTAB-1K (Zhai
et al., 2019) classification. These benchmarks evaluate global image understanding (ImageNet-1K),
semantic local and global understanding (ADE20K) and few-shot generalization to a diverse set of
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Table 1: ImageNet-1K pre-training accuracy. All models use a patch size of 16x16 with 224x224
resolution at most. Models with “+” in their “Epochs” column pre-train on lower resolution followed
by fine-tuning on 224x224 resolution for some epochs. ViL performs favorably against an isotropic
convolutional architecture (ConvNeXt) and vision adaptions of transformers (DeiT series), RWKV
(VRWKV) and Mamba (Vim, Mamba®). Appendix Table 9 confirms these results on OOD and
robustness evaluations of these classifiers.

Model Epochs #Params FLOPS IN-1K
DeiT-T (Touvron et al., 2021a) 300 6M 1.3G 72.2
DeiT-II-T (Touvron et al., 2022a) 400 6M 1.3G 73.5
DeiT-III-T (reimpl.) 800+20 6M 1.3G 76.2
VRWKV-T (Duan et al., 2024) 300 6M 1.2G 75.1
Vim-T (Zhu et al., 2024) 300 7M 1.5G 76.1
Mamba®-T (Wang et al., 2024) 280+20 9M 1.6G 77.4
ViL-T 800+20 6M 1.3G 78.3
DeiT-S (Touvron et al., 2021a) 300 22M 4.6G 79.8
DeiT-II-S (Touvron et al., 2022a) 400 22M 4.6G 80.7
DeiT-III-S (Touvron et al., 2022b) 800+20 22M 4.6G 81.4
ConvNeXt-S (iso.) (Liu et al., 2022) 300 22M 4.3G 79.7
VRWKV-S (Duan et al., 2024) 300 24M 4.6G 80.1
Vim-S (Zhu et al., 2024) 300 26M 5.3G 80.5
Mamba®-S (Wang et al., 2024) 280+20 28M 5.5G 81.1
ViL-S 400+20 23M 4.7G 81.5
DeiT-B (Touvron et al., 2021a) 300 86M 17.6G 81.8
DeiT-II-B (Touvron et al., 2022a) 400 86M 17.6G 82.7
DeiT-III-B (Touvron et al., 2022b) 800+20 86M 17.6G 83.7
ConvNeXt-B (iso.) (Liu et al., 2022) 300 87M 16.9G 82.0
VRWKV-B (Duan et al., 2024) 300 94M 18.2G 82.0
Mamba®-B (Wang et al., 2024) 280+20 99M 20.6G 82.9
ViL-B 400+5 89M 17.9G 82.4

19 VTAB-1K classification datasets, which include natural images, specialized imagery (medical
and satellite) and structured tasks (camera angle prediction, depth estimation, object counting, . . . ).

Figure 3 shows an overview of performance metrics in relation to total pre-training compute where
ViL performs favorably against heavily optimized transformer protocols (DeiT, DeiT-III) and Vision
Mamba (Vim). Detailed results are presented in the following sections.

As ViTs are well established in the vision community, they underwent multiple optimization cycles
over the years (Dosovitskiy et al., 2021; Touvron et al., 2021a; 2022a; 2021b; 2022b). Therefore, a
vast part of the hyperparameter space for pre-training ViTs has been explored. Since this work is the
first to apply xLSTM to computer vision, considerably less effort has been put into hyperparameter
tuning and architecture optimization, suggesting that future work could improve ViL even further.

3.1 IMAGENET-1K CLASSIFICATION

Table 1 relates parameter counts and FLOPS to validation accuracy after pre-training on ImageNet-
1K. ViL outperforms heavily optimized ViT protocols and other backbones on the tiny and small
scale. While ViL does not outperform all other models on the base scale, evaluations on downstream
tasks (as shown later in Table 2 and Table 3) show that ViL-B still learns strong features, particularly
for semantic segmentation and structured tasks.

3.2 ADE20K SEMANTIC SEGMENTATION

Table 2 shows results for transferring ImageNet-1K pre-trained models to ADE20K (Zhou et al.,
2019) semantic segmentation using UperNet (Xiao et al., 2018). Also here, ViL shows strong perfor-
mances across the board, even outperforming DeiT-III-B despite the lower ImageNet-1K accuracy
of ViL-B. The high resolution of the ADE20K segmentation task (512x512) results in a total of 1024
patch tokens where the quadratic complexity of self-attention is significantly more expensive than
the linear complexity of the mLSTM, resulting in much fewer FLOPS for ViL. Additionally, the
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efficient alternating block design results in lower FLOPS than Mamba-based vision models (which
also have linear complexity).

Table 2: Semantic segmentation results on ADE20K (Zhou et al., 2019) using UperNet (Xiao et al.,
2018). We report mean intersection over union (mIoU) and pixelwise accuracy (ACC) for single-
and multi-scale evaluation. Models are trained for 160K updates with a batchsize of 16 on 512x512
resolution. We use a feature pyramid consisting of rescaled feature maps after the 4th, 6th, 8th and
final block. Detailed hyperparameters are listed in Appendix Table 12. FLOPS are calculated only
from the backbone at 512x512 resolution as all models use the same segmentation head.

Single-scale Multi-scale

Model #Params FLOPS mIoU ACC mIoU ACC
DeiT-T 10M 10.4G 38.1 78.2 40.3 79.9
DeiT-III-T 10M 10.4G 39.8 79.2 42.2 80.7
Vim-T 13M 7.7G 41.0 - - -
ViL-T 11M 6.6G 41.2 80.2 43.1 81.3
DeiT-S 41M 31.7G 43.1 80.7 45.2 81.8
DeiT-III-S 41M 31.7G 45.2 81.5 46.3 82.3
Vim-S 46M 27.3G 44.9 - - -
Mamba®-S 56M 27.6G 45.3 - - -
ViL-S 42M 24.4G 46.3 82.0 47.9 82.9
DeiT-B 113M 107.0G 45.8 82.1 47.0 82.9
DeiT-III-B 113M 107.0G 47.5 82.6 49.0 83.3
Mamba®-B 132M 102.8G 47.7 - - -
ViL-B 115M 93.6G 48.6 82.8 49.6 83.3

3.3 VTAB-1K TRANSFER CLASSIFICATION

Table 3: Transfer classification accuracies on the VTAB-1K (Zhai et al., 2019) benchmark using
ImageNet-1K pre-trained models. VTAB-1K consists of 19 datasets split into 7 natural, 4 spe-
cialized and 8 structured datasets. We show averages per category and the average accuracy over
all 19 datasets (Appendix Table 8 lists all individual accuracies). ViL shows strong generalization
performance, outperforming heavily optimized ViT protocols and Vim on the full VTAB-1K bench-
mark. ViL performs exceptionally well on the structured category. We tune the learning rate for
each model and dataset on the validation set and report the average testset accuracy over 5 seeds.
Appendix Table 11 lists further hyperparameters.

Model #Params FLOPS Natural Specialized Structured Average
DeiT-T 6M 1.3G 69.2 82.0 53.3 65.2
DeiT-III-T 6M 1.3G 71.9 82.6 55.2 67.1
Vim-T 7M 1.5G 68.0 80.7 47.1 61.9
ViL-T 6M 1.3G 73.6 83.4 56.1 68.3
DeiT-S 22M 4.6G 73.3 83.8 53.2 67.1
DeiT-III-S 22M 4.6G 75.0 83.2 52.3 67.2
Vim-S 26M 5.3G 69.6 81.7 49.4 63.6
ViL-S 23M 4.7G 75.3 84.3 58.3 70.0
DeiT-B 86M 17.6G 76.5 85.2 55.7 69.6
DeiT-III-B 86M 17.6G 77.6 84.8 56.6 70.3
ViL-B 89M 17.9G 76.6 84.7 59.1 70.9

Table 3 shows transfer classification results for ImageNet-1K pre-trained models on the VTAB-
1K (Zhai et al., 2019) benchmark. VTAB-1K consists of 19 datasets split into 7 natural datasets
(such as CIFAR100 (Krizhevsky, 2009) or Caltech101 (Fei-Fei et al., 2006)), 4 specialized datasets
(medical imaging (Veeling et al., 2018; Kaggle & EyePacs, 2015) and remote sensing (Helber et al.,
2019; Cheng et al., 2017)) and 8 structured datasets (with tasks such as object counting (Johnson
et al., 2017) or binned depth estimation (Geiger et al., 2013)). We follow common practices and
tune the learning rate per model and dataset on the validation set followed by training with the best
learning rate on the union of train and validation set. The performance metric is the average testset
accuracy over 5 seeds. ViL shows strong transfer classification performance outperforming all other
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models on the average over all 19 datasets. ViL performs particularly well on the structured datasets
where ViL-B outperforms DeiT-III-B despite ViL-B having lower ImageNet-1K accuracy.

4 ABLATION STUDIES

We ablate various design choices of ViL by training ViL-T models for 100 epochs on ImageNet-
1K in 224x224 resolution, other hyperparameters follow the ones from Section 3 (see also Ap-
pendix B.3). We then report the validation accuracy on ImageNet-1K and fine-tune the model on
ADE20K to ensure that design choices are not overfitted to classification. We also use a reduced
segmentation pipeline where we use a linear segmentation head and train for 40K updates using a
batch size of 16 (other hyperparameters follow Appendix 12).

4.1 ARCHITECTURAL DESIGN

We consider various architecture design choices in Table 4.

Table 4: Architecture design ablation studies. Default settings

(a) Traversal Directions

Directions IN1K ADE20K
Uni-dir. 72.2 28.6
Bi-dir. 73.7 31.7
Quad-dir. 73.8 33.1
Oct-dir. 73.5 32.4

(b) QK Convolution

Convolution IN1K ADE20K
None 72.3 29.2
Causal-Conv1D 72.8 27.8
Conv1D 72.8 28.4
Conv2D 73.7 31.7

(c) Positional Embedding

Pos. Embed. IN1K ADE20K
✗ 73.7 31.0
✓ 73.7 31.7

(d) Concurrency

Concurrency IN1K ADE20K
Sequential 73.7 31.7
Parallel 73.0 30.6

Figure 4: Uni-directional , bi-directional , quad-directional and oct-directional traversal paths.
Squares represent individual patch tokens. Traversal starts at the circle and goes in direction of the
arrow, if no further patches are in a row/column, the traversal continues in the next row/column as
indicated by the dashed line.

(a) Traversal Directions Traversing the sequence in at least two directions greatly improves per-
formance due to the non-causal 2D structure of images. Adding column-wise traversal directions
(Quad-dir.) could even further improve semantic segmentation performance. Additionally using
4 instead of 2 starting positions (Oct-dir.) shows no benefit. Note that all variants have the same
amount of FLOPS due to sequential application of different directions. Directions are visualized in
Figure 4.
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We use “Bi-dir.” for our final models due to current technical limitations which would slow
down training on more than 2 directions. This limitation comes from the current lack of opti-
mized hardware implementations of the mLSTM (e.g., CUDA kernels) where we instead rely on
torch.compile, a generic speed optimization method from PyTorch (Paszke et al., 2019), to
optimize computations. Our implementation of quad- and oct-directional traversals is not compati-
ble with torch.compile, which results in approximately double the runtime. We therefore train
all models from Section 3 with “Bi-dir.” only. Note that this is only a technical limitation, not a
methodical one and the ablation study suggest that future ViL models could be even better using a
quad-directional design.

(b) QK Convolution The mLSTM block design uses a causal 1D convolution to aggregate local
context to improve storage/retrieval to/from the cell state C. This is done by applying a convolution
layer to X before projecting it to Q with Wq and K with Wk respectively. The convolution is
shared for Q and K. The causal 1D structure of the convolution from the original mLSTM (Beck
et al., 2024) is necessary due to the causal 1D structure of language modeling. However, as images
are neither causal nor 1D structures, we replace the causal 1D convolution with a 2D convolution
(with kernel size 3). This allows the mLSTM to make better storage/retrieval decisions through the
added local context.

(c) Positional Embedding ViTs require positional embedding to tell the model where each patch
is located in the image, suffering heavy performance losses if the position is not required (Doso-
vitskiy et al., 2021; Chu et al., 2023). The mLSTM is an autoregressive model, which makes it
optional to add positional embeddings as it can recognize the position of the current patch based
on how many patches have been processed. However, the ablation shows that it is nevertheless
beneficial to provide this information explicitly as it improves segmentation results without hurting
classification performance.

(d) Sequential vs. Parallel Related architectures use a parallel design where a sequence is pro-
cessed from multiple directions in a single block (Zhu et al., 2024; Duan et al., 2024). We investigate
a similar design where we apply both directions in parallel instead of sequentially. To keep parame-
ters and FLOPS constant, we apply the directions akin to parallel transformer blocks (Wang, 2021)
while halving the depth.

Y = X + Blockθ(X) + Flip(Blockϕ(Flip(X))) (15)

4.2 CLASSIFICATION DESIGN

In order to perform classification from a sequence of tokens, it is common to aggregate information
from the whole sequence, which is then used as input to a classification head. The most common
methods to do this aggregation are (i) adding a learnable [CLS] token to the input sequence or
(ii) averaging all patch tokens to produce an [AVG] token. In ViTs, whether to use the [CLS] or
[AVG] token is typically a hyperparameter, where both variants achieve comparable performances.
On the contrary, other sequence models models often require specialized classification designs. For
example, Vim (Zhu et al., 2024) requires the [CLS] token to be in the middle of the sequence,
suffering heavy performance losses if other classification designs, e.g., an [AVG] token or two [CLS]
tokens at start and end of the sequence, are employed.

We explore different classification designs for ViL in Table 5. (a) We choose concatenating the
first and last patch as aggregation method due to its strong classification performance. As our final
models also perform well in semantic segmentation (see Table 2), we do not retrain models with
[AVG] aggregation even though the ablation suggests that this could boost performance even further
for segmentation tasks. (b) Adding learnable [CLS] tokens show no benefit. Therefore, we do not
use any [CLS] tokens for ViL.

5 LIMITATIONS AND FUTURE WORK

The biggest limitation of ViL is the current lack of an optimized hardware implementation of the
mLSTM, which results in longer runtimes than ViTs, which have multiple optimized hardware im-
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Table 5: Classification design. (a) ViL aggregates classification information well in the first and the
last patches (bilateral), leading to good classification performance if the first and last patches are
averaged or concatenated. Averaging all patches ([AVG]) or the 4 center patches (Center [AVG])
results in strong segmentation performances but lackluster classification performances. (b) Adding
learnable [CLS] tokens to the start and end of the input sequence (Bilateral [CLS]) offers no benefit
over simply using the first and the last patch. Incorporating a [CLS] token in the middle of the
sequence, akin to Vim (Zhu et al., 2024), does not improve performance. Default settings

(a) Patch-based Aggregation

Aggregation IN1K ADE20K
Bilateral Mean 73.0 31.5
Bilateral Concat 73.7 31.7
[AVG] 72.6 32.8
Center [AVG] 72.4 32.1

(b) [CLS]-based Aggregation

Aggregation IN1K
Concat Bilateral Patches 73.7
Mid [CLS] 71.8
Bilateral [CLS] 73.5
Mid + Bilateral [CLS] 73.0

plementations (Dao et al., 2022; Dao, 2023). This makes a runtime/throughput analysis of models, a
vital metric to judge practicability, difficult as the practical relevance of inefficient implementations
is quite low. As a proxy, we report FLOP counts, where ViL is comparable to ViT on low-resolution
tasks and far better than ViT on high-resolution tasks due to its linear complexity. While FLOPS
are far from an optimal proxy for runtime/throughput, they suggest that ViL can be much faster than
ViT on high-resolution tasks once an optimized hardware implementation exists. Note that ViL is
already faster than Vim (see Appendix A.1) despite its optimized hardware implementation.

This limitation snowballs in multiple other directions. For example, scaling model size further,
tuning hyperparameters, training on larger datasets, exploring self-supervised pre-training or inves-
tigating hierarchical architectures are all interesting avenues for future work that are currently quite
costly due to the lack of an optimized hardware implementation.

Please note that this is merely a technical limitation, not a methodical one as the mLSTM is heavily
parallelizable. However, implementing fast compute kernels in CUDA (NVIDIA et al., 2020) or
Triton (Tillet et al., 2019) is highly non-trivial as it requires expert hardware architecture knowledge,
advanced implementation skills and potentially multiple development cycles to iron out numerical
inaccuracies or instabilities.

However, the results of recent linear attention mechanisms show impressive FLOPS utilization (e.g.,
Yang et al. (2024)). As the mLSTM can be parallelized with similar techniques it is only a matter
of time that the mLSTM achieves a similar FLOPS utilization, which will make the mLSTM faster
than transformers once an efficient hardware implementation is available.

Additionally, we made a significant effort to make our architecture as efficient as possible, using the
tools that are currently available to us. Notably, our architecture is already much faster (up to 70%)
than Vim (Zhu et al., 2024) despite Vim using a custom CUDA kernel, as shown in Appendix A.1.
For reference, in language modeling, Mamba is roughly on-par with transformers in terms of speed
and 4x faster than than the xLSTM (as mentioned in Beck et al. (2024)), again, due to the current
lack of efficient hardware implementation of the mLSTM. These considerations further underline
the potential of our simple and efficient design for vision applications.

6 RELATED WORK

Generic Vision Backbones. The inductive bias of CNNs (Fukushima, 1980; LeCun et al., 1998)
has demonstrated ground-breaking advancements in computer vision (Krizhevsky et al., 2012) in
the early deep learning days. Features of CNNs have been found to learn generic visual features that
can be used for a variety of tasks (Donahue et al., 2014). Subsequently, countless works improved
various aspects such as architectures (Szegedy et al., 2015; He et al., 2016; Huang et al., 2017; Tan
& Le, 2019; Liu et al., 2022) or pre-training strategy (Doersch et al., 2015; Noroozi & Favaro, 2016;
Zhang et al., 2016; Gidaris et al., 2018; Chen et al., 2020b; Grill et al., 2020).
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Sequence Models in Vision. The introduction of transformers (Vaswani et al., 2017) demonstrated
exceptional scalability in language processing, which motivated the vision community to explore
transformers also in computer vision (Chen et al., 2020a; Cordonnier et al., 2020) but was applied on
pixels or small patches which inhibited large costs due to the quadratic complexity of self-attention.
This restriction was alleviated by the seminal work Vision Transformers (ViTs) (Dosovitskiy et al.,
2021) by using larger patches to aggregate local information and reduce training costs. Similar
to CNNs, lots of work improved on the ViT architecture by refining training procedures (Touvron
et al., 2021a;b; 2022b; Caron et al., 2021; Bao et al., 2022; Xie et al., 2022; He et al., 2022). The
recent advancement of autoregressive models in language processing (Gu & Dao, 2023; Peng et al.,
2023) has also gathered interest in the vision community (Zhu et al., 2024; Duan et al., 2024) due
to the linear scaling property which allows applications to high-resolution tasks such as medical
imaging (Ma et al., 2024) or video understanding (Li et al., 2024).

7 CONCLUSION

Motivated by the success of xLSTM in language modeling, we introduced ViL, an adaption of the
xLSTM architecture to vision tasks. ViL processes a sequence of patch tokens in alternating fash-
ion. Odd blocks process image patches row-wise from top left to bottom right and even blocks go
row-wise from bottom right to top left. Our new architecture outperforms SSM-based vision archi-
tectures, other autoregressive vision architectures and also optimized ViT models on ImageNet-1K
classification, VTAB-1K transfer classification and ADE20K semantic segmentation. Remarkably,
ViL is able to outperform ViT training pipelines, which are the result of years of hyperparameter
tuning and transformer improvements.

In the future, we see potential in applying ViL when high-resolution images are needed for optimal
performance, such as semantic segmentation or medical imaging. In these settings, transformers suf-
fer from high computational costs due to the quadratic complexity of self-attention, where the linear
complexity of ViL allows compute efficient processing of long sequences. Additionally, improving
pre-training schemes (e.g., via self-supervised learning), exploring better hyperparameter settings or
investigating hierarchical architectures are promising future directions that could improve ViL even
further.
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ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pp. 8024–8035, 2019.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In IEEE/CVF
International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pp.
4172–4182. IEEE, 2023.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Leon Derczynski, Xingjian Du, Matteo Grella, Kran-
thi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bart-
lomiej Koptyra, Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito,
Guangyu Song, Xiangru Tang, Johan S. Wind, Stanislaw Wozniak, Zhenyuan Zhang, Qinghua
Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: reinventing rnns for the transformer era. In EMNLP
(Findings), pp. 14048–14077. Association for Computational Linguistics, 2023.

Mannat Singh, Quentin Duval, Kalyan Vasudev Alwala, Haoqi Fan, Vaibhav Aggarwal, Aaron Ad-
cock, Armand Joulin, Piotr Dollár, Christoph Feichtenhofer, Ross B. Girshick, Rohit Girdhar,
and Ishan Misra. The effectiveness of MAE pre-pretraining for billion-scale pretraining. CoRR,
abs/2303.13496, 2023.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, pp. 1–9. IEEE Computer Society, 2015.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114. PMLR,
2019.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox. Triton: an intermediate language and com-
piler for tiled neural network computations. In Tim Mattson, Abdullah Muzahid, and Armando
Solar-Lezama (eds.), Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, MAPL@PLDI 2019, Phoenix, AZ, USA, June 22, 2019,
pp. 10–19. ACM, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
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Carlos Alberola-López, and Gabor Fichtinger (eds.), Medical Image Computing and Computer
Assisted Intervention - MICCAI 2018 - 21st International Conference, Granada, Spain, Septem-
ber 16-20, 2018, Proceedings, Part II, volume 11071 of Lecture Notes in Computer Science, pp.
210–218. Springer, 2018.

Ben Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language
Model with JAX. https://github.com/kingoflolz/mesh-transformer-jax,
2021.

Feng Wang, Jiahao Wang, Sucheng Ren, Guoyizhe Wei, Jieru Mei, Wei Shao, Yuyin Zhou,
Alan Yuille, and Cihang Xie. Mamba-r: Vision mamba also needs registers. arXiv preprint
arXiv:2405.14858, 2024.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
tions by penalizing local predictive power. In Advances in Neural Information Processing Sys-
tems, pp. 10506–10518, 2019.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss
(eds.), Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September
8-14, 2018, Proceedings, Part V, volume 11209 of Lecture Notes in Computer Science, pp. 432–
448. Springer, 2018.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han
Hu. Simmim: a simple framework for masked image modeling. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24,
2022, pp. 9643–9653. IEEE, 2022.

Hanwen Xu, Naoto Usuyama, Jaspreet Bagga, Sheng Zhang, Rajesh Rao, Tristan Naumann, Cliff
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A EXTENDED RESULTS

A.1 RUNTIME COMPARISON OF VIL VS VIM

We compare the runtime to train ViL and Vim (Zhu et al., 2024) for 10 ImageNet-1K epochs in
Table 6. We follow the scaling procedure of ViTs, using 192 (T), 384 (S), 768 (B), 1024 (L) as
hidden dimension where the (L)arge scale doubles the number of blocks.

Table 6: Runtime comparisons between Vim (Zhu et al., 2024) and ViL. ViL is up to 69% faster
despite the current lack of a optimized hardware implementation. As mLSTM (and ViL) can be
parallelized analogous to FlashAttention (Dao et al., 2022; Dao, 2023) via custom hardware op-
timizations, ViL will become even faster in the future. Runtimes denote the training time for 10
ImageNet-1K epochs and are extrapolated from short benchmark runs on a single A100-80GB-PCIe
using float16 precision and 224x224 images.

Model Optimization (T)iny (S)mall (B)ase (L)arge
Vim (Zhu et al., 2024) custom CUDA kernel 7.3h 14.0h 28.2h 76.4h
ViL torch.compile 5.0h 8.7h 16.6h 45.1h
Speedup of ViL compared to Vim 45% 61% 69% 69%

A.2 IMPACT OF LONGER TRAINING

We investigate the impact of training for a longer duration in Table 7.

Table 7: Performance comparison of tiny models trained for 400 and 800 epochs. ADE20K mIoU
uses single-scale evaluation. All settings follow the ones used in the main paper.

Model Epochs IN-1K ACC VTAB-1K ADE20K mIoU
DeiT-III-T 400 75.6 67.0 39.1
DeiT-III-T 800 76.2 67.1 39.8
ViL-T 400 77.2 67.8 40.9
ViL-T 800 78.3 68.3 41.2

A.3 VTAB-1K INDIVIDUAL DATASET RESULTS

Table 8 presents accuracies for each individual dataset of the VTAB-1K benchmark.

Table 8: Results on all datasets of the VTAB-1K (Zhai et al., 2019) benchmark.
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A.4 ROBUSTNESS AND DOMAIN GENERALIZATION

Table 9 presents robustness and OOD evaluations of ImageNet-1K pre-trained classifiers.

Table 9: Robustness and OOD evaluations on ImageNet-C(orruption) (Hendrycks & Dietterich,
2019), ImageNet-A(dversarial) (Hendrycks et al., 2021b), ImageNet-R(endition) (Hendrycks et al.,
2021a) and ImageNet-Sketch (Wang et al., 2019).. For ImageNet-C, we report the mean corruption
error (Hendrycks & Dietterich, 2019) with AlexNet (Krizhevsky et al., 2012) as baseline.

Model IN-C (↓) IN-A (↑) IN-R (↑) Sketch (↑) Validation (↑)
DeiT-T 69.7 7.6 32.7 19.9 72.2
DeiT-III-T 65.0 11.7 39.4 27.4 76.2
Vim-T 61.8 9.6 38.8 26.9 76.1
ViL-T 59.6 15.2 42.2 30.0 78.3
DeiT-S 54.4 19.6 41.9 29.1 79.8
DeiT-III-S 50.1 23.2 46.6 35.4 81.4
Vim-S 51.5 19.7 44.8 32.5 80.5
ViL-S 50.6 23.8 47.9 35.2 81.5
DeiT-B 48.6 27.9 44.6 32.0 81.8
DeiT-III-B 42.7 36.5 54.1 41.1 83.8
ViL-B 45.3 30.9 51.9 39.0 82.4

B IMPLEMENTATION DETAILS

B.1 HARDWARE

We train models on servers with either 8xA100 or 4xA100 nodes.

We estimate the total number of A100 GPU-hours used for this project to be 38K hours. This
estimate includes initial exploration, method development, analysis and evaluations.

B.2 FLOPS CALCULATION

We use the fvcore1 library to count FLOPS and report FLOPS of the mLSTM chunkwise form as
described in Section 2.2. For the parallel parts, we report FLOPS for a complexity of O

(
(S2 +1)Sd

)
because the upper triangular entries of the QK matrix do not need to be calculated due to the causal
structure. We justify this by the fact that FlashAttention-2 (Dao, 2023) is approximately 1.7x faster
with a causal mask than without. Therefore, an optimized hardware implementation of the mLSTM
could also omit the calculation of the upper triangular part of QK.

As Vim (Zhu et al., 2024) does not report FLOPS and their model makes use of CUDA kernels
(which are not counted as FLOPS by fvcore), we replace all calls to CUDA kernels with their
reference PyTorch implementation and count the FLOPS with fvcore.

For the total pre-training compute in Figure 3, we consider an efficient implementation of stochastic
depth (Huang et al., 2016; Touvron et al., 2023) which omits the calculation of a dropped block
instead of masking it. Therefore, we change the implementation of ViT (Dosovitskiy et al., 2021) to
use our efficient stochastic depth implementation. Vim does not use stochastic depth for training as
they only train tiny and small models.

1https://github.com/facebookresearch/fvcore
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B.3 VIL HYPERPARAMETERS

Table 10 shows detailed hyperparameters used to train ViL models.

Table 10: Hyperparameters for training ViL on ImageNet-1K, inspired by DeiT-III (Touvron et al.,
2022b). We follow the best setting from DeiT-III (Touvron et al., 2022b) and pre-train on 192
resolution followed by a short fine-tuning on 224 resolution (indicated by →).

Parameter Value
Epochs 800 (T), 400 (S/B) → 20 (T, S), 5 (B)
Batch size 2048 → 1024
Model

Patch size 16x16
Latent dimension 192 (T), 384 (S), 768 (B)
Depth 24
Pooling Bilateral Concat

Stochastic depth
Peak rate 0 (T), 0.05 (S), 0.2 (B)
Layer-wise Decay ✗

Optimizer AdamW
Base Learning rate 1e-3 → 1e-5
Linear LR Scaling Divisor 1024
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999
Gradient Norm Clip 1.0

Precision mixed bfloat16
Backend torch.autocast

Learning rate schedule cosine decay
Warmup schedule linear
Warmup epochs 5 → 5 (T, S), 1 (B)
End LR 1e-6

Label smoothing ✗
Train Data Augmentation

RandomResizedCrop 192 → 224
Scale [0.08, 1.0]
Interpolation bicubic

RandomHorizontalFlip p = 0.5
3-Augment

Gaussian Blur σ [0.1, 2.0]
ColorJitter [0.3, 0.3, 0.3, 0.0]

Normalize ImageNet-1K statistics
Mixup α 0.8
Cutmix α 1.0

Test Data Augmentation
Resize 192 → 224

Interpolation bicubic
CenterCrop 192 → 224
Normalize ImageNet-1K statistics

20



Published as a conference paper at ICLR 2025

B.4 FINE-TUNING ON VTAB-1K

For fine-tuning models on VTAB-1K we provide the hyperparameters in Table 11. We search for
the best learning rate for each dataset by fine-tuning the model 25 times (5 learning rates with 5
seeds each) on the 800 training samples and evaluating them on the 200 validation samples. With
the best learning rate, we then train each model 5 times on concatenation of training and validation
split, evaluate on the test split and report the average accuracy.

Table 11: Hyperparameters for fine-tuning on VTAB-1K. *For Vim and ViL we group two consec-
utive blocks for the layer-wise lr decay similar to how ViT considers a pair of attention and MLP
block as a single “layer” for the decay.

Parameter Value
Epochs 50
Batch size 64
Seeds 5
Optimizer AdamW

Learning rate [1e-3, 7.5e-4, 5.0e-4, 2.5e-4, 1.0e-4]
Layer-wise lr deca 0.65*
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999

Learning rate schedule linear warmup → cosine decay
Warmup epochs 5

Precision mixed bfloat16
Backend torch.autocast

Data Augmentation
Resize
interpolation bicubic
size 224x224

Normalize ImageNet-1K statistics
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B.5 ADE20K SEMANTIC SEGMENTATION FINE-TUNING

We fine-tune models on ADE20K (Zhou et al., 2019) using an UperNet (Xiao et al., 2018) head. We
follow common practices and fine-tune on 512x512 resolution, where we interpolate the absolute
positional embedding from 224x224 to 512x512. For ViTs, we add relative position biases to the
attention layers (initialized to 0) (He et al., 2022). Table 12 lists detailed hyperparameters.

Table 12: Hyperparameters for fine-tuning on VTAB-1K. *For ViL we group two consecutive blocks
into one similar to how a ViT block consists of a pair of attention and MLP block.

Parameter Value
Updates 160K
Batch size 16
UperNet

Auxiliary
Weight 0.4
Input Block 8*
Dimension 192 (T), 384 (S, B)

Decoder
Weight 1.0
Input Blocks [4, 6, 8, 12]*
Dimension 192 (T), 384 (S, B)

Stochastic depth
Peak rate 0 (T), 0.05 (S), 0.1 (B)
Layer-wise Decay ✓

Optimizer AdamW
Learning rate 5e-4
Linear LR Scaling Divisor 16
Layer-wise lr decay 0.65*
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999

Learning rate schedule linear warmup → cosine decay
Warmup updates 1500

Precision mixed float16
Backend torch.autocast

Train Data Augmentation
RandomResize
interpolation bicubic

RandomCrop
size 512x512

RandomHorizontalFlip
ColorJitter 0.5
brightness 0.5
contrast 0.5
saturation 0.5
hue 0.25

Normalize ImageNet-1K statistics
Evaluation
Stride 341
Multi-scale
scale factors [0.75, 1.0, 1.25, 1.5, 1.75]
flip [True, False]
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B.6 DEIT-III REIMPLEMENTATION HYPERPARAMETERS

Table 10 shows detailed hyperparameters used to train DeiT-III-T (reimpl.) from Table 1. Our
reimplementation easily outperforms older baselines like DeiT-II-T (+2.7% ImageNet-1K accuracy)
and is approximately even with the original on ADE20K (40.1 vs 39.8 on mIoU single-scale, 41.8
vs 42.2 mIoU multi-scale).

Table 13: Hyperparameters for training our reimplementation of DeiT-III-T (Touvron et al., 2022b)
on ImageNet-1K. The most significant change is that we reduce the learning rate from 3e-3 to 1e-3
as we found this to greatly improve performance. We make minor changes to the protocol such as
using AdamW or no gradient clipping as models were stable without it. We follow the best setting
from DeiT-III (Touvron et al., 2022b) and pre-train on 192 resolution followed by a short fine-tuning
on 224 resolution (indicated by →).

Parameter Value
Epochs 800 → 20
Batch size 2048 → 1024
Model

Patch size 16x16
Latent dimension 192
Depth 12
Pooling [CLS]

Stochastic depth ✗
Layerscale 1e-4
Optimizer AdamW

Base Learning rate 1e-3 → 1e-5
Linear LR Scaling Divisor 1024
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999
Gradient Norm Clip ✗

Precision mixed bfloat16
Backend torch.autocast

Learning rate schedule cosine decay
Warmup schedule linear
Warmup epochs 5
End LR 1e-6

Label smoothing ✗
Train Data Augmentation

RandomResizedCrop 192 → 224
Scale [0.08, 1.0]
Interpolation bicubic

RandomHorizontalFlip p = 0.5
3-Augment

Gaussian Blur σ [0.1, 2.0]
ColorJitter [0.3, 0.3, 0.3, 0.0]

Normalize ImageNet-1K statistics
Mixup α 0.8
Cutmix α 1.0

Test Data Augmentation
Resize 192 → 224

Interpolation bicubic
CenterCrop 192 → 224
Normalize ImageNet-1K statistics
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