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A PROOF FOR THEOREM 1

First, we can easily prove the cross-entropy loss is L1-Smooth. Then we prove the Lrentention is L2-
Smooth. To simplify, we set k = 1. Then we have ∆yx(y) = 1

1−y + 1
2

1−2y
y−y2 . Notice that we set

0 < ‖y‖ < 1, hence we can easily prove that |∆y1 −∆y2 | ≤ L1‖y1− y2‖. In this way, we can have
that the loss function in Eq.(9) is H/2-smooth loss function (we can let H/2 = αL1 + βL2), and it
can be easily shown that F is H-smooth.

(1) For any k ∈ [0,K], we can have

F (wk+1) ≤ F (wk) +∇F (wk)
T

(wk+1 −wk) +
H

2
‖wk+1 −wk‖2

= F (wk) + (g1 (wk) + g2 (wk))
T

(−αg2 (wk)) +
α2H

2
‖g2 (wk)‖2

= F (wk)−
[
α− α2H

2

]
‖g2 (wk)‖2 − α 〈g1 (wk) , g2 (wk)〉

(11)

For the term 〈g1(wk), g2(wk)〉, it follows that

〈g1 (wk) , g2 (wk)〉
= 〈g1 (wk)− g1 (w0) + g1 (w0) , g2 (wk)〉
= 〈g1 (wk)− g1 (w0) , g2 (wk)〉+ 〈g1 (w0) , g2 (wk)〉
= 〈g1 (wk)− g1 (w0) , g2 (wk)〉+ 〈g1 (w0) , g2 (wk)− g2 (w0)〉+ 〈g1 (w0) , g2 (w0)〉

(12)

Notice that

2 〈g1 (wk)− g1 (w0) , g2 (wk)〉+ ‖g1 (wk)− g1 (w0)‖2 + ‖g2 (wk)‖2

= ‖g1 (wk)− g1 (w0) + g2 (wk)‖2 ≥ 0
(13)

We have

〈g1 (wk)− g1 (w0) , g2 (wk)〉 ≥ −1

2
‖g1 (wk)− g1 (w0)‖2 − 1

2
‖g2 (wk)‖2 (14)

Following the same line, it can be shown that

〈g1 (w0) , g2 (wk)− g2 (w0)〉 ≥ −1

2
‖g2 (wk)− g2 (w0)‖2 − 1

2
‖g1 (w0)‖2 (15)

Combining Eq.(12), Eq.(14) and Eq.(15) gives a lower bound on g1(wk), g2(wk), i.e.,

〈g1 (wk) , g2 (wk)〉

≥ − 1

2
‖g1 (wk)− g1 (w0)‖2 − 1

2
‖g2 (wk)‖2

− 1

2
‖g2 (wk)− g2 (w0)‖2 − 1

2
‖g1 (w0)‖2 + 〈g1 (w0) , g2 (w0)〉

≥ − H2

8
‖wk −w0‖2 −

1

2
‖g2 (wk)‖2

− H2

8
‖wk −w0‖2 −

1

2
‖g1 (w0)‖2 + 〈g1 (w0) , g2 (w0)〉

=− H2

4
‖wk −w0‖2 −

1

2
‖g2 (wk)‖2 − 1

2
‖g1 (w0)‖2 + 〈g1 (w0) , g2 (w0)〉 ,

(16)

where the second inequality is true because of the smoothness of the loss function. Based on the
update formulation, it can be seen that

wk = w0 − α
k−1∑
i=0

g2 (wi) (17)
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Therefore, continuing with Eq.(11), we can have

F (wk+1)

≤ F (wk)−
[
α− α2H

2

]
‖g2 (wk)‖2 − α 〈g1 (wk) , g2 (wk)〉

(18)

Then we have:

F (wk+1)

≤F (wk)−
[
α− α2H

2

]
‖g2 (wk)‖2 +

α3H2

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+
α

2
‖g2 (wk)‖2

+
α

2
‖g1 (w0)‖2 − α 〈g1 (w0) , g2 (w0)〉

=F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 +

α3H2

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+
α

2
‖g1 (w0)‖2 − α 〈g1 (w0) , g2 (w0)〉

≤F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 +

α3H2

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+
α

2
‖g1 (w0)‖2

− αε1 ‖g1 (w0)‖ ‖g2 (w0)‖ ,
(19)

where the last inequality is based on
〈
∇Lj

(
wj
)
,∇Lj−1

(
wj−1

)〉
≥

ε1
∥∥∇Lj (wj

)∥∥
2

∥∥∇Lj−1

(
wj−1

)∥∥
2
. Next, it can be shown that

α ≤ γ ‖g1 (w0)‖
HBK

≤ γ ‖g1 (w0)‖

H
∥∥∥∑k−1

i=0 g2 (wi)
∥∥∥ (20)

It then follows that

1

2
‖g1 (w0)‖2 +

α2H2

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

≤1

2
‖g1 (w0)‖2 +

γ2 ‖g1 (w0)‖2

4H2
∥∥∥∑k−1

i=0 g2 (wi)
∥∥∥2H

2

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

=
2 + γ2

4
‖g1 (w0)‖2 .

(21)

Therefore, we can obtain that

F (wk+1) ≤ F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 +

α
(
2 + γ2

)
4

‖g1 (w0)‖2 − αε1 ‖g1 (w0)‖ ‖g2 (w0)‖

≤ F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2

< F (wk)
(22)

where the second inequality is true because ε1 > (2+γ2)‖g1(w0)‖
4‖g2(w0)‖ . This sufficient decrease of the

objective function value indicates that the optimal F(w∗) can be obtained eventually for convex
loss functions.
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(2) For a non-convex loss function L, we can have the following as in Eq.(11):

F
(
wrk+1

)
≤F (wk)−

[
α− α2H

2

]
‖g2 (wk)‖2 − α 〈g1 (wk) , g2 (wk)〉

(a)
= F (wk)−

[
α− α2H

2

]
‖g2 (wk)‖2 − α

2

[
‖∇F (wk)‖2 − ‖g1 (wk)‖2 − ‖g2 (wk)‖2

]
=F (wk)−

[
α

2
− α2H

2

]
‖g2 (wk)‖2 − α

2
‖∇F (wk)‖2 +

α

2
‖g1 (wk)‖2

=F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 − α

2
‖∇F (wk)‖2 +

α

2
‖g1 (wk)− g1 (w0) + g1 (w0)‖2

≤F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 − α

2
‖∇F (wk)‖2 + α ‖g1 (wk)− g1 (w0)‖2

+ α ‖g1 (w0)‖2

(b)

≤ F (wk)−
[
α

2
− α2H

2

]
‖g2 (wk)‖2 − α

2
‖∇F (wk)‖2 +

H2α3

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+ α‖g1(w0)‖2

(23)
where (a) is because δF(wk) = g1(wk) + g2(wk), and (b) is because of the smoothness of L and
Eq.(17). Therefore,

min
k
‖∇F (wk)‖2

≤ 1

K

K−1∑
k=0

‖∇F (wk)‖2

≤ 2

αK

K−1∑
k=0

F (wk)−F (wk+1) +
H2α3

4

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+ α ‖g1 (w0)‖2 −
[
α

2
− α2H

2

]
‖g2 (wk)‖2


≤ 2

αK
[F (w0)−F (wK)] +

H2α2

2(K − 1)

K−1∑
k=1

∥∥∥∥∥
k−1∑
i=0

g2 (wi)

∥∥∥∥∥
2

+ 2 ‖g1 (w0)‖2 − 1− αH
K

K−1∑
k=0

‖g2 (wk)‖2

(a)

≤ 2

αK
[F (w0)−F (wK)] +

γ2

2
‖g1 (w0)‖2 + 2 ‖g1 (w0)‖2 − 1− αH

K

K−1∑
k=0

‖g2 (wk)‖2

≤ 2

αK
[F (w0)−F (w∗)] +

4 + γ2

2
‖g1 (w0)‖2 − 1− αH

K

K−1∑
k=0

‖g2 (wk)‖2

≤ 2

αK
[F (w0)−F (w∗)] +

4 + γ2

2
‖g1 (w0)‖2

(24)
where (a) holds due to F(w∗) ≤ F(wK) and ‖

∑k−1
i=0 g2(wi)‖2 ≤ γ2

α2H2 ‖g1(w0)‖2 based on
Eq.(21).

B DETAILS FOR CLKGE

Abalation Study for g in Eq.(1). However, new entities may obey different distributions, hence
we need to alleviate the distribution gaps by a function g. To achieve this, as stated in (Yang et al.,
2022), some networks such as MLP can eliminate the difference in distribution by constructing an
implicit space. In this way, for the sake of simplicity, we specify g as an MLP. Furthermore, we
conduct the experiments on the ENTITY dataset as shown in Table 4, where CLKGE w/ g denotes
CLKGE utilizing the and CLKGE w/o g denotes CLKGE remove g. One can observe that CLKGE
w/ g can be superior to CLKGE w/o g significantly, which demonstrates the effectiveness of g.

Abalation Study for different KGE methods. Different KGE methods have somewhat impact on
performance. To demonstrate this point, we conduct the experiments on ENTITY datasets utilizing
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Table 4: Abalation Study for g in Eq.(1)
Models MRR H@1 H@3 H@10

CLKGE w g .233±.002 .138±.001 .245±.002 .398±.002

CLKGE w/o g .211±.003 .120±.002 .233±.002 .387±.003

Table 5: Abalation Study for different KGE methods
Models MRR H@1 H@3 H@10

CLKGEC .248±.001 .144±.001 .278±.002 .436±.002

CLKGER .250±.002 .145±.002 .279±.002 .439±.003

CLKGET .245±.003 .143±.002 .274±.003 .435±.003

the KGE method ComplEx, RotatE, and TransE as CLKGEC , CLKGER, and CLKGET , re-
spectively. As shown in the table 5, one can observe that the difference of performance for various
KGE method is not big, which also show the robustness of our method.

Experiments for WN18RR-5-LS dataset. We conduct experiments on the WN18RR-5-LS dataset.
Specifically, WN18RR-5-LS is divided into several snapshots. As shown in the table below, one can
notice that CLKGE superiors other methods, and the overall performance shows the effectiveness of
components including knowledge transfer and knowledge retention.

C EXPERIMENTAL DETAILS

Learning Efficiency. In this part, we conduct experiments to compare the training time. We report
the total time cost on FACT, which is easier for comparison. Table 8 shows the results. Unsur-
prisingly, one can observe that re-training is the most time-consuming. By contrast, our model is
the most efficient, and it can converge to the optimal embedding in a fast way. The reason is two-
fold. On one hand, the new knowledge can learn the representations via knowledge transfer by old
knowledge effectively. On the other hand, old knowledge can alleviate catastrophic forgetting via
knowledge retention with new knowledge significantly. In total, these components work together
thus reducing the training time, which demonstrates the effectiveness of our method.

Ablation Study for Knowledge Retention To demonstrate the effectiveness of utilizing the energy-
based manifold, we compare the performance of two versions. The first is the original version
(denoted as CLKGE1) while the retention loss in the second version (denoted as CLKGE2) is

Lretention =
∑

e∈Ei−1

ω(e) ‖ei − ei−1‖22 +
∑

r∈Ri−1

ω(r) ‖ri − ri−1‖22 , (25)

where where omega(x) is the regularization weight for x. The results are shown in Table 9. One
can observe that the performance of CLKGE1 is superior to CLKGE2. In this way, it validates the
rationality of our method and the effectiveness of CLKGE to model the association between true
embedding and the obtained embedding for knowledge.

Table 6: Experiments for WN18RR-5-LS dataset.
Models MRR H@1 H@3 H@10

EMR .351±.002 .232±.002 .317±.003 .380±.001

DiCGRL .365±.002 .244±.003 .325±.002 .392±.002

LKGE .372±.002 .251±.002 .337±.003 .401±.001

CLKGE .384±.002 .260±.002 .347±.003 .415±.002
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Table 7: Statistical data of the four constructed growing KG datasets. For the i-th snapshot, T∆i

denotes the set of new facts in this snapshot, and Ei, Ri denote the sets of cumulative entities and
relations in the first i snapshots, respectively.

Datasets
Snapshot 1 Snapshot 2 Snapshot 3 Snapshot 4 Snapshot 5

|T∆1 | |E1| |R1| |T∆2 | |E2| |R2| |T∆3 | |E3| |R3| |T∆4 | |E4| |R4| |T∆5 | |E5| |R5|
ENTITY 46,388 2,909 233 72,111 5,817 236 73,785 8,275 236 70,506 11,633 237 47,326 14,541 237
RELATION 98,819 11,560 48 93,535 13,343 96 66,136 13,754 143 30,032 14,387 190 21,594 14,541 237
FACT 62,024 10,513 237 62,023 12,779 237 62,023 13,586 237 62,023 13,894 237 62,023 14,541 237
HYBRID 57,561 8,628 86 20,873 10,040 102 88,017 12,779 151 103,339 14,393 209 40,326 14,541 237

Table 8: Cumulative time (seconds) cost on FACT during 5 snapshots.
Models Re-tarining CWE DiCGRL PNN GEM EMR EWC SI LKGE Fine-tuning CLKGE

5000 3100 2150 1900 1750 1540 1500 1400 1300 1350 1200

Table 9: Ablation Study for Knowledge Retention.

Model
ENTITY RELATION

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CLKGE1 0.248 0.144 0.278 0.436 0.203 0.115 0.226 0.379
CLKGE2 0.234 0.136 0.271 0.429 0.196 0.107 0.219 0.372
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