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● Non-Gaussian uncertainties pose a problem for likelihood-free 
inference with computationally expensive simulators;

● DGPs are able to model irregular distributions, allowing accurate 
representation of the uncertainty in BO;

● We introduce quantile conditioning on DGP samples to handle the 
acquisition and likelihood approximation in multimodal cases;

● Our experiments show that DGPs outperform GPs on multimodal 
cases and retain comparable performance and sample-efficiency 
on the rest of the cases;

● DGPs in BO outperform deep learning alternatives on tasks with 
only hundreds simulator calls available.

Given observed data Xobs and a simulator g(𝜃) = X, we need to 
determine the parameter of the simulator 𝜃 that generated Xobs. Current 
likelihood-free inference (LFI) methods either can not approximate 
multimodal target distributions or require thousands of samples, which 
are rarely available when dealing with computationally expensive 
simulators.
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We approximate p(𝜃|Xobs) by minimizing the discrepancy 𝛥𝜃 (e.g 
Euclidean distance) between summaries (e.g. number of clusters, 
variance) of the observed data sobs and synthetic data s𝜃. We use 
Bayesian Optimization (BO) for LFI [1], replacing a Gaussian Process 
(GP) surrogate with deep GPs. We use importance-weighted 
variational inference [2] for DGPs. The general overview of the 
approach:
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Assuming p(X|θ) ≈ p(S|θ)

We use them in BO acquisition (𝜂 is a user-defined const)

And likelihood approximation (𝜖 is a discrepancy threshold) 

where F is a normal cdf with mean 0 and variance 1, and 𝜎 is a 
Gaussian likelihood noise. Quantile-conditioning filters DGPs samples, 
retaining only those that correspond to the low-valued discrepancy 
regions, where the discrepancy model is the most accurate.

We use quantile conditioning Q(.) on DGP samples: 
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Model TE2 BDM NW

LV-GP (1.6, 1.64) (1.51, 1.61) (1.24, 1.29)

LV-3GP (1.7, 1.74) (1.5, 1.6) (1.26, 1.29)

GP (2.65, 2.68) (1.23, 1.25) (1.67, 1.7)

MAF (1.99, 2.02) (2.03, 2.16) (2.37, 2.5)

MDN (15.63, 18.16) (1.38, 1.4) (1.8, 1.83)
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The 95%-confidence intervals (1000 repetitions) of the Wasserstein 
distance for each model are shown below:

DGPs outperform GPs, masked autoregressive flows (MAFs) and 
mixture density networks (MDNs) in terms of scaled Wasserstein 
distance between the surrogate posterior and the true posterior for 
multimodal simulator TE2 and NW (the lower distance is the better). 
200 simulations were available for each model.

TE2 simulator is a 1d demonstration of multimodality, shown in the 
figure above, BDM is a unimodal Gaussian-like simulator of 
tuberculosis spread [3] and NW is a multimodal simulation of a 
reinforcement learning agent in the grid-world planning  environment.
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