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A PROOF FOR INVARIANCE OF THE INVARIANT KERNEL

Lemma A.1 The kernel k™*(-,-) as defined in equation (2.2), is invariant, i.e. K™ (v,v’) =
K™ (v o T,v" o 7') for some data points v, v’ and transformations T, 7' € T.

Proof Let 7, 7] be optimal for the problem in (2.2):
(Tw, T1) :arngELé{Tn(UOT,v’or’). (A.1)

If  and ¥’ are transformed versions of v and v’, respectively, i.e., ? = v oo and ¥’ = v’ o o”’, for
some 0,0’ € T, then we have

K" (p,0') =  max /1('5 oT,v o T’) (A2)
7T, 7’ €T

=  max H('UOO'OT,’U/OO'/OT/>. (A3)
T€T, 7 €T

Because T is a group, it is closed under inversion and composition, and so

o tor, eT, and oo T, €T, (A4)

and (6! o 7,,0' " o 7/) is optimal for (A.3). This implies that
KM (0,0") = k™ (v,v"). (A5)
| ]

B OVERVIEW OF THEORETICAL ANALYSIS

Data and Assumptions. Our theory pertains to a continuum model for images. We consider images
v as functions v(u) of a two-dimensional pixel location u € R?, which is (i) square integrable, i.e.,
vE L2(]R2) and (ii) smooth, i.e., v € C'*°. Our theoryﬂconsiders (special) Euclidean transformations
7 € T = SE(2), which act on images via

[voT](u) = v(r(u), (B.1)
where u € R? is represents an arbitrary location in the image plane. The mapping v + v o T
is an isometry, in the sense that ||v o 7|2 = ||v]|2 for any v € Z; similarly, for any v, v’ € Z,

|lvoT —v oT|p2 = |[v —v'| 2.

Image Manifolds. For a given image v, let
Sy ={vor|TeT}CL*R?. (B.2)
If the mapping
T+—vOoT (B.3)

is injective, i.e., v is not self-similar under any subgroup of SE(2), then S, is a 3-dimensional
compact Riemannian submanifold of L?, which is diffeomorphic to SE(2).

Tangent and Normal Spaces. For any point v’ € S,,, we let T,»S,, denote the tangent space to S,,.
This is a 3-dimensional linear subspace of T}, L?; we identify it with a 3-dimensional linear subspace
of L? in a natural fashion. Because our objective functions are defined extrinsically, our analysis will
occasionally need to compare tangent vectors £’ € TS, and &” € T, S,, extrinsically, i.e., writing

1€" = &" 2.

At point v' € S, we let N,S,, denote the normal space. This is the orthogonal complement of
Ty Sy in Ty T.

*The computational approach in this paper accommodates far broader classes of transformations, including
similarity, affine, perspective and beyond. Our theory focuses on Euclidean transformations. We believe that
similar results can be obtained for other transformation groups, albeit with certain modifications to account for
scale changes.
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Riemannian Structure. The manifold S, inherits the Riemannian metric and connection from Z.
We let exp,, : TovS,y — S, denote the exponential map; because S, is compact, it is geodesically
complete, and the domain of definition of exp,, is the entirety of the tangent space.

Reach, Tubular Neighborhoods and Projections. The distance function is given by

_ _
d(u,S,) = JSEU lu —v'||2 (B.4)
= inf |lu—wvorT|s. (B.5)
TESE(2)

Because S, is compact, there always exists at least one minimizing point v’ € S,,. The reach
p(Sy) of the manifold S,, is maximum p € R such that for all points w satisfying d(u, S,) < p,
the minimizing point v’ is unique. We write Pg_ [u] for this unique closest point v’. By the tubular
neighborhood theorem, p(.S,) > 0, i.e., the reach is positive.

Write I'y, = {u | d(u, Sy) < p(Sy)}, i.e., this is the tubular neighborhood of points which are within
distance p of S,,. As described above, for u € T',, the projection is unique; for u € T', \ S5, write

u —Ps,u

=——"¢€N Sov- B.6
lu —Ps,u2 © Payud (B.6)

n(u)

Reach and Curvature for Convex Combinations. Our proposed invariant attention mechanism
forms new data points as weighted combinations of transformed versions of the observed data
v1,...,U,. Our analysis is phrased in terms of a summary parameter, which bounds the reach of
transformation manifolds generated by this operation. Let A = {& € R | &« > 0, (1, @) = 1}. For
acAandT = (11,...,7,) € T", write

n

Va1 = »_ 0v; 0T, (B.7)
i=1
and
Sa,T = {Ua,T °T | T E T} (B.8)
Then we define the infimal convex combination reach as
min yeeoyUn) = f h("‘ ) B.9
Pmin (V1 Up) aeAl?TeTn reach|Sq, 1 (B.9)

The reach controls the extrinsic geodesic curvature — for a given manifold S, x(S) < reach(S) ™.
The convex combination reach controls the maximum curvature of any transformation manifold Sq 7
write

Fmax(V1,...,0n) =  sup  K(SarT). (B.10)
acATET™
Then
—1
Kmax(vlw-w'vn) S (pmin(’uly---yvn)) . (Bll)

C DIFFERENTIATING PROJECTIONS

The following lemma shows that the projection of a point onto S, is differentiable, and gives an
expression for its derivative:

Lemma C.1 OnT,, the projection Pg u is a differentiable function of w. Moreover, setting v' =
Ps,uwand T = T, Sy, we have that

d
=] Ps,fu+tr] €1

is the unique solution h € T to the equation

(I — " (u — v’)) h = Prr, (C2)
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where 1 is the second fundamental form at v', and " is the symmetric operator defined by

(1) p.q] = (W(p. @), ). (€3)
which for d(u, Sy) < p(Sy) satisfies
[T (u — o] < 1. (C4)

In particular, this implies that the derivative can be expressed in a convergent Neumann series

oo

he=3" (H*(u - v’))kPTr. (C.5)

k=0

Here, the k = 0 term is the projection of 7 onto the tangent space at v’; the higher powers account
for changes in the normal direction as one moves across the manifold. Interestingly, although this
formula takes into account changes in the normal direction, it only depends on 7 through its projection
onto the tangent space, Prr.

Proof Because S, is geodesically complete, any point v” € S,, can be expressed as exp,,, (h) for
some h € T. The projection problem is equivalent to solving
1 2
Lnel%iHu—i-tr —expv,(h)H2 = p(h) (C.6)
in the sense that
Ps, [u + tr] = exp, (hy), (C.7)

where h, is the unique optimal solution to (C.6). The exponential map exp,, (h) is a smootlﬂ
function of h, and so ¢ is a smooth (and hence, differentiable) function of h. The solution h, is a
critical point of ¢ over 7', and so

PrVng(h.) = 0. (C8)

Differentiating the objective function ¢, we have

*

) (expv,(h*) — (u+ tr)) —0, (C.9)

=1y

Pr (Vh eXPyr (h)‘

where -* represents the adjoint of the Jacobian V, exp,, (h). The exponential map can be expanded
as

expy () = v +h+10(h,h)+ER), (C.10)
Vhexpy (h) = TI+1(h, )+ Viré(h), (C.11)

where the residual term £(h) satisfies
§h) <CIRI3,  [VRED)llemse < ClIR3 (C.12)

for some C' € R which does not depend on h. Plugging in, we obtain the equation

Pr (I + I(h,,) + Vhﬁ(h*)> ('v’ +h, + %H(h*, h,) +&(hy) — (u+ tr)) =0, (C.13)
whence
Pr (I ~1 (u v’)> he = Prustr o) + (0 (r)h, = Pr(30(he, ) + E(R))

~ PrIC Ry 300, ) + E(R) )y

— Pr(VihE(R))* (v’ +h, + L(h,, ) + E(Ry) — (u+ tr)).

Smoothness follows from smooth dependence of solutions of ordinary differential equations on their initial
conditions — see e.g.,|Lee|(2006) Proposition 5.7.
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Figure 6: Proof of Lemma|C.2
By Lemmal[C.3}
‘]I*(ufv/) ’ < wlu—v'|| < 1. (C.14)

This implies that the operator

Pr (I oI (u - u’)> Pr (C.15)

is stably invertible over 7, and its inverse is given by the Neumann series

<PT<I—H*(u—v’)>PT>1 :;<H*<u—v’)>k, (C.16)

whence
-1
T S
T u v T =~ u _17H||U7U/H. .
k
0202
Using this and the fact that w — v’ € T (which implies that Py (u + tr — v')) we obtain that
-1
h, —t|Pr (I - (u — 1)/)) PT] Prr || < Ctz, (C.18)

where we have used Lemma|C.2, which shows that ||k, || < Ct. This implies that

Pr (I—H*(u—v’)>73T

whence h, is differentiable with respect to ¢ at ¢ = 0, and its derivative is given by the right hand
side of (C.19). This implies that Pg, [u + tr] is differentiable at ¢ = 0, and

—1
liy () 2 (0) Prr, (C.19)
t—0 t

d d d
N p— ’ * = — 5 .2

dt ‘OPSU [+ ¢ dt ’0 exPyr (h(1)) dt ‘oh*(t) (€20
giving the claimed result. [ ]

The following lemma argues that for small ¢, the projection stays local.
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Lemma C.2 Let u € I'y, and consider a perturbation w + tr, with ||r|| = 1. Then there exist
positive numbers c, C, which do not depend on t, such that for t < c,

ds, (Psv [u+1tr], Ps, [U]) <Ct. (C21)

Proof Let u(t) = u + tr. For appropriately chosen ¢; > 0, w(t) liesin I'y, for 0 < ¢ < ¢;. Let
v'(t) = Ps, [u(t)] (C22)

be projection onto S,,. Because u € ', |[u — v'(0)]| < p. Choose £ > 0 such that (1 —&)p >

d(u,Sy). Set

u —v'(0)

u=v(0)+(1— a)pm

el,. (C.23)

Figure[6]illustrates this construction.

Notice that ||lu —a|| = & = (1 —€)p — ||u — v’|| > 0. Hence, for t < £/2r||, ||u(t) — al > £/2,
which is constant with respect to t. For t < co = £/2||7||, set

w(t) =u+ (1 E)pHu(t) —als (C.24)
Setting (
_ uw)—a
O = Taw —al,’ (C.25)
we have
z(t) — z - u(0) —a
(0= =00l Hlu fullg ||u()—11||2 (C.26)
N u(0) —
il + [Fo = - ro o H €27
_ @ —u Ol 1
= RO b - | =i~ T =] €2
la(®) = o — | 1220 = @ll = [[u(0) — &
) il ) - a IO O = o)
Jua(t) ~ w(O)] _ st _
=2 Ju(t) — all ¢ = Cit. (C.30)
Then
Jw(t) — o' (0)[| = [[w(t) — w(0)||la < (1 —&)pCyt = Cot. 1)

We make two geometric observations, which together constrain v’(¢) to be within distance Ct of
w(t), and hence within distance C’t of w(0) = v’(0). First, the projection of @ onto S,, is unique,
and equal to v'(0). Hence

[v'(t) — al > d(a,S,) = (1 - e)p. (C32)
Second, because v’ (t) is the unique closest point to w(t) in S,,, we have
[0'(t) = u(®)]] < [|[v"(0) — u(®)]| (C.33)

In other words, setting r = ||v’(0) — w(t)||, we have

v'(t) € Q = Blu(t),r) 0 (int [B(a, (1 - 5)p)]>c. (C.34)

This set is in turn contained in the intersection of B(w(t), r) with the halfspace of points g satisfying
a1 2(1) > (/(0) — @, 2(¢):

QS Q' = Bu),r)n{al (@ ult) 2(1) = (v'(0) ~ult), () }. (€35
We demonstrate this by showing that every point q satisfying
lg —all = (1—¢c)p=|v'(0) —al (C.36)
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and
(g —u,z(t)) < (¥'(0) —a, z(t)) (C.37)
must satisfy ||g — u(t)|| > r = ||v’(0) — w(t)]|. First, note that
lg—al3 = llg—u®)3+[lwt) —al3+2(q —ut) ut) —a)
= g — w3 - llu(t) — a3 +2(q — @, 2(1)) (C.38)

and similarly
10(0) — @3 = [[v'(0) — w(®)||3 — [lu(t) — all + 2 (v'(0) — u(t), z(1)) - (C.39)
Comparing (C.38) and (C.39) via (C.36), we see that
lg — u@®)3 +2(1 —e)p (g — a4, 2(t))
> [v'(0) = w(t)ll3 + 2(1 — €)p (v(0) — u(t), 2(1)) . (C.40)
Together with (C.37), this implies that ||g — w(t)||2 > ||v’(0) — w(t)||2 = . This establishes (C.35).

The set Q' is a solid spherical cap, whose central axis is along the direction w(t) — w(t). Set

_ w(t) —ult)
w(t) = = (v'(0) —u(t), 2(1)) - (C.41)
[w(t) —u(®)||
The spherical cap Q' has diameter
2[lw(t) — 0" (0)[ < 2[lw(t) —v"(0)]], (C.42)
Since v'(t) € @',
[v'(t) = v (0)]| < 2[lw(t) —v'(0)]| < 2Cat. (C.43)
By Theorem 1 of Boissonnat et al. (2019)), provided 2C5t < 2p, we have
/ !
Ly < 1 ([[V'() =V (0)]
ds, (v (t),v (0)) < 2psin ( n , (C.44)
™
< Zv'e - ), (C45)
< (Cont, (C.46)
as claimed. |

Lemma C.3 For any n), the linear operator " (n) : Ty Sy — TSy, satisfies
1T (1)l e2e2 < Il (C.47)

Proof Because II* () is a symmetric linear operator,

I () = | o T (n){h, b = meax [(n, T{h, k)] < &lln]l2, (C48)

where we have used the Cauchy-Schwarz inequality and the fact that for ||h|| = 1, ||I[h, h]|| < <. W

D PROOF OF UNIQUENESS OF THE INVARIANT MEAN

In this section, we prove that under our hypotheses, the invariant mean is unique up to transformations.
We reproduce the theorem statement here:

Theorem D.1 (Uniqueness of the Invariant Mean) Consider data points {v;}?_, and their corre-
sponding transformation manifolds S; = {v; o7 | 7 € T = SE(2)}, and let ppin(v1,...,vn)
denote the infimal convex combination reach, defined in (B.9). Consider the optimization problem

i = i VVz i i 2 , D.1
MGIB%?R%@(N) ;glé% illvio i = iz (D-1)

with Wy; > 0 and Zz W,; = 1. There exists a numerical constant ¢ > 0 such that if
II%E}X d(SuS_]) S Cpmin(vla ... 71]71)7 (DZ)

then the solution to (D.1) is unique up to transformation, in the sense that for any pair of solutions
w*, w*', we have p*" = p* o T for some T € T.
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Proof Set
I={pe€L?| mind(pS;) <R} (D.3)
J

By Lemma|D.2| every minimizer p* of (2.3) satisfies pu* € 7.

Fix an arbitrary minimizer p* and consider any o € Z \ S,,+. Let fi be the (unique) closest point on
Spr. Then pp — j € NgSys, and D = [|p — pif| < 2R. Letting

v=_H"H (D.4)
e — 2|2
we have
o) = o(p+ Dr) (D.5)
D
— @+ [ Celp+ )| _ (D.6)
t= s=
D t R

= () +DLo(fi+ sv) .t / / Loo(m+rv)| dsdt (D7)

5= t=0 J s=0 r=s

> (@) = olu). (D.3)
where we have applied Theorem [D.3]to show that the integrand in (D.7) is positive, and used the fact
that 1 is a critical point of ¢ to conclude that

=0. (D.9)
s=0

Lo(+ sv)
Hence, for any g € 7\ S+, () > ¢(p*), and so every optimal solution to (D.I) lies on S+, and
hence is of the form p* o 7 for some 7 € T. [ ]
D.1 OBJECTIVE FUNCTION VALUE IN THE OUTSIDE REGION

The following lemma shows that any minimizer to (D.I) is close to at least one of the manifolds S;:

Lemma D.2 (Objective Value in Outside Region) Under the hypotheses of Theorem if p* is
any minimizer of (D.1), and

peo={pu|mind(u,s) >R}, (D.10)

where
R= I%akxd(sk,S[), (Dll)

then () > p(pu*), for any minimizer p* of (D.I).

Proof Using the closed form expression for p* in (2.5), we have

) = i 0073 = = ST W (w10 7) 2
— Ezlijnlm ZZjng(viOﬂWOTZ) 2
< Ewlwefj;% min [v; o 7 — ve o 7
< W;Wzﬂ(&w&)
< s W
<R (D.12)
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and so

n
() => Wi min [|v; o 7; — w3,
i=1 '

= Z Wijdz(l"'*78i)a

i=1
< Z WinQ.
i=1
Conversely, for p € O,
p(p) =D Wid* (1, Si) > > Wi, R* > p(p), (D.13)
i=1 i=1
as claimed. ]

D.2 POSITIVE CURVATURE IN THE INSIDE REGION
Theorem D.3 (Positive Curvature in the Inside Region) Let

R= mka%xd(Sk,Sg). (D14)

There is a positive numerical constant ¢ > 0 such that if
R < ¢pmin(v1,...,0n), (D.15)

then for any optimal solution p to (2.3) with corresponding transformation manifold
Su; :{M;OT\TET}, (D.16)

and any unit vector r € Nu; S,LJ*_, fort € [0,2R)], p(p] + tr) is a twice-differentiable function of t,

and
2

1
ﬁ(p(u; +tr) > 3 (D.17)
Proof Lemmaimplies that for ¢ € [0,2R], p(p + tr) is twice differentiable, and
e - 3kmax R
ﬁ@(ﬂj +1ir) > zzmj (PNpSi [k +er) S [rlI5 - M)
i=1 max
By Lemma|[D.4] when (D.15) is satisfied for ¢ > 0 sufficiently small, for all , j,
1PNy s oy FIIE > 3. (D.18)
Using that Z?Zl Wi =1, and Kmax < 1/pmin, for ¢ < % we have
d? - 1 3c 1
— Y4tr) > 2 i - — > -, D.1
dtg@(/’l’j + T') = (;W7> X (2 1— SC> -3 ( 9)
as claimed. [ ]
Lemma D.4 There exists a numerical constant ¢ > 0 such that if
R = max d(Sk,S¢) < ¢pmin(V1, ..., Vn), (D.20)

then for any unit normal vector r € Nu; 8“;_ andt € [0,2R),

2
||PN7’Si [H;+tr]si [’l‘} HQ Z %
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Proof Let
Fa = Npgjui+enSi (D.21)
I's = Npsi[uﬂsi (D.22)

and let P4, Py denote the projection matrices onto I' 4 and I, respectively. Similarly, let P1, Py
to be the projection matrices onto the orthogonal complements I'; and T'5. Then,

[P sl = 1PaIE
=1-||Pilrll;

—1—||P4[Pr + Par]|;

> 1-2||PxPar||, - 2| PAPsr|,

>1-2||PiPy||, - 2| Pgrl,

—1-2d%(T4,Tp) — 2(1 — \|PBr||§),

where d(I"4, ') Pt PB || denotes the subspace distance (sine of the maximum subspace angle).
Applylng Lemmas to bound d(T" 4,T'5) and || Pgr||2, we have

2
”PN?sv[uf+tr]Si [T]H 2 1- 2(6’£maxt)2 - 2(1 - (1 - HmaxR)2>
>1—T72x%, R? — 4kmax R
>1—70¢% — 4e,

where we have used that Kmax < 1/pmin. For sufficiently small ¢ > 0 (say, ¢ < %), this is strictly
larger than , as claimed. [ ]

D.2.1 DIFFERENTIATING CURVATURE IN TERMS OF PROJECTIONS OF NORMAL VECTORS

Lemma D.5 Forany p, 7 € L?(R?) such that d(p +tr,S;) < p(S;), the squared distance function
d*(p + tr, S;) is a differentiable function of t, and

d
dt{d2(u+tr S)}:2<r,u+tr—vjor*>. (D.23)
Proof We have
P (p+tr,S;) = mi% e+ tr —v;o7|3
TE
= |p+trl3 +o(p+tr), (D.24)
with
b(v) :mi%{ —2(v,v;07) + ||vj o 7|2 } (D.25)
TE

This is a pointwise minimum of linear functions of v, and hence is concave. By Danskin’s theorem,
1) is differentiable at any v for which the minimizing 7, is unique, and

Vot (v) = —20; o 7. (D.26)
Hence, min,cr ||[v — vj o 7||3 = ¢ (v) + ||v|| is a differentiable function of v, and its gradient is
given by
Vv{mi%le—ijT\\%} =2v —2v; 0 T,. (D.27)
TE

In particular, when d(p + tr, S;) < p(S;), the minimizing T, is unique, d? is differentiable, and
(D.27) holds. Applying the chain rule, d?(p + tr, S;) is differentiable function of ¢, and

jt{dz(u—&—tr S)}:2<r,u+tr—vj07'*>, (D.28)

as claimed. ]
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Lemma D.6 There exists a positive numerical constant ¢ > 0 such that if
R= I%%Xd(skasl) < Cpmin(vlw'-vvn), (D.29)

then for any t € [0, 2R)], and for any unit vector v € Nu; Sus @(p} + tr) is a twice differentiable
function of t, and

d 3hmax R
dt2 (P(ll/j + tr > 22 Wl] ‘PN’PS [/.L*+tr] [ ]”2 m . (D30)
=1
Proof Recall that N
p(p) =Y Wyd (., S)). (D.31)
i=1
Because
d(p} +tr,S;) < d(p},Si) +t < 3R. (D.32)

When R < % Prmin, d(p} +tr,S;) < p(Si). By Lemma d*(p + tr,S;) is a differentiable
function of ¢, and p
dt{d2<u+tT S)}z?(r,u—i—tr—vjon). (D.33)
Noting that
vj o T, = Pg, [u; + tr], (D.34)

by Lemma [CE, v; o T, is a differentiable function of ¢. Thus d? (p + tr, S;) is twice differentiable,
with

d? d
dtha(uJ +tr) = QZWU <r r——Ps A +tr]> (D.35)
=1
By Lemma|[C.2] writing
0it = pj +tr — Ps,[pu] +tr] (D.36)
and
Fi,t = TPsi (p}+tr] Si, (D.37)
we have
iP X+ tr] Z Pr, ( ) Pr, T (D.38)
dt i,t
Note that
[6:ell = |lpj +tr —Ps,[u] +tr]|
< lpf +tr = Ps, [u]]]
< |pj —Ps[13]
< 3R. (D.39)

Combining with (D.33)), and using Lemma@to bound the norm of II*, we obtain

2

CZMN;HT) = 2ZWZJ< i(?r *(5”)7%1.&)'“7«>
— 2ij ("PFL 7‘”2 <PF 7‘( (i.,t))’PF,;,t"'>>

k=1
> 22Wu<|7’m rll3 — HH( )II'“)
k=1
3l€mde
= 22“@ <|7)FL 73— 3l€maxR>’ (D.40)
completing the proof. [ ]
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D.2.2 TANGENT AND NORMAL VARIATION ACROSS MANIFOLDS

Under our assumptions, the manifolds S; (i) are close together, and (ii) have large reach, and hence
small curvature. In this section, we prove two lemmas which use properties (i)-(ii) to show that at
nearby points on S; and S, the tangent spaces to S; and S; are close together, and similarly for the
normal spaces.

Lemma D.7 There exists a positive numerical constant ¢ > 0 such that if

RZII]lgasz(Sk,Sg) < € Pmin(V1, ..., V), (D.41)
for any x € S; and any unit vector v € T,S;,

2
||PT7’-SJ- [:c]Sj [’U] HQ Z (1 - HmaxR) . (D42)

Proof Let v(¢) be a unit-speed geodesic in S; with y(0) = « and 4(0) = v. Then there exist
transformations 7; € T such that y(t) = v; o 7. For v € L?, write

Y(v) = r_:lel%l —2(v,vj0T) + |lvjoT|3. (D.43)

This is a pointwise minimum of affine functions of v, and hence is concave. Hence, by Danskin’s
theorem, 1 is differentiable at any v for which the minimizing 7 is unique, and

Voh(v) = —2vj o 7. (D.44)

Hence, min,cr ||[v — vj o 7||3 = ¢(v) + ||v|| is a differentiable function of v, and its gradient is
given by

Vv{minHv—UjO‘rH%} =2v —2v; 0 T,. (D.45)
T€T
Applying the chain rule, we have that

d d

a{minHvi 0Ty — ;0 T||§} =2 <'vi o1y —vjoT*(t), Vi © Tt> (D.46)

where 7*(t) is the optimal transformation for the value of v = v; o 7%, which is unique when
d(v; o 74, 8;) < p(8;), which is satisfied for ¢ < 1. By Lemma|C.2, v; o 7*(t) is a differentiable
function of ¢, and so the right hand side of (D.46) is a differentiable function of ¢. This implies that

d2(vi oT¢,S;) =min|lv;oT —v; 0 TH%
T

is twice differentiable, with

d—z{d2(vi oT S)} = 2( <’Ui o1y —vjoT*(¢) d—Q'ui o7't> + <dvi o T ivi oTt>
dt? T ’ T dt? dt " dt
— <jtvi o Ty, %vj ) T*(t)> ) (D.47)
On the other hand, because for any o € T,
|lvioo —vjoToo| = ||v;—v;oT|, (D.43)
we have
dvioo,S;) = min |lvioo —wvjor|

= min|lvioo —vjoToo|
T

= min|v; —v;oT|
T

This implies that d*(v; o ¢, S;) is a constant function of ¢, and so
d? (o,
ﬁ{d (v; 0 Tt,Sj)} —0. (D.50)
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Setting (D.47) equal to zero, we have that

d d N d d o d
<dtvl o Ty, dtvj oT (t)> = <dtvl o T, dtvi o Tt> + <vi o1 —vj o T(t), ﬁvi o Tt>
> 1= EmaxR. (D.51)
where we have used that v;07; is a unit speed geodesic, and hence || 4 v;07|| = 1 and || %viort Il2 <

, and used Cauchy-Schwarz to bound the second term.

For simplicity of notation, let I"; = 7};5 v;ory] and 6y = v; 0 T, — v; o T*(t). By Lemma E,

v 0T (t) = S Pr (8P, (30, (D.52)
k=0
and so
L osomis ;07 (1) Z )P, (I (8)Pr, ()
5 —
ar T e ¥(O)"Pr. (L T
< HPnﬁ(t)H%ZIlH*(&)Hk
k=0
1
< Y(t)]|2 ——— )
< Pe®lz— R (D.53)
where we have used that ||I(8;)|| < £max]||d¢||. Comparing to (D.51), we have
2
1Pr, (83 > (1 - mmaxR) , (D.54)
as claimed. ]

Lemma D.8 There exists a positive numerical constant ¢ > 0 such that if
R= max d(Sk,S¢) < ¢pmin(V1, ..., Vn), (D.55)

for any x € S; and any unit vector v € N,S;,
2
1PNy, s [0l > (1= fmaR) (D.56)

Proof LetT; = 7,S; and T';j = Tpg [ S;. From Lemma we have

d2(1“i,1"j) = H(]_PF]')
= max (I - P
rel;,||rl2=1 H HZ
- max 11— HPFier
rely,|rll2=1 k
< 1-(1-kR)2 (D.57)
We further have
A(TF,TH) = d*(T,T)
< 1-(1-kR)?, (D.58)
and so
min Povl2 = 1-— ma. I— Pl
verb g 175002 ot 0= gyl
= 1-d (1), Ty)
2
> 1-(1-(1-#R)
2
- (1 - “R) ' (D.59)
Since F% = NeSi, and Fj' =N Ps, [z)S; this establishes the claim. -
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D.3 NORMAL VARIATION ALONG A MANIFOLD

In this section, we prove that under our assumptions, for nearby points on S;, the normal spaces to S;
are close together. More precisely, we control the variation of the normal spaces to S; between two
points, which are projections of nearby points g and g + tr in the ambient space L2.

Lemma D.9 Consider pu € L? with d(u,S;) < R, and t € [0,2R)]. Let

ra = Npsi[M]SZ-, (D.60)
I'p = Npg jutirSi- (D.61)

There exists a numerical constant ¢ > 0 such that if

R= n’éazx d(Ska SZ) < CPmin('Uh R 7vn)> (D62)

then

d(T A, T5) < 6kmaxt. (D.63)

Proof Let P4, Pp be the projection matrices onto I" 4, ' respectively, and let Pj{, Pé- be the
projection matrices onto the orthogonal complements I'; and T'55. Then

d(T4,T'p) =d(Tp,T4)
= (I — Pa)Psl2
= P4 Psll2
= ||PePi]2
= (I - Pg)Pxll2
=d(I'5,T1)
:m§X||(I—P§)PX"B||2

max (I = Pg)o|2
veST |lv|l2=1

= max min ||lv — ul|o (D.64)
vES L [|v]la=1 ueSH

Let @ = Ps,[p], and b = Ps, [p + tr] and let y(s) be a minimum length unit speed geodesic on S;,
satisfying v(0) = a@ and y(sp) = b.

Notice that I‘ﬁ is the tangent space to I'4 at a. For any v € I’j, we generate a parallel vector
field f,(s) along (s) with £,(0) = v and fy,(sp) € T'5. Let ITp o [v] = vy (sp) € 'y denote this
parallel transport operator.

We control ||II o[v] — v|| as follows. The parallel vector field v(s) satisfies

Ccll—: =T(%(s),v(s)), (D.65)

whence

Moav — vl = [0(s1) — v(0)z
=| [ w6500 opas

< / LG (s), v(s)l|ads
< 3ksp (D.66)

2

where in the final line we have used Lemma[D.10]
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From (D.64)), we have

d(T4,Tp) = max min ||Jv — ul|
veEST |Iv|l2=1ueSE
< max  ||v —Ip qv||
vESL,|v|l2=1 ’
< 3ksp. (D.67)

We are left to bound s, = dg, (a, b). This is the infimum of the lengths of all differentiable curves
joining a, b. Taking a particular curve

&(u) = Ps, [} + ur], (D.68)
we have
H d
ds,(a,b) < /0 ()| du. (D.69)

We bound the integrand using Lemma[C.2. We begin by noting that

|15 + ur — Ps, (1] + urllls 115 4+ ur = Ps, [15]2
115 = Ps;[m5]ll2 4w

3R. (D.70)

ININ A

When R < %pmin, Ps, [u; + ur] is a differentiable function of « and by Lemma @, we have

d o0
2P + ] Z 8. PTeyS.Ts (D.71)
k=
with
0u = W +ur — Ps,[p] +ur]. (D.72)
We have ||, || < 3R, and so ||T*(d,)]| < 3RKmax, and so
ZHH* M IPre 5.7l < L <o omn
€(w) - 1- 3kmaxR
where by Kmax < 1/pmin the final bound holds provided ¢ < 1/6. Plugging in to (D.69), we obtain
ds;(a,b) < 2t; combining with gives the claimed bound. [

The proof of Lemma[D.9]relies on the following lemma, which controls the second fundamental form
(and hence controls the rate of change of parallel vector fields):

Lemma D.10 Let x € S, where S is an embedded submanifold of RP. Let I(u, v) : TS X TS —
NzS denote the second fundamental form of S at x. Then

I <3 D.74
Lm0 ) 2 < 3. ®74)

lull2=1,|l2v][2=1
where K is the extrinsic geodesic curvature of S.
Proof The tangent space of the manifold is d dimensional. Hence the normal space is D — d
dimensional.Therefore, I is a D — d dimensional vector extrinsically. Since the second fundamental

form is symmetric and bilinear, the i*" coordinate has the form I;(u,v) = u”®,;v for some
symmetric d X d matrix ®;. Then, we have the following:

W' ®v=1(u+v)®(utv)—tu"®u— v ®w
= [u" @] < |3(u+v)" ®i(u+v)| + |3u’ Biu| + 50" @iv]
= [u"®v* <3(|3(u+v) ®i(u+v)]* + [Fu” Bul® + [Lo" @iv)?).
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Using (a + b+ ¢)? < 3a® + 3b2 + 3¢? which follows from convexity of the square. Summing over i,
we obtain:

IHWAM@=§:W“EU2<EOMU+MU+UN?HWWAU@+HMMUN%

SZWH“MU+%u+M§WMwuN%m@mW%

( u+v u+v )
I ;
lw+vll2” [u+ o2
Since ||I(u,v)||3 = ||I(u, —v)||%, we can choose u, v such that (u,v) < 0 to maximize the norm

of the second fundamental form. Therefore, ||u + v||3 = 2 + 2 (u,v) < 2 = |Ju + v|s < V2.
Using this in the equation above,

[(w, )| < § max{4r®,x*, &7}

we complete the proof. [ ]

2

- zmax{||u+ ol

WMwWﬁJM%Mi}

2

E PROOF OF CONVERGENCE

E.1 PROOF OF THE CLUSTERING THEOREM

Theorem E.1 Let vgp ), . ,vff’ ) denote the features produced by the p-th iteration of invariant
attendion, and

s ={vPor|reT} (E.1)
the corresponding transformation manifolds. Let

R = maxd (S, 57).

There exist positive constants ¢, ¢, € such that if

R < € Pmin(V1, ..., 0,)
and
B < c’/(R(p))Q.
Then
d(SJ(»pH),S,ng)) <(1- E)d(sjﬁp)?‘gl(cp)) (E.2)
Whenever
RO < cpmin(v1,...,v,), and 8 < c’/(R(O))27 (E.3)

the conditions of the theorem hold for all iterations p, and so max; j d (S j(.p ), S ]gp )> converges to

zero at a linear rate:
masd (S](p), s,gp)) < (1- ) maxd (S](O), 5,§0>) . (E.4)

Proof Sketch Let W._ ;. denote the invariant weights associated with the image v,(f ), and W ; the
(p)

J

Y(p) = min {Z Wir|[o) o7, — un%},
=1

corresponding weights for image v;"’, at iteration p. Also define:

Ty Tn €T

.....
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The next-iteration features U,(f ) and ’U](-p ™) are minimizers of these functions:
+1 :
o) € argamin ()
(p+1) :
o) € argminp(u),

and the next-iteration distance is the distance between the transformation manifolds S,E,p +1) and
S,O7 +1) enerated by these features. We use Lemma [E.2|to upper bound
i g y pp

s 5)
in terms of two geometric quantities:

1. Positive curvature of the invariant mean objective function ¢ (), quantified through a lower
bound A on the second derivative of ¢ in directions normal to the Si(p ),

2. An upper bound € on the gradient of the objective function V() at the optimizer v,(f +1)

of the other objective ¥ ().

Comparing these quantities allows us to bound the distance between ’U](Cp 1) and the closest transfor-
mation UJ(-pH) ot of UJ(-pH).

We use Theorem [D.3|to quantify A. For €, we first use LemmalE.3|bound e in terms of the difference
between the weights associated with the two objectives ¢(pt) and (p). We then use LemmalE.5]to

bound this difference in weights in terms of the distances d(Si(p ), ) J(»p )). With these quantities, we
prove the theorem. A formal proof follows below.

Proof Fore > 0,A > 0,ifVu € Z, [|[Ve(p) — Vip(p)|l2 < € and j—;¢(u + t'f))|t:0 > X\ where
¥ € NS, using lemmal|E.2} given the quantities e, A,

d(S;“,S,j) <

2e
A

Using lemma we can quantify €. For u € Z,
Vo) = Vi (p)llz < 2nRAW

where AW = max; |[W;; — Wig|.
Using lemmal[E.5] we see that

R
aw <278 (14 7)a(s,, 5)

Therefore,
BR
n
= 4BR2PT (1 + P*)d(S;, Si)
Thus, we use € = 4ﬂR266R2(1 + efBRz)d(Sj, Sk) in lemma

IVe(p) = Vib(p)ll2 < 2nR x 22— "7 (1 + PR7)d(S;, )

Let 77,7, be a pair of optimal transformations to the problem in d(S;r, S,‘:).Also denote
v=pjor; — pyory. Define o = apjor; +(1 —a)pjoTy,0<a<1. Notethat i € 7.

For quantifying A in lemma We first note that v € NVpsors Spux

We also note that ft = aps o 77 + (1 — a)pj, o T = pj o T + av. Therefore,
d2

vIVE(R) = [[vll3 (g o 7+ (allvll + 0)9)],

Since a||v||s < R, choosing a sufficiently small ¢ < 1 in the positive curvature result from Theorem
We see that A = % thus completing the proof.
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Lemma E.2 Let

2
pon-]

2
o o — i }
and p} = argming, o(p), pj, = argming, P(p).
2 ~ ~
IVu e, |[Vo(p) — V()2 < e, $=v(n+ tv)|t:O > X where © € NS, then

=, ,@LEGT{Z W [

n
#(w) m{Z ;

2¢
min||p} o1 — pp ol < — (E.5)
T5,Tk A

Proof Let 77, 7, be a pair of optimal transformations to the problem in d(Sj, S,:') Also denote
v = p}oT) — pi o7y Define o = apf o7 + (1 —a)uj o7 for some 0 < a < 1. Note that
pel.

Note that since p7 is optimal to (), any solution of the form p; o7, T is also a solution. Therefore,

;o 77 is optimal solution to (pt). The same argument holds for py and 1 (p)
Using the Taylor series, we see that

Y(pioTf) = ¢(u§ o)+ (V(uf o)), mg o — pioT))

(o - p; o)V ()

2
= p(ujo1)) — (Vo) o)), o) — pi o 7f)
T1
1 * * * * — * * * *
+ 5 (ol = py o) TVIR(@) (o T — o 7)) (E.6)

T2

Consider T1:

(Vi o), pf o i — pi o myy) < |[Voo(pf o 7)) |l2llpf o 7 — pj o 7|2
Consider T2:

(i o7t — 1y o) VP(R) (i o i) — py o 7) = (k5 o7 — pj o )TV (R) (ko 7]
2
- ||v||§@w<n 1),

Given that () > A,
T2 > [[v[3A.
Plugging the inequalities of T2 and T1 in[E.6| we see that
Y(pj o) 2 U(py o 75) = (pj o)) — [V (pf o mf) 2l o 75 — pi o mill2 + 5 ||MJ 0Ty

2| V(e o 7)) |2
= [lujori —piomils < —

2IVyY(ps otr
Since 4% o 77 is optimal to (s, | Vip (st o 7F) — Vib(? 0 772 = [Vib(sf 0 77z < e. This
completes the proof. [ ]

Lemma E.3 Let

Vi) = mlTneT{Z Wil o — ull2}

o) = {Z Wil o r - ull2}

.....
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and AW = max; |Wir — W;j|. Then,

Vpel= {ac | mind(z,5\") < R<p>}, (E.7)

J

we have
IVo(p) = V()2 < 2nRP AW

Proof For a given p € Z, for all i the solution 7/ to the optimization problem

min ||v; o 7 — | (E-8)
T€T

is unique. We use Danskin’s Theorem to differentiate ¢ (pt). Let 7/ be the following:

7 = argmin|v; o 7, — |2
With this,
V() = -2 Z Wij(vioT —p)
[

V() = -2 Z Wik(vi o 1] — )

3

= Vo(p) = Vi(p) = -2 Z(sz — Wir)(vio 7] — )

7/ is optimal both for ¢ () and () since it does not depend on the weights unlike p. Denote the
following quantities:

Wik = Wi, + AW;
AW = max |AW;|

with these definitions,
V() — Vip(p) |2 < 2AW Y "Jlvi o 7/ — 2

< 2nRAW uel (E.9)

Lemma E.4 (Triangle inequality) For transformation manifolds S;, S;, Sg,
d(S;, S;) — d(S;, Si) < d(S;,Sk) (E.10)

Proof We have

A(SiS) = _min_ _[[v =]l

For every v" € S;, ||[v — v'||2 < |lv — v”'|]2 + |[v" — V'||2. Therefore, for every v” € S;:

i _ < : o "o
116511{1111/1€Sk ||U v H2 - 7)68?715165;@ ||U v H2 + HU v H2

In particular, this inequality holds for the v/ € S; which minimizes ||v — v"'||2 and so we obtain
d(8;,Sk) < migl d(v,S;) + miél dw",v'") =d(S;,S;) + d(v", Sk)
vES; v’ €Sy,

Finally, using the fact that these are euclidean transformation manifolds, d(v”, Sk) = d(S;, S,) for
every choice of v” € S;. Hence we obtain

d(Slv Sk) < d(817 SJ) + d(Sja Sk)y
completing the proof. [ ]
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Lemma E.5 Let AW = max; |W;, — W;;| and R = max, ; d(Sm, S1), then
BR

AW < 27&“’12(1 +ePBYd(S;, )

Proof
AW = max Wy, — Wi
1

kT
vkl sl
_ Yk i i i
= + — —
1072 [FR o7 P | 71| (o771 P |
e o)
el vkl vl /
vk — 5l [villn = llvella
< — ; ¥illoo
[l il llvella
CLAIM: ||v,l1 > ne PR = o
Proof:
i = e~ PT (5155
> ¢ PR - d(S;,8;) <R
BR?

= vl = ne”

Using the result in Claim[E.T]in equation[E.12]and the reverse triangle inequality,

Aw < I _a’YjHoo I el ;2%\\1 oy <1

T1 T2
CLAIM: Ifz >0,y > 0,|e® —e Y| < |y — |
Proof: f(z) = e~* is a convex function. therefore

fy) = f@) + V@) (y - o)

e V>e " —eF(y—x)

N k)
S T
(y — )
1+2x
<(y-ux) x>0
We have:
_ _ et —eVifz <y
le™% —e y|:{€y—€mifIZy
This implies:

—zifr <
R L S R
T—yur =y

Using claim [E.I] Lemma[E.4] we have the following:

IYik — Yij| = ‘6,5[12(
< Bld*(Si, S;) — d*(S;, Sk)|
< Bld(Si, Sj) — d(Si, Sk)| x [d(Si, Sj) + d(Si, Sk)|

Si,Sk) _ e*ﬁdQ(Si»Sj)|

30
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Using[E.14]in[E.I3] we have:
1 n
AW < 28R ( + 2) d(S;, Si)
a o«

o OB or?(q 4 PRYA(S;, Sp) (E.15)
n

F APPENDIXNA

We note using lemma [D.3]that

d—dz(u; +tr,S;) =2 <r,r o

d *
de2 - 77)51' [ll’] +tT]>

We note that 4P, [; +tr] = £ (t7=0)Ps: (W} +tr +t'r].
We use Lemmag to get the value of the derivative and substitute above:

d 20, = 0k * k
@d (W +tr,Si) =2(r,r— Z(]I (u; +tr — Ps,[p] + tr])) PTPSi[u;thr]Si [r]
k=0

=2({r,r =Py s emsilr]) - <r,§:1(]1*( Wit — P, 1]+ tr}))k%,si S [r]>)
o ({(r P, sl <§(H Wm_psi[u;+WD)’“pT,,Sinim>)
= 2(IPAg e [ = <§:(n (1 + tr — Psi[u;-+tr]))'“PTW;Msi[r]>)
Q(HPM,S[W, I~ 130 (X 4t — P+ 1] ) P s 7]l2)

)
)

oo
> 2(1Papg s oy 7113 = Z\(H* i+t — P, [ + tr]

2 H’PNPS [p.*+t7- ||2 ZH(H* l'l’] +tT PS l‘l’j +tr | |7)T7’g [“*+”,]S [T]||2)

k
> 2( 1Py g oy 713 Zn( (1} +tr = Ps, [ + 7)) 1)
> ([P, s 715 — ST 0+ 1 — P + 0] )
k=1
> 2(I1Papy s e si PG = D (ills -+t = P g+ 1r]2) ") B
k=1

Here k; is the maximum curvature of the manifold .S;.

Given that K% >p>5R=k; < ﬁ. Also, ||/,Lj +tr — Pg, [/LJ* + tr]||2 < 2R. Therefore,

2
Rillpj +tr = Ps, [ +tr]lla < = < 1.
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Therefore (F.1) can be written as:

@ il + tr — P, [} + tr
L 411,50 > 2([Pai s ]I — it =P il

di? 1— kgl|ps +tr = Ps, (15 +tr]|2
Kil|ps +tr — Pg, [ps + tr
22(1—7%232—2/@3— s i sk i L )
1- “i”llj +tr —Ps, [ll’j +tr][l2
2

> 2(1 - 72x%*R?* — 2kR — g)

2
3~ 144k*R? — 4kR
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