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A PROOF FOR INVARIANCE OF THE INVARIANT KERNEL

Lemma A.1 The kernel max(·, ·) as defined in equation (2.2), is invariant, i.e. max(v,v0) =
max(v � ⌧ ,v0

� ⌧ 0) for some data points v,v0
and transformations ⌧ , ⌧ 0

2 T.

Proof Let ⌧?, ⌧ 0
? be optimal for the problem in (2.2):

(⌧?, ⌧
0
?) = arg max

⌧ ,⌧ 02T

⇣
v � ⌧ ,v0

� ⌧ 0
⌘
. (A.1)

If v̄ and v̄0 are transformed versions of v and v0, respectively, i.e., v̄ = v � � and v̄0 = v0
� �0, for

some �,�0
2 T, then we have

max(v̄, v̄0) = max
⌧2T,⌧ 02T


⇣
v̄ � ⌧ , v̄0

� ⌧ 0
⌘

(A.2)

= max
⌧2T,⌧ 02T


⇣
v � � � ⌧ ,v0

� �0
� ⌧ 0

⌘
. (A.3)

Because T is a group, it is closed under inversion and composition, and so

��1
� ⌧? 2 T, and �0�1

� ⌧ 0
? 2 T, (A.4)

and (��1
� ⌧?,�0�1

� ⌧ 0
?) is optimal for (A.3). This implies that

max(v̄, v̄0) = max(v,v0). (A.5)

B OVERVIEW OF THEORETICAL ANALYSIS

Data and Assumptions. Our theory pertains to a continuum model for images. We consider images
v as functions v(u) of a two-dimensional pixel location u 2 R2, which is (i) square integrable, i.e.,
v 2 L2(R2) and (ii) smooth, i.e., v 2 C1. Our theory4 considers (special) Euclidean transformations
⌧ 2 T = SE(2), which act on images via

[v � ⌧ ](u) = v(⌧ (u)), (B.1)

where u 2 R2 is represents an arbitrary location in the image plane. The mapping v 7! v � ⌧
is an isometry, in the sense that kv � ⌧kL2 = kvkL2 for any v 2 I; similarly, for any v,v0

2 I,
kv � ⌧ � v0

� ⌧kL2 = kv � v0
kL2 .

Image Manifolds. For a given image v, let

Sv = {v � ⌧ | ⌧ 2 T} ⇢ L2(R2). (B.2)

If the mapping
⌧ 7! v � ⌧ (B.3)

is injective, i.e., v is not self-similar under any subgroup of SE(2), then Sv is a 3-dimensional
compact Riemannian submanifold of L2, which is diffeomorphic to SE(2).

Tangent and Normal Spaces. For any point v0
2 Sv , we let Tv0Sv denote the tangent space to Sv .

This is a 3-dimensional linear subspace of TvL2; we identify it with a 3-dimensional linear subspace
of L2 in a natural fashion. Because our objective functions are defined extrinsically, our analysis will
occasionally need to compare tangent vectors ⇠0 2 Tv0Sv and ⇠00 2 Tv00Sv extrinsically, i.e., writing
k⇠0 � ⇠00kL2 .

At point v0
2 Sv, we let Nv0Sv denote the normal space. This is the orthogonal complement of

Tv0Sv in Tv0I.
4The computational approach in this paper accommodates far broader classes of transformations, including

similarity, affine, perspective and beyond. Our theory focuses on Euclidean transformations. We believe that
similar results can be obtained for other transformation groups, albeit with certain modifications to account for
scale changes.
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Riemannian Structure. The manifold Sv inherits the Riemannian metric and connection from I.
We let expv0 : Tv0Sv ! Sv denote the exponential map; because Sv is compact, it is geodesically
complete, and the domain of definition of expv0 is the entirety of the tangent space.

Reach, Tubular Neighborhoods and Projections. The distance function is given by

d(u, Sv) = inf
v02Sv

ku� v0
k2 (B.4)

= inf
⌧2SE(2)

ku� v � ⌧k2. (B.5)

Because Sv is compact, there always exists at least one minimizing point v0
2 Sv. The reach

⇢(Sv) of the manifold Sv is maximum ⇢ 2 R such that for all points u satisfying d(u, Sv) < ⇢,
the minimizing point v0 is unique. We write PSv [u] for this unique closest point v0. By the tubular
neighborhood theorem, ⇢(Sv) > 0, i.e., the reach is positive.

Write �v = {u | d(u, Sv) < ⇢(Sv)}, i.e., this is the tubular neighborhood of points which are within
distance ⇢ of Sv . As described above, for u 2 �v , the projection is unique; for u 2 �v \ Sv , write

⌘(u) =
u� PSvu

ku� PSvuk2
2 NPSvuSv. (B.6)

Reach and Curvature for Convex Combinations. Our proposed invariant attention mechanism
forms new data points as weighted combinations of transformed versions of the observed data
v1, . . . ,vn. Our analysis is phrased in terms of a summary parameter, which bounds the reach of
transformation manifolds generated by this operation. Let � = {↵ 2 Rn

| ↵ � 0, h1,↵i = 1}. For
↵ 2 � and T = (⌧1, . . . , ⌧n) 2 Tn, write

v↵,T =
nX

i=1

↵ivi � ⌧i, (B.7)

and
S↵,T = {v↵,T � ⌧ | ⌧ 2 T}. (B.8)

Then we define the infimal convex combination reach as

⇢min(v1, . . . ,vn) = inf
↵2�,T2Tn

reach
⇣
S↵,T

⌘
. (B.9)

The reach controls the extrinsic geodesic curvature – for a given manifold S, (S)  reach(S)�1.
The convex combination reach controls the maximum curvature of any transformation manifold S↵,T :
write

max(v1, . . . ,vn) = sup
↵2�,T2Tn

(S↵,T ). (B.10)

Then
max(v1, . . . ,vn) 

⇣
⇢min(v1, . . . ,vn)

⌘�1
. (B.11)

C DIFFERENTIATING PROJECTIONS

The following lemma shows that the projection of a point onto Sv is differentiable, and gives an
expression for its derivative:

Lemma C.1 On �v, the projection PSvu is a differentiable function of u. Moreover, setting v0 =
PSvu and T = Tv0Sv , we have that

d

dt

���
0
PSv [u+ tr] (C.1)

is the unique solution h 2 T to the equation

 
I � II⇤(u� v0)

!
h = PTr, (C.2)
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where II is the second fundamental form at v0
, and II⇤ is the symmetric operator defined by

⇣
II⇤⌘

⌘
[p, q] = hII(p, q),⌘i , (C.3)

which for d(u, Sv) < ⇢(Sv) satisfies

kII⇤(u� v0)k < 1. (C.4)

In particular, this implies that the derivative can be expressed in a convergent Neumann series

h? =
1X

k=0

⇣
II⇤(u� v0)

⌘k
PTr. (C.5)

Here, the k = 0 term is the projection of r onto the tangent space at v0; the higher powers account
for changes in the normal direction as one moves across the manifold. Interestingly, although this
formula takes into account changes in the normal direction, it only depends on r through its projection
onto the tangent space, PTr.

Proof Because Sv is geodesically complete, any point v00
2 Sv can be expressed as expv0(h) for

some h 2 T . The projection problem is equivalent to solving

min
h2T

1

2

���u+ tr � expv0(h)
���
2

2
⌘ '(h) (C.6)

in the sense that
PSv [u+ tr] = expv0(h?), (C.7)

where h? is the unique optimal solution to (C.6). The exponential map expv0(h) is a smooth5

function of h, and so ' is a smooth (and hence, differentiable) function of h. The solution h? is a
critical point of ' over T , and so

PTrh'(h?) = 0. (C.8)
Differentiating the objective function ', we have

PT

 
rh expv0(h)

���
h=h?

!⇤⇣
expv0(h?)� (u+ tr)

⌘
= 0, (C.9)

where ·
⇤ represents the adjoint of the Jacobian rh expv0(h). The exponential map can be expanded

as

expv0(h) = v0 + h+ 1
2 II(h,h) + ⇠(h), (C.10)

rh expv0(h) = I + II(h, ·) +rh⇠(h), (C.11)

where the residual term ⇠(h) satisfies

⇠(h)  Ckhk32, krh⇠(h)k`2!`2  Ckhk22 (C.12)

for some C 2 R+ which does not depend on h. Plugging in, we obtain the equation

PT

 
I + II(h?, ·) +rh⇠(h?)

!⇤⇣
v0 + h? +

1
2 II(h?,h?) + ⇠(h?)� (u+ tr)

⌘
= 0, (C.13)

whence

PT

 
I � II⇤

⇣
u� v0

⌘!
h? = PT

⇣
u+ tr � v0

⌘
+ t II⇤

�
r
�
h? � PT

⇣
1
2 II(h?,h?) + ⇠(h?)

⌘

� PT II
⇤
⇣
h? +

1
2 II(h?,h?) + ⇠(h?)

⌘
h?

� PT (rh⇠(h?))
⇤
⇣
v0 + h? +

1
2 II(h?,h?) + ⇠(h?)� (u+ tr)

⌘
.

5Smoothness follows from smooth dependence of solutions of ordinary differential equations on their initial
conditions – see e.g., Lee (2006) Proposition 5.7.

14



Under review as a conference paper at ICLR 2024

ũ

u+ tr

v0

Projection lives here

u

Figure 6: Proof of Lemma C.2

By Lemma C.3, ���II⇤
⇣
u� v0

⌘���  ku� v0
k < 1. (C.14)

This implies that the operator

PT

 
I � II⇤

⇣
u� v0

⌘!
PT (C.15)

is stably invertible over T , and its inverse is given by the Neumann series
 
PT

 
I � II⇤

⇣
u� v0

⌘!
PT

!�1

=
X

k

 
II⇤
⇣
u� v0

⌘!k

, (C.16)

whence
������

 
PT

 
I � II⇤

⇣
u� v0

⌘!
PT

!�1
������
`2!`2



X

k

���II⇤
⇣
u� v0

⌘���
k


1

1� ku� v0k
. (C.17)

Using this and the fact that u� v0
2 T? (which implies that PT (u+ tr � v0)) we obtain that

������
h? � t

"
PT

 
I � II⇤

⇣
u� v0

⌘!
PT

#�1

PTr

������
 Ct2, (C.18)

where we have used Lemma C.2, which shows that kh?k  Ct. This implies that

lim
t!0

h?(t)� h?(0)

t
=

"
PT

 
I � II⇤

⇣
u� v0

⌘!
PT

#�1

PTr, (C.19)

whence h? is differentiable with respect to t at t = 0, and its derivative is given by the right hand
side of (C.19). This implies that PSv [u+ tr] is differentiable at t = 0, and

d

dt

���
0
PSv [u+ tr] =

d

dt

���
0
expv0(h?(t)) =

d

dt

���
0
h?(t), (C.20)

giving the claimed result.

The following lemma argues that for small t, the projection stays local.
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Lemma C.2 Let u 2 �v, and consider a perturbation u + tr, with krk = 1. Then there exist

positive numbers c, C, which do not depend on t, such that for t < c,

dSv

⇣
PSv [u+ tr],PSv [u]

⌘
< Ct. (C.21)

Proof Let u(t) = u+ tr. For appropriately chosen c1 > 0, u(t) lies in �v for 0  t < c1. Let

v0(t) = PSv [u(t)] (C.22)

be projection onto Sv. Because u 2 �v, ku � v0(0)k < ⇢. Choose " > 0 such that (1 � ")⇢ >
d(u,Sv). Set

ũ = v0(0) + (1� ")⇢
u� v0(0)

ku� v0(0)k
2 �v. (C.23)

Figure 6 illustrates this construction.

Notice that ku� ũk = ⇠ ⌘ (1� ")⇢� ku� v0
k > 0. Hence, for t < ⇠/2krk, ku(t)� ũk � ⇠/2,

which is constant with respect to t. For t < c2 ⌘ ⇠/2krk, set

w(t) = ũ+ (1� ")⇢
u(t)� ũ

ku(t)� ũk2
. (C.24)

Setting

z(t) =
u(t)� ũ

ku(t)� ũk2
, (C.25)

we have

kz(t)� z(0)k2 =

����
u(t)� ũ

ku(t)� ũk2
�

u(0)� ũ

ku(0)� ũk2

���� (C.26)



����
u(t)� u(0)

ku(t)� ũk2

���� +

����
u(0)� ũ

ku(t)� ũk2
�

u(0)� ũ

ku(0)� ũk2

���� (C.27)

=
ku(t)� u(0)k

ku(t)� ũk2
+ ku(0)� ũk

����
1

ku(t)� ũk
�

1

ku(0)� ũk

���� (C.28)


ku(t)� u(0)k

ku(t)� ũk2
+ ku(0)� ũk

����
ku(t)� ũk � ku(0)� ũk

ku(t)� ũkku(0)� ũk

���� (C.29)

 2
ku(t)� u(0)k

ku(t)� ũk
<

4tkrk

⇠
⌘ C1t. (C.30)

Then
kw(t)� v0(0)k = kw(t)�w(0)k2 < (1� ")⇢C1t ⌘ C2t. (C.31)

We make two geometric observations, which together constrain v0(t) to be within distance Ct of
w(t), and hence within distance C 0t of w(0) = v0(0). First, the projection of ũ onto Sv is unique,
and equal to v0(0). Hence

kv0(t)� ũk � d(ũ,Sv) = (1� ")⇢. (C.32)
Second, because v0(t) is the unique closest point to u(t) in Sv , we have

kv0(t)� u(t)k  kv0(0)� u(t)k (C.33)

In other words, setting r = kv0(0)� u(t)k, we have

v0(t) 2 Q ⌘ B(u(t), r) \
⇣
int [B(ũ, (1� ")⇢)]

⌘c
. (C.34)

This set is in turn contained in the intersection of B(u(t), r) with the halfspace of points q satisfying
hq � ũ, z(t)i � hv0(0)� ũ, z(t)i:

Q ✓ Q0
⌘ B(u(t), r) \

n
q | hq � u(t), z(t)i � hv0(0)� u(t), z(t)i

o
. (C.35)

We demonstrate this by showing that every point q satisfying

kq � ũk � (1� ")⇢ = kv0(0)� ũk (C.36)
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and
hq � ũ, z(t)i < hv0(0)� ũ, z(t)i (C.37)

must satisfy kq � u(t)k > r = kv0(0)� u(t)k. First, note that
kq � ũk22 = kq � u(t)k22 + ku(t)� ũk22 + 2 hq � u(t),u(t)� ũi

= kq � u(t)k22 � ku(t)� ũk22 + 2 hq � ũ, z(t)i (C.38)
and similarly

kv0(0)� ũk22 = kv0(0)� u(t)k22 � ku(t)� ũk22 + 2 hv0(0)� u(t), z(t)i . (C.39)
Comparing (C.38) and (C.39) via (C.36), we see that

kq � u(t)k22 + 2(1� ")⇢ hq � ũ, z(t)i

� kv0(0)� u(t)k22 + 2(1� ")⇢ hv0(0)� u(t), z(t)i . (C.40)
Together with (C.37), this implies that kq � u(t)k2 > kv0(0)� u(t)k2 = r. This establishes (C.35).

The set Q0 is a solid spherical cap, whose central axis is along the direction w(t)� u(t). Set

w̄(t) =
w(t)� u(t)

kw(t)� u(t)k
hv0(0)� u(t), z(t)i . (C.41)

The spherical cap Q0 has diameter
2kw̄(t)� v0(0)k  2kw(t)� v0(0)k, (C.42)

Since v0(t) 2 Q0,
kv0(t)� v0(0)k  2kw(t)� v0(0)k  2C2t. (C.43)

By Theorem 1 of Boissonnat et al. (2019), provided 2C2t < 2⇢, we have

dSv

⇣
v0(t),v0(0)

⌘
 2⇢ sin�1

✓
kv0(t)� v0(0)k

2⇢

◆
, (C.44)


⇡

2
kv0(t)� v0(0)k, (C.45)

 C2⇡t, (C.46)
as claimed.

Lemma C.3 For any ⌘, the linear operator II⇤(⌘) : Tv0Sv ! Tv0Sv satisfies

kII⇤(⌘)k`2!`2  k⌘k (C.47)

Proof Because II⇤(⌘) is a symmetric linear operator,

kII⇤(⌘)k =

���� max
khk=1

II⇤(⌘)[h,h]

���� = max
khk=1

|h⌘, II[h,h]i|  k⌘k2, (C.48)

where we have used the Cauchy-Schwarz inequality and the fact that for khk = 1, kII[h,h]k  .

D PROOF OF UNIQUENESS OF THE INVARIANT MEAN

In this section, we prove that under our hypotheses, the invariant mean is unique up to transformations.
We reproduce the theorem statement here:

Theorem D.1 (Uniqueness of the Invariant Mean) Consider data points {vi}
n
i=1 and their corre-

sponding transformation manifolds Si = {vi � ⌧ | ⌧ 2 T = SE(2)}, and let ⇢min(v1, . . . ,vn)
denote the infimal convex combination reach, defined in (B.9). Consider the optimization problem

min
µ2L2(R2)

'(µ) ⌘
nX

i=1

min
⌧i2T

Wijkvi � ⌧i � µk2L2 , (D.1)

with Wij � 0 and
P

i Wij = 1. There exists a numerical constant c > 0 such that if

max
i,j

d(Si,Sj)  c ⇢min(v1, . . . ,vn), (D.2)

then the solution to (D.1) is unique up to transformation, in the sense that for any pair of solutions

µ?
, µ?0

, we have µ?0 = µ?
� ⌧ for some ⌧ 2 T.

17



Under review as a conference paper at ICLR 2024

Proof Set
I = {µ 2 L2

| min
j

d(µ,Sj)  R}. (D.3)

By Lemma D.2, every minimizer µ? of (2.3) satisfies µ?
2 I.

Fix an arbitrary minimizer µ? and consider any µ 2 I \ Sµ? . Let bµ be the (unique) closest point on
Sµ? . Then µ� bµ 2 NbµSµ?

j
, and D = kµ� bµk  2R. Letting

⌫ =
µ� bµ

kµ� bµk2
, (D.4)

we have

'(µ) = '(bµ+D⌫) (D.5)

= '(bµ) +
Z D

t=0

d
ds'(bµ+ s⌫)

���
s=t

dt (D.6)

= '(bµ) +D d
ds'(bµ+ s⌫)

���
s=0

+

Z D

t=0

Z t

s=0

d2

dr2'(bµ+ r⌫)
���
r=s

ds dt (D.7)

> '(bµ) = '(µ?). (D.8)

where we have applied Theorem D.3 to show that the integrand in (D.7) is positive, and used the fact
that bµ is a critical point of ' to conclude that

d
ds'(bµ+ s⌫)

���
s=0

= 0. (D.9)

Hence, for any µ 2 I \ Sµ? , '(µ) > '(µ?), and so every optimal solution to (D.1) lies on Sµ? , and
hence is of the form µ?

� ⌧ for some ⌧ 2 T.

D.1 OBJECTIVE FUNCTION VALUE IN THE OUTSIDE REGION

The following lemma shows that any minimizer to (D.1) is close to at least one of the manifolds Si:

Lemma D.2 (Objective Value in Outside Region) Under the hypotheses of Theorem D.1, if µ?
is

any minimizer of (D.1), and

µ 2 O =
n
µ | min

i
d(µ,Si) > R

o
, (D.10)

where

R = max
k,`

d(Sk,S`), (D.11)

then '(µ) > '(µ?), for any minimizer µ?
of (D.1).

Proof Using the closed form expression for µ? in (2.5), we have

d(µ?,Si) = min
⌧i

�����vi � ⌧i �
1P

`0 W`0j

X

`

W`j (v` � ⌧
?
` )

�����
2

=
1P

`0 W`0j
min
⌧i

������

X

`j

W`j(vi � ⌧i � v` � ⌧
?
` )

������
2


1P

`0 W`0j

X

`

W`j min
⌧i

kvi � ⌧i � v` � ⌧
?
` k2


1P

`0 W`0j

X

`

W`jd(Si,S`)


1P

`0 W`0j

X

`

W`jR

 R, (D.12)
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and so

'(µ?) =
nX

i=1

Wij min
⌧i

kvi � ⌧i � µ?
k
2
2,

=
nX

i=1

Wijd
2(µ?,Si),



nX

i=1

WijR
2.

Conversely, for µ 2 O,

'(µ) =
nX

i=1

Wijd
2(µ,Si) >

nX

i=1

WijR
2
� '(µ?), (D.13)

as claimed.

D.2 POSITIVE CURVATURE IN THE INSIDE REGION

Theorem D.3 (Positive Curvature in the Inside Region) Let

R = max
k,`

d(Sk,S`). (D.14)

There is a positive numerical constant c > 0 such that if

R < c ⇢min(v1, . . . ,vn), (D.15)

then for any optimal solution µ?
j to (2.3) with corresponding transformation manifold

Sµ?
j
=
n
µ?

j � ⌧ | ⌧ 2 T
o
, (D.16)

and any unit vector r 2 Nµ?
j
Sµ?

j
, for t 2 [0, 2R], '(µ?

j + tr) is a twice-differentiable function of t,
and

d2

dt2
'
�
µ?

j + tr
�
�

1

3
. (D.17)

Proof Lemma D.6 implies that for t 2 [0, 2R], '(µ?
j + tr) is twice differentiable, and

d2

dt2
'(µ?

j + tr) � 2
nX

i=1

Wij

 
kPNPSi

[µ?
j+tr]Si [r]k

2
2 �

3maxR

1� 3maxR

!
.

By Lemma D.4, when (D.15) is satisfied for c > 0 sufficiently small, for all i, j,

kPNPSi
[µ?

j+tr]Si [r]k
2
2 �

1
2 . (D.18)

Using that
Pn

i=1 Wij = 1, and max  1/⇢min, for c < 1
12 , we have

d2

dt2
'(µ?

j + tr) � 2

 
nX

i=1

Wij

!
⇥

✓
1

2
�

3c

1� 3c

◆
�

1

3
, (D.19)

as claimed.

Lemma D.4 There exists a numerical constant c > 0 such that if

R = max
k,`

d(Sk,S`) < c ⇢min(v1, . . . ,vn), (D.20)

then for any unit normal vector r 2 Nµ?
j
Sµ?

j
and t 2 [0, 2R],

kPNPSi
[µ?

j+tr]Si [r]k
2
2 �

1
2 .
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Proof Let

�A = NPSi [µ
?
j+tr]Si (D.21)

�B = NPSi [µ
?
j ]
Si (D.22)

and let PA, PB denote the projection matrices onto �A and �B , respectively. Similarly, let P?
A , P?

B

to be the projection matrices onto the orthogonal complements �?
A and �?

B . Then,
���PNPSi

[µ?
j+tr]Si [r]

���
2
= kPA[r]k

2
2

= 1�
��P?

A [r]
��2
2

= 1�
��P?

A [PBr + P?
B r]

��2
2

� 1� 2
��P?

A PBr
��2
2
� 2

��P?
A P?

B r
��2
2

� 1� 2
��P?

A PB

��2
2
� 2

��P?
B r
��2
2

= 1� 2d2(�A,�B)� 2
⇣
1� kPBrk

2
2

⌘
,

where d(�A,�B) = kP?
A PBk denotes the subspace distance (sine of the maximum subspace angle).

Applying Lemmas D.9, D.8 to bound d(�A,�B) and kPBrk2, we have
���PNPSi

[µ?
j+tr]Si [r]

���
2
� 1� 2(6maxt)

2
� 2
⇣
1�

�
1� maxR

�2⌘

� 1� 722maxR
2
� 4maxR

> 1� 70c2 � 4c,

where we have used that max  1/⇢min. For sufficiently small c > 0 (say, c < 1
10 ), this is strictly

larger than 1
2 , as claimed.

D.2.1 DIFFERENTIATING CURVATURE IN TERMS OF PROJECTIONS OF NORMAL VECTORS

Lemma D.5 For any µ, r 2 L2(R2) such that d(µ+ tr,Si) < ⇢(Si), the squared distance function

d2(µ+ tr,Si) is a differentiable function of t, and

d

dt

n
d2(µ+ tr,Si)

o
= 2 hr,µ+ tr � vj � ⌧?i . (D.23)

Proof We have

d2(µ+ tr,Si) = min
⌧2T

kµ+ tr � vi � ⌧k
2
2

= kµ+ trk22 +  (µ+ tr), (D.24)

with
 (v) = min

⌧2T

n
�2 hv,vj � ⌧ i+ kvj � ⌧k

2
2

o
. (D.25)

This is a pointwise minimum of linear functions of v, and hence is concave. By Danskin’s theorem,
 is differentiable at any v for which the minimizing ⌧? is unique, and

rv (v) = �2vj � ⌧?. (D.26)

Hence, min⌧2T kv � vj � ⌧k22 =  (v) + kvk22 is a differentiable function of v, and its gradient is
given by

rv

n
min
⌧2T

kv � vj � ⌧k
2
2

o
= 2v � 2vj � ⌧?. (D.27)

In particular, when d(µ + tr,Si) < ⇢(Si), the minimizing ⌧? is unique, d2 is differentiable, and
(D.27) holds. Applying the chain rule, d2(µ+ tr,Si) is differentiable function of t, and

d

dt

n
d2(µ+ tr,Si)

o
= 2 hr,µ+ tr � vj � ⌧?i , (D.28)

as claimed.
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Lemma D.6 There exists a positive numerical constant c > 0 such that if

R = max
k,`

d(Sk,S`)  c ⇢min(v1, . . . ,vn), (D.29)

then for any t 2 [0, 2R], and for any unit vector r 2 Nµ?
j
Sµ?

j
, '(µ?

j + tr) is a twice differentiable

function of t, and

d2

dt2
'(µ?

j + tr) � 2
nX

i=1

Wij

 
kPNPSi

[µ?
j+tr]Si [r]k

2
2 �

3maxR

1� 3maxR

!
. (D.30)

Proof Recall that

'(µ) =
nX

i=1

Wijd
2(µ,Si). (D.31)

Because
d(µ?

j + tr,Si)  d(µ?
j ,Si) + t  3R. (D.32)

When R < 1
3⇢min, d(µ?

j + tr,Si) < ⇢(Si). By Lemma D.5, d2(µ + tr,Si) is a differentiable
function of t, and

d

dt

n
d2(µ+ tr,Si)

o
= 2 hr,µ+ tr � vj � ⌧?i . (D.33)

Noting that
vj � ⌧? = PSi [µ

?
j + tr], (D.34)

by Lemma C.2, vj � ⌧? is a differentiable function of t. Thus d2(µ+ tr,Si) is twice differentiable,
with

d2

dt2
'(µ?

j + tr) = 2
nX

i=1

Wij

⌧
r, r �

d

dt
PSi [µ

?
j + tr]

�
. (D.35)

By Lemma C.2, writing
�i,t = µ?

j + tr � PSi [µ
?
j + tr] (D.36)

and
�i,t = TPSi [µ

?
j+tr]Si, (D.37)

we have
d

dt
PSi [µ

?
j + tr] =

1X

k=0

P�i,t

⇣
II⇤(�i,t)

⌘k
P�i,tr. (D.38)

Note that

k�i,tk = kµ?
j + tr � PSi [µ

?
j + tr]k

 kµ?
j + tr � PSi [µ

?
j ]k

 kµ?
j � PSi [µ

?
j ]k+ t

 3R. (D.39)

Combining with (D.35), and using Lemma C.3 to bound the norm of II⇤, we obtain

d2

dt2
'(µ?

j + tr) = 2
nX

i=1

Wij

*
r, r �

1X

k=0

⇣
P�i,tII

⇤(�i,t)P�i,t

⌘k
r

+

= 2
nX

i=1

Wij

 
kP�?

i,t
rk22 �

1X

k=1

D
P�i,tr,

⇣
II⇤(�i,t)

⌘
P�i,tr

E!

� 2
nX

i=1

Wij

 
kP�?

i,t
rk22 �

1X

k=1

kII⇤(�i,t)k
k

!

� 2
nX

i=1

Wij

 
kP�?

i,t
rk22 �

3maxR

1� 3maxR

!
, (D.40)

completing the proof.
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D.2.2 TANGENT AND NORMAL VARIATION ACROSS MANIFOLDS

Under our assumptions, the manifolds Si (i) are close together, and (ii) have large reach, and hence
small curvature. In this section, we prove two lemmas which use properties (i)-(ii) to show that at
nearby points on Si and Sj , the tangent spaces to Si and Sj are close together, and similarly for the
normal spaces.

Lemma D.7 There exists a positive numerical constant c > 0 such that if

R = max
k,`

d(Sk,S`) < c ⇢min(v1, . . . ,vn), (D.41)

for any x 2 Si and any unit vector v 2 TxSi,

kPTPSj
[x]Sj [v]k2 �

⇣
1� maxR

⌘2
. (D.42)

Proof Let �(t) be a unit-speed geodesic in Si with �(0) = x and �̇(0) = v. Then there exist
transformations ⌧t 2 T such that �(t) = vi � ⌧t. For v 2 L2, write

 (v) = min
⌧2T

�2 hv,vj � ⌧ i+ kvj � ⌧k
2
2. (D.43)

This is a pointwise minimum of affine functions of v, and hence is concave. Hence, by Danskin’s
theorem,  is differentiable at any v for which the minimizing ⌧ is unique, and

rv (v) = �2vj � ⌧?. (D.44)

Hence, min⌧2T kv � vj � ⌧k22 =  (v) + kvk22 is a differentiable function of v, and its gradient is
given by

rv

n
min
⌧2T

kv � vj � ⌧k
2
2

o
= 2v � 2vj � ⌧?. (D.45)

Applying the chain rule, we have that

d

dt

n
min
⌧

kvi � ⌧t � vj � ⌧k
2
2

o
= 2

⌧
vi � ⌧t � vj � ⌧

?(t),
d

dt
vi � ⌧t

�
(D.46)

where ⌧ ?(t) is the optimal transformation for the value of v = vi � ⌧t, which is unique when
d(vi � ⌧t,Sj) < ⇢(Sj), which is satisfied for c < 1. By Lemma C.2, vj � ⌧ ?(t) is a differentiable
function of t, and so the right hand side of (D.46) is a differentiable function of t. This implies that

d2(vi � ⌧t,Sj) = min
⌧

kvi � ⌧t � vj � ⌧k
2
2

is twice differentiable, with

d2

dt2

n
d2(vi � ⌧t,Sj)

o
= 2

 ⌧
vi � ⌧t � vj � ⌧

?(t),
d2

dt2
vi � ⌧t

�
+

⌧
d

dt
vi � ⌧t,

d

dt
vi � ⌧t

�

�

⌧
d

dt
vi � ⌧t,

d

dt
vj � ⌧

?(t)

� !
(D.47)

On the other hand, because for any � 2 T,

kvi � � � vj � ⌧ � �k = kvi � vj � ⌧k, (D.48)

we have

d(vi � �,Sj) = min
⌧

kvi � � � vj � ⌧k

= min
⌧

kvi � � � vj � ⌧ � �k

= min
⌧

kvi � vj � ⌧k

= d(vi,Sj). (D.49)

This implies that d2(vi � ⌧t,Sj) is a constant function of t, and so

d2

dt2

n
d2(vi � ⌧t,Sj)

o
= 0. (D.50)
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Setting (D.47) equal to zero, we have that⌧
d

dt
vi � ⌧t,

d

dt
vj � ⌧

?(t)

�
=

⌧
d

dt
vi � ⌧t,

d

dt
vi � ⌧t

�
+

⌧
vi � ⌧t � vj � ⌧

?(t),
d

dt
vi � ⌧t

�

� 1� maxR. (D.51)
where we have used that vi�⌧t is a unit speed geodesic, and hence k d

dtvi�⌧tk = 1 and k d2

dt2 vi�⌧tk2 

, and used Cauchy-Schwarz to bound the second term.

For simplicity of notation, let �t = TPSj [vi�⌧t] and �t = vi � ⌧t � vj � ⌧ ?(t). By Lemma C.2,

d

dt
vj � ⌧

?(t) =
1X

k=0

P�t(II
⇤(�t))

k
P�t [�̇(t)], (D.52)

and so ⌧
d

dt
vi � ⌧t,

d

dt
vj � ⌧

?(t)

�
=

1X

k=0

�̇(t)⇤P�t(II
⇤(�t))

k
P�t �̇(t)

 kP�t �̇(t)k
2
2

1X

k=0

kII⇤(�t)k
k

 kP�t �̇(t)k
2
2

1

1� maxR
, (D.53)

where we have used that kII(�t)k  maxk�tk. Comparing to (D.51), we have

kP�t �̇(t)k
2
2 �

⇣
1� maxR

⌘2
, (D.54)

as claimed.

Lemma D.8 There exists a positive numerical constant c > 0 such that if

R = max
k,`

d(Sk,S`) < c ⇢min(v1, . . . ,vn), (D.55)

for any x 2 Si and any unit vector v 2 NxSi,

kPNPSj
[x]Sj [v]k2 �

⇣
1� maxR

⌘2
. (D.56)

Proof Let �i = TxSi and �j = TPSj [x]
Sj . From Lemma D.7, we have

d2(�i,�j) =
��(I � P�j )P�i

��2
2

= max
r2�i,krk2=1

��(I � P�j )r
��2
2

= max
r2�i,krk2=1

1�
��P�jr

��2
2

 1� (1� R)2. (D.57)
We further have

d2(�?
i ,�

?
j ) = d2(�i,�j)

 1� (1� R)2, (D.58)
and so

min
v2�?

i , kvk=1
kP�?

j
vk22 = 1� max

v2�?
i , kvk=1

k(I � P�?
j
)vk22

= 1� d2(�?
i ,�

?
j )

� 1�

 
1�

⇣
1� R

⌘2
!

=
⇣
1� R

⌘2
. (D.59)

Since �?
i = NxSi, and �?

j = NPSj [x]
Sj , this establishes the claim.
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D.3 NORMAL VARIATION ALONG A MANIFOLD

In this section, we prove that under our assumptions, for nearby points on Si, the normal spaces to Si

are close together. More precisely, we control the variation of the normal spaces to Si between two
points, which are projections of nearby points µ and µ+ tr in the ambient space L2.

Lemma D.9 Consider µ 2 L2
with d(µ,Si)  R, and t 2 [0, 2R]. Let

�A = NPSi [µ]Si, (D.60)
�B = NPSi [µ+tr]Si. (D.61)

There exists a numerical constant c > 0 such that if

R = max
k,`

d(Sk,S`)  c ⇢min(v1, . . . ,vn), (D.62)

then

d(�A,�B)  6maxt. (D.63)

Proof Let PA, PB be the projection matrices onto �A,�B respectively, and let P?
A , P?

B be the
projection matrices onto the orthogonal complements �?

A and �?
B . Then

d(�A,�B) = d(�B ,�A)

= k(I � PA)PBk2

= kP?
A PBk2

= kPBP
?
A k2

= k(I � P?
B )P?

A k2

= d(�?
B ,�

?
A)

= max
x

k(I � P?
B )P?

A xk2

= max
v2S?

A ,kvk2=1
k(I � P?

B )vk2

= max
v2S?

A ,kvk2=1
min
u2S?

B

kv � uk2 (D.64)

Let a = PSi [µ], and b = PSi [µ+ tr] and let �(s) be a minimum length unit speed geodesic on Si,
satisfying �(0) = a and �(sb) = b.

Notice that �?
A is the tangent space to �A at a. For any v 2 �?

A, we generate a parallel vector
field fv(s) along �(s) with fv(0) = v and fv(sb) 2 �?

B . Let ⇧b,a[v] = vv(sb) 2 �?
B denote this

parallel transport operator.

We control k⇧b,a[v]� vk as follows. The parallel vector field v(s) satisfies

dv

ds
= II(�̇(s),v(s)), (D.65)

whence

k⇧b,av � vk = kv(sb)� v(0)k2

=

����
Z sb

0
II(�̇(s),v(s))ds

����
2



Z sb

0
kII(�̇(s),v(s)k2ds

 3sb (D.66)

where in the final line we have used Lemma D.10.
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From (D.64), we have

d(�A,�B) = max
v2S?

A ,kvk2=1
min
u2S?

B

kv � uk

 max
v2S?

A ,kvk2=1
kv �⇧b,avk

 3sb. (D.67)

We are left to bound sb = dSi(a, b). This is the infimum of the lengths of all differentiable curves
joining a, b. Taking a particular curve

⇠(u) = PSi [µ
?
j + ur], (D.68)

we have

dSi(a, b) 

Z t

0

����
d

du
⇠(u)

���� du. (D.69)

We bound the integrand using Lemma C.2. We begin by noting that

kµ?
j + ur � PSi [µ

?
j + ur]k2  kµ?

j + ur � PSi [µ
?
j ]k2

 kµ?
j � PSi [µ

?
j ]k2 + u

 3R. (D.70)

When R < 1
3⇢min, PSi [µ

?
j + ur] is a differentiable function of u and by Lemma C.2, we have

d

du
PSi [µ

?
j + ur] =

1X

k=0

II⇤(�u)PT⇠(u)Sir, (D.71)

with
�u = µ?

j + ur � PSi [µ
?
j + ur]. (D.72)

We have k�uk  3R, and so kII⇤(�u)k  3Rmax, and so
����
d

du
⇠(u)

���� 

1X

k=0

kII⇤(�u)k
k
kPT⇠(u)Sirk 

kPT⇠(u)Sirk

1� maxk�uk


1

1� 3maxR
 2, (D.73)

where by max < 1/⇢min the final bound holds provided c < 1/6. Plugging in to (D.69), we obtain
dSi(a, b)  2t; combining with (D.66) gives the claimed bound.

The proof of Lemma D.9 relies on the following lemma, which controls the second fundamental form
(and hence controls the rate of change of parallel vector fields):

Lemma D.10 Let x 2 S , where S is an embedded submanifold of RD
. Let II(u,v) : TxS⇥ TxS !

NxS denote the second fundamental form of S at x. Then

max
u,v2TxS

kuk2=1,k2vk2=1

kII(u,v)k2  3, (D.74)

where  is the extrinsic geodesic curvature of S .

Proof The tangent space of the manifold is d dimensional. Hence the normal space is D � d
dimensional.Therefore, II is a D � d dimensional vector extrinsically. Since the second fundamental
form is symmetric and bilinear, the ith coordinate has the form IIi(u,v) = uT�iv for some
symmetric d⇥ d matrix �i. Then, we have the following:

uT�iv = 1
2 (u+ v)T�i(u+ v)� 1

2u
T�iu�

1
2v

T�iv

) |uT�iv|  |
1
2 (u+ v)T�i(u+ v)|+ |

1
2u

T�iu|+ |
1
2v

T�iv|

) |uT�iv|
2
 3(| 12 (u+ v)T�i(u+ v)|2 + |

1
2u

T�iu|
2 + |

1
2v

T�iv|
2).
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Using (a+ b+ c)2  3a2 + 3b2 + 3c2 which follows from convexity of the square. Summing over i,
we obtain:

kII(u,v)k22 =
X

i

|uT�iv|
2


3
4

 
kII(u+ v,u+ v)k22 + kII(u,u)k22 + kII(v,v)k22

!


9
4 max

(
kII(u+ v,u+ v)k22, kII(u,u)k

2
2, kII(v,v)k

2
2

)

= 9
4 max

(
ku+ vk42

����II
✓

u+ v

ku+ vk2
,

u+ v

ku+ vk2

◆����
2

2

, kII(u,u)k22, kII(v,v)k
2
2

)

Since kII(u,v)k22 = kII(u,�v)k22, we can choose u,v such that hu,vi  0 to maximize the norm
of the second fundamental form. Therefore, ku + vk22 = 2 + 2 hu,vi  2 ) ku + vk2 

p
2.

Using this in the equation above,

kII(u,v)k22 
9
4 max{42,2,2}

we complete the proof.

E PROOF OF CONVERGENCE

E.1 PROOF OF THE CLUSTERING THEOREM

Theorem E.1 Let v(p)
1 , . . . ,v(p)

n denote the features produced by the p-th iteration of invariant

attendion, and

S
(p)
j =

n
v(p)
j � ⌧ | ⌧ 2 T

o
(E.1)

the corresponding transformation manifolds. Let

R(p) = max
m,l

d
⇣
S
(p)
m ,S(p)

l

⌘
.

There exist positive constants c, c0, " such that if

R(p) < c ⇢min(v1, . . . ,vn)

and

� < c0/
�
R(p)

�2
.

Then

d
⇣
S
(p+1)
j ,S(p+1)

k

⌘
 (1� ")d

⇣
S
(p)
j ,S(p)

k

⌘
. (E.2)

Whenever
R(0) < c⇢min(v1, . . . ,vn), and � < c0/

�
R(0)

�2
, (E.3)

the conditions of the theorem hold for all iterations p, and so maxj,k d
⇣
S
(p)
j ,S(p)

k

⌘
converges to

zero at a linear rate:

max
j,k

d
⇣
S
(p)
j ,S(p)

k

⌘
 (1� ")p max

j,k
d
⇣
S
(0)
j ,S(0)

k

⌘
. (E.4)

Proof Sketch Let W:,k denote the invariant weights associated with the image v(p)
k , and W:,j the

corresponding weights for image v(p)
j , at iteration p. Also define:

 (µ) = min
⌧1,...,⌧n2T

(
nX

i=1

Wikkv
(p)
i � ⌧i � µk22

)
,

'(µ) = min
⌧1,...,⌧n2T

(
nX

i=1

Wijkv
(p)
i � ⌧i � µk22

)
.
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The next-iteration features v(p+1)
k and v(p+1)

j are minimizers of these functions:

v(p+1)
k 2 argmin

µ
 (µ)

v(p+1)
j 2 argmin

µ
'(µ),

and the next-iteration distance is the distance between the transformation manifolds S
(p+1)
k and

S
(p+1)
j generated by these features. We use Lemma E.2 to upper bound

d
⇣
S
(p+1)
k ,S(p+1)

j

⌘

in terms of two geometric quantities:

1. Positive curvature of the invariant mean objective function '(µ), quantified through a lower
bound � on the second derivative of ' in directions normal to the S

(p)
i .

2. An upper bound ✏ on the gradient of the objective function r'(µ) at the optimizer v(p+1)
k

of the other objective  (µ).

Comparing these quantities allows us to bound the distance between v(p+1)
k and the closest transfor-

mation v(p+1)
j � ⌧ of v(p+1)

j .

We use Theorem D.3 to quantify �. For ✏, we first use Lemma E.3 bound ✏ in terms of the difference
between the weights associated with the two objectives '(µ) and  (µ). We then use Lemma E.5 to
bound this difference in weights in terms of the distances d(S(p)

i ,S(p)
j ). With these quantities, we

prove the theorem. A formal proof follows below.

Proof For ✏ > 0,� > 0, if 8µ 2 I, kr'(µ) �r (µ)k2  ✏ and d2

dt2 (µ + tv̂)
��
t=0

� � where
v̂ 2 NµSµ, using lemma E.2, given the quantities ✏,�,

d(S+
j , S+

k ) 
2✏

�
Using lemma E.3 we can quantify ✏. For µ 2 I,

kr'(µ)�r (µ)k2  2nR�W

where �W = maxi |Wij �Wik|.
Using lemma E.5, we see that

�W  2
�R

n
e�R

2

(1 + e�R
2

)d(Sj , Sk)

Therefore,

kr'(µ)�r (µ)k2  2nR⇥ 2
�R

n
e�R

2

(1 + e�R
2

)d(Sj , Sk)

= 4�R2e�R
2

(1 + e�R
2

)d(Sj , Sk)

Thus, we use ✏ = 4�R2e�R
2

(1 + e�R
2

)d(Sj , Sk) in lemma E.2.

Let ⌧ ?
j , ⌧

?
k be a pair of optimal transformations to the problem in d(S+

j , S+
k ).Also denote

v = µ?
j � ⌧

?
j � µ?

k � ⌧ ?
k . Define µ̄ = aµ?

j � ⌧
?
j + (1� a)µ?

k � ⌧ ?
k , 0  a  1. Note that µ̄ 2 I.

For quantifying � in lemma E.2,we first note that v 2 Nµ?
k�⌧?

k
Sµ?

k

We also note that µ̄ = aµ?
j � ⌧

?
j + (1� a)µ?

k � ⌧ ?
k = µ?

k � ⌧ ?
k + av. Therefore,

vT
r

2 (µ̄)v = kvk22
d2

dt2
 (µ?

k � ⌧ ?
k + (akvk2 + t)v̂)

��
t=0

Since akvk2  R, choosing a sufficiently small c < 1 in the positive curvature result from Theorem
D.3 we see that � = 1

3 , thus completing the proof.
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Lemma E.2 Let

 (µ) = min
⌧1,...,⌧n2T

(
nX

i=1

Wik

���v(p)
i � ⌧i � µ

���
2
)

'(µ) = min
⌧1,...,⌧n2T

(
nX

i=1

Wij

���v(p)
i � ⌧i � µ

���
2
)

and µ?
j = argminµ '(µ),µ?

k = argminµ  (µ).

If 8µ 2 I, kr'(µ)�r (µ)k2  ✏, d2

dt2 (µ+ tv̂)
��
t=0

� � where v̂ 2 NµSµ, then

min
⌧j ,⌧k

kµ?
j � ⌧j � µ?

k � ⌧kk2 
2✏

�
(E.5)

Proof Let ⌧ ?
j , ⌧

?
k be a pair of optimal transformations to the problem in d(S+

j , S+
k ). Also denote

v = µ?
j � ⌧

?
j � µ?

k � ⌧ ?
k . Define µ̄ = aµ?

j � ⌧
?
j + (1 � a)µ?

k � ⌧ ?
k for some 0  a  1. Note that

µ̄ 2 I.
Note that since µ?

j is optimal to '(µ), any solution of the form µ?
j �⌧ , ⌧ is also a solution. Therefore,

µ?
j � ⌧

?
j is optimal solution to '(µ). The same argument holds for µ?

k and  (µ)
Using the Taylor series, we see that

 (µ?
k � ⌧ ?

k ) =  (µ?
j � ⌧

?
j ) +

⌦
r (µ?

j � ⌧
?
j ),µ

?
k � ⌧ ?

k � µ?
j � ⌧

?
j

↵

+
1

2
(µ?

k � ⌧ ?
k � µ?

j � ⌧
?
k )

T
r

2 (µ̄)

=  (µ?
j � ⌧

?
j )�

⌦
r (µ?

j � ⌧
?
j ),µ

?
j � ⌧

?
j � µ?

k � ⌧ ?
k

↵
| {z }

T1

+
1

2
(µ?

k � ⌧ ?
k � µ?

j � ⌧
?
j )

T
r

2 (µ̄)(µ?
k � ⌧ ?

k � µ?
j � ⌧

?
j )| {z }

T2

(E.6)

Consider T1:
⌦
r (µ?

j � ⌧
?
j ),µ

?
j � ⌧

?
j � µ?

k � ⌧ ?
k

↵
 kr (µ?

j � ⌧
?
j )k2kµ

?
j � ⌧

?
j � µ?

k � ⌧ ?
k k2

Consider T2:
(µ?

k � ⌧ ?
k � µ?

j � ⌧
?
j )

T
r

2 (µ̄)(µ?
k � ⌧ ?

k � µ?
j � ⌧

?
j ) = (µ?

j � ⌧
?
j � µ?

k � ⌧ ?
k )

T
r

2 (µ̄)(µ?
j � ⌧

?
j � µ?

k � ⌧ ?
k )

= kvk22
d2

dt2
 (µ̄+ tv̂)

��
t=0

Given that  (µ̄) � �,
T2 � kvk22�.
Plugging the inequalities of T2 and T1 in E.6, we see that

 (µ?
j � ⌧

?
j ) �  (µ?

k � ⌧ ?
k ) �  (µ?

j � ⌧
?
j )� kr (µ?

j � ⌧
?
j )k2kµ

?
j � ⌧

?
j � µ?

k � ⌧ ?
k k2 +

1

2
kµ?

j � ⌧
?
j � µ?

kk
2
2�

) kµ?
j � ⌧

?
j � µ?

k � ⌧ ?
k k2 

2kr (µ?
j � ⌧

?
j )k2

�

) d(S+
j , S+

k ) 
2kr (µ?

j � ⌧
?
j )k2

�
Since µ?

j � ⌧
?
j is optimal to '(µ), kr'(µ?

j � ⌧
?
j )�r (µ?

j � ⌧
?
j )k2 = kr (µ?

j � ⌧
?
j )k2  ✏. This

completes the proof.

Lemma E.3 Let

 (µ) = min
⌧1,...,⌧n2T

(
nX

i=1

Wikkv
(p)
i � ⌧i � µk2

)

'(µ) = min
⌧1,...,⌧n2T

(
nX

i=1

Wijkv
(p)
i � ⌧i � µk2

)
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and �W = maxi |Wik �Wij |. Then,

8µ 2 I =
n
x | min

j
d(x,S(d)

j )  R(p)
o
, (E.7)

we have

kr'(µ)�r (µ)k2  2nR(p)�W

Proof For a given µ 2 I, for all i the solution ⌧ 0
i to the optimization problem

min
⌧2T

kvi � ⌧i � µk (E.8)

is unique. We use Danskin’s Theorem to differentiate '(µ). Let ⌧ 0
i be the following:

⌧ 0
i = argmin

⌧i

kvi � ⌧i � µk2

With this,

r'(µ) = �2
X

i

Wij(vi � ⌧
0
i � µ)

r (µ) = �2
X

i

Wik(vi � ⌧
0
i � µ)

) r'(µ)�r (µ) = �2
X

i

(Wij �Wik)(vi � ⌧
0
i � µ)

⌧ 0
i is optimal both for '(µ) and  (µ) since it does not depend on the weights unlike µ. Denote the

following quantities:

Wik = Wik +�Wi

�W = max
i

|�Wi|

with these definitions,

kr'(µ)�r (µ)k2  2�W
X

i

kvi � ⌧
0
i � µk2

 2nR�W * µ 2 I (E.9)

Lemma E.4 (Triangle inequality) For transformation manifolds Si, Sj , Sk,

d(Si,Sj)� d(Si,Sk)  d(Sj ,Sk) (E.10)

Proof We have

d(Si,Sk) = min
v2Si, v02Sk

kv � v0k2.

For every v00 2 Sj , ||v � v0||2  ||v � v00||2 + ||v00 � v0||2. Therefore, for every v00 2 Sj :

min
v2Si, v02Sk

||v � v0||2  min
v2Si, v02Sk

||v � v00||2 + ||v00 � v0||2

In particular, this inequality holds for the v00 2 Sj which minimizes ||v � v00||2 and so we obtain

d(Si,Sk)  min
v2Si

d(v,Sj) + min
v02Sk

d(v00, v0) = d(Si,Sj) + d(v00,Sk)

Finally, using the fact that these are euclidean transformation manifolds, d(v00,Sk) = d(Sj ,Sk) for
every choice of v00 2 Sj . Hence we obtain

d(Si,Sk)  d(Si,Sj) + d(Sj ,Sk),

completing the proof.
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Lemma E.5 Let �W = maxi |Wik �Wij | and R = maxm,l d(Sm, Sl), then

�W  2
�R

n
e�R

2

(1 + e�R
2

)d(Sj , Sk) (E.11)

Proof

�W = max
i

|Wik �Wij |

=

����
�k

k�kk1
�

�j

k�jk1

����
1

=

����
�k

k�kk1
+

�j

k�kk1
�

�j

k�kk1
�

�j

k�jk1

����
1

=

����
�k � �j

k�kk1
+ �j

✓
1

k�kk1
�

1

k�jk1

◆����
1


k�k � �jk1

k�kk1
+

����
k�jk1 � k�kk1

k�jk1k�kk1

���� k�jk1 (E.12)

CLAIM: k�jk1 � ne��R2

= ↵

Proof:
�ij = e��d2(Si,Sj)

� e��R2 * d(Si, Sj)  R

) k�jk1 � ne��R2

Using the result in Claim E.1 in equation E.12 and the reverse triangle inequality,

�W 
k�k � �jk1

↵| {z }
T1

+
k�j � �kk1

↵2
| {z }

T2

* �ij  1 (E.13)

CLAIM: If x � 0, y � 0, |e�x
� e�y

| < |y � x|

Proof: f(x) = e�x is a convex function. therefore
f(y) � f(x) +rf(x)T (y � x)

e�y
� e�x

� e�x(y � x)

e�x
� e�y


(y � x)

ex


(y � x)

1 + x
 (y � x) * x � 0

We have:

|e�x
� e�y

| =

⇢
e�x

� e�y if x  y
e�y

� e�x if x � y

This implies:

|e�x
� e�y

| 

⇢
y � x if x  y
x� y if x � y

) |e�x
� e�y

|  |y � x|

Using claim E.1, Lemma E.4, we have the following:

|�ik � �ij | = |e��d2(Si,Sk) � e��d2(Si,Sj)|

 �|d2(Si, Sj)� d2(Si, Sk)|

 �|d(Si, Sj)� d(Si, Sk)|⇥ |d(Si, Sj) + d(Si, Sk)|

 2�Rd(Sj , Sk) (E.14)
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Using E.14 in E.13, we have:

�W  2�R

✓
1

↵
+

n

↵2

◆
d(Sj , Sk)

= 2
�R

n
e�R

2

(1 + e�R
2

)d(Sj , Sk) (E.15)

F APPENDIXNA

We note using lemma D.5 that

d2

dt2
d2(µ?

j + tr, Si) = 2

⌧
r, r �

d

dt
PSi [µ

?
j + tr]

�

We note that d
dtPSi [µ

?
j + tr] = d

dt0

��
(t0=0)

PSi [µ
?
j + tr + t0r].

We use Lemma C.1 to get the value of the derivative and substitute above:

d2

dt2
d2(µ?

j + tr, Si) = 2

*
r, r �

1X

k=0

⇣
II⇤(µ?

j + tr � PSi [µ
?
j + tr])

⌘k
PTPSi

[µ?
j+tr]Si [r]

+

= 2
⇣D

r, r � PTPSi
[µ?

j+tr]Si [r]
E
�

*
r,

1X

k=1

⇣
II⇤(µ?

j + tr � PSi [µ
?
j + tr])

⌘k
PTPSi

[µ?
j+tr]Si [r]

+⌘

= 2
⇣D

r,PNPSi
[µ?

j+tr]Si [r]
E
�

*
r,

1X

k=1

⇣
II⇤(µ?

j + tr � PSi [µ
?
j + tr])

⌘k
PTPSi

[µ?
j+tr]Si [r]

+⌘

= 2
⇣
kPNPSi

[µ?
j+tr]Si [r]k

2
2 �

*
r,

1X

k=1

⇣
II⇤(µ?

j + tr � PSi [µ
?
j + tr])

⌘k
PTPSi

[µ?
j+tr]Si [r]

+⌘

� 2
⇣
kPNPSi

[µ?
j+tr]Si [r]k

2
2 � k

1X

k=1

⇣
II⇤(µ?

j + tr � PSi [µ
?
j + tr])

⌘k
PTPSi

[µ?
j+tr]Si [r]k2

⌘

� 2
�
kPNPSi

[µ?
j+tr]Si [r]k

2
2 �

1X

k=1

k

⇣
II⇤(µ?

j + tr � PSi [µ
?
j + tr])

⌘k
PTPSi

[µ?
j+tr]Si [r]k2

�

� 2
⇣
kPNPSi

[µ?
j+tr]Si [r]k

2
2 �

1X

k=1

k

⇣
II⇤(µ?

j + tr � PSi [µ
?
j + tr])

⌘k
k2kPTPSi

[µ?
j+tr]Si [r]k2

⌘

� 2
⇣
kPNPSi

[µ?
j+tr]Si [r]k

2
2 �

1X

k=1

k

⇣
II⇤(µ?

j + tr � PSi [µ
?
j + tr])

⌘k
k2

⌘

� 2
⇣
kPNPSi

[µ?
j+tr]Si [r]k

2
2 �

1X

k=1

kII⇤(µ?
j + tr � PSi [µ

?
j + tr])kk2

⌘

� 2
⇣
kPNPSi

[µ?
j+tr]Si [r]k

2
2 �

1X

k=1

�
ikµ

?
j + tr � PSi [µ

?
j + tr]k2

�k⌘ (F.1)

Here i is the maximum curvature of the manifold Si.

Given that 1
i

� ⇢ � 5R ) i 
1
5R . Also, kµ?

j + tr � PSi [µ
?
j + tr]k2  2R. Therefore,

ikµ
?
j + tr � PSi [µ

?
j + tr]k2 

2

5
< 1.
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Therefore (F.1) can be written as:

d2

dt2
d2(µ?

j + tr, Si) � 2
⇣
kPNPSi

[µ?
j+tr]Si [r]k

2
2 �

ikµ?
j + tr � PSi [µ

?
j + tr]k2

1� ikµ?
j + tr � PSi [µ

?
j + tr]k2

⌘

� 2
⇣
1� 722R2

� 2R�
ikµ?

j + tr � PSi [µ
?
j + tr]k2

1� ikµ?
j + tr � PSi [µ

?
j + tr]k2

⌘

� 2(1� 722R2
� 2R�

2

3
)

=
2

3
� 1442R2

� 4R
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