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Abstract

The stochastic gradient Langevin Dynamics is one of the most fundamental al-
gorithms to solve sampling problems and non-convex optimization appearing in
several machine learning applications. Especially, its variance reduced versions
have nowadays gained particular attention. In this paper, we study two variants
of this kind, namely, the Stochastic Variance Reduced Gradient Langevin Dynam-
ics and the Stochastic Recursive Gradient Langevin Dynamics. We prove their
convergence to the objective distribution in terms of KL-divergence under the
sole assumptions of smoothness and Log-Sobolev inequality which are weaker
conditions than those used in prior works for these algorithms. With the batch
size and the inner loop length set to

√
n, the gradient complexity to achieve an

ϵ-precision is Õ((n + dn1/2ϵ−1)γ2L2α−2), which is an improvement from any
previous analyses. We also show some essential applications of our result to
non-convex optimization.

1 Introduction

1.1 Background and Organization

Over the past decade, the gradient Langevin Dynamics (GLD) has gained particular attention for
providing an effective tool for sampling from a Gibbs distribution, a fundamental task omnipresent
in the field of machine learning and statistics, and for non-convex optimization, which is nowadays
witnessing an unignorable empirical success. Notably, GLD is a stochastic differential equation (SDE)
that can be viewed as the steepest descent flow of the Kullback-Leibler (KL) divergence towards the
stationary Gibbs distribution in the space of measures endowed with the 2-Wasserstein metric (Jordan
et al., 1998). As a consequence of the unique properties of GLD, its implementable discrete schemes
and their ability to suitably track it have been the subject of a large number of studies.

The Euler-Maruyama scheme of GLD gives rise to an algorithm known as the Langevin Monte
Carlo method (LMC). This algorithm is biased (Wibisono, 2018): that is, the distribution of the
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discrete scheme does not converge to the same as GLD. Nonetheless, it has been shown that this
bias could be made arbitrarily small under certain assumptions by taking a sufficiently small step
size (Dalalyan, 2017b; Vempala and Wibisono, 2019). Dalalyan (2017a,b) provided one of the first
non-asymptotic rates of convergence of LMC for smooth log-concave distributions. Assumptions to
obtain a non-asymptotic analysis and this controllable bias have been relaxed by further research to
dissipativity and smoothness (Raginsky et al., 2017; Xu et al., 2018), and recently to Log-Sobolev
inequality (LSI) and smoothness (Vempala and Wibisono, 2019). This relaxation of conditions
is especially meaningful as the objective distribution nowadays tends to become more and more
complicated beyond the classical assumption of log-concavity.

However, in the field of machine learning, the main function can often be formulated as the average
of the loss function of an enormous number of training data points (Welling and Teh, 2011), which
subsequently makes it difficult to calculate its full gradient. As a result, research on stochastic
algorithms has been also conducted to avoid this computational burden (Chen et al., 2021; Dubey
et al., 2016; Raginsky et al., 2017; Welling and Teh, 2011; Xu et al., 2018; Zou et al., 2018, 2019a,b,
2021). Welling and Teh (2011) introduced the concept of Stochastic Gradient Langevin Dynamics
(SGLD) which combines the Stochastic Gradient Descent with LMC. This has been the subject of
successful studies (Raginsky et al., 2017; Welling and Teh, 2011; Xu et al., 2018). Nevertheless, the
variance of its stochastic gradient is too large, which leads to a slow convergence compared to LMC.
Therefore, stochastic gradient Langevin Dynamics algorithms with variance reduction, such as the
Stochastic Variance Reduced Gradient Langevin Dynamics (SVRG-LD), have been considered and
their convergence has been thoroughly analyzed for both sampling (Dubey et al., 2016; Zou et al.,
2018, 2019a, 2021) and optimization (Huang and Becker, 2021; Xu et al., 2018).

Dubey et al. (2016) first united SGLD with variance reduction techniques and proposed two new
algorithms, namely, SVRG-LD and SAGA-LD. Chatterji et al. (2018) and Zou et al. (2018) proved
the convergence rate of SVRG-LD to the target distribution in 2-Wasserstein distance for smooth
log-concave distributions. Xu et al. (2018) showed the weak convergence of SVRG-LD under the
smoothness and dissipativity conditions. They expanded the non-asymptotic analysis of Raginsky
et al. (2017) to LMC and SVRG-LD, and improved the result for SGLD. Few years ago, Zou et al.
(2019a) provided the gradient complexity of SVRG-LD to converge to the stationary distribution in
2-Wasserstein distance under the smoothness and dissipativity assumptions. This convergence can be
even improved if we make a warm-start (Zou et al., 2021). While these works investigated algorithms
with fixed hyperparameters, Huang and Becker (2021) additionally assumed a strict saddle and some
other minor conditions to study SVRG-LD with a decreasing step size and improved its convergence
in high probability to the second order stationary point. Zou et al. (2019b) also applied variance
reduction techniques to the Hamiltonian Langevin Dynamics, or underdamped Langevin Dynamics
in opposition to GLD also known as overdamped Langevin Dynamics. As we can observe, the
current convergence analyses of the stochastic schemes with variance reduction are mostly restricted
to log-concavity and dissipativity, and do not enjoy the same broad convergence guarantee with a
concrete gradient complexity as LMC does under LSI and smoothness in terms of KL-divergence.

Therefore, in order to bridge this theoretical gap between LMC and stochastic gradient Langevin
Dynamics with variance reduction, we study in this paper the convergence of the latter under the
relaxed assumptions of smoothness and LSI. In Section 3, we study the convergence to the Gibbs
distribution of SVRG-LD and the Stochastic Recursive Gradient Langevin Dynamics (SARAH-LD),
another variant of stochastic gradient Langevin Dynamics with variance reduction inspired by the
Stochastic Recursive Gradient algorithm (SARAH) of Nguyen et al. (2017a,b). On the other hand,
optimization and sampling are only two sides of the same coin for GLD. That is why, in Section 4,
we also investigate implications of Section 3 for non-convex optimization. We prove the convergence
of SVRG-LD and SARAH-LD to the global minimum of dissipative functions and we provide their
non-asymptotic rate of convergence. We also consider the additional Morse assumption and study its
effect. Finally, we illustrate our main result with a simple experiment.

1.2 Contributions

The major contributions of this paper can be summarized as follows. We provide a non-asymptotic
analysis of the convergence of SVRG-LD and SARAH-LD to the Gibbs distribution in terms of
KL-divergence under smoothness and LSI which are weaker conditions than those used in prior works
for these algorithms. KL-divergence is generally a stronger convergence criterion than both total
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Table 1: Comparison of our main result with prior works (sampling). The first three works are about
LMC. Compared to Vempala et al. (2019), with the same assumptions and criterion, the order of
gradient complexity is improved from n to

√
n. The others are about SVRG-LD except the last one

which is about the Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance
Reduction. ϵ is the accuracy required on the criterion, d is the dimension of the input of the main
function, n is the number of data points, and L is the smoothness constant. ∗ 2-Wass. stands for
“2-Wasserstein”, and conv. stands for “convergence”. ∗∗ poly(M,L) stands for a polynomial of M
and L.

Method Major Assumptions Criterion∗ Gradient Complexity∗∗

Dalalyan (2017a) Smooth, Log-concave (M ) 2-Wass. Õ(nd
ϵ2

·poly(M,L))

Xu et al. (2018) Smooth, Dissipative Weak conv. Õ(nd
ϵ )·e

Õ(d)

Vempala et al. (2019) Smooth, Log-Sobolev (α) KL Õ(n
ϵ ·dγ

2L2α−2)

Zou et al. (2018) Smooth, Log-concave (M ) 2-Wass. Õ
(
n+L3/2n1/2d1/2

M3/2ϵ

)
Zou et al. (2019a) Smooth, Dissipative 2-Wass. Õ

(
n+n3/4

ϵ2
+n1/2

ϵ4

)
·eÕ(γ+d)

Zou et al. (2021) Smooth, Dissipative, Warm-start TV Õ
(

γ2

ϵ2

)
·eÕ(d)

Zou et al. (2019b) Smooth, Dissipative 2-Wass. Õ

(
(n+ n1/2

ϵ2µ
3/2
∗

)∧µ
−2
∗
ϵ4

)
This paper Smooth, Log-Sobolev (α) KL Õ

((
n+ dn1/2

ϵ

)
·γ2L2α−2

)

variation (TV) and 2-Wasserstein distance as they can be controlled by KL-divergence under the LSI
condition. Notably, we prove that, with the batch size and inner loop length set to

√
n, the gradient

complexity to achieve an ϵ-precision in terms of KL-divergence is Õ((n + dn1/2ϵ−1)γ2L2α−2),
which is better than any previous analyses. See Table 1 for a comparison with previous research in
terms of assumptions, criterion and gradient complexity. We also prove the convergence of SVRG-
LD and SARAH-LD to the global minimum under an additional assumption of dissipativity with a
gradient complexity of Õ((n+ n1/2ϵ−1dLα−1)γ2L2α−2) which is better than previous work since
it has almost all the time a dependence on n of O(

√
n) and does not require the batch size and the

inner loop length to depend on the accuracy ϵ. On the other hand, we import the idea of Li and
Erdogdu (2020) from product manifolds of spheres to the Euclidean space in order to show that under
the additional assumption of Morse, the convergence in the Euclidean space can be accelerated by
eliminating the exponential dependence on 1/ϵ.

1.3 Other Related Works

The theoretical study of GLD goes back to Chiang et al. (1987) who showed that global convergence
could be achieved with a proper annealing schedule. This work did not specify how to implement
this SDE, but Gelfand and Mitter (1991) filled this gap. Later, Borkar and Mitter (1999) proved an
asymptotic convergence in terms of relative entropy for the discrete scheme of gradient Langevin
Dynamics when the inverse temperature and the step size are kept constant.

The variance reduction technique, introduced to Langevin Dynamics by Dubey et al. (2016), was orig-
inally presented by Johnson and Zhang (2013) as Stochastic Variance Reduced Gradient (SVRG) to
improve the convergence speed of Stochastic Gradient Descent. Other variance reduction techniques
were also considered such as the Stochastic Recursive Gradient Langevin Dynamics (SARAH) from
Nguyen et al. (2017a,b) which outperforms SVRG in non-convex optimization (Pham et al., 2020)
and is used in many algorithms such as SSRGD (Li, 2019) and SpiderBoost (Wang et al., 2019).

Li and Erdogdu (2020) extended Vempala and Wibisono’s result to Riemannian manifolds. One of
the highlights of their work is that they showed the Log-Sobolev constant of the Gibbs distribution
for a product manifold of spheres only depends on a polynomial of the inverse temperature under
some particular conditions including Morse. We will adapt this result to our situation.

In the concurrent work of Balasubramanian et al. (2022) (especially Section 6), they also studied
the convergence of stochastic schemes of GLD with more relaxed conditions than prior analyses.
However, our contributions are not overshadowed by theirs, and we clarify the reasons. In Subsection
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6.1 of their paper, Balasubramanian et al. (2022) focused on stochastic discrete schemes with finite
variance and bias (which is not the case for SVRG-LD) and provided a first-order convergence
guarantee in the space of measures equipped with the 2-Wasserstein distance. Subsection 6.2 proved
a global convergence under some other conditions but most of these two analyses did not consider
in particular the usual case in machine learning when F is the average of some other functions,
which leads to a generally worse gradient complexity than ours. Concerning this finite sum setting,
Balasubramanian et al. (2022) investigated the Variance Reduced LMC algorithm (slightly different
from SVRG-LD in this paper) in Subsection 6.3 and gave a first-order convergence under the sole
assumption of smoothness. When restrained in our problem setting, the gradient complexity of
SVRG-LD and SARAH-LD we provide is still considerably better (see Section 3 for more details).

1.4 Notation

We denote deterministic vectors by a lower case symbol (e.g., x) and random variables by an upper
case symbol (e.g., X). The Euclidean norm is denoted by ∥ · ∥ for vectors and the inner product
by ⟨·, ·⟩. For matrices, ∥ · ∥ is the norm induced by the Euclidean norm for vectors. We only
treat distributions absolutely continuous with respect to the Lebesgue measure in Rd for simplicity.
Especially, throughout the paper, ν refers to the probability measure with the density function
dν ∝ e−γFdx, where F is a function introduced below. a ∨ b is equivalent to max{a, b} and a ∧ b
to min{a, b}. We also use the shorthand Õ to hide logarithmic polynomials.

2 Preliminaries

In this section, we briefly explain the problem setting, necessary mathematical background and
assumptions used in this paper.

2.1 Problem Setting and GLD

In Section 3, we consider sampling from a distribution written in the form dν ∝ e−γFdx where γ is
a positive constant (which corresponds to the inverse temperature) and F : Rd → R is formulated as
F (x) := 1

n

∑n
i=1 fi(x), the average of the loss function of n training data points {x(i)}ni=1. Here,

fi(x) := f(x, x(i)) can be regarded as the loss of data x(i). For instance, F can be the average
of the negative log likelihood of n training data points. In Section 4, we consider the non-convex
optimization (minimization) of the same F as above.

GLD can be described as the following stochastic differential equation (SDE):

dXGLD
t = −∇F (XGLD

t )dt+
√
2/γdB(t), (1)

where γ > 0 is called the inverse temperature parameter and {B(t)}t≥0 is the standard Brownian
motion in Rd. It can be used for sampling since under some reasonable assumptions of F , the
distribution ρGLD

t of XGLD
t governed by SDE (1) converges to the invariant stationary distribution

dν ∝ e−γFdx, also known as the Gibbs distribution (Chiang et al., 1987). Moreover, as previously
mentioned, this convergence is efficient in the sense that SDE (1) corresponds to the steepest descent
flow of the Kullback-Leibler (KL) divergence towards the stationary distribution in the space of
measures endowed with the 2-Wasserstein metric (Jordan et al., 1998). Alternatively, GLD can be
interpreted as the composite optimization problem of a negative entropy and an expected function
value as follows (Wibisono, 2018):

min
q:density

Eq[γF ] + Eq[log q].

The gradient flow is the well-known Fokker-Planck equation associated to SDE (1):

∂ρGLD
t

∂t
= ∇ · (ρGLD

t ∇F ) + 1

γ
∆ρGLD

t =
1

γ
∇ ·
(
ρGLD
t ∇ log

ρGLD
t

ν

)
. (2)

This will be useful in our analysis. In addition to its potential for sampling, GLD can also be employed
for non-convex optimization as the Gibbs distribution concentrates on the global minimum of F for
sufficiently large values of γ (Hwang, 1980).
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Algorithm 1: SVRG-LD / SARAH-LD
1 input: step size η > 0, batch size B, epoch length m, inverse temperature γ ≥ 1

2 initialization: X0 = 0, X(0) = X0

3 foreach s = 0, 1, . . . , (K/m) do
4 vsm = ∇F (X(s))
5 randomly draw ϵsm ∼ N(0, Id×d)

6 Xsm+1 = Xsm − ηvsm +
√
2η/γϵsm

7 foreach l = 1, . . . ,m− 1 do
8 k = sm+ l
9 randomly pick a subset Ik from {1, . . . , n} of size |Ik| = B

10 randomly draw ϵk ∼ N(0, Id×d)
11 if SVRG-LD then
12 vk = 1

B

∑
ik∈Ik(∇fik(Xk)−∇fik(X(s))) + vsm

13 else if SARAH-LD then
14 vk = 1

B

∑
ik∈Ik (∇fik(Xk)−∇fik(Xk−1)) + vk−1

15 end
16 Xk+1 = Xk − ηvk +

√
2η/γϵk

17 end
18 X(s+1) = X(s+1)m

19 end

2.2 Algorithms of GLD

Applying the Euler-Maruyama scheme to (1), we obtain the Langevin Monte Carlo (LMC)

Xk+1 = Xk − η∇F (Xk) +
√
2η/γϵk,

where η is called the step size. This is similar to the gradient descent except the additional Gaussian
noise

√
2η/γϵk, where ϵk ∼ N(0, Id×d) and Id×d is the d× d unit matrix. In the case n is huge and

the computation of ∇F is too difficult, we are incited to use stochastic gradient methods in analogy
to stochastic gradient optimization. This gives

Xk+1 = Xk − ηv(Xk) +
√

2η/γϵk,

where v(Xk) is the stochastic gradient. When v(Xk) is defined as 1
B

∑
ik∈Ik ∇fik(Xk), where

B is called the batch size and Ik is a random subset uniformly chosen from {1, . . . , n} such
that |Ik| = B, we obtain the Stochastic Gradient Langevin Dynamics (SGLD). As this method
exhibits a slow convergence, it has been popular to use variance reduction methods such as
the Stochastic Variance Reduced Gradient Langevin Dynamics (SVRG-LD) where v(Xk) =
1
B

∑
ik∈Ik(∇fik(Xk) − ∇fik(X(s))) + ∇F (X(s)). Details of this algorithm is stated in Algo-

rithm 1. X(s) is a reference point updated every m steps so that Xsm = X(s). As we can observe in
Lemma A.4, around the optimal point, the variance of the stochastic gradient is indeed decreased
as X(s) and Xk are both close to each other. We can also easily extend some successful stochastic
gradient algorithms to Langevin Dynamics. Hence, we are motivated to extend the Stochastic Recur-
sive Gradient Algorithm (SARAH) to Langevin Dynamics since we can expect that some bottlenecks
of the analysis of SVRG-LD can be removed in that of SARAH-LD as subtracting the previous
stochastic gradient enables a stabler performance than SVRG-LD. This algorithm can be described as
Algorithm 1 with v(Xk) =

1
B

∑
ik∈Ik (∇fik(Xk)−∇fik(Xk−1)) + v(Xk−1).

Definition 1. We define ρk as the distribution of Xk generated at the kth step of SVRG-LD, and
similarly ϕk for SARAH-LD.

2.3 Assumptions

The assumptions used throughout this paper can be summarized as follows.
Assumption 1. For all i = 1, . . . , n, ∇fi is twice differentiable, and ∀x, y ∈ Rd, ∥∇2fi(x)∥ ≤ L.
In other words, fi (i = 1, . . . , n) and F are L-smooth.
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Assumption 2. Distribution ν satisfies the Log-Sobolev inequality (LSI) with a constant α. That is,
for all probability density functions ρ absolutely continuous with respect to ν, the following holds:

Hν(ρ) ≤
1

2α
Jν(ρ),

where Hν(ρ) := Eρ
[
log ρ

ν

]
is the KL-divergence of ρ with respect to ν, and Jν(ρ) :=

Eρ
[∥∥∇ log ρ

ν

∥∥2] is the relative Fisher information of ρ with respect to ν.

The recent work of Vempala and Wibisono (2019) motivates us to use the combination of smoothness
and LSI for the analysis of SVRG-LD and SARAH-LD. Indeed, they showed that these conditions
were enough to assure for the Euler-Maruyama scheme an exponentially fast convergence and a bias
controllable by the step size. Under smoothness, LSI is not only the necessary condition of log-
concavity and dissipativity, but is also robust to bounded perturbation and Lipschitz mapping, contrary
to log-concavity (Vempala and Wibisono, 2019). For example, for any distribution dν that satisfies
LSI and bounded function B : Rd → R, dν̃ ∝ eBdν satisfies LSI as well (Holley and Stroock, 1986).
Moreover, while KL-divergence is not in general convex with regard to the Wasserstein geodesic,
thanks to LSI, the Polyak-Łojaciewicz condition is satisfied. It is well-known that LSI suffices to
realize an exponential convergence for the case of continuous time Langevin Dynamics (Vempala
and Wibisono, 2019). That is why, it is actually both useful and natural to suppose LSI in this context.
Note that under L-smoothness of F and LSI with constant α for dν ∝ e−γFdx, it holds that α ≤ γL
(Vempala and Wibisono, 2019).

As for optimization, we additionally use the following conditions.
Assumption 3. F is (M, b)-dissipative. That is, there exist constants M > 0 and b > 0 such that for
all x ∈ Rd the following holds: ⟨∇F (x), x⟩ ≥M∥x∥2 − b.
Assumption 4 (Li and Erdogdu (2020), Assumption 3.3 adapted). F satisfies the Morse condition.
That is, for all eigenvalues of the Hessian of stationary points, there exists a constant λ† ∈ (0, 1] such
that

λ† ≤ inf
{∣∣λi (∇2F (x)

)∣∣ | ∇F (x) = 0, i ∈ 1, . . . , d
}
.

Furthermore, for the set S of stationary points that are not a global minimum,
supx∈S λmin

(
∇2F (x)

)
≤ −λ†.

Assumption 5. ∇2fi is L′-Lipschitz and without loss of generality, we let minx∈Rd F (x) = 0.
Assumption 6. F has a unique global minimum.

Smoothness and dissipativity are a classical combination of assumptions for this kind of problem
setting (Raginsky et al., 2017; Xu et al., 2018; Zou et al., 2019a). We assume dissipativity instead of
LSI for non-convex optimization in order to obtain an explicit value of the Log-Sobolev constant
of dν ∝ e−γFdx in function of the inverse temperature parameter γ (see Property C.3), making a
non-asymptotic analysis possible. Furthermore, Assumptions 4 to 6 can ameliorate the exponential
dependence of the inverse of the Log-Sobolev constant on the inverse temperature parameter to a
polynomial one (see Property C.4).

3 Main Results

In this section, we state our main results which prove that SVRG-LD and SARAH-LD (Algorithm 1)
achieve an exponentially fast convergence to the Gibbs distribution and a controllable bias in terms
of KL-divergence under the sole assumptions of LSI and smoothness. We provide their gradient
complexity as well. The proofs can be found in Appendix A and B respectively.

3.1 Improved Convergence of SVRG-LD

Our analysis shows that the convergence of SVRG-LD to the stationary distribution dν ∝ e−γFdx
can be formulated as the theorem below.
Theorem 1. Under Assumptions 1 and 2, 0 < η < α

16
√
6L2mγ

, γ ≥ 1 and B ≥ m, for all

k = 1, 2, . . ., the following holds in the update of SVRG-LD where Ξ = (n−B)
B(n−1) :

Hν(ρk) ≤ e−
αη
γ kHν(ρ0) +

224ηγdL2

3α
(2 + 3Ξ + 2mΞ) .
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We observe that the bias term of the upper bound, which is the second term linearly dependent on η,
can be easily controlled while the first term exponentially converges to 0 with k →∞. This is more
precisely formulated in the following corollary.

Corollary 1.1. Under the same assumptions as Theorem 1, for all ϵ ≥ 0, if we choose step size
η such that η ≤ 3αϵ

448γdL2 , then a precision Hν(ρk) ≤ ϵ is reached after k ≥ γ
αη log

2Hν(ρ0)
ϵ steps.

Especially, if we take B = m =
√
n and the largest permissible step size η = α

16
√
6L2

√
nγ
∧ 3αϵ

448dL2γ ,
then the gradient complexity becomes

Õ

((
n+

dn
1
2

ϵ

)
· γ

2L2

α2

)
.

This gradient complexity is an improvement compared with prior works for three reasons. First of all,
we provide a non-asymptotic analysis of the convergence of SVRG-LD under smoothness and Log-
Sobolev inequality which are conditions weaker than those (e.g., log-concavity or dissipativity) used in
prior works for these algorithms. Moreover, we prove it in terms of KL-divergence which is generally
a stronger convergence criterion than both total variation (TV) and 2-Wasserstein distance as they can
both be controlled by KL-divergence under the LSI condition. For instance, TV was used by Zou et al.
(2021) and 2-Wasserstein distance by Dalalyan (2017a) and Zou et al. (2019a). KL-divergence makes
it possible to unify these two different criteria. Finally, while prior research generally used Girsanov’s
theorem which generates a bias term that accumulates through the iteration (see for example Raginsky
et al. (2017) and Xu et al. (2018)), we solve this issue by taking benefit of the exponential convergence
of GLD to the Gibbs distribution under LSI and smoothness that enables us to forget about past
bias. That way, with the batch size and inner loop set to

√
n, the gradient complexity to achieve

an ϵ-precision in terms of KL-divergence becomes Õ((n + dn1/2ϵ−1)γ2L2α−2), which is better
than previous analyses. For example, Vempala and Wibisono (2019) provided a gradient complexity
of Õ

(
nϵ−1dγ2L2α−2

)
for LMC under Assumptions 1 and 2, and Zou et al. (2019a) a gradient

complexity of Õ(n+n3/4ϵ−2+n1/2ϵ−4) · eÕ(γ+d) for SVRG-LD under Assumptions 1 and 3. Note
that the dependence on the dimension d is not improved since α−1 may exponentially depend on d.
Recently, Zou et al. (2019b) proposed the Stochastic Gradient Hamiltonian Monte Carlo Methods
with Recursive Variance Reduction with a gradient complexity of Õ((n+n1/2ϵ−2µ

−3/2
∗ )∧µ−2

∗ ϵ−4)
in terms of 2-Wasserstein distance. Even though their algorithm is based on the underdamped
Langevin Dynamics whose discrete schemes use to perform better than those of the overdamped
Langevin Dynamics such as SVRG-LD, our gradient complexity, which applies to a broader family
of distributions, is almost the same except for a small interval of ϵ, but we do not require the batch
size B and the inner loop length m to depend on ϵ while Zou et al. (2019b) do, i.e., B ≲ B

1/2
0 ,

m = O(B0/B), where B0 = Õ
(
ϵ−4µ−1

∗ ∧ n
)
. This strengthens the importance of our result since

it shows that adapting this analysis to other stochastic schemes of GLD is promising and could lead
to tighter bounds and relaxation of conditions. See Table 1 for a summary. Concerning the concurrent
work of Balasubramanian et al. (2022), under the sole assumption of smoothness, they provided
a gradient complexity of O(L2d2n/ϵ2) for the Variance Reduced LMC algorithm that updates the
stochastic gradient differently as SVRG-LD and SARAH-LD. This is almost the square of our result,
and in some extent, our work can be interpreted as an acceleration of their result with a slightly
stronger additional condition than Poincaré inequality.

Proof Sketch Proceeding in a similar way as Vempala and Wibisono (2019), we evaluate how
Hν(ρk) decreases at each step as shown in Theorem A.1 of Appendix A. This is realized by comparing
the evolution of the continuous-time GLD for time η and one step of SVRG-LD. Since we use a
stochastic gradient, we need at the same time to evaluate the variance of the stochastic gradient.
Theorem 1 can be obtained by recursively solving the inequality derived in Theorem A.1.

3.2 Convergence Analysis of SARAH-LD

As for SARAH-LD, its convergence to the stationary distribution dν ∝ e−γFdx can be formulated
as the theorem below. Interestingly, we obtain the same result as SVRG-LD (Theorem 1) but we do
not require B ≥ m anymore.
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Theorem 2. Under Assumptions 1 and 2, 0 < η < α
16

√
2L2mγ

and γ ≥ 1, for all k = 1, 2, . . ., the

following holds in the update of SARAH-LD where Ξ = (n−B)
B(n−1) :

Hν(ϕk) ≤ e−
αη
γ kHν(ϕ0) +

32ηγdL2

3α
(2 + Ξ + 2mΞ) .

This is the first convergence guarantee of SARAH-LD in this problem setting so far, and it leads to
the following gradient complexity.
Corollary 2.1. Under the same assumptions as Theorem 2, for all ϵ ≥ 0, if we choose step
size η such that η ≤ 3αϵ

64γdL2 (2 + Ξ + 2mΞ)
−1, then a precision Hν(ϕk) ≤ ϵ is reached after

k ≥ γ
αη log

2Hν(ϕ0)
ϵ steps. Especially, if we take B = m =

√
n and the largest permissible step size

η = α
16

√
2L2

√
nγ
∧ 3αϵ

320dL2γ , then the gradient complexity becomes

Õ

((
n+

dn
1
2

ϵ

)
· γ

2L2

α2

)
.

The reason why we obtain the same gradient complexity for both SARAH-LD and SVRG-LD (except
better coefficients for SARAH-LD) is that in our analysis, the Brownian noise added at each step
of the Langevin Dynamics plays the role of a fundamental bottleneck that even SARAH-LD could
not eliminate, and we still need to set B = m =

√
n. We can hypothesize that this order of gradient

complexity might be tight for variance-reduced stochastic gradient Langevin Dynamics algorithms.

4 Some Applications to Non-Convex Optimization

Here, we apply our main results to non-convex optimization. Thanks to our analysis applicable to a
broader family of probability distributions satisfying LSI, the additional conditions we pose in this
section are mainly reflected in the concrete formulation of the Log-Sobolev constant, which keeps our
study simple and clear. The proofs can be found in Appendix C. Since SVRG-LD and SARAH-LD
exhibited almost the same performance in sampling, we can simultaneously analyse them. We first
prove the convergence to the global minimum of SVRG-LD and SARAH-LD without clarifying the
explicit formulation of the Log-Sobolev constant in function of γ.
Theorem 3. Using SVRG-LD or SARAH-LD, under Assumptions 1 to 3, 0 < η < α

16
√
6L2mγ

,

γ ≥ 4d
ϵ log

(
eL
M

)
∨ 8db

ϵ2 ∨ 1 ∨ 2
M and B ≥ m, if we take B = m =

√
n and the largest permissible

step size η = α
16

√
6L2

√
nγ
∧ 3

1792
α2ϵ
L2dγ , the gradient complexity to reach a precision of

EXk
[F (Xk)]− F (X∗) ≤ ϵ

is

Õ

((
n+

n
1
2

ϵ
· dL
α

)
γ2L2

α2

)
,

where α is a function of γ, and X∗ is the global minimum of F .

Remark 1. Under Assumptions 1 and 3, Assumption 2 is negligible as shown in Property C.2.

Under Assumptions 1 to 3 only, this leads to a gradient complexity which exponentially depends on
the inverse of the precision level ϵ as shown in the next corollary since the inverse of the Log-Sobolev
constant exponentially depends on γ.

Corollary 3.1. Under the same assumptions as Theorem 3, taking γ = i(ϵ) := 4d
ϵ log

(
eL
M

)
∨ 8db

ϵ2 ∨
1 ∨ 2

M , we obtain a gradient complexity of

Õ

((
n+

n
1
2

ϵ
· dL

C1i(ϵ)
eC2i(ϵ)

)
L2e2C2i(ϵ)

)
since α = γC1e

−C2γ (Property C.3).
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The second term with n1/2 is almost all the time dominant since it has a factor that exponentially
depends on 1/ϵ and the first term not. This dependence on n of O(n1/2) is the best so far for these
algorithms. Moreover, comparing with the gradient complexity Õ

(
n1/2λ−4ϵ−5/2

)
· eÕ(d), also of

order n1/2, provided by Xu et al. (2018) who used SVRG-LD and the same assumptions, our gradient
complexity is an improvement since their analysis required a batch size B and an inner loop length
m that strongly depend on ϵ (i.e., B =

√
nϵ−3/2, m =

√
nϵ3/2) and ours does not. Note that the

dependence of the gradient complexity of Xu et al. (2018) on 1/ϵ is not necessarily better than ours
as λ is actually the spectral gap of the discrete-time Markov chain generated by (1) and its inverse
exponentially depends on 1/ϵ as well. Although Xu et al. (2018) did not investigate the explicit
nature of λ, this is supported by Raginsky et al. (2017) who proved this exponential dependence for
the spectral gap of the continuous-time SDE and by Mattingly et al. (2002) who showed the spectral
gap of continuous-time SDE and that of discrete-time version are almost the same in this context.

Analysis under the Morse condition Now, under the additional Assumptions 4 to 6, it is interesting
to note that a polynomial dependence on 1/ϵ is achieved as the following corollary shows.
Corollary 3.2. Under the same assumptions as Theorem 3 and Assumptions 4 to 6, taking γ =
j(ϵ) := 4d

ϵ log
(
eL
M

)
∨ 8db

ϵ2 ∨1∨
2
M ∨Cγ , where Cγ is a constant independent of ϵ defined in Property

C.4, we obtain a gradient complexity of

Õ

((
n+

n
1
2

ϵ
· dL
C3

j(ϵ)

)
C2

3j(ϵ)
4L2

)
,

since α = C3/γ (Property C.4).

The crux of this corollary is Property C.4. To prove this, we show like Li and Erdogdu (2020) that
ν satisfies the Poincaré inequality with a constant independent of γ. Since it is not hard to show
this around the global minimum, we can step by step extend the set where this inequality holds by a
Lyapunov argument (Theorems D.1 and D.2). The essential difference between this analysis and that
of Li and Erdogdu (2020) is that we do not work on compact manifolds anymore. Some rather minor
difficulties emerge as we cannot employ the compactness but they can be addressed by supposing
dissipativity which assures a quadratic growth for large x.
Remark 2. These results do not definitively assert that SARAH-LD and SVRG-LD show the exact
same performance in terms of optimization. Indeed, suppose we are close enough to the global
optimum. Then, a big noise is not necessary anymore since it is more important to stably converge to
the global minimum. Here, we should be able to significantly decrease the noise ϵk, and the bottleneck
from the noise should disappear. In this case, SARAH-LD would perform better than SVRG-LD as we
approach the original non-convex optimization setting where SARAH outperforms SVRG.
Remark 3. We also investigated an annealed version of SVRG-LD and SARAH-LD but could not
ameliorate the gradient complexity. The detailed analysis can be found in Appendix E.

5 Experiment

In this section, we illustrate our main result with a simple experiment.1 We follow the same problem
setting as that of Welling and Teh (2011) in Section 5.1. That is, we aim to sample from a non-log-
concave posterior distribution p(θ|x) ∝ p(θ)

∏n
i=1 p(xi|θ) where {xi}ni=1 is sampled from p(x|θ), a

distribution parameterized by θ = (θ1, θ2). The prior p(θ) and the distribution of x parametrized by θ
are respectively defined as θ1 ∼ N(0, 10), θ2 ∼ N(0, 1) and x ∼ 1/2N(θ1, 2) + 1/2N(θ1 + θ2, 2).
Here, we set n = 10000, θ1 = 0 and θ2 = 1. Using the obtained 10000 samples, we simulated 1000
points of SVRG-LD with the inner loop length m = n/B and different batch sizes B, namely, 100,
1000 and 10000 so that B ≥ m as required in Theorem 1. Evolution of KL-divergence between
the true posterior, estimated by the Metropolis-adjusted Langevin algorithm, and that simulated by
SVRG-LD is plotted in Figure 1. KL-divergence was approximated following Pérez-Cruz (2008).

As we can observe, Figure 1 correctly reproduces the theoretical bound of Theorem 1, with an
exponential convergence in the beginning and a persistent bias due to the use of a discrete scheme and
mini-batches. The fastest convergence in terms of gradient complexity under the condition B ≥ m

1Source code can be found in https://github.com/yuri-k111/NeurIPS2022_code
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Figure 1: KL-divergence between the true and the simulated posterior. 1000 points were simulated
for each algorithm with step size η = 0.00001. The inner loop length m for SVRG-LD was defined
as n/B, and initial points were randomly drawn from the standard normal distribution. 1 gradient
computation refers to one computation of∇fi.

is achieved by SVRG-LD with B =
√
n, which confirms our main theorem. Furthermore, with

this best batch size, we also simulated 1000 points of SGLD and SARAH-LD as shown in Figure
1 as well. While SGLD and SVRG-LD have similar convergence speed in the beginning, the latter
eventually achieves a higher precision thanks to the variance reduction method adopted in this scheme.
SARAH-LD exhibits a similar performance as SVRG-LD, which agrees with Theorem 2.

6 Discussion and Conclusion

The main limitations of our work reside in the gap between practice and theory. Indeed, while our
paper supposes assumptions quite standard in the literature of GLD, it cannot explain the whole
empirical success that machine learning is currently experiencing. Some choices of parameters may
also seem different than the practical use. However, compared to previous work, we succeeded
in proving convergence of GLD with the popular stochastic gradient with relaxed conditions, and
deleting the dependence of batch size and inner loop length on epsilon, which are all more realistic
situations than prior work. The theoretical study in machine learning and deep learning precisely
plays the role of filling as much as possible this large gap, and our work could be regarded as a further
step forward to achieve this goal. Furthermore, in this paper, we focused on the pure sampling and
optimization performance of the algorithms, and some of the drawbacks are simply due to this fact.
For example, another limitation is that we did not investigate the generalization error in Section 4,
but this was only outside the scope of this work.

In conclusion, we analysed the convergence rate of stochastic gradient Langevin Dynamics with
variance reduction under smoothness and LSI and its application to optimization. In Section 3, we
proved the convergence of SVRG-LD in terms of KL-divergence with more relaxed conditions (LSI
and smoothness) and with a better gradient complexity than previous works. We also expanded
SARAH to SARAH-LD and showed that this algorithm enjoyed the same advantages as SVRG-LD
with only an improvement in the coefficients of the gradient complexity. These results led us to
apply SVRG-LD and SARAH-LD to non-convex optimization in Section 4. We provided the global
convergence and a non-asymptotic analysis of SVRG-LD and SARAH-LD. We obtained better
conditions than prior works. Furthermore, we showed that under the additional assumption including
Morse and Hessian Lipschitzness, the gradient complexity could be ameliorated, eliminating the
exponential dependence on the inverse of the required error.
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A Proof of Theorem 1 and Corollary 1.1

In this Section, to clearly differentiate from SARAH-LD, we redefine the random variable generated
at the k-th step of SVRG-LD (Algorithm 1) as Yk and the stochastic gradient as v(Y)

k . The distribution
of Yk is ρk.

A.1 Preparation for the Proof

We first prepare some lemmas.

Lemma A.1. Under Assumption 1,

Eν [∥∇F∥2] ≤ dL/γ.
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Proof. As dν = e−γFdx, using integration by parts, we obtain

Eν [∥∇(γF )∥2] = Eν [∥∆(γF )∥].

Now, since F is L-smooth by Assumption 1, ∇2F ⪯ LI holds, which implies ∆F ≤ dL. As a
result,

Eν [∥∇F∥2] =
1

γ
Eν [∥∆F∥] ≤

dL

γ
.

Q.E.D

The relation between 2-Wasserstein distance and KL-divergence is given by the following inequality.

Lemma A.2. Under Assumption 2, ν satisfies the following Talagrand’s inequality with the same
Log-Sobolev constant α:

α

2
W2(ρ, ν)

2 ≤ Hν(ρ). (3)

Remark A.1. See Theorem 1 of Otto and Villani (2000) for a proof of Lemma A.2.

The following two lemmas that bound E[∥v(Y)

k ∥2] and the variance of the stochastic gradient v(Y)

k
with the KL-divergences Hν(ρk), Hν(ρk−1), . . . are crucial in our proof.

Lemma A.3. Under Assumption 1, suppose Talagrand’s inequality (3) holds for ν with a constant
α, then for all k = sm + r, where s ∈ N ∪ {0} and r = 0, . . . ,m − 1, the following holds in the
update of SVRG-LD:

EYk,Ik,Y (s) [∥v(Y)

k ∥
2] ≤ Λ′Hν(ρsm+r) + T +

r−1∑
i=0

S(S + 1)r−i−1 (Λ′Hν(ρsm+i) + T ) ,

where Λ =
(
1 + 2(n−B)

B(n−1)

)
, Ξ = (n−B)

B(n−1) ,

Λ′ =
4L2

α
Λ,

S = 4L2mη2Ξ,

and

T =
2dL

γ
Λ +

8ηmdL2

γ
Ξ.
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Proof. Let v(1)i (Yk) := ∇fi(Yk)−∇fi(Y (s)) +∇F (Y (s)), then

EYk,Ik,Y (s) [∥v(Y)

k ∥
2] =EYk,Ik,Y (s)

∥∥∥∥∥ 1

B

∑
i∈Ik

v
(1)
i (Yk)

∥∥∥∥∥
2


=
1

B2
EYk,Ik,Y (s)

 ∑
i̸=i′,{i,i′}∈Ik

〈
v
(1)
i (Yk), v

(1)
i′ (Yk)

〉
+

1

B2
EYk,Ik,Y (s)

[∑
i∈Ik

∥v(1)i (Yk)∥2
]

=
B − 1

Bn(n− 1)
EYk,Y (s)

∑
i ̸=i′

〈
v
(1)
i (Yk), v

(1)
i′ (Yk)

〉
+

1

B
EYk,i,Y (s)

[
∥v(1)i (Yk)∥2

]
(i follows the uniform distribution under {1, . . . , n})

=
B − 1

Bn(n− 1)
EYk,Y (s)

∑
i,i′

〈
v
(1)
i (Yk), v

(1)
i′ (Yk)

〉
− B − 1

B(n− 1)
EYk,i,Y (s)

[
∥v(1)i (Yk)∥2

]
+

1

B
EYk,i,Y (s)

[
∥v(1)i (Yk)∥2

]
=
(B − 1)n

B(n− 1)
EYk

[∥∇F (Yk)∥2] +
n−B
B(n− 1)

EYk,i,Y (s) [∥v(1)i (Yk)∥2],

where we used 1
n

∑n
i=1 v

(1)
i (Yk) = ∇F (Yk) for the last equality.

As a result, taking into account (B−1)n
B(n−1) − 1 = B−n

B(n−1) ≤ 0,

EYk,Ik,Y (s) [∥v(Y)

k ∥
2] = EYk

[∥∇F (Yk)∥2] +
n−B
B(n− 1)

EYk,i,Y (s) [∥v(1)i (Yk)∥2]. (4)

Choosing an optimal coupling Yk ∼ ρk and Y ∗ ∼ ν so that E[∥Yk−Y ∗∥2] =W2(ρk, ν)
2, we obtain

EYk
[∥∇F (Yk)∥2] ≤ 2EYk,Y ∗ [∥∇F (Yk)−∇F (Y ∗)∥2] + 2EY ∗ [∥∇F (Y ∗)∥2]

≤ 2L2E[∥Yk − Y ∗∥2] + 2dL/γ

= 2L2W2(ρk, ν)
2 + 2dL/γ

≤ 4L2

α
Hν(ρk) + 2dL/γ, (5)

where we used Lemma A.1 and the smoothness of F for the second inequality, the definition of W2

for the equality and Talagrand’s inequality (Lemma A.2) for the last inequality.
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Moreover,

EYk,i,Y (s) [∥v(1)i (Yk)∥2] =EYk,i,Y (s)

[∥∥∥∇fi(Yk)−∇fi(Y (s)) +∇F (Y (s))
∥∥∥2]

≤2E
[∥∥∥(∇fi(Yk)−∇fi(Y (s)))−

(
∇F (Yk)−∇F (Y (s))

)∥∥∥2]
+ 2E[∥∇F (Yk)∥2]

≤2E
[∥∥∥∇fi(Yk)−∇fi(Y (s))

∥∥∥2]+ 2E[∥∇F (Yk)∥2]

≤2L2E
[∥∥∥Yk − Y (s)

∥∥∥2]+ 8L2

α
Hν(ρk) + 4dL/γ

=2L2E

∥∥∥∥∥
r∑
i=1

(Ysm+i − Ysm+i−1)

∥∥∥∥∥
2


+
8L2

α
Hν(ρk) + 4dL/γ

=2L2E

∥∥∥∥∥
r∑
i=1

(
−ηv(Y)

sm+i−1 +

√
2η

γ
ϵsm+i−1

)∥∥∥∥∥
2


+
8L2

α
Hν(ρk) + 4dL/γ

≤4L2E

∥∥∥∥∥
r∑
i=1

ηv(Y)

sm+i−1

∥∥∥∥∥
2
+ 4L2E

∥∥∥∥∥
r∑
i=1

(√
2η

γ
ϵsm+i−1

)∥∥∥∥∥
2


+
8L2

α
Hν(ρk) + 4dL/γ

≤4rη2L2
r∑
i=1

E[∥v(Y)

sm+i−1∥
2] +

8ηL2

γ

r∑
i=1

E[∥ϵsm+i−1∥2]

+
8L2

α
Hν(ρk) + 4dL/γ

≤4mη2L2
r∑
i=1

E[∥v(Y)

sm+i−1∥
2] +

8ηmL2d

γ
+

8L2

α
Hν(ρk) + 4dL/γ.

We used E[∥y − E[y]∥2] ≤ E[∥y∥2] for the second inequality, smoothness of F and equation (5) for
the third inequality and r < m for the last inequality.

Plugging these to equation (4), we conclude

EYk,Ik,Y (s) [∥v(Y)

k ∥
2] ≤

(
1 +

2(n−B)

B(n− 1)

)(
4L2

α
Hν(ρk) +

2dL

γ

)
+

(n−B)

B(n− 1)

(
4mη2L2

r∑
i=1

E[∥v(Y)

sm+i−1∥
2] +

8ηmL2d

γ

)
.

Therefore, setting

Λ′ =
4L2

α

(
1 +

2(n−B)

B(n− 1)

)
,

S = 4L2mη2
(n−B)

B(n− 1)
,

and

T =
2dL

γ

(
1 +

2(n−B)

B(n− 1)

)
+

8ηmdL2

γ

(n−B)

B(n− 1)
,
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we can rearrange this so that

EYk,Ik,Y (s) [∥v(Y)

k ∥
2] ≤

r∑
i=1

SE[∥v(Y)

sm+i−1∥
2] + Λ′Hν(ρsm+r) + T. (6)

Now, we are ready to prove by mathematical induction that the inequality of the statement holds for
all r = 0, . . . ,m− 1. When r = 0, the inequality holds from equation (5) as follows:

EYk,Ik,Y (s) [∥v(Y)

k ∥
2] = EYsm [∥v(Y)

sm∥2]

≤ EYsm [∥∇F (Ysm)∥2] + n−B
B(n− 1)

EYsm [∥v(1)i (Ysm)∥2]

=

(
1 +

n−B
B(n− 1)

)
EYsm

[∥∇F (Ysm)∥2]

≤
(
1 +

n−B
B(n− 1)

)(
4L2

α
Hν(ρsm) +

2dL

γ

)
≤ Λ′Hν(ρsm) + T,

where for the second equality we used v(1)i (Ysm) = ∇F (Ysm).

Next, let us assume that the inequality of the lemma holds for r ≤ l. Then, from equation (6), we
obtain

E[∥v(Y)

sm+l+1∥
2] ≤

l∑
i=0

SE[∥v(Y)

sm+i∥
2] + Λ′Hν(ρsm+l+1) + T

≤
l∑
i=0

S

Λ′Hν(ρsm+i) + T +

i−1∑
j=0

S(S + 1)i−j−1 (Λ′Hν(ρsm+j) + T )


+ Λ′Hν(ρsm+l+1) + T

=

l∑
i=0

S (Λ′Hν(ρsm+i) + T )

1 +

l−i−1∑
j=0

S(S + 1)j


+ Λ′Hν(ρsm+l+1) + T

=

l∑
i=0

S (Λ′Hν(ρsm+i) + T )

(
1 + S

(S + 1)l−i − 1

(S + 1)− 1

)
+ Λ′Hν(ρsm+l+1) + T

=Λ′Hν(ρsm+l+1) + T +

l∑
i=0

S(S + 1)l+1−i−1 (Λ′Hν(ρsm+i) + T ) .

In the second inequality, we used the hypothesis of mathematical induction. This is equivalent to
using Gronwall’s lemma. This concludes the proof.

Q.E.D

Lemma A.4. Under Assumption 1, for all k = sm+ r, where s ∈ N ∪ {0} and r = 0, . . . ,m− 1,
the following holds in the update of SVRG-LD:

EYk,Ik,Y (s) [∥v(Y)

k −∇F (Yk)∥
2] ≤ L2(n−B)

B(n− 1)
EYk,Ik,Y (s) [∥Yk − Y (s)∥2].
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Proof. Let v(2)i (Yk) = ∇fi(Yk)−∇fi(Y (s)) +∇F (Y (s))−∇F (Yk). Then,

EYk,Ik,Y (s) [∥v(Y)

k −∇F (Yk)∥
2] =EYk,Ik,Y (s)

∥∥∥∥∥ 1

B

∑
i∈Ik

v
(2)
i (Yk)

∥∥∥∥∥
2


=
1

B2
EYk,Ik,Y (s)

 ∑
i̸=i′,{i,i′}∈Ik

〈
v
(2)
i (Yk), v

(2)
i′ (Yk)

〉
+

1

B2
EYk,Ik,Y (s)

[∑
i∈Ik

∥v(2)i (Yk)∥2
]

=
B − 1

Bn(n− 1)
EYk,Y (s)

∑
i ̸=i′

〈
v
(2)
i (Yk), v

(2)
i′ (Yk)

〉
+

1

B
EYk,i,Y (s)

[
∥v(2)i (Yk)∥2

]
(i follows the uniform distribution under {1, . . . , n})

=
B − 1

Bn(n− 1)
EYk,Y (s)

∑
i,i′

〈
v
(2)
i (Yk), v

(2)
i′ (Yk)

〉
− B − 1

B(n− 1)
EYk,i,Y (s)

[
∥v(2)i (Yk)∥2

]
+

1

B
EYk,i,Y (s)

[
∥v(2)i (Yk)∥2

]
=

n−B
B(n− 1)

EYk,i,Y (s) [∥v(2)i (Yk)∥2].

In the last equality, we used 1
n

∑n
i=1 v

(2)
i (Yk) = 0.

Now, since

EYk,i,Y (s) [∥v(2)i (Yk)∥2] = EYk,i,Y (s) [∥∇fi(Yk)−∇fi(Y (s)) +∇F (Y (s))−∇F (Yk)∥2]
= E[∥∇fi(Yk)−∇fi(Y (s))− E[∇fi(Yk)−∇fi(Y (s))]∥2]
≤ E[∥∇fi(Yk)−∇fi(Y (s))∥2]
≤ L2E[∥Yk − Y (s)∥2],

we obtain the desired result.
Q.E.D

A.2 Main Proof

We are now ready to prove the main results. The main idea of the following proofs is due to Vempala
and Wibisono (2019). We first evaluate how Hν(ρk) decreases compared with the previous steps.
Theorem A.1. Under Assumptions 1 and 2, 0 < η < α

16
√
6L2mγ

, γ ≥ 1 and B ≥ m, for all
k = sm + r, where s ∈ N ∪ {0} and r = 0, . . . ,m − 1, the following holds in the update of
SVRG-LD:

Hν(ρk+1) ≤ e−
3α
2γ η

(
1 +

α

4γ
η

)
Hν(ρsm+r) + e−

3α
2γ η

r−1∑
i=0

α

4mγ
ηe−

αm
γ ηHν(ρsm+i)

+ 8η2dL2Υ,

where Λ =
(
1 + 2(n−B)

B(n−1)

)
, Ξ = (n−B)

B(n−1) and Υ = (Λ + Ξ + 1 + 2mΞ).

Proof. Note that from Lemma A.2, Talagrand’s inequality is satisfied with constant α.
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One step of SVRG-LD can be formulated as follows:

Ysm+r+1 ← Ysm+r − ηv(Y)

sm+r +
√
2η/γϵsm+r.

This can be further interpreted as the output at time t = η of the following SDE:

dỸt = −v(Y)

sm+rdt+
√
2/γdBt, Ỹ0 = Ysm+r. (7)

In this context, the distribution ρ̃t of Ỹt depends on both Ysm+r and

β(Y)

sm+r := (Ism+r, Y
(s)).

Let us define their joint distribution ρ̃
rtβ

(Y)
sm+r

as follows:

dρ̃
rtβ

(Y)
sm+r

(Ysm+r, Ỹt, β
(Y)

sm+r) = dρ̃
rβ

(Y)
sm+r

(Ysm+r, β
(Y)

sm+r)dρ̃t|rβ(Y)
sm+r

(Ỹt|Ysm+r, β
(Y)

sm+r)

= dρ̃
tβ

(Y)
sm+r

(Ỹt, β
(Y)

sm+r)dρ̃r|tβ(Y)
sm+r

(Ysm+r|Ỹt, β(Y)

sm+r).

Then, the Fokker-Planck equation (2) when Ysm+r and β(Y)

sm+r are fixed becomes

∂ρ̃
t|rβ(Y)

sm+r
(Ỹt|Ysm+r, β

(Y)

sm+r)

∂t
= ∇ · (ρ̃

t|rβ(Y)
sm+r

(Ỹt|Ysm+r, β
(Y)

sm+r)v
(Y)

sm+r)

+
1

γ
∆ρ̃

t|rβ(Y)
sm+r

(Ỹt|Ysm+r, β
(Y)

sm+r). (8)

Therefore, the following holds about the distribution ρ̃t of Ỹt governed by equation (7):

∂ρ̃t(y)

∂t
=

∫ ∂ρ̃
t|rβ(Y)

sm+r
(y|Ysm+r, β

(Y)

sm+r)

∂t
ρ̃
rβ

(Y)
sm+r

(Ysm+r, β
(Y)

sm+r)dYsm+rdβ
(Y)

sm+r

=

∫ (
∇ · (ρ̃

t|rβ(Y)
sm+r

(y|Ysm+r, β
(Y)

sm+r)v
(Y)

sm+r) +
1

γ
∆ρ̃

t|rβ(Y)
sm+r

(y|Ysm+r, β
(Y)

sm+r)

)
· ρ̃
rβ

(Y)
sm+r

(Ysm+r, β
(Y)

sm+r)dYsm+rdβ
(Y)

sm+r

=

∫
∇ · (ρ̃

rtβ
(Y)
sm+r

(Ysm+r, y, β
(Y)

sm+r)v
(Y)

sm+r)dYsm+rdβ
(Y)

sm+r

+

∫
1

γ
∆ρ̃

rtβ
(Y)
sm+r

(Ysm+r, y, β
(Y)

sm+r)dYsm+rdβ
(Y)

sm+r

=∇ ·
(
ρ̃t(y)

∫
ρ̃
rβ

(Y)
sm+r|t

v(Y)

sm+rdYsm+rdβ
(Y)

sm+r

)
+

1

γ
∆ρ̃t(y)

=∇ ·
(
ρ̃t(y)Eρ̃

rβ
(Y)
sm+r

|t
[v(Y)

sm+r|Ỹt = y]

)
+

1

γ
∆ρ̃t(y),

where for the second equation we used equation (8).

Plugging this to

d

dt
Hν(ρ̃t) =

d

dt

∫
Rn

ρ̃t log
ρ̃t
ν
dy =

∫
Rn

∂ρ̃t
∂t

log
ρ̃t
ν
dy,
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we obtain

d

dt
Hν(ρ̃t) =

∫
Rd

(
∇ ·
(
ρ̃t(y)Eρ̃

rβ
(Y)
sm+r

|t
[v(Y)

sm+r|Ỹt = y]

)
+

1

γ
∆ρ̃t(y)

)
log

ρ̃t
ν
dy

=

∫ (
∇ ·
(
ρ̃t(y)

(
1

γ
∇ log

ρ̃t(y)

ν(y)
+ Eρ̃

rβ
(Y)
sm+r

|t
[v(Y)

sm+r|Ỹt = y]−∇F (y)
)))

· log ρ̃t(y)
ν(y)

dy

=−
∫
ρ̃t(y)

〈
1

γ
∇ log

ρ̃t(y)

ν(y)
+ Eρ̃

rβ
(Y)
sm+r

|t
[v(Y)

sm+r|Ỹt = y]−∇F,∇ log
ρ̃t
ν

〉
dy

=−
∫
ρ̃t(y)

1

γ

∥∥∥∥log ρ̃t(y)ν(y)

∥∥∥∥2 dy
+

∫
ρ̃t(y)

〈
∇F (y)− Eρ̃

rβ
(Y)
sm+r

|t
[v(Y)

sm+r|Ỹt = y],∇ log
ρ̃t(y)

ν(y)

〉
dy

=− 1

γ
Jν(ρ̃t)

+

∫
ρ̃
rtβ

(Y)
sm+r

〈
∇F − v(Y)

sm+r,∇ log
ρ̃t
ν

〉
dYsm+rdydβ

(Y)

sm+r

=− 1

γ
Jν(ρ̃t) + Eρ̃

rtβ
(Y)
sm+r

[〈
∇F (Ỹt)− v(Y)

sm+r,∇ log
ρ̃t(Ỹt)

ν(Ỹt)

〉]
.

Now, let us define the second term of the right-hand side of the very last equality as A⃝. Applying
⟨a, b⟩ ≤ γ∥a∥2 + 1

4γ ∥b∥
2 to this, we obtain

A⃝ ≤ γEρ̃
rtβ

(Y)
sm+r

[
∥∇F (Ỹt)− v(Y)

sm+r∥2
]
+

1

4γ
Eρ̃

rtβ
(Y)
sm+r

∥∥∥∥∥∇ log
ρ̃t(Ỹt)

ν(Ỹt)

∥∥∥∥∥
2


≤ 2γEρ̃
rtβ

(Y)
sm+r

[
∥∇F (Ỹt)−∇F (Ysm+r)∥2

]
+ 2γEρ̃

rtβ
(Y)
sm+r

[
∥∇F (Ysm+r)− v(Y)

sm+r∥2
]

+
1

4γ
Jν(ρ̃t)

≤ 2γL2Eρ̃
rtβ

(Y)
sm+r

[∥Ỹt − Ysm+r∥2] +
2γL2(n−B)

B(n− 1)
Eρ̃

rtβ
(Y)
sm+r

[
∥Ysm+r − Ysm∥2

]
+

1

4γ
Jν(ρ̃t),

where for the last inequality we used the smoothness of F and Lemma A.4.

As Ỹt = Ysm+r − tv(Y)

sm+r +
√
2t/γϵsm+r (ϵsm+r ∼ N(0, I)), from Lemma A.3, we have

E[∥Ỹt − Ysm+r∥2] =E[∥ − tv(Y)

sm+r +
√
2t/γϵsm+r∥2]

=t2E[∥v(Y)

sm+r∥2] + 2td/γ

≤t2
(
Λ′Hν(ρsm+r) + T +

r−1∑
i=0

S(S + 1)r−i−1 (Λ′Hν(ρsm+i) + T )

)
+ 2td/γ.
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Furthermore, by the proof of Lemma A.3 we know that the following holds:

E
[
∥Ysm+r − Ysm∥2

]
≤2mη2

r−1∑
i=0

E[∥v(Y)

sm+i∥
2] + 4ηmd/γ

≤2mη2
r−1∑
i=0

(S + 1)r−i−1(Λ′Hν(ρsm+i) + T ) + 4ηmd/γ.

As a result, taking into account that we are only concerned about the time interval 0 ≤ t ≤ η,
applying t ≤ η, we conclude

A⃝ ≤ 2γL2η2

(
Λ′Hν(ρsm+r) + T +

r−1∑
i=0

S(S + 1)r−i−1 (Λ′Hν(ρsm+i) + T )

)

+ 4ηdL2 + 4γL2η2mΞ

r−1∑
i=0

(S + 1)r−i−1(Λ′Hν(ρsm+i) + T ) + 8ηmdL2Ξ

+
1

4γ
Jν(ρt)

≤ 2γL2η2Λ′Hν(ρsm+r) +

r−1∑
i=0

4γL2η2(S + 1)r−iΛ′Hν(ρsm+i)

+ 4γL2η2
r∑
i=0

(S + 1)r−iT + 4ηdL2(1 + 2mΞ) +
1

4γ
Jν(ρt)

≤ 2γL2η2Λ′Hν(ρsm+r) +

r−1∑
i=0

4γL2η2(S + 1)rΛ′Hν(ρsm+i)

+ 4γL2η2
r∑
i=0

(S + 1)rT + 4ηdL2(1 + 2mΞ) +
1

4γ
Jν(ρt)

≤ 2γL2η2Λ′Hν(ρsm+r) +

r−1∑
i=0

4γL2η2(S + 1)mΛ′Hν(ρsm+i)

+ 4γL2η2m(S + 1)mT + 4ηdL2(1 + 2mΞ) +
1

4γ
Jν(ρt),

where for the second inequality we used mΞ ≤ 1 and for the last inequality r < m. Here, as Ξ ≤ 1
and η ≤ 1

4mL by α ≤ γL,

(S + 1)m ≤ eSm = e4L
2m2η2Ξ ≤ e1/4 ≤ 2.
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Therefore,

A⃝ ≤ 2γL2η2Λ′Hν(ρsm+r) +

r−1∑
i=0

8γL2η2Λ′Hν(ρsm+i)

+ 8γL2η2mT + 4ηdL2(1 + 2mΞ) +
1

4γ
Jν(ρt)

=
8γL4η2

α
ΛHν(ρsm+r) +

r−1∑
i=0

32γL4η2

α
ΛHν(ρsm+i)

+ 8γL2η2m

(
2dL

γ
Λ +

8ηmdL2

γ
Ξ

)
+ 4ηdL2(1 + 2mΞ) +

1

4γ
Jν(ρt)

=
8γL4η2

α
ΛHν(ρsm+r) +

r−1∑
i=0

32γL4η2

α
ΛHν(ρsm+i)

+ 4ηdL2
(
4ηmLΛ + 16η2m2L2Ξ + 1 + 2mΞ

)
+

1

4γ
Jν(ρt)

≤ 8γL4η2

α
ΛHν(ρsm+r) +

r−1∑
i=0

32γL4η2

α
ΛHν(ρsm+i)

+ 4ηdL2 (Λ + Ξ + 1 + 2mΞ) +
1

4γ
Jν(ρt),

where for the first equality, we used Λ′ = 4L2

α Λ and T =
(

2dL
γ Λ + 8ηmdL2

γ Ξ
)

, and for the last

inequality η ≤ 1
4mL . Thus, setting Υ = Λ+ Ξ+ 1 + 2mΞ, we obtain

d

dt
Hν(ρ̃t) ≤ −

3

4γ
Jν(ρ̃t) +

8γL4η2

α
ΛHν(ρsm+r) +

r−1∑
i=0

32γL4η2

α
ΛHν(ρsm+i)

+ 4ηdL2Υ.

According to Assumption 2,

d

dt
Hν(ρ̃t) ≤ −

3α

2γ
Hν(ρ̃t) +

8γL4η2

α
ΛHν(ρsm+r) +

r−1∑
i=0

32γL4η2

α
ΛHν(ρsm+i)

+ 4ηdL2Υ.

Grouping the second to fourth terms as U (Y)

sm+r and multiplying both sides by e
3α
2γ t, we can write the

above equation as

d

dt

(
e

3α
2γ tHν(ρ̃t)

)
≤ e

3α
2γ tU (Y)

sm+r.

Integrating both sides from t = 0 to t = η and using ρ̃η = ρsm+r+1, we obtain

e
3α
2γ ηHν(ρsm+r+1)−Hν(ρsm+r) ≤

2γ(e
3α
2γ η − 1)

3α
U (Y)

sm+r

≤ 2ηU (Y)

sm+r.

Here, for the last inequality, we used that ec ≤ 1 + 2c (0 < c = 3α
2γ η ≤ 1) holds since 0 < η ≤

α
16

√
6L2mγ

≤ 2γ
3α , where we used 1/L ≤ γ/α and m ≥ 1. Rearranging this, we obtain

Hν(ρsm+r+1) ≤ e−
3α
2γ η

(
1 +

16γL4η3

α
Λ

)
Hν(ρsm+r) + e−

3α
2γ η

r−1∑
i=0

64γL4η3

α
ΛHν(ρsm+i)

+ e−
3α
2γ η8η2dL2Υ. (9)

22



Furthermore, since η ≤ α
16

√
6mL2γ

≤ α
8
√
3L2γ

, e−
3α
2γ η ≤ 1 and Λ ≤ 3

Hν(ρsm+r+1) ≤ e−
3α
2γ η

(
1 +

α

4γ
η

)
Hν(ρsm+r) + e−

3α
2γ η

r−1∑
i=0

α

8γm
ηHν(ρsm+i) + 8η2dL2Υ.

On the other hand, since η ≤ α
8mL2γ and α ≤ γL holds,

e−
αm
γ η ≥ e

−αm
γ · α

8mL2γ = e
− α2

8L2γ2 ≥ e−1/8 ≥ 0.88 ≥ 1

2
,

which further implies

Hν(ρsm+r+1) ≤ e−
3α
2γ η

(
1 +

α

4γ
η

)
Hν(ρsm+r) + e−

3α
2γ η

r−1∑
i=0

α

4mγ
ηe−

αm
γ ηHν(ρsm+i)

+ 8η2dL2Υ.

Q.E.D

Finally, let us prove Theorem 1 and Corollary 1.1.

Theorem A.2 (Theorem 1 restated). Under Assumptions 1 and 2, 0 < η < α
16

√
6L2mγ

, γ ≥ 1 and
B ≥ m, for all k ≥ 1, the following holds in the update of SVRG-LD:

Hν(ρk) ≤ e−
αη
γ kHν(ρ0) +

224ηγdL2

3α
Υ,

where Ξ = (n−B)
B(n−1) and Υ = (Λ + Ξ + 1 + 2mΞ).

Proof. Let us first prove by mathematical induction that the following inequality holds for all
k = 1, 2 . . .:

Hν(ρk) ≤ e−
αη
γ kHν(ρ0) + 8η2dL2Υ ·

(
1− e−

αη
γ

)−1

. . . . (∗)

(I) When k = 1, from Theorem A.1, since Y (s) = Y0,

Hν(ρ1) ≤ e−
3α
2γ η

(
1 +

α

4γ
η

)
Hν(ρ0) + e−

3α
2γ η

α

4mγ
ηe−

αm
γ ηHν(ρ0) + 8η2dL2Υ

≤ e−
3α
2γ η

(
1 +

α

4γ
η +

α

4mγ
η

)
Hν(ρ0) + 8η2dL2Υ

≤ e−
3α
2γ η

(
1 +

α

2γ
η

)
Hν(ρ0) + 8η2dL2Υ

≤ e−
3α
2γ ηe

α
2γ ηHν(ρ0) + 8η2dL2Υ

= e−
α
γ ηHν(ρ0) + 8η2dL2Υ

≤ e−
α
γ ηHν(ρ0) + 8η2dL2Υ ·

(
1− e−

αη
γ

)−1

.

Here, for the second and last inequality, we used e−
αmη

γ ≤ e−
αη
γ ≤ 1. Thus, (∗) holds for k = 1.

(II) Now, let us assume that (∗) holds for all k ≤ l. Letting r and s the remainder and quotient of the
Euclidian division of l by m respectively, when k = l + 1 we obtain from Theorem A.1,

Hν(ρsm+r+1) ≤ e−
3α
2γ η

(
1 +

α

4γ
η

)
Hν(ρsm+r) + e−

3α
2γ η

r−1∑
i=0

α

4mγ
ηe−

αm
γ ηHν(ρsm+i)

+ 8η2dL2Υ.
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From the hypothesis of mathematical induction,
Hν(ρsm+r+1)

≤ e−
3α
2γ η

(
1 +

α

4γ
η

)(
e−

αη
γ (sm+r)Hν(ρ0) + 8η2dL2Υ ·

(
1− e−

αη
γ

)−1
)

+ e−
3α
2γ η

r−1∑
i=0

α

4mγ
ηe−

αm
γ η

(
e−

αη
γ (sm+i)Hν(ρ0) + 8η2dL2Υ ·

(
1− e−

αη
γ

)−1
)

+ 8η2dL2Υ.

Since e−
α
γ ηm ≤ e−

α
γ ηr ≤ e−

α
γ η(r−i) when 0 ≤ i < r < m,

Hν(ρsm+r+1) ≤ e−
3α
2γ η

(
1 +

α

4γ
η

)(
e−

αη
γ (sm+r)Hν(ρ0) + 8η2dL2Υ ·

(
1− e−

αη
γ

)−1
)

+ e−
3α
2γ η

r−1∑
i=0

α

4mγ
ηe−

αη
γ (r−i)

(
e−

αη
γ (sm+i)Hν(ρ0)

)
+ e−

3α
2γ η

r−1∑
i=0

α

4mγ
ηe−

αη
γ (r−i)

(
8η2dL2Υ ·

(
1− e−

αη
γ

)−1
)

+ 8η2dL2Υ

≤ e−
3α
2γ η

(
1 +

α

4γ
η

)(
e−

αη
γ (sm+r)Hν(ρ0) + 8η2dL2Υ ·

(
1− e−

αη
γ

)−1
)

+ e−
3α
2γ η

r−1∑
i=0

α

4mγ
η

(
e−

αη
γ (sm+r)Hν(ρ0) + 8η2dL2Υ ·

(
1− e−

αη
γ

)−1
)

+ 8η2dL2Υ

≤ e−
3α
2γ η

(
1 +

α

2γ
η

)(
e−

αη
γ (sm+r)Hν(ρ0) + 8η2dL2Υ ·

(
1− e−

αη
γ

)−1
)

+ 8η2dL2Υ

≤ e−
3α
2γ ηe

α
2γ η

(
e−

αη
γ (sm+r)Hν(ρ0) + 8η2dL2Υ ·

(
1− e−

αη
γ

)−1
)

+ 8η2dL2Υ

= e−
αη
γ (sm+r+1)Hν(ρ0) +

(
1 + e−

αη
γ ·
(
1− e−

αη
γ

)−1
)
8η2dL2Υ

= e−
αη
γ (sm+r+1)Hν(ρ0) + 8η2dL2Υ ·

(
1− e−

αη
γ

)−1

.

Therefore, (∗) holds for all k ≥ 1.

Now, using the inequality 1− e−c ≥ 3
4c for 0 < c = αη

γ ≤
1
4 (since y = 1− e−x and y = 3

4x are
both concave increasing functions intersecting at x = 0 and 1− e−1/4 ≥ 3

4 ×
1
4 ), which holds here

because η ≤ α
16

√
6L2γ

≤ γ
4α since 1/L ≤ γ/α and m ≥ 1, we conclude

Hν(ρk) ≤ e−
αη
γ kHν(ρ0) +

32ηγdL2

3α
Υ

≤ e−
αη
γ kHν(ρ0) +

224ηγdL2

3α
,

which is the desired result. Here, for the last inequality, we used Υ = Λ + Ξ + 1 + 2mΞ ≤
3 + 1 + 1 + 2 = 7.

Q.E.D

Corollary A.2.1 (Corollary 1.1 restated). Under the same assumptions as Theorem A.2, for all ϵ ≥ 0,
if we choose step size η such that

η ≤ 3αϵ

448γdL2
,
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then a precision Hν(ρk) ≤ ϵ is reached after

k ≥ γ

αη
log

2Hν(ρ0)

ϵ

steps. Especially, if we take B = m =
√
n and the largest permissible step size η = α

16
√
6L2

√
nγ
∧

3αϵ
448dL2γ , then the gradient complexity becomes

Õ

((
n+

dn
1
2

ϵ

)
γ2L2

α2

)
.

Proof. Let ϵ > 0. Then, by additionally requiring

η ≤ 3αϵ

448γdL2
,

we obtain
Hν(ρk) ≤ e−

αη
γ kHν(ρ0) +

ϵ

2
.

Thus, Hν(ρk) ≤ ϵ can be reached for

k ≥ γ

αη
log

2Hν(ρ0)

ϵ
.

As a result, if 0 < ϵ ≤ 28d
3
√
6m

and we select the largest permissible step size, the gradient complexity
becomes

O

(
k ·B +

k

m
· n
)

= Õ

((
B + n/m

ϵ

)
dγ2L2

α2

)
,

and the optimal complexity is

Õ

(
dn1/2γ2L2

ϵα2

)
with B =

√
n and m =

√
n.

On the other hand, if ϵ ≥ 28d
3
√
6m

and we select the largest permissible step size, the gradient complexity
becomes

O

(
k ·B +

k

m
· n
)

= Õ

(
(mB + n)

γ2L2

α2

)
,

and the optimal complexity is

Õ

(
nγ2L2

α2

)
with B =

√
n and m =

√
n

Therefore, for all ϵ ≥ 0, the gradient complexity is

Õ

((
n+

dn
1
2

ϵ

)
γ2L2

α2

)
.

Q.E.D

B Proof of Theorem 2 and Corollary 2.1

In this Section, to clearly differentiate from SVRG-LD, we redefine the random variable generated at
the k-th step of SARAH-LD (Algorithm 1) as Zk and the stochastic gradient as v(Z)

k . The distribution
of Zk is ϕk.

25



B.1 Preparation for the Proof

Let us first provide an upper bound of E[∥v(Z)

k ∥2] and the variance of the stochastic gradient v(Z)

k
using the KL-divergences Hν(ϕk), Hν(ϕk−1), . . ..
Lemma B.1. Under Assumption 1, for all k = sm+ r, where s ∈ N ∪ {0} and r = 0, . . . ,m− 1,
the following holds in the update of SARAH-LD:

E[∥∇F (Zk)− v(Z)

k ∥
2] =

r∑
i=1

E[∥v(Z)

sm+i− v
(Z)

sm+i−1∥
2]−

r∑
i=1

E[∥∇F (Zsm+i)−∇F (Zsm+i−1)∥2].

Proof. Let us define

Fr = σ
(
Z(s), ϵsm, Ism+1, ϵsm+1, Ism+2, ϵsm+2, . . . , Ism+r−1, ϵsm+r−1

)
,

which is the σ-algebra generated by

Z(s), ϵsm, Ism+1, ϵsm+1, Ism+2, ϵsm+2, . . . , Ism+r−1, and ϵsm+r−1.

When r = 0, the statement clearly holds. In the remainder of the proof, we assume r ≥ 1. Then,

E[∥∇F (Zk)− v(Z)

k ∥
2 | Fr] = E[∥∇F (Zk−1)− v(Z)

k−1 +∇F (Zk)−∇F (Zk−1)

− (v(Z)

k − v
(Z)

k−1)∥
2 | Fr]

= ∥∇F (Zk−1)− v(Z)

k−1∥
2 + ∥∇F (Zk)−∇F (Zk−1)∥2

+ E[∥v(Z)

k − v
(Z)

k−1∥
2 | Fr]

+ 2
〈
∇F (Zk−1)− v(Z)

k−1,∇F (Zk)−∇F (Zk−1)
〉

− 2
〈
∇F (Zk−1)− v(Z)

k−1,E[v
(Z)

k − v
(Z)

k−1 | Fr]
〉

− 2
〈
∇F (Zk)−∇F (Zk−1),E[v(Z)

k − v
(Z)

k−1 | Fr]
〉

= ∥∇F (Zk−1)− v(Z)

k−1∥
2 − ∥∇F (Zk)−∇F (Zk−1)∥2

+ E[∥v(Z)

k − v
(Z)

k−1∥
2 | Fr].

Here in the last equality, we used that the following holds:

E[v(Z)

k − v
(Z)

k−1 | Fr] =E

[
1

B

∑
i∈Ik

∇fi(Zk)−∇fi(Zk−1) | Fr

]
=∇F (Zk)−∇F (Zk−1).

Taking expectation, we obtain

E[∥∇F (Zk)− v(Z)

k ∥
2] = E[∥∇F (Zk−1)− v(Z)

k−1∥
2]− E[∥∇F (Zk)−∇F (Zk−1)∥2]

+ E[∥v(Z)

k − v
(Z)

k−1∥
2].

Since this equation holds for all k = sm+ r (r = 1, . . .m− 1), recalling that

E[∥∇F (Zsm)− v(Z)

sm∥2] = 0,

and recursively applying this, we conclude that

E[∥∇F (Zk)− v(Z)

k ∥
2] =

r∑
i=1

E[∥v(Z)

sm+i− v
(Z)

sm+i−1∥
2]−

r∑
i=1

E[∥∇F (Zsm+i)−∇F (Zsm+i−1)∥2].

Q.E.D

Lemma B.2. Under Assumption 1, for all k = sm+ r, where s ∈ N ∪ {0} and r = 0, . . . ,m− 1,
the following holds in the update of SARAH-LD:

E[∥∇F (Zk)− v(Z)

k ∥
2] ≤

r∑
i=1

ΞL2η2E[∥v(Z)

sm+i−1∥
2] +

2ηmdL2

γ
Ξ,

where Ξ = n−B
B(n−1) .
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Proof. When r = 0, the statement clearly holds. In the remainder of the proof, we assume r ≥ 1.

Since v(Z)

k − v
(Z)

k−1 = 1
B

∑
j∈Ik (∇fj(Zk)−∇fj(Zk−1)), defining

wj := ∇fj(Zk)−∇fj(Zk−1),

we obtain

E[∥v(Z)

k − v
(Z)

k−1∥
2 | Fk] = E


∥∥∥∥∥∥ 1

B

∑
j∈Ik

wj

∥∥∥∥∥∥
2

| Fk


=

1

B2
E

 ∑
j ̸=j′,{j,j′}∈Ik

⟨wj , wj′⟩ | Fk

+
1

B2
E

∑
j∈Ik

∥wj∥2 | Fk


=

B − 1

Bn(n− 1)
E

∑
j ̸=j′
⟨wj , wj′⟩ | Fk

+
1

B
E
[
∥wj∥2 | Fk

]
(j follows a uniform distribution under {1, . . . , n})

=
B − 1

Bn(n− 1)
E

∑
j,j′

⟨wj , wj′⟩ | Fk

− B − 1

B(n− 1)
E
[
∥wj∥2 | Fk

]
+

1

B
E
[
∥wj∥2 | Fk

]
=

(B − 1)n

B(n− 1)
E[∥∇F (Zk)−∇F (Zk−1)∥2 | Fk]

+
n−B
B(n− 1)

E[∥∇fj(Zk)−∇fj(Zk−1)∥2 | Fk]

≤ E[∥∇F (Zk)−∇F (Zk−1)∥2|Fk]

+
n−B
B(n− 1)

E[∥∇fj(Zk)−∇fj(Zk−1)∥2 | Fk],

where for the fifth equation we used 1
n

∑n
j=1 wj = ∇F (Zk) −∇F (Zk−1) and for the inequality,

(B−1)n
B(n−1) ≤ 1.

As a result,

E[∥v(Z)

k − v
(Z)

k−1∥
2 | Fk] ≤ ∥∇F (Zk)−∇F (Zk−1)∥2

+
n−B
B(n− 1)

E[∥∇fj(Zk)−∇fj(Zk−1)∥2 | Fk]

≤ ∥∇F (Zk)−∇F (Zk−1)∥2 + L2ΞE[∥Zk − Zk−1∥2 | Fk]

= ∥∇F (Zk)−∇F (Zk−1)∥2 + L2Ξ

∥∥∥∥−ηv(Z)

k−1 +

√
2η

γ
ϵk−1

∥∥∥∥2 .
Taking expectation, we obtain

E[∥v(Z)

k − v
(Z)

k−1∥
2]− E[∥∇F (Zk)−∇F (Zk−1)∥2] ≤ L2ΞE

[∥∥∥∥−ηv(Z)

k−1 +

√
2η

γ
ϵk−1

∥∥∥∥2
]

= L2Ξ

(
η2E[∥v(Z)

k−1∥
2] +

2ηd

γ

)
.
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Since this equation holds for all k = sm+ r (r = 1, . . .m− 1), from Lemma B.1,

E[∥∇F (Zk)− v(Z)

k ∥
2] ≤

r∑
i=1

E[∥v(Z)

sm+i − v
(Z)

sm+i−1∥
2]

−
r∑
i=1

E[∥∇F (Zsm+i)−∇F (Zsm+i−1)∥2]

≤ ΞL2η2
r∑
i=1

E[∥v(Z)

sm+i−1∥
2] +

2ηrdL2

γ
Ξ

≤ ΞL2η2
r∑
i=1

E[∥v(Z)

sm+i−1∥
2] +

2ηmdL2

γ
Ξ.

Q.E.D

Lemma B.3. Under Assumption 1, suppose Talagrand’s inequality holds for ν with a constant α,
then for all k = sm+ r, where s ∈ N∪ {0} and r = 0, . . . ,m− 1, the following holds in the update
of SARAH-LD:

E[∥v(Z)

k ∥
2] ≤ 8L2

α
Hν(ϕsm+r) + P +

r−1∑
i=0

Q(Q+ 1)r−i−1

(
8L2

α
Hν(ϕsm+i) + P

)
,

where

Ξ =
(n−B)

B(n− 1)
,

P =
4dL

γ
+

4ηmdL2

γ
Ξ,

and
Q = 2ΞL2η2.

Proof. First, from Lemma B.2, we have

E[∥v(Z)

k ∥
2] ≤ 2E[∥v(Z)

k −∇F (Zk)∥
2] + 2E[∥∇F (Zk)∥2]

≤ 2

(
r∑
i=1

ΞL2η2E[∥v(Z)

sm+i−1∥
2] +

2ηmdL2

γ
Ξ

)
+ 2E[∥∇F (Zk)∥2].

Choosing an optimal coupling Zk ∼ ϕk and Z∗ ∼ ν so that E[∥Zk − Z∗∥2] = W2(ϕk, ν)
2, we

obtain

EZk
[∥∇F (Zk)∥2] ≤ 2EZk,Z∗ [∥∇F (Zk)−∇F (Z∗)∥2] + 2EZ∗ [∥∇F (Z∗)∥2]

≤ 2L2E[∥Zk − Z∗∥2] + 2dL/γ

= 2L2W2(ϕk, ν)
2 + 2dL/γ

≤ 4L2

α
Hν(ϕk) + 2dL/γ, (10)

where, we used the smoothness of F and Lemma A.1 for the second inequality, the definition of W2

for the equality and Talagrand’s inequality for the last inequality.

As a result,

E[∥v(Z)

k ∥
2] ≤2

(
r∑
i=1

ΞL2η2E[∥v(Z)

sm+i−1∥
2] +

2ηmdL2

γ
Ξ

)
+

8L2

α
Hν(ϕk) + 4dL/γ

=

r∑
i=1

QE[∥v(Z)

sm+i−1∥
2] +

8L2

α
Hν(ϕk) + P. (11)
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Here, we set

P =
4dL

γ
+

4ηmdL2

γ
Ξ,

and
Q = 2ΞL2η2.

Now, let us prove by mathematical induction that the inequality of the statement holds for all
r = 0, . . . ,m− 1. When r = 0, the inequality holds from equation (10) as follows:

E[∥v(Z)

sm∥2] = E[∥∇F (Zsm)∥2]

≤ 4L2

α
Hν(ϕsm) + 2dL/γ

≤ 8L2

α
Hν(ϕsm) + P.

Next, let us assume that the inequality of the lemma holds for r ≤ l. Then, from equation (11), we
obtain

E[∥v(Z)

sm+l+1∥
2]

≤
l∑
i=0

QE[∥v(Z)

sm+i∥
2] +

8L2

α
Hν(ϕsm+l+1) + P

≤
l∑
i=0

Q

8L2

α
Hν(ϕsm+i) + P +

i−1∑
j=0

Q(Q+ 1)i−j−1

(
8L2

α
Hν(ϕsm+j) + P

)
+

8L2

α
Hν(ϕsm+l+1) + P

=
8L2

α
Hν(ϕsm+l+1) + P +

l∑
i=0

Q

(
8L2

α
Hν(ϕsm+i) + P

)1 +

l−i−1∑
j=0

Q(Q+ 1)j


=

8L2

α
Hν(ϕsm+l+1) + P +

l∑
i=0

Q

(
8L2

α
Hν(ϕsm+i) + P

)(
1 +Q

(Q+ 1)l−i − 1

(Q+ 1)− 1

)

=
8L2

α
Hν(ϕsm+l+1) + P +

l∑
i=0

Q(Q+ 1)l+1−i−1

(
8L2

α
Hν(ϕsm+i) + P

)
.

In the second inequality, we used the hypothesis of mathematical induction. This is equivalent to
using Gronwall’s lemma. This concludes the proof.

Q.E.D

B.2 Main Proof

We are now ready to prove the main results. The main idea of the following proofs is due to Vempala
and Wibisono (2019). We first evaluate how Hν(ϕk) decreases compared with the previous steps.

Theorem B.1. Under Assumptions 1 and 2, 0 < η < α
16

√
2L2mγ

and γ ≥ 1, for all k = sm + r,
where s ∈ N ∪ {0} and r = 0, . . . ,m− 1, the following holds in the update of SARAH-LD:

Hν(ϕsm+r+1) ≤ e−
3α
2γ η

(
1 +

α

4γ
η

)
Hν(ϕsm+r) + e−

3α
2γ η

r−1∑
i=0

α

4mγ
ηe−

αm
γ ηHν(ϕsm+i)

+ 8η2dL2 (2 + Ξ + 2mΞ) ,

where Ξ = (n−B)
B(n−1) .

Proof. Note that from Lemma A.2, Talagrand’s inequality is satisfied with constant α.
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One step of SVRG-LD can be formulated as follows:

Zsm+r+1 ← Zsm+r − ηv(Z)

sm+r +
√
2η/γϵsm+r.

This can be further interpreted as the output at time t = η of the following SDE:

dZ̃t = −v(Z)

sm+rdt+
√
2/γdBt, Z̃0 = Zsm+r. (12)

In this context, the distribution ϕ̃t of Z̃t depends on both Zsm+r and

β(Z)

sm+r := (v(Z)

sm+r−1, Ism+r).

Let us define their joint distribution as follows:

dϕ̃
rtβ

(Z)
sm+r

(Zsm+r, Z̃t, β
(Z)

sm+r) = dϕ̃
rβ

(Z)
sm+r

(Zsm+r, β
(Z)

sm+r)dϕ̃t|rβ(Z)
sm+r

(Z̃t|Zsm+r, β
(Z)

sm+r)

= dϕ̃
tβ

(Z)
sm+r

(Z̃t, β
(Z)

sm+r)dϕ̃r|tβ(Z)
sm+r

(Zsm+r|Z̃t, β(Z)

sm+r).

Then, the Fokker-Planck equation (2) when Zsm+r and β(Z)

sm+r are fixed becomes

∂ϕ̃
t|rβ(Z)

sm+r
(Z̃t|Zsm+r, β

(Z)

sm+r)

∂t
= ∇ · (ϕ̃

t|rβ(Z)
sm+r

(Z̃t|Zsm+r, β
(Z)

sm+r)v
(Z)

sm+r)

+
1

γ
∆ϕ̃

t|rβ(Z)
sm+r

(Z̃t|Zsm+r, β
(Z)

sm+r). (13)

Therefore, the following holds about the distribution ϕ̃t of Z̃t governed by equation (12),

∂ϕ̃t(z)

∂t
=

∫ ∂ϕ̃
t|rβ(Z)

sm+r
(z|Zsm+r, β

(Z)

sm+r)

∂t
ϕ̃
rβ

(Z)
sm+r

(Zsm+r, β
(Z)

sm+r)dZsm+rdβ
(Z)

sm+r

=

∫ (
∇ · (ϕ̃

t|rβ(Z)
sm+r

(z|Zsm+r, β
(Z)

sm+r)v
(Z)

sm+r) +
1

γ
∆ϕ̃

t|rβ(Z)
sm+r

(z|Zsm+r, β
(Z)

sm+r)

)
· ϕ̃

rβ
(Z)
sm+r

(Zsm+r, β
(Z)

sm+r)dZsm+rdβ
(Z)

sm+r

=

∫
∇ · (ϕ̃

rtβ
(Z)
sm+r

(Zsm+r, z, β
(Z)

sm+r)v
(Z)

sm+r)dZsm+rdβ
(Z)

sm+r

+

∫
1

γ
∆ϕ̃

rtβ
(Z)
sm+r

(Zsm+r, z, β
(Z)

sm+r)dZsm+rdβ
(Z)

sm+r

=∇ ·
(
ϕ̃t(z)

∫
ϕ̃
rβ

(Z)
sm+r|t

v(Z)

sm+rdZsm+rdβ
(Z)

sm+r

)
+

1

γ
∆ϕ̃t(z)

=∇ ·

(
ϕ̃t(z)Eϕ̃

rβ
(Z)
sm+r

|t
[v(Z)

sm+r|Z̃t = z]

)
+

1

γ
∆ϕ̃t(z),

where for the second equation we used equation (13).

Plugging this to

d

dt
Hν(ϕ̃t) =

d

dt

∫
Rn

ϕ̃t log
ϕ̃t
ν
dz =

∫
Rn

∂ϕ̃t
∂t

log
ϕ̃t
ν
dz,
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we obtain
d

dt
Hν(ϕ̃t) =

∫
Rn

(
∇ ·
(
ϕ̃t(z)Eϕ̃rZ|t

[v(Z)

sm+r|Z̃t = z]
)
+

1

γ
∆ϕ̃t(z)

)
log

ϕ̃t
ν
dz

=

∫ (
∇ ·

(
ϕ̃t

(
1

γ
∇ log

ϕ̃t
ν

+ Eϕ̃
rβ

(Z)
sm+r

|t
[v(Z)

sm+r|Z̃t = z]−∇F

)))
log

ϕ̃t
ν
dz

= −
∫
ϕ̃t

〈
1

γ
∇ log

ϕ̃t
ν

+ Eϕ̃
rβ

(Z)
sm+r

|t
[v(Z)

sm+r|Z̃t = z]−∇F,∇ log
ϕ̃t
ν

〉
dz

= −
∫
ϕ̃t

1

γ

∥∥∥∥∥log ϕ̃tν
∥∥∥∥∥
2

dz

+

∫
Rn

ϕ̃t

〈
∇F − Eϕ̃

rβ
(Z)
sm+r

|t
[v(Z)

sm+r|Z̃t = z],∇ log
ϕ̃t
ν

〉
dz

= − 1

γ
Jν(ϕ̃t)

+

∫
ϕ̃
rtβ

(Z)
sm+r

〈
∇F − v(Z)

sm+r,∇ log
ϕ̃t
ν

〉
dZsm+rdzdβ

(Z)

sm+r

= − 1

γ
Jν(ϕ̃t) + Eϕ̃

rtβ
(Z)
sm+r

[〈
∇F (Z̃t)− v(Z)

sm+r,∇ log
ϕ̃t(Z̃t)

ν(Z̃t)

〉]
.

Now, let us define the second term of the right-hand side of the very last equality as B⃝. Applying
⟨a, b⟩ ≤ γ∥a∥2 + 1

4γ ∥b∥
2 to this, we obtain

B⃝ ≤ γEϕ̃
rtβ

(Z)
sm+r

[
∥∇F (Z̃t)− v(Z)

sm+r∥2
]
+

1

4γ
Eϕ̃

rtβ
(Z)
sm+r

∥∥∥∥∥∇ log
ϕ̃t(Z̃t)

ν(Z̃t)

∥∥∥∥∥
2


≤ 2γEϕ̃
rtβ

(Z)
sm+r

[
∥∇F (Z̃t)−∇F (Zsm+r)∥2

]
+ 2γEϕ̃

rtβ
(Z)
sm+r

[
∥∇F (Zsm+r)− v(Z)

sm+r∥2
]

+
1

4γ
Jν(ϕ̃t)

≤ 2γL2Eϕ̃
rtβ

(Z)
sm+r

[∥Z̃t − Zsm+r∥2] +
r∑
i=1

2γΞL2η2E[∥v(Z)

sm+i−1∥
2] + 4ηmdL2Ξ

+
1

4γ
Jν(ϕ̃t),

where for the last inequality, we used the smoothness of F and Lemma B.2.

As Z̃t = Zsm+r − tv(Z)

sm+r +
√
2t/γϵsm+r (ϵsm+r ∼ N(0, I)), from Lemma B.3, we have

E[∥Z̃t − Zsm+r∥2] = E[∥ − tv(Z)

sm+r +
√

2t/γϵsm+r∥2]
= t2E[∥v(Z)

sm+r∥2] + 2td/γ

≤ t2
(
8L2

α
Hν(ϕsm+r) + P

)
+ t2

r−1∑
i=0

Q(Q+ 1)r−i−1

(
8L2

α
Hν(ϕsm+i) + P

)
+ 2td/γ.

Furthermore, by the proof of Lemma B.3, we know that the following holds:
r∑
i=1

E[∥v(Z)

sm+i−1∥
2] ≤

r−1∑
i=0

(Q+ 1)r−i−1

(
8L2

α
Hν(ϕsm+i) + P

)
.
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As a result, taking into account that we are only concerned about the time interval 0 ≤ t ≤ η,
applying t ≤ η, we conclude

B⃝ ≤ 2γL2η2

(
8L2

α
Hν(ϕsm+r) + P +

r−1∑
i=0

Q(Q+ 1)r−i−1

(
8L2

α
Hν(ϕsm+i) + P

))

+ 4ηdL2 + 2γL2η2Ξ

r−1∑
i=0

(Q+ 1)r−i−1

(
8L2

α
Hν(ϕsm+i) + P

)
+ 4ηmdL2Ξ

+
1

4γ
Jν(ϕ̃t)

≤ 16L4γη2

α
Hν(ϕsm+r) +

r−1∑
i=0

(Q+ 1)r−i
16γL4η2

α
Hν(ϕsm+i) + 2γL2η2

r∑
i=0

(Q+ 1)r−iP

+ 4ηdL2(1 + 2mΞ) +
1

4γ
Jν(ϕ̃t)

≤ 16L4γη2

α
Hν(ϕsm+r) +

r−1∑
i=0

16L4γη2

α
(Q+ 1)rHν(ϕsm+i) + 2γL2η2

r∑
i=0

(Q+ 1)rP

+ 4ηdL2(1 + 2mΞ) +
1

4γ
Jν(ϕ̃t)

≤ 16L4γη2

α
Hν(ϕsm+r) +

r−1∑
i=0

16L4γη2

α
(Q+ 1)mHν(ϕsm+i) + 2γL2η2m(Q+ 1)mP

+ 4ηdL2(1 + 2mΞ) +
1

4γ
Jν(ϕ̃t).

where for the second inequality we used Ξ ≤ 1 and for the last inequality r < m.

Here, as Ξ ≤ 1 and η ≤ 1
4mL by α ≤ γL,

(Q+ 1)m ≤ eQm = e2L
2mη2Ξ ≤ e1/4 ≤ 2.

Therefore,

B⃝ ≤ 16L4γη2

α
Hν(ϕsm+r) +

r−1∑
i=0

32L4γη2

α
Hν(ϕsm+i)

+ 4γL2η2mP + 4ηdL2(1 + 2mΞ) +
1

4γ
Jν(ϕ̃t)

≤ 16L4γη2

α
Hν(ϕsm+r) +

r−1∑
i=0

32L4γη2

α
Hν(ϕsm+i)

+ 4γL2η2m

(
4dL

γ
+

4ηmdL2

γ
Ξ

)
+ 4ηdL2(1 + 2mΞ) +

1

4γ
Jν(ϕ̃t)

≤ 16L4γη2

α
Hν(ϕsm+r) +

r−1∑
i=0

32L4γη2

α
Hν(ϕsm+i)

+ 4ηdL2 (2 + Ξ + 2mΞ) +
1

4γ
Jν(ϕ̃t).

where for the last inequality, we used η ≤ 1
4mL .

Thus,

d

dt
Hν(ϕ̃t) ≤ −

3

4γ
Jν(ϕ̃t) +

16L4γη2

α
Hν(ϕsm+r) +

r−1∑
i=0

32L4γη2

α
Hν(ϕsm+i)

+ 4ηdL2 (2 + Ξ + 2mΞ) .
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According to Assumption 2,

d

dt
Hν(ϕ̃t) ≤ −

3α

2γ
Hν(ϕ̃t) +

16L4γη2

α
Hν(ϕsm+r) +

r−1∑
i=0

32L4γη2

α
Hν(ϕsm+i)

+ 4ηdL2 (2 + Ξ + 2mΞ) .

Grouping the second to fourth terms as U (Z)

sm+r and multiplying both sides by e
3α
2γ t, we can write the

above equation as

d

dt

(
e

3α
2γ tHν(ϕ̃t)

)
≤ e

3α
2γ tU (Z)

sm+r.

Integrating both sides from t = 0 to t = η and using ϕ̃η = ϕsm+r+1, we obtain

e
3α
2γ ηHν(ϕsm+r+1)−Hν(ϕsm+r) ≤

2γ(e
3α
2γ η − 1)

3α
U (Z)

sm+r

≤ 2ηU (Z)

sm+r.

Here, for the last inequality, we used ec ≤ 1 + 2c (0 < c = 3α
2γ η ≤ 1) holds since 0 < η ≤

α
16

√
2L2mγ

≤ 2γ
3α , where we used 1/L ≤ γ/α and m ≥ 1. Rearranging this, we obtain

Hν(ϕsm+r+1) ≤ e−
3α
2γ η

(
1 +

32γL4η3

α

)
Hν(ϕsm+r) + e−

3α
2γ η

r−1∑
i=0

64γL4η3

α
Hν(ϕsm+i)

+ e−
3α
2γ η8η2dL2 (2 + Ξ + 2mΞ) . (14)

Furthermore, since η ≤ α
16

√
2mL2γ

≤ α
8
√
3L2γ

and e−
3α
2γ η ≤ 1,

Hν(ϕsm+r+1) ≤ e−
3α
2γ η

(
1 +

α

4γ
η

)
Hν(ϕsm+r) + e−

3α
2γ η

r−1∑
i=0

α

8γm
ηHν(ϕsm+i)

+ 8η2dL2 (2 + Ξ + 2mΞ) .

On the other hand, since η ≤ α
8mL2γ and α ≤ γL holds,

e−
αm
γ η ≥ e

−αm
γ · α

8mL2γ = e
− α2

8L2γ2 ≥ e−1/8 ≥ 0.88 ≥ 1

2
,

which further implies

Hν(ϕsm+r+1) ≤ e−
3α
2γ η

(
1 +

α

4γ
η

)
Hν(ϕsm+r) + e−

3α
2γ η

r−1∑
i=0

α

4mγ
ηe−

αm
γ ηHν(ϕsm+i)

+ 8η2dL2 (2 + Ξ + 2mΞ) .

Q.E.D

Finally, let us prove Theorem 2 and Corollary 2.1.

Theorem B.2 (Theorem 2 restated). Under Assumptions 1 and 2, 0 < η < α
16

√
2L2mγ

and γ ≥ 1,
for all k, the following holds in the update of SARAH-LD:

Hν(ϕk) ≤ e−
αη
γ kHν(ϕ0) +

32ηγdL2

3α
(2 + Ξ + 2mΞ) ,

where Ξ = (n−B)
B(n−1) .

Proof. Same as Theorem A.2.
Q.E.D
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Corollary B.2.1 (Corollary 2.1 restated). Under the same assumptions as Theorem B.2, for all ϵ ≥ 0,
if we choose step size η such that

η ≤ 3αϵ

64γdL2
(2 + Ξ + 2mΞ)

−1
,

then a precision Hν(ϕk) ≤ ϵ is reached after

k ≥ γ

αη
log

2Hν(ϕ0)

ϵ

steps. Especially, if we take B = m =
√
n and the largest permissible step size η = α

16
√
2L2

√
nγ
∧

3αϵ
320dL2γ , then the gradient complexity becomes

Õ

((
n+

dn
1
2

ϵ

)
· γ

2L2

α2

)
.

Proof. The first half of the statement is the same as Corollary A.2.1.

When B ≥ m, from Theorem B.2, we obtain

Hν(ϕk) ≤ e−
αη
γ kHν(ϕ0) +

32ηγdL2

3α
(2 + Ξ + 2mΞ)

≤ e−
αη
γ kHν(ϕ0) +

160ηγdL2

3α
.

Proceeding in the same way as Corollary A.2.1, we obtain the optimal gradient complexity of

Õ

((
n+

dn
1
2

ϵ

)
· γ

2L2

α2

)
with B = m =

√
n and η = α

16
√
2L2

√
nγ
∧ 3αϵ

320dL2γ .

Now, when B ≤ m, from Theorem B.2, we obtain

Hν(ϕk) ≤ e−
αη
γ kHν(ϕ0) +

32ηγdL2

3α
(2 + Ξ + 2mΞ)

≤ e−
αη
γ kHν(ϕ0) +

160ηγdL2

3α

m

B
.

This leads to a gradient complexity of

Õ

((
n+

d(m+ n/B)

ϵ

)
· γ

2L2

α2

)
with η = α

16
√
2L2mγ

∧ 3αϵ
320dL2γ

B
m , which is optimal with B = m =

√
n again.

Q.E.D

C Proof of Theorem 3, Corollaries 3.1 and 3.2

We define Xk like Algorithm 1 in order to simultaneously represent Yk and Zk.

C.1 Preparation for the Proof

C.1.1 Link between Sampling and Optimization

Since
EXk

[F (Xk)]− F (X∗)

can be separated into the discretisation error
EXk

[F (Xk)]− EX∼ν [F (X)]

and the approximation error due to sampling
EX∼ν [F (X)]− F (X∗),

in this subsection, we analyse the upper bound of these two terms.
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Property C.1. Under Assumption 1, the following holds:

∀x ∈ Rd, F (x)− F (x∗) ≥ 1

2L
∥∇F (x)∥,

where x∗ is the global minimum of F .

Proof. Let us define G(x) := F (x)− F (x∗). Since G is also L-smooth,

G

(
x− 1

L
∇G(x)

)
≤ G(x)− 1

L
∥∇G(x)∥2 + 1

2L
∥∇G(x)∥2 = G(x)− 1

2L
∥∇G(x)∥2,

where for the inequality, we used that the following holds for a L-smooth function H:

∀x, y ∈ Rd, H(y) ≤ H(x) + ⟨∇H(x), y − x⟩+ L

2
∥y − x∥2.

Now, since G ≥ 0, we obtain

F (x)− F (x∗) ≥ 1

2L
∥∇F (x)∥,

which concludes the proof.
Q.E.D

Theorem C.1. Under Assumption 1, the following holds for distributions ρk and ν:

EXk∼ρk [F (Xk)]− EX∼ν [F (X)] ≤ LW 2
2 (ρk, ν) + EX∼ν [F (X)]− F (X∗),

where X∗ is the global minimum of F . The same statement holds with Xk ∼ ϕk.

Proof. Let Xk ∼ ρk and X ∼ ν be an optimal coupling so that E[∥Xk −X∥2] =W2(ρk, ν)
2. The

following holds only from the smoothness of F :

F (Xk)− F (X) =

∫ 1

0

⟨Xk −X,∇F ((1− t)X + tXk)⟩dt

≤
∫ 1

0

∥Xk −X∥∥∇F ((1− t)X + tXk) ∥dt

≤
∫ 1

0

∥Xk −X∥∥∇F ((1− t)X + tXk)−∇F (X)∥

+ ∥Xk −X∥∥∇F (X)∥dt

≤
∫ 1

0

Lt∥Xk −X∥2 +
L

2
∥Xk −X∥2 +

1

2L
∥∇F (X)∥2dt

≤ L∥Xk −X∥2 + F (X)− F (X∗).

For the first inequality, we used the Cauchy-Schwarz inequality, for the third inequality we used the
smoothness of F on the first term, and for the fourth inequality, Property C.1.

Hence, taking expectation of both sides, we obtain the desired result.
Q.E.D

Corollary C.1.1. Under the same assumptions as Theorem C.1, the following holds:

EXk∼ρk [F (Xk)]− F (X∗) ≤ LW 2
2 (ρk, ν) + 2 (EX∼ν [F (X)]− F (X∗)) .

The same statement holds with Xk ∼ ϕk.

An important feature of this theorem is that the square of the 2-Wasserstein metric appears. Thanks
to this and Talagrand’s inequality, we can directly use the results from sampling (e.g., Corollaries 1.1
and 2.1)

The approximation error can be bounded thanks to the following theorem from Raginsky et al. (2017).
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Theorem C.2 (Raginsky et al. (2017), Proposition 11). Under Assumptions 1 and 3, for all γ ≥ 2
M

EX∼ν [F (X)]− F (X∗) ≤ d

2γ
log

(
eL

M

(
bγ

d
+ 1

))
.

Corollary C.2.1. Under the same assumptions as Theorem C.2, for all ϵ > 0, if we additionally
require γ ≥ 4d

ϵ log
(
eL
M

)
∨ 8db

ϵ2 , then

EX∼ν [F (X)]− F (X∗) ≤ ϵ

4
.

Proof. Since
d

2γ
log

(
eL

M

(
bγ

d
+ 1

))
=

d

2γ
log

eL

M
+

d

2γ
log

(
bγ

d
+ 1

)
,

it suffices to have d
2γ log

eL
M ≤

ϵ
8 and d

2γ log
(
bγ
d + 1

)
≤ ϵ

8 . Furthermore, since for all x ≥ 0

log (x+ 1)

x
≤ 1√

x+ 1
≤ 1√

x

holds, we only need to require d
2γ log

eL
M ≤

ϵ
8 and b

2
1√
bγ/d

≤ ϵ
8 . Solving these two inequalities

according to γ leads to the desired result.
Q.E.D

Remark C.1. The lower bound 4d
ϵ log

(
eL
M

)
∨ 8db

ϵ2 is only calculated to acquire a concrete condition
on γ. A more involved analysis could find a better lower bound.

C.1.2 Explicit Formulation of the Log-Sobolev Constant

In this subsection, we give an explicit formulation of the Log-Sobolev constant of dν ∝ e−γFdx in
function of γ for two cases: under Assumptions 1 and 3, and under Assumptions 1, 3 and 4 to 6. The
second case is roughly the first combined with the Morse condition.

When we only assume dissipativity and smoothness, we can obtain a Log-Sobolev constant whose
inverse exponentially depends on the inverse temperature γ. This employs the following result from
Raginsky et al. (2017).
Property C.2 (Raginsky et al. (2017), Proposition 9). Under Assumptions 1 and 3, for all γ ≥ 2

M , ν
satisfies Log-Sobolev inequality with a constant α such that

1

α
≤ 2M2 + 2L2

M2Lγ
+

1

λ∗

(
6L(d+ γ)

M
+ 2

)
,

where

1

λ∗
≤ 1

Mγ(d+ bγ)
+

2C∗(d+ bγ)

Mγ
exp

(
2

M
(L+B∗)(bγ + d) + γ(A∗ +B∗)

)
.

Here, A∗ = maxi {|fi(0)|}, B∗ = maxi {|∇fi(0)|} and C∗ is a universal constant that does not
depend on F .

From this, we immediately have the following property.
Property C.3. Under Assumptions 1 and 3, for all γ ≥ 2

M , we can take a Log-Sobolev constant α of
ν which can be written with constants C1 and C2 > 0 independent of γ as follows:

α = γC1e
−C2γ ,

where

C1 =

(
2M2 + 2L2

M2L
+

(
6Ld

M
+ 2

)(
1

Md
+

2C∗d

M
e

2d
M (L+B∗)

))−1

,

and
C2 =

2b

M
(L+B∗) + (A∗ +B∗) + b+ 1.

36



Proof. From Proposition C.2,

γ

α
≤ 2M2 + 2L2

M2L
+

γ

λ∗

(
6L(d+ γ)

M
+ 2

)
,

and
γ

λ∗
≤ 1

M(d+ bγ)
+

2C∗(d+ bγ)

M
exp

(
2

M
(L+B∗)(bγ + d) + γ(A∗ +B∗)

)
.

Roughly bounding these inequalities, we obtain

γ

λ∗
≤ 1

Md
+

2C∗(d+ bγ)

M
e

2d
M (L+B∗)e(

2b
M (L+B∗)+(A∗+B∗))γ

≤ 1

Md
+

2C∗d

M
e

2d
M (L+B∗)e(

2b
M (L+B∗)+(A∗+B∗)+b)γ

≤
(

1

Md
+

2C∗d

M
e

2d
M (L+B∗)

)
e(

2b
M (L+B∗)+(A∗+B∗)+b)γ ,

where for the second inequality we used d+ bγ ≥ debγ for all γ > 0 when d ≥ 1. Thus,

γ

α
≤ 2M2 + 2L2

M2L
+

γ

λ∗

(
6L(d+ γ)

M
+ 2

)
≤ 2M2 + 2L2

M2L
e(

2b
M (L+B∗)+(A∗+B∗)+b+1)γ +

γ

λ∗

(
6Ld

M
+ 2

)
eγ

≤
(
2M2 + 2L2

M2L
+

(
6Ld

M
+ 2

)(
1

Md
+

2C∗d

M
e

2d
M (L+B∗)

))
e(

2b
M (L+B∗)+(A∗+B∗)+b+1)γ .

Finally, taking into account that a lower bound of a Log-Sobolev constant automatically satisfies the
Log-Sobolev inequality, we obtain the desired result.

Q.E.D

On the other hand, under the additional condition of Morse, Lipschitzness of ∇2F and other minor
assumptions, we can obtain a far better Log-Sobolev constant whose inverse depends only linearly on
γ as follows. This is a straightforward adaptation of Li and Erdogdu’s result (Li and Erdogdu, 2020).
We provide a proof in Appendix D.
Property C.4. Under Assumptions 1, 3 and 4 to 6, with γ ≥ 1 such that

γ ≥ Cγ := max

(
1,

(
24dL

C2
F

)2
4dL′2

λ†
2 , 4L′2

(
24dL

C2
F

)6
)
,

where CF is defined in Lemma D.5, ν satisfies the Log-Sobolev inequality with constant α such that
1

α
=

γ

C3
,

where

C3 :=

(
2M2 + 8L2

M2L
+

(
6L(d+ 1))

M
+ 2

)
35

λ†

)
.

C.2 Main Proof

Theorem C.3 (Theorem 3 restated). Using SVRG-LD or SARAH-LD, under Assumptions 1 to 3,
0 < η < α

16
√
6L2mγ

, γ ≥ 4d
ϵ log

(
eL
M

)
∨ 8db

ϵ2 ∨ 1 ∨ 2
M and B ≥ m, if we take B = m =

√
n and

the largest permissible step size η = α
16

√
6L2

√
nγ
∧ 3

1792
α2ϵ
L2dγ , the gradient complexity to reach a

precision of
EXk

[F (Xk)]− F (X∗) ≤ ϵ
is

Õ

((
n+

n
1
2

ϵ
· dL
α

)
γ2L2

α2

)
,

where α is a function of γ.
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Proof. It is sufficient to consider the case of SVRG-LD with Xk ∼ ρk. From Corollary C.1.1, the
sufficient condition for

EXk
[F (Xk)]− F (X∗) ≤ ϵ

is LW 2
2 (ρk, ν) ≤ ϵ/2 and EX∼ν [F (X)]−F (X∗) ≤ ϵ/4. From Corollary C.2.1, the latter condition

is satisfied when γ ≥ 4d
ϵ log

(
eL
M

)
∨ 8bd

ϵ2 ∨1∨
2
M . Moreover, concerning the former, from Talagrand’s

inequality

W 2
2 (ρk, ν) ≤

2

α
Hν(ρk),

it suffices to have
Hν(ρk) ≤

αϵ

4L
.

Thus, from Corollaries A.2.1 and B.2.1, under the same conditions, we obtain a gradient complexity
of

Õ

((
n+

n
1
2

ϵ
· dL
α

)
γ2L2

α2

)
.

Q.E.D

This leads to the following corollaries.
Corollary C.3.1 (Corollary 3.1 restated). Under the same assumptions as Theorem C.3, taking

γ = i(ϵ) :=
4d

ϵ
log

(
eL

M

)
∨ 8db

ϵ2
∨ 1 ∨ 2

M
,

we obtain a gradient complexity of

Õ

((
n+

n
1
2

ϵ
· dL

C1i(ϵ)
eC2i(ϵ)

)
L2e2C2i(ϵ)

)
since α = γC1e

−C2γ (Property C.3).

Proof. The proof follows from Property C.3.
Q.E.D

Corollary C.3.2 (Corollary 3.2 restated). Under the same assumptions as Theorem 11 and Assump-
tions 4 to 6, taking

γ = j(ϵ) :=
4d

ϵ
log

(
eL

M

)
∨ 8db

ϵ2
∨ 1 ∨ 2

M
∨ Cγ ,

where Cγ is a constant independent of ϵ defined in Property C.4, we obtain a gradient complexity of

Õ

((
n+

n
1
2

ϵ
· dL
C3

j(ϵ)

)
C2

3j(ϵ)
4L2

)
since α = C3/γ (Property C.4).

Proof. The proof follows from Property C.4.
Q.E.D

D Proof of Property C.4

D.1 Overview and Main Result

In this appendix, we prove Property C.4 which is only a slight adaptation of Theorem 3.4 from Li
and Erdogdu (2020), which builds its foundation from prior work such as Cattiaux et al. (2010) and
Menz and Schlichting (2014). We show that with additional Morse, and smoothness assumptions to
dissipativity, we can obtain a Log-Sobolev constant of dν ∝ e−γFdx whose inverse only depends
linearly on the inverse temperature parameter. Property C.4 is reminded below in a more precise
form.
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Theorem 4. Under Assumptions 1, 3 and 4 to 6, with a > 0 and γ ≥ 1 such that

a2 ≥ 24dL

C2
F

,

and

γ ≥ max

(
1, a2

4dL′2

λ†
2 , 4L′2a6

)
,

ν satisfies the Log-Sobolev inequality with constant α such that

1

α
=

(
2M2 + 8L2

M2L
+

(
6L(d+ 1))

M
+ 2

)
35

λ†

)
γ.

This theorem shows that the strict saddle node assumption is almost sufficient to obtain in the
Euclidean space for dissipative distributions a Log-Sobolev constant whose inverse does not exponen-
tially depend on the inverse temperature, which was the case without this assumption.

D.2 Preliminaries

We first clarify some definitions.
Definition D.1. We say a probability measure ν satisfies the Poincaré inequality with a constant κ if
for all smooth g : Rd → R,

Eν [g2]− Eν [g]2 ≤
1

κ
Eν [∥∇g∥2].

Definition D.2. A probability measure ν on Rd restricted on a set Z ⊂ Rd is defined as

ν|Z :=
ν(x)∫

Z ν(y)dy
1Z(x).

Definition D.3. We define the following sets:

B :=

{
x ∈ Rd | d(x,S)2 < a2

γ

}
,

U :=

{
x ∈ Rd | d(x,X )2 < a2

γ

}
,

A :=

{
x ∈ Rd | d(x,S ∪ X )2 ≥ a2

4γ

}
,

where X is the set of global minima and S is the set of stationary points except the global minima.
Note that B ∪ U ∪ A = Rd.

Here, the distance from a point x ∈ Rd and a set Z ⊂ Rd is defined as

d(x,Z) := inf
z∈Z
∥x− z∥.

In this appendix, we only consider the following generator L.
Definition D.4. We define L such that

Lf := ⟨−∇f,∇F ⟩+ 1

γ
∆f, ∀f ∈ C2(Rd)

which is the generator of the gradient Langevin Dynamics (1).

We will need some lemmas proved by Li and Erdogdu (2020).
Lemma D.1 (Li and Erdogdu (2020)). Under Assumptions 1 and 5, suppose y ∈ Rd is a stationary
point of F . Then, with

H(x) := ∇2F (0) · x
defined in the coordinate centered at y, we obtain for all x ∈ Rd,

∥∇F −H(x)∥ ≤ L′∥x∥2.
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Proof. From the mean value theorem, there exist a x̂ on the line between 0 and x such that

∇F (x) = ∇F (0) +∇2F (x̂) · x = ∇2F (x̂) · x,

where for the last equality, we used that 0 was a stationary point. Therefore, we obtain

∥∇F (x)−H(x)∥ = ∥∇2F (x̂) · x−∇2F (0) · x∥
≤ ∥∇2F (x̂)−∇2F (0)∥∥x∥
≤ L′∥x̂∥∥x∥
≤ L′∥x∥2,

where for the second inequality we used the L′-Lipschitzness of ∇2F , and for the last inequality we
used ∥x̂∥ ≤ ∥x∥.

Q.E.D

Lemma D.2 (Li and Erdogdu (2020), Proposition E.5). Let Wt and W̃t be weak solutions on some
filtered probability space of the following one dimensional SDE’s:

dWt = Φ(Wt)dt+ σdBt,

dW̃t = Φ̃(W̃t)dt+ σdBt,

where W0 = W̃0 a.s. and σ > 0 is a constant. We further assume that for all T ≥ 0,∫ T

0

|Φ(Wt)|+ |Φ̃(W̃t)|dt <∞, a.s.

If Φ(Wt) ≥ Φ̃(W̃t) for all x ∈ R, then Wt ≥ W̃t a.s.
Lemma D.3 (Li and Erdogdu (2020), Corollary D.6). Consider the following Cox-Ingersoll-Ross
process defined as

dWt =

(
2λ†Wt +

1

2γ

)
dt+

2
√
γ

√
WtdBt, W0 = w0 ≥ 0,

where λ† > 0, γ > 0 and {Bt}t≥0 is a standard one dimensional Brownian motion. Then for its
unique strong solution Wt, we have the following density function:

f(w; t) = 2−
5
4

(
w

w0

)− 1
4 λ†γ

e
λ†t
2 sinh(λ†t)

exp

(
λ†γ(we−2λ†t − w0

2 )

1− e−2λ†t

)
I− 1

2

(
λ†γ

sinh(λ†t)

√
ww0

2

)
for w > 0 and f(w; t) = 0 for w = 0, where I− 1

2
is the modified Bessel function of the first kind of

degree − 1
2 . Thus, Wt > 0 a.s.

Lemma D.4 (Li and Erdogdu (2020), Lemma C.7). For the density function f(w; t) defined in
Lemma D.3, we have for w ≤ R and t ≥ 0,

f(w; t) ≤ Ce−2λ†t,

where C := C(R, λ†, γ) > 0 is a constant independent of t and w0.

Finally, the next two theorems will be highly useful to establish the Poincaré inequality with an
explicit constant.
Theorem D.1 (Bakry et al. (2008), Theorem 1.4 adapted). Suppose ν|Z (Z ⊂ Rd) satisfies the
Poincaré inequality with constant κZ and there exists a Lyapunov function V ∈ C2(Z ′), where
Z ⊂ Z ′. That is, V ≥ 1 and there exist constants θ > 0 and b ≥ 0 such that

LV = ⟨−∇F,∇V ⟩+ 1

γ
∆V ≤ −θV + b1Z .

Then ν|Z′ satisfies the Poincaré inequality with constant

κ =
θ

1 + b/κZ
.
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Theorem D.2 (Li and Erdogdu (2020), Lemma B.14 adapted). Set the following neighbourhood of
saddle points

Br = {x ∈ Rd | d(x,S) < r}.

Let r > r̃ > 0 and suppose ν |Br̃
satisfies the Poincaré inequality with constant κ̃ and there exist a

Lyapunov function 1 ≤ V ∈ C2(B) and a constant θ > 0 such that

LV ≤ −θV.

Then, ν satisfies the Poincaré inequality with constant κ such that

1

κ
=

4

θ
+

(
4

θγ(r − r̃)2
+ 2

)
1

κ̃
.

From these theorems, we will be able to find a Poincaré constant for ν consecutively from U to U ∪A
and then to Rd.

D.3 Lyapunov Function for B

The following theorem gives a sufficient condition to find a Lyapunov function for B in the sense of
Theorem D.2. This is actually a combination of Bovier and Den Hollander’s Theorem 7.15 (Bovier
and Den Hollander, 2016) and Wainwright’s Theorem 2.13 (Wainwright, 2019). See Li and Erdogdu
(2020) for details.

Theorem D.3 (Li and Erdogdu (2020), Proposition 9.5). If there exist constants c1 > 0 and c2 > 0
such that

P (τBc ≥ t | X0 = x) ≤ c1e−c2t, ∀t ≥ 0,∀x ∈ B,

where τBc := inf{t ≥ 0 | Xt /∈ B}, then by defining V (x) := E[ec2τBc/2 | X0 = x], the following
holds:

LV ≤ −c2
2
V.

It is thus enough to establish an exponentially decaying tail bound for τBc as shown in the next
theorem.

Theorem D.4 (Li and Erdogdu (2020), Proposition 9.6 adapted). Let {Xt}t≥0 be the Langevin
diffusion defined in (1). Under Assumptions 1, 4 and 5, with a > 0 and γ > 0 such that

γ ≥ max
(
a2, 4L′2a6

)
,

the following holds:

P (τBc ≥ t | X0 = x) ≤ c1e−λ
†t/2, ∀t ≥ 0,∀x ∈ B,

where c1 := c1(a, γ, λ
†) is a constant independent of t and x. Hence, V (x) := E[eθτBc | X0 = x] is

a Lyapunov function on B in the sense of Theorem D.2 with parameter θ = λ†

4 .

Proof. For each y ∈ S, we define vy as the unit eigenvector of ∇2F (y) that corresponds to the
minimum eigenvalue of∇2F (y). From Assumption 4, we have that

〈
vy,∇2F (y)vy

〉
≤ −λ†. Now,

let us fix a x ∈ B and take a y ∈ S such that ∥x− y∥2 < a2

γ . In the remainder of this proof, we will
work in coordinates centered at this y. Without loss of generality, we can thus set y = 0.

Let r(x) := ∥x∥. Then

∇r(x) = x

∥x∥
.

We also define P : B → B̃ where B̃ :=
{
tv0 | |t| < a2

γ

}
such that

Px := ⟨v0, x⟩v0,
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and r̃(x) := |⟨v0, x⟩|.2 As a result,

∇r̃(x) = Px

∥Px∥
= sign(⟨v0, x⟩)v0.

Using Itô’s formula, we obtain

d

(
1

2
r̃(Xt)

2

)
=

(
⟨−∇F (Xt), r̃(Xt)∇r̃(Xt)⟩+

1

γ

(
∥∇r̃(Xt)∥2 + r̃(Xt)∆r̃(Xt)

))
dt

+
2

γ
⟨r̃(Xt)∇r̃(Xt),dWt⟩.

Since ∇r̃(x) is a unit vector, we can consider ⟨∇r̃(Xt), dWt⟩ as a standard one-dimensional Brown-
ian motion independent of Xt that we denote as dBt.

Next, considering
H(x) := ∇2F (0) · x,

it follows from Lemma D.1 that

∥∇F (x)−H(x)∥ ≤ L′∥x∥2.

Therefore,

⟨−∇F (Xt),∇r̃(Xt)⟩ = ⟨−H(Xt),∇r̃(Xt)⟩ − ⟨F (Xt)−∇H(Xt),∇r̃(Xt)⟩
≥ ⟨−H(Xt),∇r̃(Xt)⟩ − ∥H(Xt)−∇F (Xt)∥∥∇r̃(Xt)∥
≥ ⟨−H(Xt),∇r̃(Xt)⟩ − ∥H(Xt)−∇F (Xt)∥
≥ ⟨−H(Xt),∇r̃(Xt)⟩ − L′∥Xt∥2,

where for the second inequality, we used that∇r̃(x) is a unit vector.

Using the definition of H(x), we can further write

⟨−H(x),∇r̃(x)⟩ = −
〈
∇2F (0) · x, Px

∥Px∥

〉
≥ λ†r̃(x),

where for the inequality, we used that v0 is an eigenvector of∇2F (0) and Assumption 4.

Since ∆r̃(x) ≥ 0 we have that ∥∇r̃(x)∥2 + r̃(x)∆r̃(x) ≥ 1. Therefore, from Lemma D.2, 1
2 r̃(Xt)

2

is lower bounded by the stochastic process 1
2

(
r
(1)
t

)2
defined as

d

(
1

2

(
r
(1)
t

)2)
=

(
λ†
(
r
(1)
t

)2
− L′∥Xt∥2r(1)t +

1

γ

)
dt+

√
2

γ
r
(1)
t dBt.

Since we are only concerned with Xt ∈ B, the following holds:

∥Xt∥2 ≤
a2

γ
,

and

r
(1)
t ≤ r̃(Xt) ≤

√
a2

γ
.

We can again use Lemma D.2 to obtain a lower bound of r(1)t defined as

d

(
1

2

(
r
(2)
t

)2)
=

(
λ†
(
r
(2)
t

)2
− L′ a

3

γ3/2
+

1

γ

)
dt+

√
2

γ
r
(2)
t dBt

=

(
λ†
(
r
(2)
t

)2
+

1

γ

(
1− L′ a

3

γ1/2

))
dt+

√
2

γ
r
(2)
t dBt.

2Note that, r̃(x) is not differentiable for x such that r̃(x) = 0. For these points, we redefine ∇r̃(x) and
∆r̃(x) to be some constant Cr > 0, but this case can be ignored as shown later.

42



Since γ ≥ 4L′2a6, 1− L′ a3

γ1/2 ≥ 1
2 . This gives us a further lower bound r(3)t defined as

d

(
1

2

(
r
(3)
t

)2)
=

(
2λ†

1

2

(
r
(3)
t

)2
+

1

2γ

)
dt+

√
2

γ
r
(3)
t dBt.

This is a Cox-Ingersoll-Ross process with Wt =
1
2

(
r
(3)
t

)2
. Consequently, from Lemmas D.3 and

D.4, when x ≤ a2

2γ , the density function f(w; t) satisfies

f(w; t) ≤ Ce−λ
†t/2,

for all t ≥ 0 and some constant C := C(a, γ, λ†) independent of t and x. Furthermore, since r̃(Xt)

is lower-bounded by r(3)t which is almost surely positive by Lemma D.3, the case r̃(Xt) = 0 can be
ignored.

As a result, we obtain

P (τBc ≥ t | X0 = x) = P

(
sup
s∈[0,t]

1

2
r(Xs)

2 ≤ a2

2γ
| X0 = x

)

≤ P
(
1

2
r(Xt)

2 ≤ a2

2γ
| X0 = x

)
≤ P

(
1

2

(
r
(3)
t

)2
≤ a2

2γ
| r(3)0 = r̃(x)

)

=

∫ a2

2γ

0

f(w; t)dw

≤ a2

2γ
Ce−λ

†t/2,

where for the second equality, we used Lemma D.3 and for the last inequality we used Lemma D.4.
This gives the desired result.

Q.E.D

D.4 Lyapunov Function for A

In this section, we prepare statements for the Lyapunov function on A.

Lemma D.5 (Li and Erdogdu (2020), Lemma 9.7 adapted). Under Assumptions 1,3, 4 and 5, with
C := S ∪ X , there exists a constant 0 < CF ≤ 1 such that

∥∇F (x)∥ ≥ CF d(x, C),

where

CF := min

(
1,
λ†

2
, inf
x:d(x,C)> λ†

4L′

∥∇F (x)∥
d(x, C)

)
.

Proof. First, observe that when F is (M, b)-dissipative, we have

1

M
∥∇F (x)∥2 + M

2
∥x∥2 ≥M∥x∥2 − b,

which leads to
∥∇F (x)∥
∥x∥

≥
√
M2

2
−Mb/∥x∥2.

We obtain thus

lim inf
∥x∥→∞

∥∇F (x)∥
∥x∥

≥
√
M2

2
. (15)
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Therefore,

inf
x:d(x,C)> λ†

4L′

∥∇F (x)∥
d(x, C)

> 0,

since by equation (15) ∥∇F (x)∥/d(x, C) > 0 holds outside a compact set of x around the origin
and since in this compact set and away from stationary points there exist an x that minimizes
∥∇F (x)∥/d(x, C) and that cannot be 0 as we are outside C. As a result, we just have to consider the
case when d(x, C) ≤ λ†

4L′ .

Let y be a stationary point such that ∥x− y∥ < 2d(x, C) ≤ λ†

2L′ . Since∇2F (x) is L′-Lipschitz,

∥∇F (x)−∇F (y)−∇2F (y)⊤(x− y)∥ ≤ L′

2
∥x− y∥2,

and we get

∥∇F (x)∥ ≥∥∇2F (y)(x− y)∥ − ∥∇F (x)−∇2F (y)(x− y)∥

≥λ†∥x− y∥ − L′

2
∥x− y∥2

≥λ
†

2
∥x− y∥.

We obtain thus the desired result with CF > 0 by taking the minimum of the two constants.
Q.E.D

Lemma D.6 (Li and Erdogdu (2020), Lemma 9.8 adapted). Under Assumptions 1, 3, 4 and 5, for
a > 0 and γ > 0 such that

a2 ≥ 24dL

C2
F

,

the following holds:

∆F (x)

2
− γ

4
∥∇F (x)∥2 ≤ −dL, ∀x ∈ Rd : d(x, C) ≥ a2

4γ
.

Proof. From Lemma D.5 and smoothness of F , we have

∆F (x)

2
− γ

4
∥∇F (x)∥2 ≤ dL

2
− γ

4
C2
F d(x, C).

Since d(x, C) ≥ a2

γ and a2 ≥ 24dL
C2

F
, we obtain

∆F (x)

2
− γ

4
∥∇F (x)∥2 ≤ dL

2
− γ

4
C2
F d(x, C)

≤ dL

2
− γ

4
C2
F

a2

γ

≤ − dL.

Q.E.D

D.5 Poincaré Inequality

In this section, we establish the Poincaré inequality for ν using Theorem D.1 and D.2. It is easy to
find a Poincaré constant for ν|U which is our starting point.
Lemma D.7 (Li and Erdogdu (2020), Lemma 9.9 adapted). Under Assumptions 1, 3 and 4 to 6, with
a > 0 and γ > 0 such that

γ ≥ a2 4dL
′2

λ†
2 ,

ν|U satisfies the Poincaré inequality with constant κU = λ†

2 .
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Proof. Let x∗ be the global minimum. Then U = {x ∈ Rd | ∥x− x∗∥2 < a2

γ }. Using the same idea
as Lemma D.5, we have

min
i∈{1,...,n}

λi
(
∇2F (x)

)
≥ λ† − dL′∥x− x∗∥ ≥ λ†

2
,

where we used γ ≥ a2 4dL′2

λ†2 and ∥x− x∗∥ ≤
√
a2γ.

This implies for all x ∈ U ,

∇2F (x) ≥ λ†

2
Id×d,

where Id×d is the d× d unit matrix. Therefore, ν|U satisfies the Poincaré inequality with constant
κU = λ†

2 .
Q.E.D

Next, we show that ν|U∪A satisfies the Poincaré inequality.
Lemma D.8 (Li and Erdogdu (2020), Lemma 9.11 adapted). Under Assumptions 1, 3 and 4 to 6,
with a > 0 and γ > 0 such that

a2 ≥ 24dL

C2
F

,

and

γ ≥ a2 4dL
′2

λ†
2 ,

ν|U∪A satisfies the Poincaré inequality with constant

κU∪A =
1

1 + 3/(2κU )
.

Proof. Let us choose the candidate Lyapunov function V1(x) = e
γ
2 F (x). Then,

LV1
V1

=
1

2
∆F − γ

4
∥∇F∥2.

From Lemma D.6, for all x ∈ A we have

LV1
V1
≤ −dL.

On the other hand, for all x ∈ U we obtain

LV1
V1

=
1

2
∆F ≤ 1

2
dL.

This leads to
LV1
V1
≤ −dL+

3dL

2
1U

for all x ∈ U ∪ A. Since the assumptions of Theorem D.1 are satisfied, we conclude that ν|U∪A
satisfies the Poincaré inequality with a constant

κU∪A =
dL

1 + 3dL/(2κU )
.

Since L ≥ 1 and d ≥ 1, we can replace this value by its lower bound

κU∪A =
1

1 + 3/(2κU )
.

Q.E.D

Finally, we can establish the Poincaré inequality for ν.
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Lemma D.9 (Li and Erdogdu (2020), Proposition 9.12 adapted). Under Assumptions 1, 3 and 4 to 6,
with a > 0 and γ > 0 such that

a2 ≥ 24dL

C2
F

,

and

γ ≥ max

(
a2

4dL′2

λ†
2 , 4L′2a6

)
,

ν satisfies the Poincaré inequality with constant

κ =
λ†

35
.

Proof. Let us select the candidate Lyapunov function

V2(x) = E[eλ
†τBc/4|X0 = x],

where τBc = inf{t ≥ 0|Xt /∈ B}.
From Theorem D.3 and D.4, we have that V2 satisfies the Lyapunov condition with

LV2
V2
≤ −λ

†

4
.

Now, using Theorem D.2 with θ = λ†

4 , r̃ = 1
2r = a

2
√
γ , we conclude that ν satisfies the Poincaré

inequality with a constant κ such that

1

κ
=

16

λ†
+

(
16

λ†γ

4γ

a2
+ 2

)
1

κU∪A
.

Since CF ≤ 1, d ≥ 1 and L ≥ 1, we have 1
a2 ≤

C2
F

24dL ≤
1
24 , which leads to

1

κ
≤ 16

λ†
+

(
8

3λ†
+ 2

)
1

κU∪A
.

Plugging 1/κU∪A = 1 + 3/(2κU ) = 1 + 3/λ† from Lemma D.7 and D.8, we obtain

1

κ
≤ 16

λ†
+

(
8

3λ†
+ 2

)(
1 +

3

λ†

)
≤ 35

λ†
,

where we used 1
λ† ≥ 1 in the last inequality. Q.E.D

D.6 Log-Sobolev Inequality

Finally, we can establish the Log-Sobolev inequality thanks to the following theorem.

Theorem D.5 (Cattiaux et al. (2010)). Suppose the following conditions hold for the generator
defined in Definition D.4.

1. There exist constants θ > 0 and b > 0 and a C2 function V : Rd → [1,∞) such that for all
x ∈ Rd

γLV (x)

V (x)
≤ −θ∥x∥2 + b.

2. ν satisfies the Poincaré inequality with a constant κ.

3. There exists some constant K > 0, such that∇2F ⪰ −LId×d.

46



Then, ν satisfies the Log-Sobolev inequality with a constant α such that
1

α
= C1 + (C2 + 2)

1

κ
,

where
C1 =

2γL

θ
+

2

γK
,

and

C2 =
2γL

θ

(
b+ θ

∫
Rd

∥x∥2dν
)
.

Theorem D.6. Under Assumptions 1, 3 and 4 to 6, with a > 0 and γ ≥ 1 such that

a2 ≥ 24dL

C2
F

,

and

γ ≥ max

(
1, a2

4dL′2

λ†
2 , 4L′2a6

)
,

ν satisfies the Log-Sobolev inequality with constant α such that
1

α
=

(
2M2 + 8L2

M2L
+

(
6L(d+ 1))

M
+ 2

)
35

λ†

)
γ.

Proof. Let us consider the candidate Lyapunov function V (x) = eMγ∥x∥2/4. Then from V ≥ 1 and
Assumption 3, we obtain

γLV (x) =

(
Mγd

2
+
M2γ2

4
∥x∥2 − Mγ2

2
⟨x,∇F (x)⟩

)
V (x)

≤
(
Mγ(d+ bγ)

2
− M2γ2

4
∥x∥2

)
V (x).

Under
a2 ≥ 24dL

C2
F

,

and

γ ≥ max

(
a2

4dL′2

λ†
2 , 4L′2a6

)
,

ν satisfies the Poincaré inequality with a constant λ∗35 . Moreover, since F is L-smooth, ∇2F ⪰
−LId×d. Therefore, all the conditions of Theorem D.5 are satisfied.

We conclude that from Theorem D.5, ν satisfies the Log-Sobolev inequality with a constant α such
that

1

α
≤ C1 + (C2 + 2)

35

λ†
,

where constants C1 and C2 can be calculated as

C1 =
2M2 + 8L2

M2Lγ
,

and

C2 ≤
6L(d+ γ)

M
from Raginsky et al. (2017). We can replace this value by a simple upper bound which gives us

1

α
≤
(
2M2 + 8L2

M2L
+

(
6L(d+ 1))

M
+ 2

)
35

λ†

)
γ

since γ ≥ 1.
Q.E.D

Remark D.1. Once we obtain the Poincaré constant, they are several ways to construct the Log-
Sobolev constant. Another approach is possible, maybe simpler, by proceeding as Li and Erdogdu
(2020) did in their analysis. Even though their method is interesting, this should not seriously change
our main point since we just wanted to show that a polynomial dependence of the Log-Solev constant
on the inverse temperature was achievable under certain additional conditions.
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E Analysis of an annealing scheme

In this Appendix, we prove the global convergence of SVRG-LD and SARAH-LD combined with an
annealed scheme.

E.1 Algorithm

In the context of optimization, we can use Algorithm 1 by setting a γ huge enough so that the station-
ary distribution concentrates on the global minimizer of F . On the other hand, we can also introduce
to SVRG-LD and SARAH-LD an increasing inverse temperature and a decreasing step size as follows.

Algorithm 2: SVRG-LD / SARAH-LD with annealing
1 input: batch size B, epoch length m
2 annealing schedule: step size ηs > 0 and inverse temperature γs ≥ 1

3 initialization: X0 = 0, X(0) = X0

4 foreach s = 0, 1, . . . , (K/m) do
5 vsm = ∇F (X(s))
6 randomly draw ϵsm ∼ N(0, Id×d)

7 Xsm+1 = Xsm − ηsvsm +
√
2ηs/γsϵsm

8 foreach l = 1, . . . ,m− 1 do
9 k = sm+ l

10 randomly pick a subset Ik from {1, . . . , n} of size |Ik| = B
11 randomly draw ϵk ∼ N(0, Id×d)
12 if SVRG-LD then
13 vk = 1

B

∑
ik∈Ik(∇fik(Xk)−∇fik(X(s))) + vsm

14 else if SARAH-LD then
15 vk = 1

B

∑
ik∈Ik (∇fik(Xk)−∇fik(Xk−1)) + vk−1

16 end
17 Xk+1 = Xk − ηsvk +

√
2ηs/γsϵk

18 end
19 X(s+1) = X(s+1)m

20 end

Definition 2. We define ψk as the distribution of Xk generated at the kth step of Algorithm 2.

E.2 Preparation for the Proof

Let us first establish some special notations to keep the proof clear and simple.
Notation E.1. We define νγk as the stationary Gibbs distribution of SDE (1) when the inverse
temperature parameter is set at γk, namely,

νγk := e−γkF /Zγk ,

where Zγk is the normalizing constant, and αk as the Log-Sobolev constant of νγk under Assumptions
1 and 3. We also abbreviate the KL divergence between the distribution ψsm+r of the random variable
Xsm+r generated by Algorithm 3 and the Gibbs distribution νγs as follows, where s ∈ N ∪ {0} and
r = 1, . . . ,m:

Hsm+r := Hνγs
(ψsm+r).

Moreover, H0 := Hνγ0
(ψ0).

We will also need the following technical lemma.
Lemma E.1. For all s ∈ N ∪ {0}, σ ≥ 3 and µ > 2,(

2

3

) 2
µ

(s+ 1)1−
2
µσ− 2

µ ≤
s∑
i=0

(i+ σ)−
2
µ ,

where Cµ is a constant independent of s and σ.
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Proof. By a simple argument of area under the curve y = x−
2
µ ,

s∑
i=0

(i+ σ)−
2
µ ≥

∫ s+σ+1

σ

x−
2
µ dx.

According to the mean value theorem for integrals, there exist a constant cs ∈ [σ, s+σ+1] such that

s∑
i=0

(i+ σ)−
2
µ ≥

∫ s+σ+1

σ

x−
2
µ dx = c

− 2
µ

s (s+ 1).

We have also

c
− 2

µ
s ≥ (s+ 1 + σ)−

2
µ

= (s+ 1)−
2
µ (1 +

σ

s+ 1
)−

2
µ

≥ (s+ 1)−
2
µ (1 + σ)−

2
µ

= (s+ 1)−
2
µσ− 2

µ

(
1 + σ

σ

)− 2
µ

≥ (s+ 1)−
2
µσ− 2

µ

(
2

3

) 2
µ

.

In the last inequality, we used σ ≥ 2. This implies the inequality of the statement.
Q.E.D

Now, considering that we only change the step size and the inverse temperature parameter at the
beginning of every inner loop, all statements proved in Appendix A (Lemmas A.3 and A.4) and in
Appendix B (Lemmas B.1, B.2 and B.3) that consider only the inner loop hold for Algorithm 2 as
well.

Moreover, let us consider the annealing schedule

ηs = η̄(s+ σ)−
1
µ , (16)

γs = γ̄ log
{
g(s+ σ)

1
µ

}
, (17)

where we suppose η̄ > 0, γ̄ > 0, σ ≥ 3, g ≥ e and µ > 2. This annealing schedule is chosen on the
one hand so that

∑s
i=0

αi

γi
ηi is explicitly computable, and on the other hand because Chiang et al.

(1987) showed that the annealed continuous time GLD

dXAnn
t = ∇F (XAnn

t )dt+
√
T (t)dBt

could find the global minimum with the annealing schedule T (t) ∝ 1
log t , which corresponds to

equation (17).

Then, the following theorem holds under this annealing schedule.

Theorem E.1. With the annealing schedule (16) and (17), under Assumptions 1 and 3, 0 < η̄ <
C1

16
√
6gL2m

, γ̄ = 1
C2

, µ > 2, g ≥ e, and B ≥ m, for all k = sm + r where s ∈ N ∪ {0} and
r = 0, . . . ,m− 1, the following holds in the update of Algorithm 2:

Hνγs (ψsm+r+1) ≤ e−
3αs
2γs

ηs

(
1 +

32γsL
4η3s

αs

)
Hνγs (ψsm+r)

+ e−
3αs
2γs

ηs

r−1∑
i=0

128γsL
4η3s

αs
e−

αsm
γs

ηsHνγs
(ψsm+i)

+ 56η2sdL
2.

Here, C = (n−B)
B(n−1) .
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Proof. From Property C.3, νγs satisfies Log-Sobolev inequality with a constant αs such that αs

γs
=

C1e
−C2γs . It thus suffices to notice that under 0 < η̄ < C1

16
√
6gL2m

and γ̄ = 1
C2

, we have for all
s ∈ N ∪ {0},

ηs = η̄(s+ σ)−
1
µ

≤ C1

16
√
6g(s+ σ)

1
µL2m

=
αs

16
√
6γsL2m

.

In the inequality, we used the fact that with γ̄ = 1
C2

,

αs
γs

= C1e
−C2γs

= C1e
−C2γ̄ log

{
g(s+σ)

1
µ

}

=
C1

g(s+ σ)
1
µ

.

Therefore, all the assumptions of Theorem A.1 and B.1 are satisfied. From the proof of each theorem,
we immediately obtain the inequality of the statement from equations (9) and (14).

Q.E.D

The problem with changing the inverse temperature parameter of each inner loop is that we cannot
immediately give an upper bound for each Hk as Theorem A.2 and B.2. The main challenge resides
in linking Hνγs

(ψsm) and Hνγs−1
(ψsm), which corresponds to the shift of optimization trajectory in

the space of measures generated by the change of inverse temperature parameter at the beginning
of each inner loop. The following lemma suggests that a small enough difference between two
consecutive inverse temperatures will solve this issue.

Lemma E.2. Under Assumptions 1, 3 and F ≥ 0, for all s ∈ N and γ0 ≥ 2
M ,

Hνγs
(ψsm) ≤

(
1 + ∆γs

2L

αs−1

)
Hνγs−1

(ψsm) + ∆γs (χ+ F (X∗)) .

Here, ∆γs := γs − γs−1, χ := maxγ≥1

{
d
γ log

(
eL
M

(
bγ
d + 1

))}
and X∗ is the global minimum of

F .

Proof.

Hνγs
(ψsm) = Hνγs−1

(ψsm) +Hνγs
(ψsm)−Hνγs−1

(ψsm)

= Hνγs−1
(ψsm) +

∫
ψsm log

ψsm
νγs

dz −
∫
ψsm log

ψsm
νγs−1

dz

= Hνγs−1
(ψsm) +

∫
ψsm log

νγs−1

νγs
dz

= Hνγs−1
(ψsm) +

∫
ψsm log

e−γs−1F /Zγs−1

e−γsF /Zγs
dz

= Hνγs−1
(ψsm) +

∫
ψsm(γs − γs−1)Fdz + log

Zγs
Zγs−1

.

Here, as γs ≥ γs−1and F ≥ 0, we have that

−γsF ≤ −γs−1F,

which means
Zγs ≤ Zγs−1

.
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Thus,
Hνγs

(ψsm) ≤ Hνγs−1
(ψsm) + ∆γsEX∼ψsm

[F (X)].

Now, from Corollary C.1.1 and Theorem C.2, we know that

EX∼ψsm
[F (X)] = EX∼ψsm

[F (X)]− F (X∗) + F (X∗)

≤ LW 2
2 (ψk, νγs−1

) + 2
(
EX∼νγs−1

[F (X)]− F (X∗)
)
+ F (X∗)

≤ LW 2
2 (ψk, νγs−1

) +
d

γs−1
log

(
eL

M

(
bγs−1

d
+ 1

))
+ F (X∗)

≤ 2L

αs−1
Hνγs−1

(ψsm) + χ+ F (X∗).

We used Corollary C.1.1 at the first inequality, Theorem C.2 at the second inequality and Talagrand’s
inequality at the last inequality. This gives the desired result.

Q.E.D

Since the logarithmic function log x is strictly increasing while its derivative decreases according to
x, we can find an adequate bound of σ to assure that ∆γs is small enough. As a reminder, we set
γs = γ̄ log

{
g(s+ σ)

1
µ

}
and ηs = η̄(s+ σ)

1
µ .

Lemma E.3. With the annealing (16) and (17), when αs = γsC1e
−C2γs ,

σ ≥ 3 ∨
(
8Lg2

C2
1 η̄

) µ
µ−3

∨
(

2

µC2L2η̄2

) µ
µ−2

,

γ̄ = 1
C2

, µ > 3 and g ≥ e, we have

∆γs
2L

αs−1
≤ αsηs

2γs
, (18)

and

∆γs ≤ η2sL2 ≤ 1

4
(19)

for all s ∈ N ∪ {0}.

Proof. First of all, by the mean value theorem, there exists a c ∈ [s− 1, s] such that,

∆γs =
γ̄/µ

c+ σ
.

Thus,

∆γs =
γ̄/µ

c+ σ
≤ γ̄/µ

s− 1 + σ
=

1

µC2

1

(s− 1 + σ)
.

Therefore, in order to satisfy inequality (18), it suffices to have

1

µC2

1

(s− 1 + σ)
≤ αs−1

2L

αsηs
2γs

=
γs−1C1e

−C2γs−1

2L

1

2
C1e

−C2γsηs.

A sufficient condition to this is

1

µC2

1

(s− 1 + σ)
≤
C1C

−1
2 log

{
g(s− 1 + σ)

1
µ

}
2Lg(s+ σ)

1
µ

η̄C1

2g(s+ σ)
2
µ

,
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which gives

4Lg2

C2
1 η̄
≤ s+ σ − 1

(s+ σ)
3
µ

log {g(s− 1 + σ)}

= (s+ σ)1−
3
µ
s+ σ − 1

s+ σ
log {g(s− 1 + σ)}

= (s+ σ)1−
3
µ

(
1− 1

s+ σ

)
log {g(s− 1 + σ)} .

As log {g(s− 1 + σ)} ≥ 1 and 1− 1
s+σ ≥

1
2 when g ≥ e, s ≥ 0 and σ ≥ 2, it suffices to have the

following inequality satisfied when s = 0:

8L

C2
1 η̄
≤ (s+ σ)1−

3
µ .

From this, we obtain σ ≥
(

8Lg2

C2
1 η̄

) µ
µ−3

.

Likewise, in order to satisfy inequality (19), it suffices to have

1

µC2

1

(s− 1 + σ)
≤ η̄2L2

(s+ σ)
2
µ

,

which gives
1

µC2L2η̄2
≤ s+ σ − 1

(s+ σ)
2
µ

.

It thus suffices to have the following inequality satisfied when s = 0:

2

µC2L2η̄2
≤ (s+ σ)1−

2
µ .

This gives σ ≥
(

2
µC2L2η̄2

) µ
µ−2

.

The last inequality η2sL
2 ≤ 1

2 is immediately satisfied with ηs ≤ η̄ ≤ 1
4L .

Q.E.D

E.3 Main Proof

We are now ready to prove the main results. We first evaluate how Hk decreases compared with the
previous step.

Theorem E.2. With the annealing schedule (16) and (17), under Assumptions 1, 3 and F ≥ 0,
0 < η̄ < C1

16
√
6gL2m

, γ̄ = 1
C2

, B ≥ m, µ > 3, g ≥ e and

σ ≥ 3 ∨
(
8Lg2

C2
1 η̄

) µ
µ−3

∨
(

2

µC2L2η̄2

) µ
µ−2

,

for all k = sm+ r where s ∈ N ∪ {0} and r = 0, . . . ,m− 1, the following holds in the update of
Algorithm 2:

Hsm+r+1 ≤ e−
αs
γs
ηs

(
1 +

αs
4γs

ηs

)
Hsm+r

+ e−
αs
γs
ηs

r−1∑
i=0

αs
4mγs

ηse
−αsm

γs
ηsHsm+i

+ η2sdL
2E.

Here, E = 56 + 2χ+ 2F (X∗)
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Proof. When r = 0, from Theorem E.1, we have

Hνγs (ψsm+1) ≤ e−
3αs
2γs

ηs

(
1 +

32γsL
4η3s

αs

)
Hνγs (ψsm)

+ 56η2sdL
2.

Under

σ ≥ 3 ∨
(
8Lg2

C2
1 η̄

) µ
µ−3

∨
(

2

µC2L2η̄2

) µ
µ−2

,

we can derive the following bound:

Hνγs
(ψsm+1) ≤ e−

3αs
2γs

ηs

(
1 +

32γsL
4η3s

αs

)(
1 + ∆γs

2L

αs−1

)
Hνγs−1

(ψsm)

+ e−
3αs
2γs

ηs

(
1 +

32γsL
4η3s

αs

)
∆γs (χ+ F (X∗))

+ 56η2sdL
2

≤ e−
3αs
2γs

ηs

(
1 +

32γsL
4η3s

αs

)(
1 +

αs
2γs

ηs

)
Hνγs−1

(ψsm)

+
(
1 + 2L2η2s

)
η2sL

2 (χ+ F (X∗))

+ 56η2sdL
2

≤ e−
3αs
2γs

ηs

(
1 +

32γsL
4η3s

αs

)
e

αs
2γs

ηsHνγs−1
(ψsm)

+ (1 + 1) η2sL
2 (χ+ F (X∗))

+ 56η2sdL
2

≤ e−
αs
γs
ηs

(
1 +

32γsL
4η3s

αs

)
Hνγs−1

(ψsm)

+ η2sdL
2 (56 + 2χ+ 2F (X∗)) .

We used Lemma E.2 at the first inequality, Lemma E.3 and ηs ≤ αs

16γsL2m at the second inequality
and η2sL

2 ≤ 1
2 at the last inequality.

When r ≥ 1, from Theorem E.1, we have

Hνγs
(ψsm+r+1) ≤ e−

3αs
2γs

ηs

(
1 +

32γsL
4η3s

αs

)
Hνγs

(ψsm+r)

+ e−
3αs
2γs

ηs

r−1∑
i=0

128γsL
4η3s

αs
e−

αsm
γs

ηsHνγs
(ψsm+i)

+ 56η2sdL
2.

Under

σ ≥ 3 ∨
(
8Lg2

C2
1 η̄

) µ
µ−3

∨
(

2

µC2L2η̄2

) µ
µ−2

,
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Hνγs
(ψsm+r+1) ≤ e−

3αs
2γs

ηs

(
1 +

32γsL
4η3s

αs

)
Hνγs

(ψsm+r)

+ e−
3αs
2γs

ηs

r−1∑
i=1

128γsL
4η3s

αs
e−

αsm
γs

ηsHνγs
(ψsm+i)

+ e−
3αs
2γs

ηs 128γsL
4η3s

αs
e−

αsm
γs

ηsHνγs
(ψsm)

+ 56η2sdL
2

≤ e−
3αs
2γs

ηs

(
1 +

32γsL
4η3s

αs

)
Hνγs (ψsm+r)

+ e−
3αs
2γs

ηs

r−1∑
i=1

128γsL
4η3s

αs
e−

αsm
γs

ηsHνγs
(ψsm+i)

+ e−
3αs
2γs

ηs 128γsL
4η3s

αs
e−

αsm
γs

ηs

(
1 + ∆γs

2L

αs−1

)
Hνγs−1

(ψsm)

+ e−
3αs
2γs

ηs 128γsL
4η3s

αs
e−

αsm
γs

ηs∆γs (χ+ F (X∗))

+ 56η2sdL
2

≤ e−
3αs
2γs

ηs

(
1 +

32γsL
4η3s

αs

)
Hνγs

(ψsm+r)

+ e−
3αs
2γs

ηs

r−1∑
i=1

128γsL
4η3s

αs
e−

αsm
γs

ηsHνγs
(ψsm+i)

+ e−
αs
γs
ηs 128γsL

4η3s
αs

e−
αsm
γs

ηsHνγs−1
(ψsm)

+ 2η2sL
2∆γs (χ+ F (X∗)) + 56η2sdL

2

≤ e−
αs
γs
ηs

(
1 +

32γsL
4η3s

αs

)
Hνγs

(ψsm+r)

+ e−
αs
γs
ηs

r−1∑
i=0

128γsL
4η3s

αs
e−

αsm
γs

ηsHsm+i

+ η2sdL
2 (56 + 2χ+ 2F (X∗)) .

Therefore, for all r = 0, . . . ,m− 1,

Hsm+r+1 ≤ e−
αs
γs
ηs

(
1 +

32γsL
4η3s

αs

)
Hsm+r

+ e−
αs
γs
ηs

r−1∑
i=0

128γsL
4η3s

αs
e−

αsm
γs

ηsHsm+i

+ η2sdL
2 (56 + 2χ+ 2F (X∗))

≤ e−
αs
γs
ηs

(
1 +

αs
4γs

ηs

)
Hsm+r

+ e−
αs
γs
ηs

r−1∑
i=0

αs
4mγs

ηse
−αsm

γs
ηsHsm+i

+ η2sdL
2E.

In the last inequality, we used ηs ≤ αs

16
√
2L2mγs

.
Q.E.D

54



Theorem E.3. With the annealing schedule (16) and (17), under Assumptions 1, 3 and F ≥ 0,
0 < η̄ < C1

16
√
6gL2m

, B ≥ m, µ > 3, γ̄ = 1
C2

, g ≥ e and

σ ≥ 3 ∨
(
8Lg2

C2
1 η̄

) µ
µ−3

∨
(

2

µC2L2η̄2

) µ
µ−2

,

for all k = sm where s ∈ N, the following holds in the update of Algorithm 3:

Hk ≤ e−
C1η̄
2g ( 2

3 )
2
µ k

1− 2
µm

2
µ σ

− 2
µ
H0 +

8

3
η̄dL2EgC−1

1 k
2
µm− 2

µσ
2
µ ,

where E = 56 + 2χ+ 2F (X∗).

Proof. First of all, we will prove by mathematical induction that in each inner loop the following
inequality holds for all r = 0, . . . ,m− 1:

Hsm+r+1 ≤ e−
αs
2γs

ηs(r+1)Hsm + η2sdL
2E

(
r∑
i=0

e−
αs
2γs

ηsi

)
. . . (∗∗)

When r = 0, from Theorem E.2, we have

Hsm+1 ≤ e−
αs
γs
ηs

(
1 +

αs
4γs

ηs

)
Hsm + η2sdL

2E

≤ e−
αs
γs
ηs

(
1 +

αs
2γs

ηs

)
Hsm + η2sdL

2E

≤ e−
αs
γs
ηse

αs
2γs

ηsHsm + η2sdL
2E

≤ e−
αs
2γs

ηsHsm + η2sdL
2E.

Thus, (∗∗) holds for r = 0.

Now, let us suppose that (∗∗) is true for all r ≤ l. Then, when r = l + 1 from Theorem E.2, we have

Hsm+l+2 ≤ e−
αs
γs
ηs

(
1 +

αs
4γs

ηs

)
Hsm+l+1 + e−

αs
γs
ηs

l∑
i=0

αs
4mγs

ηse
−αsm

γs
ηsHsm+i

+ η2sdL
2E

≤ e−
αs
γs
ηs

(
1 +

αs
4γs

ηs

)e−
αs
2γs

ηs(l+1)Hsm + η2sdL
2E

 l∑
j=0

e−
αs
2γs

ηsj


+ e−

αs
γs
ηs

l∑
i=0

αs
4mγs

ηse
−αsm

γs
ηs

e−
αs
2γs

ηsiHsm + η2sdL
2E

i−1∑
j=0

e−
αs
2γs

ηsj


+ η2sdL

2E

≤ e−
αs
γs
ηs

(
1 +

αs
4γs

ηs

)e−
αs
2γs

ηs(l+1)Hsm + η2sdL
2E

 l∑
j=0

e−
αs
2γs

ηsj


+ e−

αs
γs
ηs

l∑
i=0

αs
4mγs

ηs

e−
αsηs
2γs

(l+1)Hsm + η2sdL
2E

 l∑
j=0

e−
αs
2γs

ηsj


+ η2sdL

2E

≤ e−
αs
2γs

ηs(l+1)e−
αs
γs
ηs

(
1 +

αs
4γs

ηs +

l∑
i=0

αs
4mγs

ηs

)
Hsm

+ η2sdL
2Ee−

αs
γs
ηs

(
1 +

αs
4γs

ηs +

l∑
i=0

αs
4mγs

ηs

) l∑
j=0

e−
αs
2γs

ηsj


+ η2sdL

2E.
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This further implies,

Hsm+l+2 ≤ e−
αs
2γs

ηs(l+1)e−
αs
γs
ηse

αs
2γs

ηsHsm

+ η2sdL
2Ee−

αs
γs
ηse

αs
2γs

ηs

 l∑
j=0

e−
αs
2γs

ηsj

+ η2sdL
2E

≤ e−
αs
2γs

ηs(l+2)Hsm + η2sdL
2E

(
l+1∑
i=0

e−
αs
2γs

ηsi

)
.

Therefore, (∗∗) holds for all inner loop and r = 0, . . . ,m− 1.

Especially, when r = m− 1, we obtain

H(s+1)m ≤ e−
αs
2γs

ηsmHsm + η2sdL
2E

(
m−1∑
i=0

e−
αs
2γs

ηsi

)
.

Consecutively using this inequality, we obtain

H(s+1)m ≤ e−
αs
2γs

ηsmHsm + η2sdL
2E

(
m−1∑
i=0

e−
αs
2γs

ηsi

)

≤ e−
αs
2γs

ηsm

(
e
− αs−1

2γs−1
ηs−1mH(s−1)m + η2s−1dL

2E

(
m−1∑
i=0

e
− αs−1

2γs−1
ηs−1i

))

+ η2sdL
2E

(
m−1∑
i=0

e−
αs
2γs

ηsi

)

= e
−m

2

(
αs
γs
ηs+

αs−1
γs−1

ηs−1

)
H(s−1)m

+ dL2E

(
η2s

m−1∑
i=0

e−
αs
2γs

ηsi + η2s−1e
− αs

2γs
ηsm

m−1∑
i=0

e
− αs−1

2γs−1
ηs−1i

)
. . .

≤ e
−m

2

∑s
i=0

αi
γi
ηiH0

+ dL2E

s∑
i=0

η2i e−m
2

∑s
j=i+1

αj
γj
ηj
m−1∑
j=0

e
− αi

2γi
ηij

 ,

which implies

H(s+1)m ≤ e
−m

2

∑s
i=0

αi
γi
ηiH0 + dL2E

s∑
i=0

η2i e−m
2

∑s
j=i+1

αs
γs
ηs

m−1∑
j=0

e−
αs
2γs

ηsj


≤ e

−m
2

∑s
i=0

αi
γi
ηiH0 + η̄2dL2E

∞∑
i=0

e−
αs
2γs

ηsi

= e
−m

2

∑s
i=0

αi
γi
ηiH0 + η̄2dL2E

(
1− e−

αs
2γs

ηs
)−1

≤ e
−m

2

∑s
i=0

αi
γi
ηiH0 + η̄2dL2E

(
3

4

αs
2γs

ηs

)−1

= e−
mC1η̄

2g

∑s
i=0(i+σ)

− 2
µ
H0 +

8

3
η̄dL2EgC−1

1 (s+ σ)
2
µ

≤ e−
C1η̄
2g ( 2

3 )
2
µm(s+1)

1− 2
µ σ

− 2
µ
H0 +

8

3
η̄dL2EgC−1

1 (s+ 1)
2
µσ

2
µ .

For the first inequality, we used αi

γi
ηi ≥ αs

γs
ηs for all i ≤ s, for the third inequality, we used

1− e−c ≥ 3
4c holds for all 0 < c = αs

2γs
ηs ≤ 1

4 , and for the last inequality, we used Lemma E.1.
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Setting k = (s+ 1)m, we obtain

Hk ≤ e−
C1η̄
2g ( 2

3 )
2
µ k

1− 2
µm

2
µ σ

− 2
µ
H0

+
8

3
η̄dL2EgC−1

1 k
2
µm− 2

µσ
2
µ .

Q.E.D

Finally, we obtain the following global convergence guarantee for Algorithm 2.

Theorem E.4. Using Algorithm 2 with the annealing schedule ηs = η̄(s + σ)−
1
µ and γs =

γ̄ log
{
g(s+ σ)

1
µ

}
, under Assumptions 1, 3 and F ≥ 0, 0 < η̄ < C1

16
√
6gL2m

, B ≥ m,

ϵ = O
(

LH0

C1C
−1
2

)
, µ ≥ 13, g = e

h(ϵ)∨2M∨γ̄
γ̄ , γ̄ = 1

C2
and

σ = 3 ∨
(
8Lg2

C2
1 η̄

) µ
µ−3

∨
(

2

µC2L2η̄2

) µ
µ−2

,

where

h(ϵ) :=
4d

ϵ
log

(
eL

M

)
∨ 8bd

ϵ2
∨ 1,

if we take B = m =
√
n, the largest permissible step size according to the value of σ, the gradient

complexity to reach a precision of

EXk∼ρk [F (Xk)]− F (X∗) ≤ ϵ
is

Õ (GC1 +GC2 +GC3) .

where

GC1 = ng
2µ

µ−2C
−2µ
µ−2

1 L
2µ

µ−2 + n
1
2−

5
2(µ−5) ϵ−

µ
µ−5 g

3µ
µ−5C

− 3µ
µ−5

1 C
µ

µ−5

2 (dE)
µ

µ−5L
3µ

µ−5 ,

GC2 = n
1
2+

µ2−3µ+6
2(µ−2)(µ−3)

(
gL

C1

) 2µ2

(µ−2)(µ−3)

+ n
1
2−

5(µ−3)

2(µ2−11µ+15) ϵ
− µ(µ−1)

µ2−11µ+15

(
gL

C1

) (3µ2−7µ+6)µ

(µ−3)(µ2−11µ+15)

(dE)
µ(µ−1)

µ2−11µ+15 ,

GC3 = n
1
2+

µ2+4

2(µ−2)2

(
gL

C1

) 2µ2

(µ−2)2

C
− 2µ

(µ−2)2

2

+ n
1
2−

5(µ−2)

2(µ2−13µ+10) ϵ
− µ(µ+2)

µ2−13µ+10

(
gL

C1

) (3µ−4)µ

µ2−13µ+10

(dE)
µ(µ+2)

µ2−13µ+10C
(µ2−12µ−6)µ

(µ2−13µ+10)(µ−2)

2 ,

E = 56 + 2max
γ≥1

(
d

γ
log

(
eL

M

(
bγ

d
+ 1

)))
+ 2F ∗,

and C1 and C2 are defined in Property C.3.

Proof. Let us take k = (s+1)m, where s ∈ N∪ {0}. From Corollary C.1.1, the sufficient condition
for

EXk∼ψk
[F (Xk)]− F (X∗) ≤ ϵ

is LW 2
2 (ψk, νγs) ≤ ϵ/2 and EX∼νγs [F (X)] − F (X∗) ≤ ϵ/4. From g ≥ e

2M
γ̄ , which implies

γs ≥ 2
M , and from Corollary C.2.1, the latter condition is satisfied when γs ≥ 4d

ϵ log
(
eL
M

)
∨ 8bd

ϵ2 ∨ 1.
Let us define

h(ϵ) :=
4d

ϵ
log

(
eL

M

)
∨ 8bd

ϵ2
∨ 1.

Then, as γs = γ̄ log
{
g(s+ σ)

1
µ

}
and s+ σ ≥ e, a sufficient condition is

γ̄ log g ≥ h(ϵ).
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This is satisfied with
g = e

h(ϵ)∨2M∨γ̄
γ̄ ≥ e

h(ϵ)
γ̄ .

Moreover, concerning the former condition, from Talagrand’s inequality

W 2
2 (ρk, νγs) ≤

2

αs
Hν(ρk),

it suffices to have

Hνγs
(ρk) ≤

αsϵ

4L
=

ϵ

4L

C1C
−1
2 log g(s+ σ)

1
µ

g(s+ σ)
1
µ

.

As g ≥ e, s+ σ ≥ 1 and (s+ σ) ≤ (s+ 1)σ, we obtain a simpler sufficient condition which is

Hνγs
(ρk) ≤

ϵC1C
−1
2

4Lk
1
µm

−1
µ σ

1
µ g
.

Therefore, from Theorem E.3, it is enough to take η̄ and k such that

8

3
η̄dL2EgC−1

1 k
2
µm− 2

µσ
2
µ ≤ ϵC1C

−1
2

8Lk
1
µm

−1
µ σ

1
µ g
, (20)

and

k1−
2
µ ≥ 2gC−1

1

(
3

2

) 2
µ

m− 2
µσ

2
µ η̄−1 log

(
8Lk

1
µm

−1
µ σ

1
µH0

ϵC1C
−1
2

)
. (21)

Concerning the first inequality (20), we obtain

η̄σ
3
µ ≤ 3C2

1C
−1
2

64dL3Eg2
ϵk−

3
µm

3
µ . (22)

On the other hand, since (s+1)
1
µ ≥ 1 and σ

1
µ ≥ 1, as long as ϵ = O

(
LH0

C1C
−1
2

)
, we can consider the

following condition for the second inequality (21):

k1−
2
µ ≥ Θ̃

(
2gC−1

1

(
3

2

) 2
µ

m− 2
µσ

2
µ η̄−1

)
= Θ̃

(
gC−1

1 m− 2
µσ

2
µ η̄−1

)
. (23)

(I) When

σ = 3 ∨
(
8Lg2

C2
1 η̄

) µ
µ−3

∨
(

2

µC2L2η̄2

) µ
µ−2

= 3,

equation (22) becomes

η̄ ≤

(
3C2

1C
−1
2 3

−3
µ

64dL3Eg2

)
ϵk−

3
µm

3
µ .

On the other hand, by plugging σ = 3 to (23), we obtain

k1−
2
µ ≥ Θ̃

(
gC−1

1 m− 2
µσ

2
µ η̄−1

)
≥ Θ̃

(
gC−1

1 m− 2
µ η̄−1

)
.

If inequality (22) is stronger than 0 < η̄ < C1

16
√
6L2m

, then

k1−
2
µ ≥ Θ̃

(
g3dEL3

C3
1C

−1
2

k
3
µm− 5

µ ϵ−1

)
.

This leads to

k ≥ Θ̃

((
g3dEL3

C3
1C

−1
2

) µ
µ−5

m− 5
µ−5 ϵ−

µ
µ−5

)
.
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From this, if we take the largest permissible step size and the smallest permissible σ, the gradient
complexity can be calculated with an optimal order when B = m = n

1
2 as

Θ̃

(
kB +

k

m
n

)
= Θ̃(k

√
n)

=Θ̃

(
n

1
2−

5
2(µ−5) ϵ−

µ
µ−5 g

3µ
µ−5C

− 3µ
µ−5

1 C
µ

µ−5

2 (dE)
µ

µ−5L
3µ

µ−5

)
.

If inequality (22) is weaker than 0 < η̄ < C1

16
√
6gL2m

, then

k1−
2
µ ≥ Θ̃

(
g2C−2

1 L2m1− 2
µ

)
.

This leads to
k ≥ Θ̃

((
g2C−2

1 L2
) µ

µ−2 m
)
.

From this, if we take the largest permissible step size and the smallest permissible σ, the gradient
complexity can be calculated with an optimal order when B = m = n

1
2 as

Θ̃

(
kB +

k

m
n

)
= Θ̃(k

√
n)

= Θ̃

(
ng

2µ
µ−2C

−2µ
µ−2

1 L
2µ

µ−2

)
.

Therefore, we obtain the following gradient complexity for this case:

Θ̃

(
ng

2µ
µ−2C

−2µ
µ−2

1 L
2µ

µ−2 + n
1
2−

5
2(µ−5) ϵ−

µ
µ−5 g

3µ
µ−5C

− 3µ
µ−5

1 C
µ

µ−5

2 (dE)
µ

µ−5L
3µ

µ−5

)
. (24)

(II) When

σ = 3 ∨
(
8Lg2

C2
1 η̄

) µ
µ−3

∨
(

2

µC2L2η̄2

) µ
µ−2

=

(
8Lg2

C2
1 η̄

) µ
µ−3

,

equation (22) becomes

η̄ ≤
(

3C2
1C

−1
2

64dL3Eg2

)µ−3
µ−6

(
8Lg2

C2
1

) −3
µ−6

ϵ
µ−3
µ−6 k−

3(µ−3)
µ(µ−6)m

3(µ−3)
µ(µ−6) .

On the other hand, by plugging σ =
(

8Lg2

C2
1 η̄

) µ
µ−3

to (23), we obtain

k1−
2
µ ≥ Θ̃

(
gC−1

1 m− 2
µσ

2
µ η̄−1

)
≥ Θ̃

(
g

µ+1
µ−3C

− µ+1
µ−3

1 L
2

µ−3m− 2
µ η̄−

µ−1
µ−3

)
.

If inequality (22) is stronger than 0 < η̄ < C1

16
√
6gL2m

, then

k1−
2
µ ≥ Θ̃

( C2
1C

−1
2

dEL3g2

)−µ−1
µ−6

(
Lg2

C2
1

) 3(µ−1)
(µ−6)(µ−3) g

µ+1
µ−3L

2
µ−3

C
µ+1
µ−3

1

ϵ−
µ−1
µ−6 k

3(µ−1)
µ(µ−6)m− 5(µ−3)

µ(µ−6)

 .

This leads to

k ≥ Θ̃



((
C2

1C
−1
2

dEL3g2

)−µ−1
µ−6

(
Lg2

C2
1

) 3(µ−1)
(µ−6)(µ−3)

g
µ+1
µ−3C

− µ+1
µ−3

1 L
2

µ−3

) µ(µ−6)

µ2−11µ+15

m
5(µ−3)

µ2−11µ+15 ϵ
µ(µ−1)

µ2−11µ+15

 .
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From this, if we take the largest permissible step size and the smallest permissible σ, the gradient
complexity can be calculated with an optimal order when B = m = n

1
2 as

Θ̃

(
kB +

k

m
n

)
= Θ̃(k

√
n)

= Θ̃

n 1
2−

5(µ−3)

2(µ2−11µ+15) ϵ
− µ(µ−1)

µ2−11µ+15

(
gL

C1

) (3µ2−7µ+6)µ

(µ−3)(µ2−11µ+15)

(dE)
µ(µ−1)

µ2−11µ+15

 .

If inequality (22) is weaker than 0 < η̄ < C1

16
√
6gL2m

, then

k1−
2
µ ≥ Θ̃

((
gL

C1

) 2µ
µ−3

m
µ2−3µ+6
µ(µ−3)

)
.

This leads to

k ≥ Θ̃

(gL
C1

) 2µ2

(µ−2)(µ−3)

m
µ2−3µ+6

(µ−2)(µ−3)

 .

From this, if we take the largest permissible step size and the smallest permissible σ, the gradient
complexity can be calculated with B = m = n

1
2 as

Θ̃

(
kB +

k

m
n

)
= Θ̃(k

√
n)

= Θ̃

n 1
2+

µ2−3µ+6
2(µ−2)(µ−3)

(
gL

C1

) 2µ2

(µ−2)(µ−3)

 .

Therefore, we obtain the following gradient complexity for this case:

Θ̃

n 2µ2−8µ+12
2(µ−2)(µ−3)

(
gL

C1

) 2µ2

(µ−2)(µ−3)

+
n

1
2−

5(µ−3)

2(µ2−11µ+15)

ϵ
µ(µ−1)

µ2−11µ+15

(
gL

C1

) (3µ2−7µ+6)µ

(µ−3)(µ2−11µ+15)

(dE)
µ(µ−1)

µ2−11µ+15

 .

(25)
(III) When

σ = 3 ∨
(
8Lg2

C2
1 η̄

) µ
µ−3

∨
(

2

µC2L2η̄2

) µ
µ−2

=

(
2

µC2L2η̄2

) µ
µ−2

,

equation (22) becomes

η̄ ≤
(

3C2
1C

−1
2

64dL3Eg2

)µ−2
µ−8

(
2

µC2L2

) −3
µ−8

ϵ
µ−2
µ−8 k−

3(µ−2)
µ(µ−8)m

3(µ−2)
µ(µ−8) .

On the other hand, by plugging σ =
(

2
µC2L2η̄2

) µ
µ−2

to (23), we obtain

k1−
2
µ ≥ Θ̃

(
gC−1

1 m− 2
µσ

2
µ η̄−1

)
≥ Θ̃

(
gC−1

1 (C2L
2)−

2
µ−2m− 2

µ η̄−
µ+2
µ−2

)
.

If inequality (22) is stronger than 0 < η̄ < C1

16
√
6gL2m

, then

k1−
2
µ ≥ Θ̃

gC−1
1 (C2L

2)
−2
µ−2

(
C2

1C
−1
2

dEL3g2

)− µ+2
µ−8

(C2L
2)

−3(µ+2)
(µ−8)(µ−2) k

3(µ+2)
µ(µ−8)m− 5(µ−2)

µ(µ−8) ϵ
µ+2
µ−8

 .

This leads to

k ≥ Θ̃



(
gC−1

1 (C2L
2)

−2
µ−2

(
C2

1C
−1
2

dEL3g2

)− µ+2
µ−8

(C2L
2)

−3(µ+2)
(µ−8)(µ−2)

) µ(µ−8)

µ2−13µ+10

m
5(µ−2)

µ2−13µ+10 ϵ
µ(µ+2)

µ2−13µ+10

 .
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From this, if we take the largest permissible step size and the smallest permissible σ, the gradient
complexity can be calculated with an optimal order when B = m = n

1
2 as

Θ̃

(
kB +

k

m
n

)
= Θ̃(k

√
n)

= Θ̃

n 1
2−

5(µ−2)

2(µ2−13µ+10)

ϵ
µ(µ+2)

µ2−13µ+10

(
gL

C1

) (3µ−4)µ

µ2−13µ+10

(dE)
µ(µ+2)

µ2−13µ+10C
(µ2−12µ−6)µ

(µ2−13µ+10)(µ−2)

2

 .

If inequality (22) is weaker than 0 < η̄ < C1

16
√
6gL2m

, then

k1−
2
µ ≥ Θ̃

(
gC−1

1 (C2L
2)−

2
µ−2

(
gL2

C1

) µ+2
µ−2

m
µ2+4

µ(µ−2)

)
.

This leads to

k ≥ Θ̃

(gC−1
1 (C2L

2)−
2

µ−2

(
gL2

C1

) µ+2
µ−2

) µ
µ−2

m
µ2+4

(µ−2)2

 .

From this, if we take the largest permissible step size and the smallest permissible σ, the gradient
complexity can be calculated with B = m = n

1
2 as

Θ̃

(
kB +

k

m
n

)
= Θ̃(k

√
n)

= Θ̃

n 1
2+

µ2+4

2(µ−2)2

(
gL

C1

) 2µ2

(µ−2)2

C
− 2µ

(µ−2)2

2

 .

Therefore, we obtain the following gradient complexity for this case:

Θ̃

nµ2−2µ+4

(µ−2)2

 gL

C1C

1
µ
2


2µ2

(µ−2)2

+n

µ2−18µ+20

2(µ2−13µ+10)

ϵ

µ(µ+2)

µ2−13µ+10

(
gL
C1

) (3µ−4)µ

µ2−13µ+10 (dE)
µ(µ+2)

µ2−13µ+10C

(µ2−12µ−6)µ

(µ2−13µ+10)(µ−2)
2

. (26)

The statement of the theorem is obtained by grouping (24), (25) and (26).
Q.E.D

Now, looking at the gradient complexity of Theorem E.4, we remark that the dependence on n is
slightly improved for finite values of µ compared with µ→∞. However, taking into account that
g = eC2h(ϵ) most of the time, the dependence on ϵ becomes worse as the exponent of g of the first
term is greater than 2, and that of the second term is greater than 3 for all GCi (i = 1, 2, 3). Since
this influence cannot be ignored in this case, we conclude that the best value of µ is µ =∞ in our
analysis, i.e., the method that keeps η and γ constants.
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