
Supplementary Documment
FedDR – Randomized Douglas-Rachford Splitting Algorithms

for Nonconvex Federated Composite Optimization

A The Analysis of Algorithm 1: Randomized Coordinate Variant — FedDR

In this Supplementary Document (Supp. Doc.), we first provide additional details in the derivation of
Algorithm 1, FedDR. Then, we present the full proofs of the convergence results of Algorithm 1.

A.1 Derivation of Algorithm 1

Our first step is to recast (1) into a constrained reformulation. Next, we apply the classical Douglas-
Rachford (DR) splitting scheme to this reformulation. Finally, we randomize its updates to obtain a
randomized block-coordinate DR variant.

(a) Constrained reformulation. With a little abuse of notation, we can equivalently write (1) into
the following constrained minimization problem: min

x1,··· ,xn

{
F (x) := f(x) + g(x) ≡ 1

n

n∑
i=1

fi(xi) + g(x1)
}

s.t. x2 = x1, x3 = x1, · · · , xn = x1.

(11)

where x := [x1, x2, · · · , xn] concatenates n duplicated variables x1, x2, · · · , xn of x in (1) such that
it forms a column vector in Rnp. Such duplications are characterized by x2 = x1, x3 = x1, · · · , xn =
x1, which define a linear subspace L := {x ∈ Rnp : x2 = x1, x3 = x1, · · · , xn = x1} in Rnp.

(b) Unconstrained reformulation. Let δL be the indicator function of L, i.e. δL(x) = 0 if x ∈ L,
and δL(x) = +∞, otherwise. Then, we can rewrite (11) into the following unconstrained setting:

min
x∈Rnp

{
F (x) := f(x) + g(x) + δL(x) ≡ 1

n

n∑
i=1

fi(xi) + g(x1) + δL(x)
}
. (12)

Clearly, (12) can be viewed as a composite nonconvex minimization problem of f(x) and g(x) +
δL(x). The first-order optimality condition of (12) can be written as

0 ∈ ∇f(x?) + ∂g(x?) + ∂δL(x?), (13)

where ∂δL is the subdifferential of δL, which is the normal cone of L (or, equivalently, ∂δL(x) = L⊥
if x ∈ L, the orthogonal subspace of L, and ∂δL(x) = ∅, otherwise), and ∂g is the subdifferential of
g. Note that since f is nonconvex, (13) only provides a necessary condition for x? := [x?1, · · · , x?n]
to be a local minimizer. Any x? satisfying (13) is called a (first-order) stationary point of (12). In this
case, we have x?i = x?1 for all i ∈ [n]. Hence, using (13), we have 0 ∈ ∇f(x?) +∂g(x?) +L⊥. This
condition is equivalent to 0 ∈ 1

n

∑n
i=1∇fi(x?i) + ∂g(x?1). However, since x?i = x?1 for all i ∈ [n],

the last inclusion becomes 0 ∈ 1
n

∑n
i=1∇fi(x?1) + ∂g(x?1). Equivalently, we have x? := x?1 to be a

stationary point of (1).

(c) Full parallel DR variant. Let us apply the DR splitting method to (13), which can be written
explicitly as follows: 

yk+1 := xk + α(x̄k − xk),

xk+1 := proxnηf (yk+1),

x̄k+1 := proxnη(g+δL)(2x
k+1 − yk+1),

(14)

where η > 0 is a given such that nη is a step-size and α ∈ (0, 2] is a relaxation parameter [40]. If
α = 1, then we recover the classical Douglas-Rachford scheme [27] and if α = 2, then we recover
the Peaceman-Rachford splitting scheme [1]. Note that the classical DR scheme studied in [27] was
developed to solve monotone inclusions, and in our context, convex problems. Recently, it has been
extended to solve nonconvex optimization problems, see, e.g., [20, 40].

Let us further exploit the structure of f , g, and δL in (12) to obtain a special parallel DR variant.

14

• First, since f(x) = 1
n

∑n
i=1 fi(xi), we have

min
x

{
f(x) + 1

2nη‖x− yk+1‖2
}

= min
x

{
1
n

n∑
i=1

[
fi(xi) + 1

2η‖xi − y
k+1
i ‖2

]}
= 1

n

n∑
i=1

min
xi

{
fi(xi) + 1

2η‖xi − y
k+1
i ‖2

}
.

Hence, we can decompose the computation of xk+1 := proxnηf (yk+1) from (14) as
xk+1
i := proxηfi(y

k+1
i) for all i ∈ [n].

• Next, we denote x̂k+1 := 2xk+1 − yk+1, or equivalently, in component-wise x̂k+1
i :=

2xk+1
i − yk+1

i for all i ∈ [n].
• Finally, the third line of (14) x̄k+1 := proxnη(g+δL)(x̂

k+1) can be rewritten as

x̄k+1 := proxnη(g+δL)(x̂
k+1) =

 argmin
[x1,··· ,xn]

{
g(x1) + 1

2nη

∑n
i=1 ‖xi − x̂

k+1
i ‖2

}
s.t. xi = x1, for all i = 2, · · · , n.

(15)

Let us solve(15) explicitly. First, we define a Lagrange function associated with (15) as

L(x, z) = g(x1) +
1

2nη

n∑
i=1

‖xi − x̂k+1
i ‖2 +

n−1∑
i=1

z>i (xi+1 − x1),

where zi (i = 1, · · · , n− 1) are the corresponding Lagrange multipliers. Hence, the KKT condition
of (15) can be written as

∂g(x̄k+1
1) + 1

nη (x̄k+1
1 − x̂k+1

1)−
∑n−1
i=1 zi = 0,

1
nη (x̄k+1

i+1 − x̂
k+1
i+1) + zi = 0, for all i = 1, · · · , n− 1,

x̄k+1
i+1 = x̄k+1

1 , for all i = 1, · · · , n− 1.

Summing up the second line from i = 1 to i = n− 1 and combining the result with the last line of
this KKT condition, we have

nη

n−1∑
i=1

zi =

n−1∑
i=1

(x̂k+1
i+1 − x̄

k+1
i+1) =

n∑
i=2

x̂k+1
i − (n− 1)x̄k+1

1 .

Substituting this expression into the first line of the KKT condition, we get
n∑
i=1

x̂k+1
i − (n− 1)x̄k+1

1 = x̂k+1
1 + nη

n−1∑
i=1

zi ∈ x̄k+1
1 + nη∂g(x̄k+1

1). (16)

This condition is equivalent to
∑n
i=1 x̂

k+1
i ∈ nx̄k+1

1 + nη∂g(x̄k+1
1). By introducing a new notation

x̄k+1 := x̄k+1
1 , we eventually obtain from the last inclusion that

x̄k+1 := [x̄k+1, · · · , x̄k+1] ∈ Rnp, where x̄k+1 := proxηg
(
1
n

∑n
i=1 x̂

k+1
i

)
.

If we introduce a new variable x̃k+1 := 1
n

∑n
i=1 x̂

k+1
i , then x̄k+1 := proxηg

(
x̃k+1

)
.

Putting the above steps together, we obtain the following parallel DR variant for solving (1):

yk+1
i := yki + α(x̄k − xki), ∀i ∈ [n]

xk+1
i := proxηfi(y

k+1
i), ∀i ∈ [n]

x̂k+1
i := 2xk+1

i − yk+1
i , ∀i ∈ [n]

x̃k+1 := 1
n

∑n
i=1 x̂

k+1
i ,

x̄k+1 := proxηg
(
x̃k+1

)
.

(17)

This variant can be implemented in parallel. It is also known as a special variant of Tseng’s splitting
method [1] in the convex case. This variant also covers FedSplit in [33] for FL as a special

15

case when g = 0, fi is convex for all i ∈ [n], and α = 2. In fact, FedSplit is a variant of the
Peaceman-Rachford method, and is different from our algorithms due to α < 2. If g = 0 (i.e.,
without regularizer), then the last line of (17) reduces to x̄k+1 = x̃k+1.

(d) Inexact block-coordinate DR variant. Instead of performing update for all users i ∈ [n] as in
(17), we propose a new block-coordinate DR variant, called FedDR, where only a subset of users
Sk ⊆ [n] performs local update then send its local model to server for aggregation. For user i /∈ Sk,
the local model is unchanged, i.e., for all i /∈ Sk: yk+1

i = yki , xk+1
i = xki , and x̂k+1

i = x̂ki . Hence,
no communication with the server is needed for these users. Furthermore, we assume that we can
only approximate the proximal operator proxηfi up to a given accuracy for all i ∈ [n]. In this case,
we replace the exact proximal step xki := proxηfi(y

k
i) by its approximation xki :≈ proxηfi(y

k
i) up

to a given accuracy εi,k ≥ 0 such that

‖xki − proxηfi(y
k
i)‖ ≤ εi,k. (18)

Since xki is approximately computed from proxηfi(y
k
i) as in (18), we have

xki = zki + eki , where zki := proxηfi(y
k
i) and ‖eki ‖ ≤ εi,k. (19)

We will use this representation of xki and xk+1
i in our analysis in the sequel.

More specifically, the update of our inexact block-coordinate DR variant can be described as follows.

• Initialization: Given an initial vector x0 ∈ dom(F) and accuracies εi,0 ≥ 0.
Initialize the server with x̄0 := x0.
Initialize all users i ∈ [n] with y0i := x0, x0i :≈ proxηfi(y

0
i), and x̂0i := 2x0i − y0i .

• The k-th iteration (k ≥ 0): Sample a proper subset Sk ⊆ [n] so that Sk presents as the
subset of active users.

• (Communication) Each user i ∈ Sk receives x̄k from the server.
• (Local/user update) For each user i ∈ Sk, given εi,k+1 ≥ 0, it updates

yk+1
i := yki + α(x̄k − xki)

xk+1
i :≈ proxηfi(y

k+1
i)

x̂k+1
i := 2xk+1

i − yk+1
i .

Each user i /∈ Sk does nothing, i.e.:
yk+1
i := yki

xk+1
i := xki

x̂k+1
i := x̂ki .

• (Communication) Each user i ∈ Sk sends only x̂k+1
i to the server.

• (Global/Server update) The server aggregates x̃k+1 := 1
n

∑n
i=1 x̂

k+1
i , and then compute

x̄k+1 := proxηg(x̃
k+1).

This scheme is exactly Algorithm 1. However, the global update on x̃k+1 can be simplified as

x̃k+1 := 1
n

∑n
i=1 x̂

k+1
i = 1

n

∑n
i∈Sk x̂

k+1
i + 1

n

∑n
i 6∈Sk x̂

k
i

= 1
n

∑n
i=1 x̂

k
i + 1

n

∑n
i∈Sk(x̂k+1

i − x̂ki)

= x̃k + 1
n

∑
i∈Sk ∆x̂ki .

This step is implemented in Algorithm 1.

To analyze convergence of Algorithm 1, we conceptually introduce z0i and zk+1
i for i ∈ [n] as follows:

z0i := proxηfi(y
0
i), zk+1

i :=

{
proxηfi(x

k+1
i) if i ∈ Sk

zki if i /∈ Sk,
and xki := zki + eki . (20)

Here, eki is the vector of errors. Note that z0i and zk+1
i do not exist in actual implementation of

Algorithm 1, and we only have their approximations x0i and xk+1
i , respectively. For any k ≥ 0, since

16

xk+1
i = xki and zk+1

i = zki for i /∈ Sk, we have ‖xk+1
i − zk+1

i ‖ = ‖ek+1
i ‖ = ‖xki − zki ‖ = ‖eki ‖ for

i /∈ Sk. To guarantee ‖ek+1
i ‖ = ‖eki ‖ for i /∈ Sk, we must choose εi,k+1 := εi,k for i /∈ Sk.

Note that in Algorithm 1, we have not specified the choice of Sk. The subset Sk is an iid realization
of a random set-valued mapping Ŝ from [n] to 2[n], the collection of all subsets of [n]. Moreover,
Ŝ is a proper sampling scheme in the sense that pi := P(i ∈ Ŝ) > 0 for all i ∈ [n] as stated in
Assumption 3.1. By specifying this probability distribution p := (p1, · · · ,pn), we obtain different
sampling strategies ranging from uniform to non-uniform as discussed in [36]. Our analysis below
holds for arbitrary sampling scheme that satisfies Assumption 3.1.

A.2 Further details of comparison

We have compared our methods, Algorithm 1 and Algorithm 2, with various existing FL methods in
the introduction (Section 1). Here, let us further elaborate this comparison in more detail. Due to the
rapid development of FL in the last few years, it is impossible to review a majority of works in this
field. Hence, we only select a few algorithms that we find most related to our work in this paper.

• FedAvg: FedAvg [29] has become a de facto standard federated learning algorithm in
practice. However, it has several limitations as discussed in many papers, including [23].
It is also difficult to analyze convergence of FedAvg, especially in the nonconvex case
and heterogeneity settings (both statistical and system heterogeneity). Moreover, FedAvg
originally specifies SGD with a fixed number of epochs and a fixed learning rate as its
local solver, making it less flexible in practice. Convergence analysis of FedAvg requires
additional assumptions apart from the standard smoothness of fi. Moreover, its extension
to the composite setting, e.g., in [47] only focuses on the convex case, and requires a set
of strong assumptions, including bounded heterogeneity. Since it was proposed, several
attempts have been made to analyze convergence of FedAvg in both convex and nonconvex
settings, see, e.g., [10, 11, 24, 26, 43].

• FedProx: FedProx proposed in [23], on the one hand, can be viewed as an extension of
FedAvg, but on the other hand, can be cast into a quadratic penalty-type method for the
constrained reformulation (11) of (1). Indeed, when g = 0, from (11), we can define a
quadratic penalty function with a penalty parameter µ > 0 as follows:

Pµ(x) :=
1

n

n∑
i=1

fi(xi) +
µ

2n

n∑
i=2

‖xi − xn+1‖2.

First, we apply an alternating minimization strategy to minimize Pµ over [x1, · · · , xn] and
then over xn+1. Next, instead using the full minimization over all blocks x1, · · · , xn, a
block coordinate descent strategy is applied by selecting a subset of blocks Sk ⊆ [n] at
random. Finally, we replace the exact minimization problem of each block xi by its inexact
computation. This method exactly leads to FedProx in [23]. While FedProx can potentially
handle a major heterogeneity challenge, it relies on a [local] dissimilarity assumption, which
could be difficult to check. In addition, this assumption limits the application of FedProx.

• Other methods: FedPD proposed in [49] is exactly an augmented Lagrangian method
applying to the constrained reformulation (11) of (1) when g = 0, combining with an
alternating minimization strategy as in FedProx. However, FedPD requires all users to
update their computation and flips a biased coin to decide if a global communication is
carried out. This method essentially violates one crucial requirement of FL, which is known
as system heterogeneity. Another FL method is FedSplit in [33], which also requires all
users to participate into each communication round. This method also relies on Peaceman-
Rachford splitting scheme [1] and is different from our algorithms. Its convergence analysis
is only shown for convex problems in [33]. However, as shown in [33], this scheme can
overcome the fundamental statistical heterogeneity challenge in FL.

In contrast to the above methods, our methods developed in this paper always converges under
standard assumptions (i.e., only the L-smoothness and boundedness from below). The proposed
methods can handle the majority of challenges in FL, including system and statistical heterogeneity.
We also allow one to use any local solver to evaluate proxηfi up to a given adaptive accuracy.
Moreover, our methods can handle convex regularizers (in particular, convex constraints), and can be
implemented in an asynchronous manner.

17

A.3 Preparatory lemmas

We first present a useful lemma to characterize the relationship between xki and yki for all iteration k.
Then, we prove a sure descent lemma to establish the main results in the main text.
Lemma A.1. Let {(yki , xki , zki)} be generated by Algorithm 1 and (20) starting from z0i :=
proxηfi(y

0
i) for all i ∈ [n] as in (20). Then, for all i ∈ [n] and k ≥ 0, we have

yki = zki + η∇fi(zki), and x̂ki = 2xki − yki . (21)

Proof. We prove (21) by induction. For k = 0, due to the initialization step, Step 1 of Algorithm 1
and (20) with z0i := proxηfi(y

0
i), we have y0i = z0i + η∇fi(z0i) and x̂0i = 2x0i − y0i as in (21).

Suppose that (21) holds for all k ≥ 0, i.e., yki = zki + η∇fi(zki) and x̂ki = 2xki − yki . We will show
that (21) holds for k+ 1, i.e. yk+1

i = zk+1
i + η∇fi(zk+1

i) and x̂k+1
i = 2xk+1

i − yk+1
i for all i ∈ [n],

respectively. We have two cases:

• For any user i ∈ Sk, from the optimality condition of (20), we have

∇fi(zk+1
i) + 1

η (zk+1
i − yk+1

i) = 0 ⇒ yk+1
i = zk+1

i + η∇fi(zk+1
i).

Moreover, x̂k+1
i = 2xk+1

i − yk+1
i due to Step 5 of Algoritihm 1.

• For any user i /∈ Sk, since zk+1
i := zki due to (20), xk+1

i = xki , and yk+1
i = yki , we can

also write yk+1
i as

yk+1
i = yki

(∗)
= zki + η∇fi(zki) = zk+1

i + η∇fi(zk+1
i).

Here, (∗) follows from our induction assumption. Moreover, for i /∈ Sk, we maintain
x̂k+1
i = x̂ki in Algoritihm 1. By our induction assumption, and xk+1

i = xki and yk+1
i = yki ,

we have x̂k+1
i = x̂ki = 2xki − yki = 2xk+1

i − yk+1
i .

In summary, both cases above imply that yk+1
i = zk+1

i + η∇fi(zk+1
i) and x̂ki = 2xki − yki hold for

all i ∈ [n], which proves (21).

Our next lemma is to bound ‖x̄k − xki ‖2 in terms of ‖xk+1
i − xki ‖2.

Lemma A.2. Let {(x̄ki , zki , xki)} be generated by Algorithm 1 and (20), and α > 0. Then, for all
i ∈ Sk and any γ1 > 0, we have

‖x̄k − xki ‖2 ≤
2(1+η2L2)

α2

[
(1 + γ1)‖xk+1

i − xki ‖2 + 2(1+γ1)
γ1

(
‖ek+1
i ‖2 + ‖eki ‖2

)]
. (22)

In particular, if eki = ek+1
i = 0, then ‖x̄k − xki ‖2 ≤

2(1+η2L2)
α2 ‖xk+1

i − xki ‖2.

Proof. From the update of yk+1
i and Lemma A.1, for i ∈ Sk, we have

x̄k − xki =
1

α
(yk+1
i − yki)

(21)
=

1

α
(zk+1
i − zki) +

η

α
(∇fi(zk+1

i)−∇fi(zki)).

Using this expression and ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, we can bound ‖x̄k − xki ‖2 for all i ∈ Sk as

‖x̄k − xki ‖2 = ‖ 1α (zki − z
k+1
i) + η

α (∇fi(zki)−∇fi(zk+1
i)‖2

≤ 2
α2 ‖zki − z

k+1
i ‖2 + 2η2

α2 ‖∇fi(zki)−∇fi(zk+1
i)‖2

≤ 2
α2 ‖zk+1

i − zki ‖2 + 2η2L2

α2 ‖zk+1
i − zki ‖2 (by the L-smoothness of fi)

= 2(1+η2L2)
α2 ‖xk+1

i − xki − e
k+1
i + eki ‖2 (by (20))

≤ 2(1+η2L2)
α2

[
(1 + γ1)‖xk+1

i − xki ‖2 + 2(1+γ1)
γ1

(
‖ek+1
i ‖2 + ‖eki ‖2

)]
.

Here, we have used Young’s inequality twice in the last inequality. This proves (22). When
eki = ek+1

i = 0, we can set γ1 = 0 in the above estimate to obtain the last statement.

18

We still need to link the norm
∑n
i=1 ‖xki − x̄k‖2 to the norm of gradient mapping ‖Gη(x̄k)‖.

Lemma A.3. Let {(x̄ki , xki , zki)} be generated by Algorithm 1 and (20), and α > 0 and Gη be defined
by (4). Then, for any γ2 > 0, we have

‖Gη(x̄k)‖2 ≤ 1

nη2

{
(1 + ηL)2

n∑
i=1

[
(1 + γ2)‖xki − x̄k‖2 +

(1 + γ2)

γ2
‖eki ‖2

]}
. (23)

In particular, if eki = 0 for all i ∈ [n], then we have ‖Gη(x̄k)‖2 ≤ (1+ηL)2

nη2

∑n
i=1 ‖xki − x̄k‖2.

Proof. From Step 7 of Algorithm 1 and (21), we have

x̃k
Step 7
= 1

n

∑n
i=1 x̂

k
i

(21)
= 1

n

∑n
i=1(2xki − yki)

(21)
= 1

n

∑n
i=1(2xki − zki − η∇fi(zki)). (24)

From the definition (4) of Gη and the update of x̄k, we have

η‖Gη(x̄k)‖ (4)
= ‖x̄k − proxηg(x̄

k − η∇f(x̄k))‖
= ‖proxηg

(
x̃k
)
− proxηg(x̄

k − η∇f(x̄k))‖
≤ ‖x̃k − x̄k + η∇f(x̄k)‖

(24)
= 1

n‖
∑n
i=1[(2xki − zki − x̄k) + η(∇fi(x̄k)−∇fi(zki)]‖,

where we have used the non-expansive property of proxg in the first inequality and ∇f(x̄k) =
1
n

∑n
i=1∇fi(x̄k) in the last line.

Finally, using the L-smoothness of fi, we can derive from the last inequality that

η2‖Gη(x̄k)‖2 ≤ 1
n2

[∑n
i=1

(
‖2xki − zki − x̄k‖+ ηL‖zki − x̄k‖

)]2
≤ 1

n

∑n
i=1

(
‖2xki − zki − x̄k‖+ ηL‖zki − x̄k‖

)2
≤ 1

n

∑n
i=1

[
(1 + ηL)‖xki − x̄k‖+ (1 + ηL)‖eki ‖

]2
≤ 1

n (1 + ηL)2
∑n
i=1

[
(1 + γ2)‖xki − x̄k‖2 + (1+γ2)

γ2
‖eki ‖2

]
,

which proves (23), where γ2 > 0. Here, we have used Young’s inequality in the second and the last
inequalities, and xki = zki + eki from (20) in the third line.

To analyze convergence of Algorithm 1, we introduce the following Lyapunov function:

V kη (x̄k) := g(x̄k) +
1

n

n∑
i=1

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+

1

2η
‖x̄k − xki ‖2

]
. (25)

First, we prove the following lemma.

Lemma A.4. Suppose that Assumption 2.1, 2.2, and 3.1 hold. Let {(zki , xki , yki , x̂ki , x̄k)} be generated
by Algorithm 1 and (20). Let V kη be defined by (25). Then, for any γ3 > 0, we have

V k+1
η (x̄k+1) ≤ g(x̄k) + 1

n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
γ3η

E2
k+1,

(26)

where E2
k+1 := 1

n

∑
i/∈Sk ‖e

k
i ‖2 + 1

n

∑
i∈Sk ‖e

k+1
i ‖2. If Ek+1 = 0, then we allow γ3 = 0.

Proof. First, from x̄k+1 = proxηg
(
x̃k+1

)
at Step 7 of Algorithm 1, we have 1

η (x̃k+1 − x̄k+1) ∈
∂g(x̄k+1). Using this expression and the convexity of g, we obtain

g(x̄k+1) ≤ g(x̄k) + 1
η 〈x̃

k+1 − x̄k, x̄k+1 − x̄k〉 − 1
η‖x̄

k+1 − x̄k‖2. (27)

19

Next, since yk+1
i = zk+1

i + η∇fi(zk+1
i) due to (21) and xk+1

i = zk+1
i + ek+1

i due to (20), we have

xk+1
i + η∇fi(xk+1

i)
(20)
= zk+1

i + η∇fi(zk+1
i) + ek+1

i + η(∇fi(xk+1
i)−∇fi(zk+1

i))

(21)
= yk+1

i + ek+1
i + ηξk+1

i ,
(28)

where ξk+1
i := ∇fi(xk+1

i)−∇fi(zk+1
i). Using this relation, we can derive

∆k+1 := 1
n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k+1 − xk+1
i 〉+ 1

2η‖x̄
k+1 − xk+1

i ‖2
]

= 1
n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

+ 1
nη

∑n
i=1〈x̄k − 2xk+1

i + (xk+1
i + η∇fi(xk+1

i)), x̄k+1 − x̄k〉+ 1
2η‖x̄

k+1 − x̄k‖2

(28)
= 1

n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

+ 1
nη

∑n
i=1〈x̄k − 2xk+1

i + yk+1
i , x̄k+1 − x̄k〉+ 1

2η‖x̄
k+1 − x̄k‖2

+ 1
nη

∑n
i=1〈e

k+1
i + ηξk+1

i , x̄k+1 − x̄k〉
Step 7
= 1

n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

+ 1
η 〈x̄

k − x̃k+1, x̄k+1 − x̄k〉+ 1
2η‖x̄

k+1 − x̄k‖2

+ 1
nη

∑n
i=1〈e

k+1
i + ηξk+1

i , x̄k+1 − x̄k〉.

Summing up this expression and (27), and using the definition of V kη in (25), we get

V k+1
η (x̄k+1) = 1

n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k+1 − xk+1
i 〉+ 1

2η‖x̄
k+1 − xk+1

i ‖2
]

+ g(x̄k+1)

≤ g(x̄k) + 1
n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

− 1
2η‖x̄

k+1 − x̄k‖2 + 1
nη

∑n
i=1〈e

k+1
i + ηξk+1

i , x̄k+1 − x̄k〉.

By Young’s inequality and ek+1
i = eki for i /∈ Sk due to (20), for any γ3 > 0, we can estimate

T[1] := 1
nη

∑n
i=1〈e

k+1
i + ηξk+1

i , x̄k+1 − x̄k〉

≤ 1
2nη

∑n
i=1

[
1
γ3
‖ek+1
i + ηξk+1

i ‖2 + γ3‖x̄k+1 − x̄k‖2
]

≤ γ3
2η‖x̄

k+1 − x̄k‖2 + 1
nηγ3

∑n
i=1 ‖e

k+1
i ‖2 + η

nγ3

∑n
i=1 ‖∇fi(x

k+1
i)−∇fi(zk+1

i)‖2

(2)
≤ γ3

2η‖x̄
k+1 − x̄k‖2 + (1+η2L2)

nηγ3

[∑
i∈Sk ‖e

k+1
i ‖2 +

∑
i/∈Sk ‖e

k
i ‖2
]
.

Substituting this inequality into the last estimate, we eventually obtain (26). However, if E2
k+1 = 0,

then we can deduce from the above inequality that γ3 can be set to zero.

Now, we prove the following key result, which holds surely for any subset Sk of [n].

Lemma A.5 (Sure descent lemma). Suppose that Assumption 2.1, 2.2, and 3.1 hold. Let
{(xki , yki , zki , x̂ki , x̄k)} be generated by Algorithm 1 and (20), and V kη (·) be defined by (25). Then,
the following estimate holds:

V k+1
η (x̄k+1) ≤ V kη (x̄k)− [2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]

2αηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

+ 2(1+ηL)2

γ4ηα2n

∑
i∈Sk [‖eki ‖2 + ‖ek+1

i ‖2],

(29)

where E2
k+1 := 1

n

∑
i/∈Sk ‖e

k
i ‖2 + 1

n

∑
i∈Sk ‖e

k+1
i ‖2, and γ3, γ4 > 0. In particular, if E2

k+1 = 0,
then we allow γ3 = 0, and if eki = ek+1

i = 0 for all i ∈ Sk, then we allow γ4 = 0.

20

Proof. First, using (26), we can further derive

V k+1
η (x̄k+1)

(26)
≤ 1

n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

+ g(x̄k)− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

(∗)
= 1

n

∑
i∈Sk fi(x

k+1
i) + 1

n

∑
i∈Sk〈∇fi(x

k+1
i), xki − x

k+1
i 〉

+ 1
n

∑
i∈Sk〈∇fi(x

k+1
i), x̄k − xki 〉+ 1

2ηn

∑
i∈Sk ‖x̄

k − xk+1
i ‖2

+ 1
n

∑
i/∈Sk fi(x

k
i) + 1

n

∑
i/∈Sk〈∇fi(x

k
i), x̄k − xki 〉+ 1

2ηn

∑
i/∈Sk ‖x̄

k − xki ‖2

+ g(x̄k)− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1,

(30)

where in (*) we have used the fact that only users in Sk perform update and added/subtracted xki in
the term 〈∇fi(xk+1

i), x̄k − xk+1
i 〉.

On the other hand, from the L-smoothness of fi, we have

fi(x
k+1
i) + 〈∇f(xk+1

i), xki − xk+1
i 〉 ≤ fi(xki) +

L

2
‖xk+1

i − xki ‖2.

Substituting this inequality into (30), we can further bound it as

V k+1
η (x̄k+1) ≤ 1

n

∑
i∈Sk fi(x

k
i) + L

2n

∑
i∈Sk ‖x

k+1
i − xki ‖2 + 1

n

∑
i∈Sk〈∇fi(x

k+1
i), x̄k − xki 〉

+ 1
2ηn

∑
i∈Sk ‖x̄

k − xk+1
i ‖2 + 1

n

∑
i/∈Sk fi(x

k
i) + 1

n

∑
i/∈Sk〈∇fi(x

k
i), x̄k − xki 〉

+ 1
2ηn

∑
i/∈Sk ‖x̄

k − xki ‖2 + g(x̄k)

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

= 1
n

∑n
i=1 fi(x

k
i) + 1

n

∑n
i=1〈∇fi(xki), x̄k − xki 〉+ L

2n

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ 1
2ηn

∑
i∈Sk ‖x̄

k − xk+1
i ‖2 + 1

n

∑
i∈Sk〈∇fi(x

k+1
i)−∇fi(xki), x̄k − xki 〉

+ 1
2ηn

∑
i/∈Sk ‖x̄

k − xki ‖2 + g(x̄k)

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1,

(31)

where we have added and subtracted 1
n

∑
i∈Sk〈∇fi(x

k
i), x̄k − xki 〉 to obtain the last equality.

Next, using the following elementary expression

‖x̄k − xk+1
i ‖2 = ‖x̄k − xki ‖2 + 2〈x̄k − xki , xki − xk+1

i 〉+ ‖xki − xk+1
i ‖2

into (31), we can further derive

V k+1
η (x̄k+1) ≤ g(x̄k) + 1

n

∑n
i=1

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+ 1

2η‖x̄
k − xki ‖2

]
+ 1

2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2 + 1

ηn

∑
i∈Sk〈x

k+1
i − xki , xki − x̄k〉

+ 1
n

∑
i∈Sk〈∇fi(x

k+1
i)−∇fi(xki), x̄k − xki 〉+ L

2n

∑
i∈Sk ‖x

k+1
i − xki ‖2

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

= V kη (x̄k) + 1+ηL
2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2 + 1

ηn

∑
i∈Sk〈x

k+1
i − xki , xki − x̄k〉

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

+ 1
n

∑
i∈Sk〈∇fi(x

k+1
i)−∇fi(xki), x̄k − xki 〉.

(32)

From the update of yk+1
i , for i ∈ Sk, and similar to the proof of (28), we have

xki − x̄k = 1
α (yki − y

k+1
i)

(28)
= 1

α (zki − z
k+1
i) + η

α (∇fi(zki)−∇fi(zk+1
i))

= 1
α (xki − x

k+1
i) + η

α (∇fi(xki)−∇fi(xk+1
i)) + 1

α [(ek+1
i + ηξk+1

i)− (eki + ηξki)]

= 1
α (xki − x

k+1
i) + η

α (∇fi(xki)−∇fi(xk+1
i)) + ski ,

21

where ski := 1
α [ek+1

i + ηξk+1
i − (eki + ηξki)) with ξki := ∇fi(xki)−∇fi(zki).

Consequently, using the last expression and the L-smoothness of fi, we can further bound (32) as

V k+1
η (x̄k+1) ≤ V kη (x̄k) + (1+ηL)

2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2 − 1

αηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

− 1
αn

∑
i∈Sk〈x

k+1
i − xki ,∇fi(x

k+1
i)−∇fi(xki)〉+ 1

ηn

∑
i∈Sk〈s

k
i , x

k+1
i − xki 〉

+ 1
αn

∑
i∈Sk〈∇fi(x

k+1
i)−∇fi(xki), xk+1

i − xki 〉

+ η
αn

∑
i∈Sk ‖∇fi(x

k+1
i)−∇fi(xki)‖2 + 1

n

∑
i∈Sk〈s

k
i ,∇fi(x

k+1
i)−∇fi(xki)〉

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

= V kη (x̄k) + η
αn

∑
i∈Sk ‖∇fi(x

k+1
i)−∇fi(xki)‖2 + [α(Lη+1)−2]

2αηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ 1
ηn

∑
i∈Sk〈s

k
i , (x

k+1
i − xki) + η(∇fi(xk+1

i)−∇fi(xki))〉

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

(2)
≤ V kη (x̄k) + ηL2

αn

∑
i∈Sk ‖x

k+1
i − xki ‖2 + [α(Lη+1)−2]

2αηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1

+ 1
nη

∑
i∈S
[

1
γ4
‖ski ‖2 + 2γ4‖xki − x

k+1
i ‖2 + 2γ4η

2‖∇fi(xki)−∇fi(xk+1
i)‖2

]
= V kη (x̄k)− [2−α(Lη+1)−2L2η2]

2αηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ 1
nγ4η

∑
i∈S ‖ski ‖2 + 2γ4(1+L

2η2)
nη

∑
i∈Sk ‖x

k+1
i − xki ‖2

− (1−γ3)
2η ‖x̄

k+1 − x̄k‖2 + (1+η2L2)
ηγ3

E2
k+1.

Finally, we bound ‖ski ‖2 as follows:

‖ski ‖2 = 1
α2 ‖ek+1

i + ηξk+1
i − (eki + ηξki)‖2

≤ 1
α2

[
‖eki ‖+ ‖ek+1

i ‖+ η‖∇fi(xki)−∇fi(zki)‖+ η‖∇fi(xk+1
i)−∇fi(zk+1

i)‖
]2

≤ 2(1+ηL)2

α2 (‖eki ‖2 + ‖ek+1
i ‖2).

Substituting this inequality into the last estimate, we obtain (29). The last statement follows from the
last statement of Lemmas A.3 and A.4.

A.4 The descent property of Algorithm 1

We prove a descent property of Algorithm 1, where proxηfi is evaluated approximately.

Lemma A.6. Suppose that Assumption 2.1, 2.2, and 3.1 hold. Let V kη (·) be defined by (25) and
γ1, γ2, γ4 > 0 be given. Let {(xki , yki , x̂ki , x̄k)} be generated by Algorithm 1 using

0 < α <
min{8,

√
17 + 64γ4 − 1}

4(1 + 4γ4)
and 0 < η <

√
(4− α)2 − 16α2γ4(1 + 4γ4)− α

4L(1 + 2αγ4)
. (33)

Then, V kη is bounded from bellow by F ?, i.e. V kη ≥ F ? and the following estimate holds:

β

2n

n∑
i=1

‖x̄k − xki ‖2 ≤ V kη (x̄k)− E
[
V k+1
η (x̄k+1) | Fk−1

]
+

1

n

n∑
i=1

(ρ1ε
2
i,k + ρ2ε

2
i,k+1), (34)

where 
β := p̂α[2−α(Lη+1)−2L2η2−4γ4α(1+L2η2)]

2η(1+γ1)(1+L2η2) > 0,

ρ2 := 2(1+ηL)2

γ4ηα2 + (1+η2L2)
η + α[2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]

2η(1+L2η2)γ1
,

ρ1 := ρ2 + (1+η2L2)
η .

(35)

Here, if εi,k = 0 for all i ∈ [n] and k ≥ 0, then we allow γ1 = γ2 = γ4 = ρ1 = ρ2 = 0.

22

Proof. First, to guarantee a descent property in (29), we need to choose η > 0 and α > 0 such that
2 − α(Lη + 1) − 2L2η2 − 4γ4α(1 + L2η2) > 0. We first need α such that 0 < α < 2

1+4γ4
, the

condition for η is

0 < η < η̄ :=

√
(4−α)2+16α2γ4(1+4γ4)−α

4L(1+2αγ4)
.

To guarantee η̄ > 0, we need to choose 0 < α <
√
17+64γ4−1
4(1+4γ4)

. Combining both conditions on α, we
obtain the first condition for α in (33).

Now, to show the boundedness of V kη (x̄k) from below, we have

V kη (x̄k) = g(x̄k) + 1
n

∑n
i=1

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+ 1

2η‖x̄
k − xki ‖2

]
≥ g(x̄k) + 1

n

∑n
i=1

[
fi(x̄

k)− L
2 ‖x̄

k − xki ‖2 + 1
2η‖x̄

k − xki ‖2
]

(the L-smoothness of fi)

≥ f(x̄k) + g(x̄k) +
(
1
η − L

)
1
2n

∑n
i=1 ‖x̄k − xki ‖2

≥ F ? (since η ≤ 1
L and Assumption 2.1).

(36)
Next, from (22), we have

α2

2(1 + L2η2)(1 + γ1)

∑
i∈Sk

‖x̄k−xki ‖2 ≤
∑
i∈Sk

[
‖xk+1

i −xki ‖2+
α2

(1 + L2η2)γ1

(
‖ek+1
i ‖2+‖eki ‖2

)]
.

Moreover, from Assumption 3.1, for a nonnegative random variable W k
i with i ∈ Sk, by taking

expectation of this random variable w.r.t. Sk conditioned on Fk−1, we have

E
[∑

i∈Sk W
k
i | Fk−1

]
=
∑
S P(Sk = S)

∑
i∈SW

k
i =

∑n
i=1

∑
S:i∈S P(S)W k

i
Ass. (3.1)

=
∑n
i=1 piW

k
i .

Using this relation withW k
i := ‖xki −x̄k‖2,W k

i := ‖eki ‖2, andW k
i := ‖ek+1

i ‖2, and then combining
the results with the last inequality, we can derive that

E
[∑

i∈Sk ‖x
k+1
i − xki ‖2 | Fk−1

]
≥ α2

2(1+L2η2)(1+γ1)

∑n
i=1 pi‖x̄k − xki ‖2

− α2

(1+L2η2)γ1

∑n
i=1 pi

(
‖ek+1
i ‖2 + ‖eki ‖2

)
≥ p̂α2

2(1+L2η2)(1+γ1)

∑n
i=1 ‖x̄k − xki ‖2

− α2

(1+L2η2)γ1

∑n
i=1

(
‖ek+1
i ‖2 + ‖eki ‖2

)
,

(37)

where we have used p̂ := mini∈[n] pi > 0 in Assumption 3.1 and pi ≤ 1 for all i ∈ [n].

Taking expectation both sides of (29) w.r.t. Sk conditioned on Fk−1, and letting γ3 := 1, we get

E
[
V k+1
η (x̄k+1) | Fk−1

]
≤ V kη (x̄k) + (1+η2L2)

ηn

∑n
i=1

[
(1 + pi)‖eki ‖2 + pi‖ek+1

i ‖2)
]

+ 2(1+ηL)2

γ4ηα2n

∑n
i=1 pi

[
‖eki ‖2 + ‖ek+1

i ‖2
]

− [2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]
2ηαn E

[∑
i∈Sk ‖x

k+1
i − xki ‖2 | Fk−1

]
.

(38)

Here, we have used E2
k+1 ≤ 1

n

∑n
i=1 ‖eki ‖2 + 1

n

∑
i∈Sk

[
‖eki ‖2 + ‖ek+1

i ‖2
]

and the fact that
E
[∑

i∈Sk

[
‖eki ‖2 + ‖ek+1

i ‖2
]
| Fk−1

]
=
∑n
i=1 pi

[
‖eki ‖2 + ‖ek+1

i ‖2
]
. Combining (37) and (38)

we obtain

E
[
V k+1
η (x̄k+1) | Fk−1

]
≤ V kη (x̄k) + (1+η2L2)

η(n+1)

∑n
i=1 ‖eki ‖2

+
[
2(1+ηL)2

γ4ηα2n + (1+η2L2)
ηn

]∑n
i=1 pi

[
‖eki ‖2 + ‖ek+1

i ‖2
]

+ α[2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]
2η(1+L2η2)γ1n

∑n
i=1

[
‖eki ‖2 + ‖ek+1

i ‖2
]

− p̂α[2−α(Lη+1)−2L2η2−4αγ4(1+L2η2)]
4η(1+L2η2)(1+γ1)n

∑n
i=1 ‖x̄k − xki ‖2.

Rearranging terms in the last inequality and using pi ≤ 1 and ‖eki ‖2 ≤ ε2i,k for all i ∈ [n] and k ≥ 0

from (19), we obtain (34). Note that if εi,k = 0 for all i ∈ [n] and k ≥ 0, then we allow to set
γ1 = γ2 = γ4 = ρ1 = ρ2 = 0 as a consequence of the last statement in Lemma A.2, Lemma A.3,
and Lemma A.5.

23

A.5 Convergence rate and communication complexity of Algorithm 1 – The inexact variant

The proof of Theorem 3.1. First, from (34), we have

(1+ηL)2(1+γ2)
nη2

n∑
i=1

‖xki − x̄k‖2 ≤
2(1+ηL)2(1+γ2)

η2β

[
V kη (x̄k)− E

[
V k+1
η (x̄k+1) | Fk−1

]]
,

+ 2(1+ηL)2(1+γ2)
nη2β

n∑
i=1

(ρ1ε
2
i,k + ρ2ε

2
i,k+1).

(39)

Substituting these estimates into (23) of Lemma A.3, we have

‖Gη(x̄k)‖2 ≤ 2(1+ηL)2(1+γ2)
η2β

[
V kη (x̄k)− E

[
V k+1
η (x̄k+1) | Fk−1

]]
+ 2(1+ηL)2(1+γ2)

nη2β

∑n
i=1(ρ1ε

2
i,k + ρ2ε

2
i,k+1) + (1+ηL)2(1+γ2)

nη2γ2

∑n
i=1 ε

2
i,k.

Let us introduce three constants

C1 := 2(1+ηL)2(1+γ2)
η2β , C2 := ρ1C1, and C3 := ρ2C1 + (1+ηL)2(1+γ2)

η2γ2
.

Now, taking the total expectation of the last estimate w.r.t. Fk and using the definition of Ci
(i = 1, 2, 3), we have

E
[
‖Gη(x̄k)‖2

]
≤ C1

(
E
[
V kη (x̄k)

]
− E

[
V k+1
η (x̄k+1)

])
+
C2

n

n∑
i=1

ε2i,k +
C3

n

n∑
i=1

ε2i,k+1.

Summing up this inequality from k := 0 to k := K, and multiplying the result by 1
K+1 , we get

1
K+1

∑K
k=0 E

[
‖Gη(x̄k)‖2

]
≤ C1

(
E
[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

])
+ 1

n(K+1)

∑K
k=0

∑n
i=1

(
C2ε

2
i,k + C3ε

2
i,k+1

)
.

Furthermore, from the initial condition x0i := x0 and x̄0 := x0, we have V 0
η (x̄0) = g(x0) +

1
n

∑n
i=1 fi(x

0) = F (x0). In addition, E
[
V K+1
η (x̄K+1)

]
≥ F ? due to (36). Consequently, the last

estimate becomes

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤ C1

K + 1

[
F (x0)− F ?

]
+

1

n(K + 1)

K∑
k=0

n∑
i=1

(
C2ε

2
i,k + C3ε

2
i,k+1

)
,

which proves (5).

Finally, let x̃K be selected uniformly at random from {x̄0, · · · , x̄K} as the output of Algorithm 1.
Then, from (5) and 1

n

∑n
i=1

∑K+1
k=0 ε

2
i,k ≤M for all K ≥ 0, we have

E
[
‖Gη(x̃K)‖2

]
=

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤
C1

[
F (x0)− F ?

]
+ (C2 + C3)M

K + 1
.

Consequently, to guarantee E
[
‖Gη(x̃K)‖2

]
≤ ε2, from the last estimate we need to choose K such

that C1[F (x0)−F?]+(C2+C3)M
K+1 ≤ ε2. This condition leads to

K + 1 ≥ C1[F (x0)− F ?] + (C2 + C3)M

ε2
.

Hence, we can take K :=
⌊
C1[F (x0)−F?]+(C2+C3)M

ε2

⌋
≡ O

(
1
ε2

)
as its lower bound.

A.6 Convergence of Algorithm 1 when pi = 1
n , i ∈ [n] – The exact variant

The proof of Corollary 3.1. Under the exact variant, we can verify that the choice α = 1 and
η = 1

3L satisfies (33). As a result, using p̂ = 1
n , from (35) we can exactly calculate β = 3L

5n , while
ρ1 = ρ2 = 0. Consequently, (39) leads to

(1 + ηL)2

nη2

n∑
i=1

‖xki − x̄k‖2 ≤
2(1 + ηL)2

η2β

[
V kη (x̄k)− E

[
V k+1
η (x̄k+1) | Fk−1

]]
.

24

Alternatively, using Lemma A.3, we have

‖Gη(x̄k)‖2 ≤ (1 + ηL)2

nη2

n∑
i=1

‖xki − x̄k‖2.

Combining the last two inequalities, we obtain

‖Gη(x̄k)‖2 ≤ 2(1+ηL)2

η2β

[
V kη (x̄k)− E

[
V k+1
η (x̄k+1) | Fk−1

]]
= 160Ln

3

[
V kη (x̄k)− E

[
V k+1
η (x̄k+1) | Fk−1

]]
.

Now, taking the total expectation of the last estimate w.r.t. Fk, we have

E
[
‖Gη(x̄k)‖2

]
≤ 160Ln

3

(
E
[
V kη (x̄k)

]
− E

[
V k+1
η (x̄k+1)

])
.

Summing this inequality from k = 0 to k = K, and then multiplying the result by 1
K+1 , we obtain

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤ 160Ln

3(K + 1)

(
E
[
V kη (x̄0)

]
− E

[
V k+1
η (x̄K+1)

])
. (40)

Recall that from the initial condition x0i := x0 and x̄0 := x0, we have V 0
η (x̄0) = g(x0) +

1
n

∑n
i=1 fi(x

0) = F (x0). In addition, E
[
V K+1
η (x̄K+1)

]
≥ F ? due to (36). As a result, (40)

can be further upper bounded as

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤ 160Ln

3(K + 1)

(
F (x0)− F ?

)
,

which exactly proves (6).

Finally, if x̃K is selected uniformly at random from {x̄0, · · · , x̄K} as the output of Algorithm 1, then
we have

E
[
‖Gη(x̃K)‖2

]
=

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤ 160Ln

3(K + 1)

(
F (x0)− F ?

)
.

Consequently, to guarantee E
[
‖Gη(x̃K)‖2

]
≤ ε2, from the last estimate we need to choose K such

that 160Ln
3(K+1)

(
F (x0)− F ?

)
≤ ε2. This condition leads to

K + 1 ≥ 160Ln[F (x0)− F ?]
3ε2

.

Hence, we can take K :=
⌊
160Ln[F (x0)−F?]

3ε2

⌋
≡ O

(
1
ε2

)
as its lower bound.

A.7 Convergence of Algorithm 1 under relative accuracies

As suggested by a reviewer, we provide here an analysis of Algorithm 1, when relative accuracies are
used to evaluate proxηfi . Such a strategy has been widely used in the literature, including [28, 37].
Let us adopt this concept from [28, Definition 3.3] to our context as follows:

Definition A.1. For any i ∈ Sk, given xki and yk+1
i , we say that xk+1

i approximates proxηfi(y
k+1
i)

up to a bounded relative error if there is a constant θi > 0 (independent of k) such that

‖xk+1
i − proxηfi(y

k+1
i)‖2 ≤ ε2i,k+1 := θi‖xk+1

i − xki ‖2 (41)

The following theorem states convergence of Algorithm 1 under the bounded relative error (41).
Theorem A.1. Suppose that Assumptions 2.1, 2.2, and 3.1 hold, and the bounded relative error con-
dition (41) in Definition A.1 holds with θi := θ̂pi for a fixed constant θ̂ > 0. Let {(xki , yki , x̂ki , x̄k)}
be generated by Algorithm 1 using a relaxation stepsize α = 1 and x0i := proxηfi(y

0
i) for i ∈ [n]. If

γ4 and θ̂ are chosen such that 1− 4γ4 − 8Ĉθ̂ > 0 and η is chosen by

0 < η < η̄ :=

√
1+8(1+2γ4)(1−4γ4−8Ĉθ̂)−1

4L(1+2γ4)
, (42)

25

where Ĉ := max
{

1 + η2L2, 2(1+ηL)
2

γ4

}
, then the following bound holds

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤
C̃
[
F (x0)− F ?

]
(K + 1)

, (43)

where C̃ > 0 is computed by

C̃ :=
p̂2η[1− Lη − 2L2η2 − 4γ4(1 + L2η2)− 8Ĉθ̂]

4
[
4(1 + L2η2 + 2θ̂) + p̂θ̂

]
(1 + ηL)2

. (44)

The remaining conclusions of this theorem are similar to Theorem 3.1, and we omit them here.

Proof. Firstly, starting from (29), using α = 1, choosing γ3 = 1, and noting that E2
k+1 :=

1
n

∑
i/∈Sk ‖e

k
i ‖2 + 1

n

∑
i∈Sk ‖e

k+1
i ‖2, we have

V k+1
η (x̄k+1) ≤ V kη (x̄k)− [1−Lη−2L2η2−4γ4(1+L2η2)]

2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ (1+η2L2)
ηn

(∑
i/∈Sk ‖e

k
i ‖2 +

∑
i∈Sk ‖e

k+1
i ‖2

)
+ 2(1+ηL)2

γ4ηn

∑
i∈Sk [‖eki ‖2 + ‖ek+1

i ‖2].

If we define Ĉ := max
{

1 + η2L2, 2(1+ηL)
2

γ4

}
, then we can further upper bound this estimate as

V k+1
η (x̄k+1) ≤ V kη (x̄k)− [1−Lη−2L2η2−4γ4(1+L2η2)]

2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ Ĉ
nη

(∑
i/∈Sk ‖e

k
i ‖2 +

∑
i∈Sk ‖e

k+1
i ‖2

)
+ Ĉ

nη

∑
i∈Sk [‖eki ‖2 + ‖ek+1

i ‖2]

= V kη (x̄k)− [1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ Ĉ
nη

(∑n
i=1 ‖eki ‖2 + 2

∑
i∈Sk ‖e

k+1
i ‖2

)
≤ V kη (x̄k)− [1−Lη−2L2η2−4γ4(1+L2η2)]

2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ Ĉ
nη

(∑n
i=1 ‖eki ‖2 + 2

∑n
i=1 ‖e

k+1
i ‖2

)
≤ V kη (x̄k)− [1−Lη−2L2η2−4γ4(1+L2η2)]

2ηn

∑
i∈Sk ‖x

k+1
i − xki ‖2

+ 2Ĉ
nη

∑n
i=1

(
‖eki ‖2 + ‖ek+1

i ‖2
)
.

Rearranging terms and noting that E
[∑

i∈Sk ‖x
k+1
i − xki ‖2 | Fk−1

]
=
∑n
i=1 pi‖x

k+1
i − xki ‖2, we

obtain from the last estimate that
[1−Lη−2L2η2−4γ4(1+L2η2)]

2ηn

∑n
i=1 pi‖x

k+1
i − xki ‖2 ≤ V kη (x̄k)− V k+1

η (x̄k+1)

+ 2Ĉ
nη

∑n
i=1

(
‖eki ‖2 + ‖ek+1

i ‖2
)
.

Now, taking the total expectation of the last inequality w.r.t. Fk, we have
[1−Lη−2L2η2−4γ4(1+L2η2)]

2ηn

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

≤ E
[
V kη (x̄k)

]
− E

[
V k+1
η (x̄k+1)

]
+ 2Ĉ

nη

∑n
i=1 E

[
‖eki ‖2 + ‖ek+1

i ‖2
]
.

Summing this inequality from k = 0 to k = K, we get
[1−Lη−2L2η2−4γ4(1+L2η2)]

2ηn

∑K
k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]
≤ E

[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

]
+ 2Ĉ

nη

∑K
k=0

∑n
i=1 E

[
‖eki ‖2 + ‖ek+1

i ‖2
]
.

If we choose εi,0 = 0 for i ∈ [n], then the last estimate reduces to

[1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

K∑
k=0

n∑
i=1

piE
[
‖xk+1

i − xki ‖2
]
≤ E

[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

]
+ 4Ĉ

nη

K∑
k=0

n∑
i=1

E
[
‖ek+1
i ‖2

]
.

(45)

26

From (41) in Definition A.1, we have ‖ek+1
i ‖2 = ‖xk+1

i −proxηfi(y
k+1
i)‖2 ≤ ε2i,k+1 := θi‖xk+1

i −
xki ‖2. Using this condition in (45), we have

[1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

K∑
k=0

n∑
i=1

piE
[
‖xk+1

i − xki ‖2
]
≤ E

[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

]
+ 4Ĉ

nη

K∑
k=0

n∑
i=1

θiE
[
‖xk+1

i − xki ‖2
]
.

Now, we can choose θi such that θi = θ̂pi for given θ̂ > 0. Plugging this choice of θi into the last
estimate, we have

[1−Lη−2L2η2−4γ4(1+L2η2)]
2ηn

K∑
k=0

n∑
i=1

piE
[
‖xk+1

i − xki ‖2
]
≤ E

[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

]
+ 4Ĉθ̂

nη

K∑
k=0

n∑
i=1

piE
[
‖xk+1

i − xki ‖2
]
.

Rearranging terms in the above estimate, we arrive at

[1−Lη−2L2η2−4γ4(1+L2η2)−8Ĉθ̂]
2ηn

K∑
k=0

n∑
i=1

piE
[
‖xk+1

i − xki ‖2
]
≤ E

[
V 0
η (x̄0)

]
− E

[
V K+1
η (x̄K+1)

]
.

From the initial condition x0i := x0 and x̄0 := x0, we have V 0
η (x̄0) = g(x0) + 1

n

∑n
i=1 fi(x

0) =

F (x0). In addition, E
[
V K+1
η (x̄K+1)

]
≥ F ? due to (36). Using these conditions, the last estimate

can be further upper bounded by

p̂[1− Lη − 2L2η2 − 4γ4(1 + L2η2)− 8Ĉθ̂]

2ηn

K∑
k=0

n∑
i=1

E
[
‖xk+1

i − xki ‖2
]
≤ F (x0)− F ?, (46)

where we have used pi ≥ p̂ for all i ∈ [n].

Now, we need to choose η and θ̂ such that 1− Lη − 2L2η2 − 4γ4(1 + L2η2)− 8Ĉθ̂ > 0. First, we
need to choose γ4 > 0 and θ̂ > 0 such that 1− 4γ4 − 8Ĉθ̂ > 0. Then, the condition for η is

0 < η < η̄ :=

√
1+8(1+2γ4)(1−4γ4−8Ĉθ̂)−1

4L(1+2γ4)
.

Next, we connect the term ‖xk+1
i − xki ‖2 with ‖Gη(x̄k)‖2 as follows. From (22) with α = 1 and

γ1 = 1, we have

1

4(1 + L2η2)

∑
i∈Sk

‖x̄k − xki ‖2 ≤
∑
i∈Sk

[
‖xk+1

i − xki ‖2 +
1

(1 + L2η2)

(
‖ek+1
i ‖2 + ‖eki ‖2

)]
.

Taking expecatation w.r.t. Sk given Fk−1, and then taking full expectation, we obtain

1
4(1+L2η2)

∑n
i=1 piE

[
‖x̄k − xki ‖2

]
≤

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

+ 1
(1+L2η2)

∑n
i=1 piE

[
‖ek+1
i ‖2 + ‖eki ‖2

]
≤

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

+ 1
(1+L2η2)

∑n
i=1 E

[
‖ek+1
i ‖2 + ‖eki ‖2

]
.

Summing this inequality from k = 0 to k = K, we get

1
4(1+L2η2)

∑K
k=0

∑n
i=1 piE

[
‖x̄k − xki ‖2

]
≤
∑K
k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

+ 1
(1+L2η2)

∑K
k=0

∑n
i=1 E

[
‖ek+1
i ‖2 + ‖eki ‖2

]
.

27

Using the condition that εi,0 = 0, similar to (45), we have
1

4(1+L2η2)

∑K
k=0

∑n
i=1 piE

[
‖x̄k − xki ‖2

]
≤

∑K
k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

+ 2
(1+L2η2)

∑K
k=0

∑n
i=1 E

[
‖ek+1
i ‖2

]
≤

∑K
k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

+ 2
(1+L2η2)

∑K
k=0

∑n
i=1 θiE

[
‖xk+1

i − xki ‖2
]

≤ 1+L2η2+2θ̂
(1+L2η2)

∑K
k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]
.

In fact, we can further bound this estimate as

p̂

4(1 + L2η2)

K∑
k=0

n∑
i=1

E
[
‖x̄k − xki ‖2

]
≤ 1 + L2η2 + 2θ̂

(1 + L2η2)

K∑
k=0

n∑
i=1

E
[
‖xk+1

i − xki ‖2
]
,

where we have used p̂ ≤ pi ≤ 1. Next, multiply both sides of this inequality by 8(1+L2η2)(1+ηL)2

p̂η2n ,
we obtain

2(1 + ηL)2

nη2

K∑
k=0

n∑
i=1

E
[
‖x̄k − xki ‖2

]
≤ 8(1 + L2η2 + 2θ̂)(1 + ηL)2

p̂η2n

K∑
k=0

n∑
i=1

E
[
‖xk+1

i − x
k
i ‖2
]
.(47)

Furthermore, from (23), choosing γ2 = 1 and summing the result from k = 0 to k = K, we get∑K
k=0 E

[
‖Gη(x̄k)‖2

]
≤ 2(1+ηL)2

nη2

∑K
k=0

∑n
i=1 E

[
‖xki − x̄k‖2

]
+ 2(1+ηL)2

nη2

∑K
k=0

∑n
i=1 E

[
‖eki ‖2

]
≤ 2(1+ηL)2

nη2

∑K
k=0

∑n
i=1 E

[
‖xki − x̄k‖2

]
+ 2(1+ηL)2

nη2

∑K
k=0

∑n
i=1 θiE

[
‖xk+1

i − xki ‖2
]

= 2(1+ηL)2

nη2

∑K
k=0

∑n
i=1 E

[
‖xki − x̄k‖2

]
+ 2(1+ηL)2θ̂

nη2

∑K
k=0

∑n
i=1 piE

[
‖xk+1

i − xki ‖2
]

(48)

where the last equality comes from the fact that θi = θ̂pi.

Now, plugging (47) into (48) and using pi ≤ 1, we can get∑K
k=0 E

[
‖Gη(x̄k)‖2

]
≤
[
8[1+L2η2+2θ̂](1+ηL)2

p̂η2n + 2(1+ηL)2θ̂
nη2

]∑K
k=0

∑n
i=1 E

[
‖xk+1

i − xki ‖2
]

=
2[4(1+L2η2+2θ̂)+p̂θ̂](1+ηL)2

p̂nη2

∑K
k=0

∑n
i=1 E

[
‖xk+1

i − xki ‖2
]
.

(49)

From the definition of C̃ in (44), we can verify that

p̂[1− Lη − 2L2η2 − 4γ4(1 + L2η2)− 8Ĉθ̂]

2ηnC̃
=

2
[
4(1 + L2η2 + 2θ̂) + p̂θ̂

]
(1 + ηL)2

p̂nη2
.

Next, multiplying both sides of (46) by 1

C̃
, and then using (49), we obtain∑K

k=0 E
[
‖Gη(x̄k)‖2

]
≤ 2[4(1+L2η2+θ̂)+p̂θ̂](1+ηL)2

p̂nη2

∑K
k=0

∑n
i=1 E

[
‖xk+1

i − xki ‖2
]

(46)
≤ C̃

[
F (x0)− F ?

]
.

Finally, multiplying both sides of this inequality by 1
K+1 , we obtain (43).

B Analysis of Algorithm 2: The Asynchronous Variant — asyncFedDR

This section provides the full proof of Lemma B.2 and Theorem 4.1 in the main text. However, let us
first discuss an asynchronous implementation of Algorithm 2 and present the full description of our
probabilistic models based on [5] used in Section 4.

28

B.1 Asynchronous implementation: Dual-memory approach

Let us provide more details on the implementation of our asynchronous algorithm. When a user
finishes its local update, the updated model (or model difference) is sent to the server for a proximal
aggregation step. When the server is performing a proximal aggregation step, other users might
need to read from the global model. To allow concurrent read/write operations, one easy method is
to have two models stored on the server, denoted as model 1 and model 2. At any given time, one
model is on “read” state (it is supposed to be read from) and the other will be on “write” state (it
will be written on when the server finishes aggregation). Suppose model 1 is on a “read” state and
model 2 is on a “write” state, then all users can read from model 1. When the server completes the
proximal aggregation, model 2 becomes the latest model and it will change to a “read” state while
model 1 is on a “write” state. This implementation detail is also discussed in [34], which is termed
by a dual-memory approach.

B.2 Probabilistic model

Let ξk := (ik, d
k) be a realization of a joint random vector ξ̂k := (̂ik, d̂

k) of the user index îk ∈ [n]

and the delay vector d̂k = (d̂k1 , · · · , d̂kn) ∈ D := {0, 1, · · · , τ}n presented at the current iteration
k. We consider k + 1 random vectors ξ̂l (0 ≤ l ≤ k) that form a concatenate random vector
ξ̂0:k := (ξ̂0, · · · , ξ̂k). We also use ξ0:k = (ξ0, ξ1, · · · , ξk) for k + 1 possible values of the random
vector ξ̂0:k. Let Ω be the sample space of all sequences ω := {(ik, dk)}k≥0 ≡ {ξk}k≥0. We
define a cylinder Ck(ξ0:k) := {ω ∈ Ω : (ω0, · · · , ωk) = ξ0:k} as a subset in Ω and Ck is the set of
all possible subsets Ck(ξ0:k) when ξt, t = 0, · · · , k, take all possible values, where ωl is the l-th
coordinate of ω. Note that {Ck}k≥0 forms a partition of Ω and measurable. Let Fk := σ(Ck) be
the σ-algebra generated by Ck and F := σ(∪∞k=0Ck). Clearly, {Fk}k≥0 forms a filtration such that
Fk ⊆ Fk+1 ⊆ · · · ⊆ F for k ≥ 0 that is sufficient to cope with the evolution of Algorithm 2.

For each Ck(ξ0:k) we also equip with a probability p(ξ0:k) := P(Ck(ξ0:k)). Then, (Ω,F ,P)
forms a probability space. Our conditional probability is defined as p((i, d) | ξ0:k) :=
P(Ck+1(ξ0:k+1))/P(Ck(ξ0:k)), where we set p((i, d) | ξ0:k) := 0 if p(ξ0:k) = 0. We do not
need to know these probabilities in advance. They are determined based on the particular system
such as hardware architecture, software implementation, asynchrony, and our strategy for selecting
active user.

Now, if X is a random variable defined on Ω, then as shown in [5], we have

E[X | Fk] =
∑

(i,d)∈[n]×D

p((i, d) | ξ0:k)X(ξ0:k, (i, d)). (50)

Note from Assumption 4.1 that

p(i | ξ0:k) :=
∑
d∈D

p((i, d) | ξ0:k) ≥ p̂. (51)

Our probability model described above allows us to handle a variety class of asynchronous algorithms
derived from the DR splitting scheme. Here, we do not make independent assumption between the
active user îk and the delay vector d̂k.

B.3 Preparatory lemmas

For the asynchronous algorithm, Algorithm 2, the following facts hold.

• For xki and yki updated by Algorithm 2, since Sk = {ik} and the update of yki and xki
remain the same as in Algorithm 1 when the error eki = 0, the relation (21) remains true, i.e.
yki = xki + η∇fi(xki) and x̂ki = 2xki − yki for all i ∈ [n] and k ≥ 0.

• Let x̄k−d
k

:= [x̄k−d
k
1 , x̄k−d

k
2 , · · · , x̄k−dkn] be a delayed copy of the vector x̄k :=

[x̄k, · · · , x̄k] ∈ Rnp. Since at each iteration k, there is only one block ik being updated, as
shown in [5, 34], for all i ∈ [n], we can write

x̄k−d
k
i = x̄k +

∑
l∈Jk

i

(x̄l − x̄l+1), (52)

29

where Jki := {k − dki , k − dki + 1, · · · , k − 1} ⊆ {k − τ, · · · , k − 1}.
These facts will be repeatedly used in the sequel.

Now, let us first prove the following lemma to provide a key estimate for establishing Lemma B.2.
Lemma B.1 (Sure descent). Suppose that Assumptions 2.1, 2.2, and 4.1 hold for (1). Let
{(xki , yki , x̂ki , x̃k, x̄k)} be generated by Algorithm 2 and V kη (·) be defined as in (25). Then, for
all k ≥ 0, the following estimate holds:

V k+1
η (x̄k+1) + τ

nη

∑k
l=k+1−τ (l − k + τ)‖x̄l+1 − x̄l‖2 ≤ V kη (x̄k)− ρ

2‖x
k+1
ik
− xkik‖

2

+ τ
nη

∑k−1
l=k−τ (l − (k − 1) + τ)‖x̄l+1 − x̄l‖2,

(53)

where

ρ :=


2(1−α)−(2+α)L2η2−Lαη

αηn if 2τ2 ≤ n,
n2[2(1−α)−(2+α)L2η2−Lαη]−α(1+η2L2)(2τ2−n)

αηn3 otherwise.

Proof. Let V kη be defined by (25). For (xki , x̂
k
i , y

k
i) updated as in Algorithm 2, the results of

Lemma A.1 still hold true. Hence, (26) still holds for Algorithm 2 with γ3 = 0 and E2
k+1 = 0, i.e.:

V k+1
η (x̄k+1) ≤ g(x̄k) + 1

n

∑n
i=1

[
fi(x

k+1
i) + 〈∇fi(xk+1

i), x̄k − xk+1
i 〉+ 1

2η‖x̄
k − xk+1

i ‖2
]

− 1
2η‖x̄

k+1 − x̄k‖2.

Using this inequality, the update of xk+1
ik

for i = ik, and xk+1
i = xki for i 6= ik, we can expand

V k+1
η (x̄k+1) ≤ g(x̄k) + 1

n

∑
i6=ik

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+ 1

2η‖x̄
k − xki ‖2

]
+ 1

n

[
fik(xk+1

ik
) + 〈∇fik(xk+1

ik
), xkik − x

k+1
ik
〉
]

+ 1
n 〈∇fik(xk+1

ik
), x̄k − xkik〉

+ 1
2ηn‖x̄

k − xkik + xkik − x
k+1
ik
‖2 − 1

2η‖x̄
k+1 − x̄k‖2.

(54)

Now, by the L-smoothness of fik , we have

fik(xk+1
ik

) + 〈∇fik(xk+1
ik

), xkik − x
k+1
ik
〉 ≤ fik(xkik) +

L

2
‖xkik − x

k+1
ik
‖2.

Plugging this inequality into (54) and expanding the third last term of (54), we obtain

V k+1
η (x̄k+1) ≤ g(x̄k) + 1

n

∑
i 6=ik

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+ 1

2η‖x̄
k − xki ‖2

]
+ 1

nfik(xkik) + L
2n‖x

k+1
ik
− xkik‖

2 + 1
n 〈∇fik(xk+1

ik
), x̄k − xkik〉

+ 1
2ηn‖x̄

k − xkik‖
2 + 1

2ηn‖x
k+1
ik
− xkik‖

2 + 1
ηn 〈x

k+1
ik
− xkik , x

k
ik
− x̄k〉

− 1
2η‖x̄

k+1 − x̄k‖2

= g(x̄k) + 1
n

∑n
i=1

[
fi(x

k
i) + 〈∇fi(xki), x̄k − xki 〉+ 1

2η‖x̄
k − xki ‖2

]
+ (1+ηL)

2nη ‖x
k+1
ik
− xkik‖

2 + 1
n 〈∇fik(xk+1

ik
)−∇fik(xkik), x̄k − xkik〉

+ 1
ηn 〈x

k+1
ik
− xkik , x

k
ik
− x̄k〉 − 1

2η‖x̄
k+1 − x̄k‖2

(25)
= V kη (x̄k) + 1

n 〈∇fik(xk+1
ik

)−∇fik(xkik), x̄k−d
k
ik − xkik〉

+ 1
n 〈∇fik(xk+1

ik
)−∇fik(xkik), x̄k − x̄k−d

k
ik 〉+ (1+Lη)

2ηn ‖x
k+1
ik
− xkik‖

2

+ 1
ηn 〈x

k+1
ik
− xkik , x

k
ik
− x̄k−d

k
ik 〉+ 1

ηn 〈x
k+1
ik
− xkik , x̄

k−dkik − x̄k〉

− 1
2η‖x̄

k+1 − x̄k‖2.

(55)

From yk+1
ik

:= ykik + α(x̄k−d
k
ik − xkik) at Step 5 of Algorithm 2 and the relation (21), we have

x̄k−d
k
ik − xkik =

1

α
(yk+1
ik
− ykik)

(21)
=

1

α
(xk+1
ik
− xkik) +

η

α
(∇fik(xk+1

ik
)−∇fik(xkik)). (56)

30

This relation leads to
1
n 〈∇fik(xk+1

ik
)−∇fik(xkik), x̄k−d

k
ik − xkik〉 = 1

αn 〈∇fik(xk+1
ik

)−∇fik(xkik), xk+1
ik
− xkik〉

+ η
αn‖∇fik(xk+1

ik
)−∇fik(xkik)‖2,

(57)

and
1
ηn 〈x

k+1
ik
− xkik , x

k
ik
− x̄k−d

k
ik 〉 = − 1

αn 〈∇fik(xk+1
ik

)−∇fik(xkik), xk+1
ik
− xkik〉

− 1
ηαn‖x

k+1
ik
− xkik‖

2.
(58)

Substituting (57) and (58) into (55), we obtain

V k+1
η (x̄k+1) ≤ V kη (x̄k) + (1+Lη)

2ηn ‖x
k+1
ik
− xkik‖

2 + η
αn‖∇fik(xk+1

ik
)−∇fik(xkik)‖2

+ 1
n 〈∇fik(xk+1

ik
)−∇fik(xkik), x̄k − x̄k−d

k
ik 〉+ 1

ηn 〈x
k+1
ik
− xkik , x̄

k−dkik − x̄k〉

− 1
ηαn‖x

k+1
ik
− xkik‖

2 − 1
2η‖x̄

k+1 − x̄k‖2

(2)
≤ V kη (x̄k) + α(Lη+1)−2

2ηαn ‖xk+1
ik
− xkik‖

2 + ηL2

αn ‖x
k+1
ik
− xkik‖

2

+ 1
n 〈∇fik(xk+1

ik
)−∇fik(xkik), x̄k − x̄k−d

k
ik 〉+ 1

ηn 〈x
k+1
ik
− xkik , x̄

k−dkik − x̄k〉

− 1
2η‖x̄

k+1 − x̄k‖2.

Next, using Young’s inequality twice in the above estimate, we can further expand

V k+1
η (x̄k+1) ≤ V kη (x̄k) + α(Lη+1)+2L2η2−2

2ηαn ‖xk+1
ik
− xkik‖

2 + η
2n‖∇fik(xk+1

ik
)−∇fik(xkik)‖2

+ 1
2ηn‖x̄

k − x̄k−d
k
ik ‖2 + 1

2ηn‖x
k+1
ik
− xkik‖

2 + 1
2ηn‖x̄

k − x̄k−d
k
ik ‖2

− 1
2η‖x̄

k+1 − x̄k‖2

(2)
≤ V kη (x̄k) + [α(Lη+2)+2L2η2−2]

2αηn ‖xk+1
ik
− xkik‖

2 + L2η
2n ‖x

k+1
ik
− xkik‖

2

+ 1
ηn‖x̄

k − x̄k−d
k
ik ‖2 − 1

2η‖x̄
k+1 − x̄k‖2

= V kη (x̄k) + [α(L2η2+Lη+2)+2L2η2−2]
2αηn ‖xk+1

ik
− xkik‖

2 − 1
2η‖x̄

k+1 − x̄k‖2

+ 1
nη‖x̄

k−dkik − x̄k‖2.

(59)

Using (52), we can bound ‖x̄k−d
k
ik − x̄k‖2 as follows:

‖x̄k−d
k
ik − x̄k‖2(52)

=
∥∥∑

l∈Jk
ik

(x̄l − x̄l+1)
∥∥2

≤ dkik
∑k−1
l=k−dkik

‖x̄l+1 − x̄l‖2 (Young’s inequality and the definition of Jkik)

≤ τ
∑k−1
l=k−τ ‖x̄l+1 − x̄l‖2 (since dkik ≤ τ in Assumption 4.1)

= τ
[k−1∑
l=k−τ

[l − (k − τ) + 1]‖x̄l+1 − x̄l‖2 −
k∑

l=k−τ+1

(l − (k − τ))‖x̄l+1 − x̄l‖2
]

+ τ2‖x̄k+1 − x̄k‖2.

(60)

Now, we consider two cases as follows.

Case 1: If n ≥ 2τ2, then by plugging (60) into (59), we finally arrive at

V k+1
η (x̄k+1) + τ

nη

∑k
l=k−τ+1[l − (k − τ)]‖x̄l+1 − x̄l‖2 ≤ V kη (x̄k)

+ τ
nη

∑k−1
l=k−τ [l − (k − τ) + 1]‖x̄l+1 − x̄l‖2

− [2(1−α)−(2+α)η2L2−αηL]
2αηn ‖xk+1

ik
− xkik‖

2 − (n−2τ2)
2nη ‖x̄k+1 − x̄k‖2.

Rearranging the last estimate, we finally arrive at (53).

31

Case 2: if 2τ2 > n, then using (21), we can show that

‖x̄k+1 − x̄k‖2 =
∥∥proxηg

(
x̃k+1

)
− proxηg

(
x̃k
)∥∥2 ≤ ‖x̃k+1 − x̃k‖2

= ‖ 1n
∑n
i=1(x̂k+1

i − x̂ki)‖2

= 1
n2 ‖x̂k+1

ik
− x̂kik‖

2 (since only block ik is updated)
(21)
= 1

n2 ‖(xk+1
ik
− xkik)− η(∇fik(xk+1

ik
)−∇fik(xkik))‖2

≤ 2
n2 ‖xk+1

ik
− xkik‖

2 + 2η2

n2 ‖∇fik(xk+1
ik

)−∇fik(xkik)‖2

≤ 2(1+η2L2)
n2 ‖xk+1

ik
− xkik‖

2.

(61)

Substituting this inequality into the previous one, we can get

V k+1
η (x̄k+1) + τ

nη

∑k
l=k−τ+1[l − (k − τ)]‖x̄l+1 − x̄l‖2 ≤ V kη (x̄k)

+ τ
nη

∑k−1
l=k−τ [l − (k − τ) + 1]‖x̄l+1 − x̄l‖2

−
[
2(1−α)−(2+α)η2L2−αηL

2αηn − (1+η2L2)(2τ2−n)
2n3η

]
‖xk+1

ik
− xkik‖

2.

Simplifying the coefficients of this estimate, we finally arrive at (53).

To analyze Algorithm 2, we need the following key lemma.
Lemma B.2 (Sure descent lemma). Suppose that Assumptions 2.1, 2.2, and 4.1 hold. Let{

(xki , y
k
i , x̂

k
i , x̃

k, x̄k)
}

be generated by Algorithm 2 and V kη be defined as in (25). Let

Ṽ kη (x̄k) := V kη (x̄k) + 1
nη

∑k−1
l=k−τ [l − (k − τ) + 1]‖x̄l+1 − x̄l‖2. (62)

Suppose that we choose 0 < α < ᾱ and 0 < η < η̄, where c := 2τ2−n
n2 ,

ᾱ :=

{
1 if 2τ2 ≤ n,
2

2+c otherwise,

and η̄ :=


√
16−8α−7α2−α

2L(2+α) if 2τ2 ≤ n,
√

16−8α−(7+4c+4c2)α2−α
2L[2+(1+c)α] otherwise.

(63)

Then, the following statement holds:
ρ

2
‖xk+1

ik
− xkik‖

2 ≤ Ṽ kη (x̄k)− Ṽ k+1
η (x̄k+1), (64)

where

ρ :=


2(1−α)−(2+α)L2η2−Lαη

αηn if 2τ2 ≤ n,
n2[2(1−α)−(2+α)L2η2−Lαη]−α(1+η2L2)(2τ2−n)

αηn3 otherwise.

Moreover, ρ is positive.

Proof. If we define Ṽ kη as in (62) of Lemma B.2, i.e.:

Ṽ kη (x̄k) := V kη (x̄k) +
τ

ηn2

k−1∑
l=k−τ

[l − (k − τ) + 1]‖x̄l+1 − x̄l‖2,

then from (53), we have

Ṽ k+1
η (x̄k+1) ≤ Ṽ k(x̄k)− ρ

2
‖xk+1

ik
− xkik‖

2,

which is equivalent to (64).

Now, we find conditions of α and η such that ρ and θ are positive. We consider two cases as follows.

32

Case 1: If 2τ2 ≤ n, then

ρ := 2(1−α)−(2+α)L2η2−Lαη
αηn .

Let us choose 0 < α < 1. To guarantee ρ > 0, we require 2(1 − α) > (2 + α)L2η2 + Lαη. In

this case, we need to choose 0 < η <

√
L2α2+8(1−α)(2+α)L2−Lα

2L2(2+α) =
√
16−8α−7α2−α

2L(2+α) . These are the
choices in (63) when 2τ2 ≤ n.

Case 2: If 2τ2 > n, then

ρ := n2[2(1−α)−(2+α)L2η2−Lαη]−α(1+η2L2)(2τ2−n)
αηn3 .

Let c := 2τ2−n
n2 > 0. In order to guarantee that ρ > 0, we need to choose 0 < α < 1 and η > 0 such

that
2− 2α− α(2τ2−n)

n2 >
[
2 + α+ α(2τ2−n)

n2

]
L2η2 + Lαη,

and 0 < α < 2n2

2n2+(2τ2−n) = 2
2+c .

Using the definition of c, the first condition becomes 2− 2α− cα > Lαη+ (2 +α+ cα)L2η2. First,
we need to impose 2− 2α− cα > 0, leading to 0 < α < 2

2+c . Next, we solve the above inequality
w.r.t. η > 0 to get

0 < η < η̄ :=

√
16−8α−(7+4c+4c2)α2−α

2L[2+(1+c)α] .

These are the choices in (63) when 2τ2 > n. To guarantee η̄ > 0, we need to choose α <
4

1+
√

1+4(2+c+c2)
. Combining four conditions of α, we get 0 < α < 2

2+c . Finally, we conclude that

under the choice of α and η as in (63), we have ρ > 0 and θ > 0.

Next lemma bounds the term
∑n
i=1 E

[
‖x̄k − xki ‖2

]
in order to bound E

[
‖Gη(x̄k)‖2

]
.

Lemma B.3. Suppose that Assumptions 2.1, 2.2, and 4.1 hold. Let
{

(xki , y
k
i , x̂

k
i , x̄

k)
}

be generated
by Algorithm 2. Then, we have

n∑
i=1

E
[
‖x̄k − xki ‖2

]
≤ D

k+T∑
t=k−τ

E
[
‖xt+1

it
− xtit‖

2
]
, (65)

where D := 8α2(1+L2η2)(τ2+2Tnp̂) + 8n2(1+L2η2+Tα2p̂)
p̂α2n2 .

Proof. Let tk(i) := min
{
t ∈ {0, · · · , T} : p(i | ξ0:k+t−1) ≥ p̂

}
. In fact, tk(i) is the first time in

the iteration window [k, k + T], user i is active, i.e. gets updated. For any γ ∈ (0, 1), we have∑k+T
t=k E

[
‖x̄t − xt

ît
‖2 | Ft−1

]
(ω) =

∑k+T
t=k

∑n
i=1 p(i | ξ0:t−1)‖x̄t − xti‖2

(51)
≥
∑n
i=1 p̂‖x̄k+tk(i) − x

k+tk(i)
i ‖2

(∗)
≥ p̂

∑n
i=1

[
‖x̄k − xki ‖ − ‖x̄k+tk(i) − x

k+tk(i)
i − (x̄k − xki)‖

]2
≥ −2p̂

∑n
i=1 ‖x̄k − xki ‖‖x̄k+tk(i) − x

k+tk(i)
i − (x̄k − xki)‖

+ p̂
∑n
i=1 ‖x̄k − xki ‖2

(∗∗)
≥ p̂

∑n
i=1

[
‖x̄k − xki ‖2 − 1

2‖x̄
k − xki ‖2

]
− 4p̂

∑n
i=1 ‖x̄k+tk(i) − x̄k‖2 − 4p̂

∑n
i=1 ‖x

k+tk(i)
i − xki ‖2,

where (*) comes from the reverse triangle inequality ‖a − b‖2 ≥ (‖a‖ − ‖b‖)2 and (**) is due to
4‖v‖2 + 4‖s‖2 + 1

2‖u‖
2 ≥ 2‖u‖‖v + s‖. Note that the conditional expectation above is only taken

w.r.t. îk, which is σ(dk,Fk−1)-measurable. For simplicity of notation, we drop (ω) in the sequel.

33

Rearranging the last inequality, we obtain
p̂
2

∑n
i=1 ‖x̄k − xki ‖2 ≤

∑k+T
t=k E

[
‖x̄t − xt

ît
‖2 | Ft−1

]
+ 4p̂

∑n
i=1 ‖x̄k+tk(i) − x̄k‖2

+ 4p̂
∑n
i=1 ‖x

k+tk(i)
i − xki ‖2.

(66)

Next, we bound the term
∑n
i=1 ‖x̄k+tk(i) − x̄k‖2 as follows:∑n

i=1 ‖x̄k+tk(i) − x̄k‖2 =
∑n
i=1 ‖

∑k+tk(i)−1
t=k (x̄t+1 − x̄t)‖2

≤
∑n
i=1 tk(i)

∑k+tk(i)−1
t=k ‖x̄t+1 − x̄t‖2 (Young’s inequality)

≤ T
∑n
i=1

∑k+tk(i)−1
t=k ‖x̄t+1 − x̄t‖2 (since tk(i) ≤ T)

= nT
∑k+T
t=k ‖x̄t+1 − x̄t‖2

(61)
≤ 2T (1+η2L2)

n

∑k+T
t=k ‖x

t+1
it
− xtit‖

2.

(67)

We can also bound
∑n
i=1 ‖x

k+tk(i)
i − xki ‖2 as follows:∑n

i=1 ‖x
k+tk(i)
i − xki ‖2 =

∑n
i=1 ‖

∑k+tk(i)−1
t=k (xt+1

i − xti)‖2

≤
∑n
i=1 tk(i)

∑k+tk(i)−1
t=k ‖xt+1

i − xti‖2 (Young’s inequality)

≤ T
∑k+T−1
t=k

∑n
i=1 ‖x

t+1
i − xti‖2 (since tk(i) ≤ T)

= T
∑k+T
t=k ‖x

t+1
it
− xtit‖

2 (since only user it is updated at iteration t).

(68)

Let us bound the first term on the right-hand side of (66) as follows:∑k+T
t=k E

[
‖x̄t − xt

ît
‖2 | Ft−1

]
≤ 2

∑k+T
t=k E

[
‖x̄t−d

t
ît − xt

ît
‖2 | Ft−1

]
+ 2

∑k+T
t=k E

[
‖x̄t − x̄t−d

t
ît‖2 | Ft−1

]
.

(69)

However, similar to the proof of (60) and (61), we can show that∑k+T
t=k ‖x̄t − x̄

t−dt
ît‖2

(60)
≤ τ

∑k+T
t=k

∑t−1
l=t−τ ‖x̄l+1 − x̄l‖2

≤ τ2
∑k+T
t=k−τ ‖x̄t+1 − x̄t‖2

(61)
≤
∑k+T
t=k−τ

2τ2(1+η2L2)
n2 ‖xt+1

it
− xtit‖

2.

(70)

On the other hand, by using (56), we have

‖x̄t−d
t
ît − xt

ît
‖2 = ‖yt+1

ît
− yt

ît
‖2 (by the update of yk

îk
in Algorithm 2)

(56)
=
∥∥ 1
α (xt+1

ît
− xt

ît
) + η

α (∇fît(x
t+1

ît
)−∇fît(x

t
ît

))
∥∥2

≤ 2
α2 ‖xt+1

ît
− xt

ît
‖2 + 2η2

α2 ‖∇fît(x
t+1

ît
)−∇fît(x

t
ît

)‖2

≤ 2(1+η2L2)
α2 ‖xt+1

ît
− xt

ît
‖2.

(71)

Therefore, plugging (70) and (71) into (69), we have∑k+T
t=k E

[
‖x̄t − xt

ît
‖2 | Ft−1

]
≤ 4τ2(1+η2L2)

n2

∑k+T
t=k−τ E

[
‖xt+1

ît
− xt

ît
‖2 | Ft−1

]
+ 4(1+η2L2)

α2

∑k+T
t=k−τ E

[
‖xt+1

ît
− xt

ît
‖2 | Ft−1

]
= 4(1+η2L2)[τ2α2+n2]

n2α2

∑k+T
t=k−τ E

[
‖xt+1

ît
− xt

ît
‖2 | Ft−1

]
.

(72)

Substituting (67), (68), and (72) into (66), we obtain
p̂
2

∑n
i=1 ‖x̄k − xki ‖2 ≤

4(1+η2L2)[τ2α2+n2]
n2α2

∑k+T
t=k−τ E

[
‖xt+1

ît
− xt

ît
‖2 | Ft−1

]
+ 8p̂T (1+η2L2)

n

∑k+T
t=k ‖x

t+1
it
− xtit‖

2 + 4p̂T
∑k+T
t=k ‖x

t+1
it
− xtit‖

2

≤ 4(1+η2L2)[τ2α2+n2]
n2α2

∑k+T
t=k−τ E

[
‖xt+1

ît
− xt

ît
‖2 | Ft−1

]
+ 4p̂T [2(1+η2L2)+n]

n

∑k+T
t=k−τ ‖x

t+1
it
− xtit‖

2.

34

Finally, taking full expectation both sides of the last inequality w.r.t. σ(dk,Fk−1), and multiplying
the result by 2

p̂ , we arrive at

n∑
i=1

E
[
‖x̄k − xki ‖2

]
≤ D

k+T∑
t=k−τ

E
[
‖xt+1

it
− xtit‖

2
]
,

where D := 8(1+η2L2)(τ2α2+n2)
p̂n2α2 + 8T [2(1+η2L2)+n]

n . This inequality is exactly (65).

B.4 The proof of Theorem 4.1: Convergence of Algorithm 2

By Assumption 4.1, for each T iterations, the probability of each user i getting updated is at least
p̂ > 0. Hence, from (64) of Lemma B.2, we sum up from t := k − τ to t := k + T , and have

ρ

2

k+T∑
t=k−τ

‖xt+1
it
− xtit‖

2 ≤
k+T∑
t=k−τ

[
Ṽ tη (x̄t)− Ṽ t+1

η (x̄t+1)
]
,

where ρ > 0 is given in Lemma B.2. Now, take full expectation both sides of this inequality w.r.t.
Fk, we obtain

ρ

2

k+T∑
t=k−τ

E
[
‖xt+1

it
− xtit‖

2
]
≤

k+T∑
t=k−τ

[
E
[
Ṽ tη (x̄t)

]
− E

[
Ṽ t+1
η (x̄t+1)

]]
. (73)

Next, using (23) from Lemma A.3 with γ2 = 0, we have

‖Gη(x̄k)‖2 ≤ (1 + ηL)2

nη2

n∑
i=1

‖xki − x̄k‖2.

Taking full expectation both sides of this inequality, and then combining the result and (65), we obtain

E
[
‖Gη(x̄k)‖2

]
≤ (1+ηL)2D

nη2

∑k+T
t=k−τ E

[
‖xt+1

it
− xtit‖

2
]
,

where D is given in Lemma B.3.

Combining the last inequality and (73), we arrive at

E
[
‖Gη(x̄k)‖2

]
≤ 2(1+ηL)2D

nη2ρ

∑k+T
t=k−τ

(
E
[
Ṽ tη (x̄t)

]
− E

[
Ṽ t+1
η (x̄t+1)

])
.

Averaging this inequality from k := 0 to k := K, we get

1
K+1

∑K
k=0 E

[
‖Gη(x̄k)‖2

]
≤ Ĉ

K+1

∑K
k=0

∑k+T
t=k−τ

[
E
[
Ṽ tη (x̄t)

]
− E

[
Ṽ t+1
η (x̄t+1)

]]
≤ Ĉ

K+1

[
Ṽ 0
η (x̄0)− E

[
Ṽ K+T+1
η (x̄K+T+1)

]]
,

(74)

where Ĉ := 2(1+ηL)2D
nρη2 . Here, we have used the monotonicity of {E

[
Ṽ kη (x̄k)

]
}k≥0 and E

[
Ṽ 0
η (x̄0)] =

Ṽ 0
η (x̄0) in the last equality.

Now, recall from the definition of Ṽ kη (·) and V kη (·) that

Ṽ 0
η (x̄0) = V 0

η (x̄0) = F (x0) and E
[
Ṽ kη (x̄k)

]
≥ E

[
V kη (x̄k)

] (36)
≥ F ?.

Substituting these relations into (74), we eventually get

1

K + 1

K∑
k=0

E
[
‖Gη(x̄k)‖2

]
≤ Ĉ

(K + 1)

[
F (x0)− F ?

]
,

which is exactly (10). Using the definition of ρ, θ, and D into Ĉ, we obtain its simplified formula as
in Theorem 4.1. The remaining conclusion of the theorem is a direct consequence of (10). �

35

C Implementation Details and Additional Numerical Examples

In this section, we provide more details on the set up of numerical experiments and present additional
numerical results to illustrate the performance of our algorithms compared to others.

C.1 Details on numerical experiments

Parameter selection. We use the learning rate for local solver (SGD) as reported in [23] to
approximately evaluate proxηfi(y

k
i) at each user i ∈ [n]. The learning rates are 0.01 for all synthetic

datasets, 0.01 for MNIST, and 0.003 for FEMNIST. We also perform a grid-search over multiple
values to select the parameter and stepsizes for FedProx, FedPD and FedDR. In particular, we choose
µ ∈ [0.001, 1] for FedProx, η ∈ [1, 1000] for FedPD, and η ∈ [1, 1000], α ∈ [0, 1.99] for FedDR.
All algorithms perform local SGD updates with 20 epochs to approximately evaluate proxηfi(y

k
i)

before sending the results to server for [proximal] aggregation.

Training models. For all datasets, we use fully-connected neural network as training models.
For all synthetic datasets, we use a neural network of size 60 × 32 × 10 where we use the format
input size× hiddden layer× output size. For MNIST, we use a network of size 784× 128× 10. For
FEMNIST used in the main text, we reuse the dataset from [23] and a 784× 128× 26 model.

Composite examples. We test our algorithm under composite setting where we set g(x) =
0.01 ‖x‖1. In the first test, we choose η = 500, α = 1.95 and select the local learning rate (lr) for
SGD to approximately evaluate proxηfi(y

k
i) from the set {0.0025, 0.005, 0.0075, 0.01, 0.025} for

synthetic-(0,0) and {0.001, 0.003, 0.005, 0.008, 0.01} for FEMNIST. Next, we fix the local learn-
ing rate at 0.01 for synthetic-(0,0) and 0.003 for FEMNIST then adjust the number of local epochs
in the set {5, 10, 15, 20, 30} to evaluate proxηfi(y

k
i). Finally, we test our algorithm when changing

the total number of users participating at each communication round |Sk|. For synthetic-(0,0)
dataset, we set |Sk| ∈ {5, 10, 15, 20, 25}. For FEMNIST dataset, we set |Sk| ∈ {10, 25, 50, 75, 100}.

Asynchronous example. To make the sample size larger for each user, we generate the FEMNIST
dataset using Leaf [4]. In the new dataset, there are actually 62 classes instead of 26 classes as used
in [23]. Therefore, we denote this dataset as FEMNIST - 62 classes. In this new dataset, each user
has sample size ranging from 97 to 356. We implement the communication between server and user
using the distributed package in Pytorch 1 as in [3]. There are 21 threads created, one acts as server
and 20 others are users. To simulate the case when users have different computing power, we add a
certain amount of delay at the end of each user’s local update such that the total update time varies
between all users. For FEMNIST - 62 classes dataset, the model is a fully-connected neural network
of the size 784× 128× 62.

C.2 Additional numerical results

We first present two experiments on iid and non-iid datasets without using user sampling scheme as
shown in Figure 7. That is all users participate into the system at each communication round.

From Figure 7, FedAvg appears to perform best while the other three algorithms are comparable
in the iid setting. Similar behavior is also observed in [23]. For the non-iid datasets along with
Figure 2, we observe that the more non-iid the dataset is, the more unstable these algorithms behave.
In the synthetic-(1,1) dataset, FedDR appears to be the best followed by FedPD. FedProx also
performs much better than FedAvg in this test.

Figure 8 depicts the performance of 4 algorithms in terms of communication cost on the
synthetic-(1,1) dataset. We still observe that FedDR works well while FedProx and FedPD are
comparable but still better than FedAvg.

More results of experiments on the composite setting are presented in Figure 9. We observe that
the learning rate (lr) of SGD needs to be tuned for each dataset and the local iteration should be
selected carefully to trade-off between local computation cost and inexactness of the evaluation of
proxηfi(y

k
i).

1See https://pytorch.org/tutorials/beginner/dist_overview.html for more details.

36

https://pytorch.org/tutorials/beginner/dist_overview.html

0 50 100 150
Comm. Rounds

0.5

1.0

1.5

2.0

Tr
ai

nL
os

s

0 50 100 150
Comm. Rounds

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 50 100 150
Comm. Rounds

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-iid

0 50 100 150
Comm. Rounds

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 50 100 150
Comm. Rounds

0.0

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 50 100 150
Comm. Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(0,0)

0 50 100 150
Comm. Rounds

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 50 100 150
Comm. Rounds

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

nA
cc

0 50 100 150
Comm. Rounds

0.3

0.4

0.5

0.6

0.7

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(1,1)

Figure 7: The performance of 4 algorithms on iid and non-iid synthetic datasets without user sampling
scheme. The first row is for one iid dataset, and the last two rows are for non-iid datasets.

We also vary the number of users sampled at each communication round. The results are depicted in
Figure 10 for two datasets. We observe that the performance when we sample smaller number of user
per round is not as good as larger ones in terms of communication rounds. However, this might not
be a fair comparison since fewer clients also require less communication cost. Therefore, we plot
these results in terms of number of bytes communicated. The results are depicted in Figure 11. From
Figure 11, FedDR performs very similarly under different choices of Sk.

We also compare FedDR and asyncFedDR using the FEMNIST dataset. The results are depicted in
Figure 12. We can see that asyncFedDR is advantageous over FedDR to achieve lower loss value and
higher accuracies.

37

0 1 2 3 4
Bytes 1e6

0.5

1.0

1.5

2.0

2.5

3.0
Tr

ai
nL

os
s

0 1 2 3 4
Bytes 1e6

0.0

0.2

0.4

0.6

0.8

Tr
ai

nA
cc

0 1 2 3 4
Bytes 1e6

0.0

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(0,0)

0 1 2 3 4
Bytes 1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

nL
os

s

0 1 2 3 4
Bytes 1e6

0.2

0.4

0.6

0.8
Tr

ai
nA

cc

0 1 2 3 4
Bytes 1e6

0.2

0.4

0.6

0.8

Te
st

Ac
c

FedAvg
FedProx
FedPD
FedDR

synthetic-(1,1)

Figure 8: The performance of 4 algorithms without user sampling scheme on non-iid datasets in
terms of communication effort.

0 50 100 150 200
Comm. Rounds

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.75

0.80

0.85

0.90

0.95

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

Te
st

Ac
c

lr = 0.0025
lr = 0.005
lr = 0.0075
lr = 0.01
lr = 0.025

synthetic-(0,0), g = || ||1

0 50 100 150 200
Comm. Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

Te
st

Ac
c

epoch = 5
epoch = 10
epoch = 15
epoch = 20
epoch = 30

synthetic-(0,0), g = || ||1

Figure 9: The performance of FedDR on synthetic dataset in composite setting.

38

0 50 100 150 200
Comm. Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.75

0.80

0.85

0.90

0.95

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

Te
st

Ac
c

| k| = 10
| k| = 25
| k| = 50
| k| = 75
| k| = 100

synthetic-(0,0), g = || ||1

0 50 100 150 200
Comm. Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 50 100 150 200
Comm. Rounds

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai

nA
cc

0 50 100 150 200
Comm. Rounds

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

Ac
c

| k| = 10
| k| = 25
| k| = 50
| k| = 75
| k| = 100

FEMNIST, g = || ||1

Figure 10: The performance of FedDR in composite setting in terms of communication rounds.

0 2 4 6 8
Bytes 1e6

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Tr
ai

nL
os

s

0 2 4 6 8
Bytes 1e6

0.75

0.80

0.85

0.90

0.95

Tr
ai

nA
cc

0 2 4 6 8
Bytes 1e6

0.70

0.75

0.80

0.85

0.90

Te
st

Ac
c

| k| = 10
| k| = 25
| k| = 50
| k| = 75
| k| = 100

synthetic-(0,0), g = || ||1

0 2 4 6 8
Bytes 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

nL
os

s

0 2 4 6 8
Bytes 1e8

0.5

0.6

0.7

0.8

0.9

Tr
ai

nA
cc

0 2 4 6 8
Bytes 1e8

0.5

0.6

0.7

0.8

Te
st

Ac
c

| k| = 10
| k| = 25
| k| = 50
| k| = 75
| k| = 100

FEMNIST, g = || ||1

Figure 11: The performance of FedDR in composite setting in terms of number of bytes.

0 1500 3000 4500 6000 7500
Time in seconds

1.8

2.4

3.0

3.6

4.2

Tr
ai

nL
os

s

0 1500 3000 4500 6000 7500
Time in seconds

0.00

0.15

0.30

0.45

0.60

Tr
ai

nA
cc

0 1500 3000 4500 6000 7500
Time in seconds

0.15

0.30

0.45

Te
st

Ac
c

FedDR
asyncFedDR

FEMNIST - 62 classes

Figure 12: The performance of FedDR and asyncFedDR on FEMNIST - 62 classes dataset.

39

