Supplementary Documment

FedDR - Randomized Douglas-Rachford Splitting Algorithms
for Nonconvex Federated Composite Optimization

A The Analysis of Algorithm [I; Randomized Coordinate Variant — FedDR

In this Supplementary Document (Supp. Doc.), we first provide additional details in the derivation of
Algorithm [T} FedDR. Then, we present the full proofs of the convergence results of Algorithm [I]

A.1 Derivation of Algorithm]|

Our first step is to recast (I into a constrained reformulation. Next, we apply the classical Douglas-
Rachford (DR) splitting scheme to this reformulation. Finally, we randomize its updates to obtain a
randomized block-coordinate DR variant.

(a) Constrained reformulation. With a little abuse of notation, we can equivalently write (I) into
the following constrained minimization problem:

n

1
min F(x):= f(x X)= — i(; x}
Jmin {F(0) = F(x) + g(x) 2 2 i) +a(r) an
i=

S.t. To = X1, L3 = X1, "+ ,Tp = L1.
where x := [x1, 22, - , &, concatenates n duplicated variables z1, za,- - , 2, of z in @ such that
it forms a column vector in R"P. Such duplications are characterized by xo = x1, 23 = 1, -+ ,Tp, =
21, which define a linear subspace £ := {x € R"" : 29 = x1, 3 = 21, -+ , &, = x1} in R"P.

(b) Unconstrained reformulation. Let ¢, be the indicator function of L, i.e. iz(x) = 0ifx € L,
and ¢ (x) = 400, otherwise. Then, we can rewrite (TI)) into the following unconstrained setting:

min {F(x) = () + 900 + 620 = - > filw) +g(en) +0c(x)). (12)

xER?P
i=1

Clearly, (I2) can be viewed as a composite nonconvex minimization problem of f(x) and g(x) +
0. (x). The first-order optimality condition of can be written as

0 € Vf(x*)+ 0g(x*) + 9o, (x*), (13)

where 9J is the subdifferential of d -, which is the normal cone of £ (or, equivalently, 96 (x) = £+
if x € L, the orthogonal subspace of £, and 9. (x) = 0, otherwise), and g is the subdifferential of
g. Note that since f is nonconvex, (I3) only provides a necessary condition for x* := [27,- - , 2]
to be a local minimizer. Any x* satisfying (T3)) is called a (first-order) stationary point of (I2). In this
case, we have 2 = x% for all i € [n]. Hence, using (T3), we have 0 € V f(x*) + dg(x*) + LL. This
condition is equivalent to 0 € £ > | V f;(2}) + dg(x7). However, since z} = 7 for all i € [n],
the last inclusion becomes 0 € L 3" |V fi(2}) 4 dg(x7). Equivalently, we have 2* := z} tobe a
stationary point of (T)).

(c) Full parallel DR variant. Let us apply the DR splitting method to (T3)), which can be written
explicitly as follows:

vyl = xF 4 a(xk - xF),
Xt = prox,, (y*), (14)
Xkt = proxnn(g+5ﬁ)(2xk+l—yk"'l),

where 77 > 0 is a given such that n7) is a step-size and « € (0, 2] is a relaxation parameter [40]. If
a = 1, then we recover the classical Douglas-Rachford scheme [27] and if a = 2, then we recover
the Peaceman-Rachford splitting scheme [1]]. Note that the classical DR scheme studied in [27] was
developed to solve monotone inclusions, and in our context, convex problems. Recently, it has been
extended to solve nonconvex optimization problems, see, e.g., [20,40].

Let us further exploit the structure of f, g, and . in to obtain a special parallel DR variant.

14

* First, since f(x) = L 3" | fi(x;), we have

min {£0)+ gk [x =y 2} = min {230 [+ &l =517}

=1
n
. k
= & min {fitwi) + gglles ot 17}
i=1 "
Hence, we can decompose the computation of x**1 := prox,,, ;(y**!) from (T4) as

zi = prox, ; (yF ™) forall i € [n].

Sk+1 k+1 k+1
+ oy

k41 or equivalently, in component-wise T =

. Next we denote X = 2x
20—y for all i € [n].
* Finally, the third line of (T4) x**1 := prox,,, , 45,y (X" 1) can be rewritten as

arg min]{g(xl + m S0l — 2512}

M= prOXnn(g+6g)(§(k+)= o wn 15)
st. x; =x1, foralli=2,--- n
Let us solve(T3) explicitly. First, we define a Lagrange function associated with (13)) as
n n—1
_ 1 Sht1))2 T
Llx,2) = glon) + 500 ; [l = 21 + ; 2 (Tiy1 — 1),
where z; (i = 1,--+ ,n — 1) are the corresponding Lagrange multipliers. Hence, the KKT condition

of (T3) can be written as

09(@) + (@t -t - i s =0,
@ - 2 =0, foralli=1,--- ,n—1
;Efj_rll = :f’f“, foralle=1,--- ,n—1.
Summing up the second line from ¢ = 1 to ¢+ = n — 1 and combining the result with the last line of
this KKT condition, we have

n—1 n—1 n
~k+1 —k-i-l ~k+1 =k+1
””ZZZ =Y @ —E) =) # -z
i=1 1=2

Substituting this expression into the first line of the KKT condition, we get

n n—1
NS —k+1 Ak 1 1 k+1
Z + —Daytt =21t —&—m]Zzl € 81 nndg(zh . (16)
i=1 i=1
This condition is equivalent to Y ;- mk“ € nka + nndg(z k“) By introducing a new notation
ghtl = x’”l we eventually obtain from the last inclusion that
xFH1o= [ZFHL . gE] e R, where zFt!:=prox,, (1370 &t
If we introduce a new variable ¥+ := L 3" | #4*! then zF+! = prox, (#F+1).

Putting the above steps together, we obtain the following parallel DR variant for solving (T)):

yi ™= yf ta@h — o), vien]

= prox, ;. (y5 1), Vi€ [n]

R = oph kL e) a7
Rl ;Zi At

M= prox,, (ZF1).

This variant can be implemented in parallel. It is also known as a special variant of Tseng’s splitting
method [1]] in the convex case. This variant also covers FedSplit in [33] for FL as a special

15

case when g = 0, f; is convex for all ¢ € [n], and « = 2. In fact, FedSplit is a variant of the
Peaceman-Rachford method, and is different from our algorithms due to o < 2. If ¢ = 0 (i.e.,
without regularizer), then the last line of (T7) reduces to zF+! = FF+1,

(d) Inexact block-coordinate DR variant. Instead of performing update for all users i € [n] as in
(17), we propose a new block-coordinate DR variant, called FedDR, where only a subset of users
Sk C [n] performs local update then send its local model to server for aggregation. For user i ¢ S,
the local model is unchanged, i.e., for all i ¢ Sy: y¥ ™ = y¥ 2¥* = 2k and 2¥*! = 2%, Hence,
no communication with the server is needed for these users. Furthermore, we assume that we can
only approximate the proximal operator prox, ;, up to a given accuracy for all ¢ € [n]. In this case,
we replace the exact proximal step ' := prox, (. (yF) by its approximation x} :~ prox, ; (y) up
to a given accuracy ¢; , > 0 such that

&} — prox, ;, (Y| < € k- (18)

Since ' is approximately computed from prox, ;. (yy) as in (T8), we have

af =z2F +ef, where 2zl :=prox,; (y) and |ef| < €. (19)

k+1

We will use this representation of ¥ and ™" in our analysis in the sequel.

More specifically, the update of our inexact block-coordinate DR variant can be described as follows.

« Initialization: Given an initial vector z° € dom(F’) and accuracies €; o > 0.
Initialize the server with z° := 2.
Initialize all users i € [n] with y := 2%, z :~ prox, ;. (47), and &} = 229 — 7.

* The k-th iteration (k > 0): Sample a proper subset S C [n] so that S, presents as the
subset of active users.

 (Communication) Each user i € Sy, receives ¥ from the server.

* (Local/user update) For each user i € Sy, given ¢; ;41 > 0, it updates

0

E+1 . Lk —k k

Ys =y ta@ —a7)
k+1 .. k41

T} i~ prox, . (y;)

ﬁcf“ = 2£Ci-€+1 - yf“.

Each user i ¢ Sy, does nothing, i.e.:

k+1 I k
Yi =Y

k+1 k
x; =

~k+1 . sk
z; = I

¢ (Communication) Each user i € Sy sends only fci”l to the server.
n ~k+1

* (Global/Server update) The server aggregates 3" +! := % > i1 Z;7, and then compute
ML = prox, (FF1).
This scheme is exactly Algorithm However, the global update on #**1 can be simplified as
sk+l . 1 Skl _ 1 Skl 1 Ak
P = T T = L s B Digs, T
1 - 1 L ~k+1 ~
= § i B+ s, (@ -)
_ sk 1 ok
= "+ n ZiESk Ami :
This step is implemented in Algorithm|[T}

To analyze convergence of Algorithm|l| we conceptually introduce 2{ and zf“ for i € [n] as follows:

k1y e
. prox, ;. (z; ") if i€ Sy
2= proxy (), 57 = {zlc e if i¢Sk

K3

and zf:=zF+ef. (20

Here, e is the vector of errors. Note that 20 and zF*! do not exist in actual implementation of
Algorithm |1} and we only have their approximations z{ and zhtt

i

, respectively. For any k& > 0, since

16

k+1

aF = gk and 2}

= zf fori ¢ Sy, we have |27 — 2| = [lef || = [laf — 2F|| = [|ef | for

i ¢ Sk. To guarantee ||ef+1\| = |le¥|| for i ¢ Sy, we must choose €; 11 := €; fori ¢ S.

Note that in Algorithm [T} we have not specified the choice of S,. The subset Sy, is an iid realization
of a random set-valued mapping S from [n] to 2["], the collection of all subsets of [1]. Moreover,

S is a proper sampling scheme in the sense that p; := P(i € S) > 0 for all i € [n] as stated in
Assumptlonn By spemfymg this probability distribution p := (p1,- - , Pn), We obtain different
sampling strategies ranging from uniform to non-uniform as dlscussed in [36]. Our analysis below
holds for arbitrary sampling scheme that satisfies Assumption [3.1]

A.2 Further details of comparison

We have compared our methods, Algorithm [I|and Algorithm 2] with various existing FL methods in
the introduction (Section . Here, let us further elaborate this comparison in more detail. Due to the
rapid development of FL in the last few years, it is impossible to review a majority of works in this
field. Hence, we only select a few algorithms that we find most related to our work in this paper.

* FedAvg: FedAvg [29] has become a de facto standard federated learning algorithm in
practice. However, it has several limitations as discussed in many papers, including [23]].
It is also difficult to analyze convergence of FedAvg, especially in the nonconvex case
and heterogeneity settings (both statistical and system heterogeneity). Moreover, FedAvg
originally specifies SGD with a fixed number of epochs and a fixed learning rate as its
local solver, making it less flexible in practice. Convergence analysis of FedAvg requires
additional assumptions apart from the standard smoothness of f;. Moreover, its extension
to the composite setting, e.g., in [47] only focuses on the convex case, and requires a set
of strong assumptions, including bounded heterogeneity. Since it was proposed, several
attempts have been made to analyze convergence of FedAvg in both convex and nonconvex
settings, see, e.g., [LO, [11} 124} 26} 43]].

* FedProx: FedProx proposed in [23]], on the one hand, can be viewed as an extension of
FedAvg, but on the other hand, can be cast into a quadratic penalty-type method for the
constrained reformulation of (I). Indeed, when g = 0, from (TI), we can define a
quadratic penalty function with a penalty parameter ;1 > 0 as follows:

Zf? +7Z”1’z xn—&-lH

First, we apply an alternating minimization strategy to minimize P, over [x1,--- , ;] and
then over x,41. Next, instead using the full minimization over all blocks z1,--- ,z,, a
block coordinate descent strategy is applied by selecting a subset of blocks S, C [n] at
random. Finally, we replace the exact minimization problem of each block z; by its inexact
computation. This method exactly leads to FedProx in [23]]. While FedProx can potentially
handle a major heterogeneity challenge, it relies on a [local] dissimilarity assumption, which
could be difficult to check. In addition, this assumption limits the application of FedProx.

* Other methods: FedPD proposed in [49] is exactly an augmented Lagrangian method
applying to the constrained reformulation (TI)) of (I) when g = 0, combining with an
alternating minimization strategy as in FedProx. However, FedPD requires all users to
update their computation and flips a biased coin to decide if a global communication is
carried out. This method essentially violates one crucial requirement of FL, which is known
as system heterogeneity. Another FL method is FedSplit in [33], which also requires all
users to participate into each communication round. This method also relies on Peaceman-
Rachford splitting scheme [[1] and is different from our algorithms. Its convergence analysis
is only shown for convex problems in [33]. However, as shown in [33]], this scheme can
overcome the fundamental statistical heterogeneity challenge in FL.

In contrast to the above methods, our methods developed in this paper always converges under
standard assumptions (i.e., only the L-smoothness and boundedness from below). The proposed
methods can handle the majority of challenges in FL, including system and statistical heterogeneity.
We also allow one to use any local solver to evaluate prox, up to a given adaptive accuracy.
Moreover, our methods can handle convex regularizers (in particular, convex constraints), and can be
implemented in an asynchronous manner.

17

A.3 Preparatory lemmas

We first present a useful lemma to characterize the relationship between x¥ and y* for all iteration k.
Then, we prove a sure descent lemma to establish the main results in the main text.

Lemma A.l. Let {(yl, Z, z 2F)} be generated by Algorithm I | and @0) starting from z) :=
prox, . (y7) for all i € [n] as in 20). Then, for all i € [n] and k > 0, we have

yF =24V fi(2F), and 2F =22F —yF 20
Proof. We prove (21)) by induction. For k& = 0, due to the initialization step, Step|%|0f Algorithm/[I]
and 20) with z{ := prox, ;. (v7), we have y = z{ + 9V f;(2}) and 29 = 229 — y7 as in Z1).

Suppose that 1)) holds for all &k > 0, i.e., y¥ = zF + nV fi(2F) and ¥ = 22F — yF. We will show
that (ZT)) holds for k + 1, i.e. y# ! = f“ + 77sz(k+1) and ﬁf“ = fo“ Y forall i € [n],
respectively. We have two cases:

* For any user i € S, from the optimality condition of (20), we have
VAET) + 3G =y =00 50 gt = T VG,

Moreover, :?:k+ = 2xk+1 kH due to Steplof Algoritihml
» For any user i ¢ Sy, since ZkJrl := zF due to @0), zF ™' = 2%, and y# ! = y¥, we can
also write y’”l

(*)
nyrl ylk) Zk +7)sz(2) _ ZkJrl +77Vf(k+1)

Here, (x) follows from our induction assumption. Moreover, for i ¢ Sk, we maintain

G = 3k in Algormhm By our induction assumption, and ¥ ™! = z¥ and y# 1 = ¥,
we have f"’ =3k =22k — gk = 2xk+1 yf“

In summary, both cases above imply that y*** = 2F*1 4V f;(2F) and 2¥ = 22% — y¥ hold for
all ¢ € [n], which proves 21). O
k HZ

Our next lemma is to bound ||z — 2} REL k)2,

Lemma A.2. Let {(z¥, 28 2¥)} be generated by Algorlthmland (20D, and o > 0. Then, for all

39710

1 € Sk and any v, > 0, we have

272
2 — k)2 < AL o) ok - ok 4 2R (el k)] @)

in terms of ||z;

2r2
In particular, if eff = ™1 = 0, then || 7% — 2¥|? < 72(1t:72 L) ||kt — k|2,
k+1 .
Proof. From the update of y,”" " and Lemma for i € Sy, we have

B b = S =) B L L) - V).

s

Using this expression and ||a + b||? < 2||a||? + 2||b||?, we can bound ||z* — z¥||? for all i € Sy, as
2% — 2|2 = | L(zF — 2 + L(Vfi(2F) — VEAEY)2

Zillzk =2+ BV (k) = VG

Lt = 2F)2 + 27’:52 |21 — 2|2 (by the L-smoothness of f;)

AL o~k — o el2 by @D))

2(1+n%L? k 2(1+ k
< 2D (1 4)l — b2 + 2L (flef 2 + ek) .

I/\ IN

Here, we have used Young’s inequality twice in the last inequality. This proves (22). When

ef = ef'H = 0, we can set y; = 0 in the above estimate to obtain the last statement. O

18

We still need to link the norm >}, ||#¥ — z*||? to the norm of gradient mapping |G, (z*)]|.

Lemma A.3. Let {(z¥, 2F, 2F)} be generated by Algorithmand (20), and o > 0 and G, be defined

(2 17

by @). Then, for any 2 > 0, we have

=1

1 u 1+
1, < {02 3 [st -4+ S]])

In particular, if ef = 0 for all i € [n], then we have ||G,(z*)||> < % S |k — 2|2

Proof. From Step[7] of Algorithm[I]and (ZI), we have

~ 1. Step(| n A~ n n
gl g k@ isn opk @ Ly ok k(). (24)

From the definition (@) of G,, and the update of Z*, we have
nllGa (@) & a* — prox,, (2% — 1V f(2))]
= |lprox,, (&*) — prox,, (z* — nV f(@*))]|
< [|#*F =2 +nViEh)|
B Lo leel - o -) + (V@) - VA,

where we have used the non-expansive property of prox, in the first inequality and V f (zF) =
LS L V/fi(z") in the last line.

Finally, using the L-smoothness of f;, we can derive from the last inequality that
PG, < &[S0, (l2ak — 2 — 2]+ |z — 7))

% i (l2ek — 28 — 2 + L)zt - 2*))°

LY [nn) ek —)+ (1 an)llef])”

LA +nL)2 S0, [(1+) |lak — 242 + S22k 2],

which proves (23), where v, > 0. Here, we have used Young’s inequality in the second and the last
inequaliti daf =2F + ek fi in the third i O
qualities, and 2 = z¥ + e¥ from (20) in the third line.

IN A

IN

To analyze convergence of Algorithm [I] we introduce the following Lyapunov function:

_ T _ 1,
VIR = g@b) 3 [Ad) + (VA 2 =) g et -] @)

i=1

First, we prove the following lemma.

Lemma A.4. Suppose thatAssumption andhold. Let {(2F, ¥ yF, 2% 2%)} be generated
by Algorithmand ([@0). Let V¥ be defined by 23). Then, for any 3 > 0, we have

VI (@i th) < g(a%) + 5 200 [fulef ™) +(Vfilal ™), 2% — 2 ™) + 5o lla* — af 7]

[7 ()
1—v — — 1+7]2L2
(3)||J,‘k+1 Z‘k”Q (")E2 15

k
where E} | = %Zigsk ek |12 + %Ziesk X 4|2, If Egy1 = 0, then we allow v3 = 0.

Proof. First, from "1 = prox, , (Z*1) at Stepof Algorithm we have (ZFH1 — 7841 €
dg(z**1). Using this expression and the convexity of g, we obtain

g(Z*+1) < g(zk) + %<3~6k+1 — gk gkl k) - %||£k+1 — k|2 27

19

Next, since yF ™' = 25T 4V f;(2F"") due to @1) and 27! = 25 + ¥ due to 20), we have

L Lkt B gV R 4 B (VL) - VAGEE)

@ et bt g ekl

(28)

where €51 .= V f;(z5T1) — V fi(2FT1). Using this relation, we can derive
Appr = B, [faEH) + (DA, T4 = o) 4 Lok — o]
[k+1y - k - k+1
=I5 (A + (VA2 ol + et -2k
£ (5 - 20EH (@R VA (R), B - k) L gk — g2

(
<
© L5, [F@) (T, 2 -)+ gk — o]
<
(e
(

X,

+k

k
9
T
k

+ 77177 (k- 2Rt oyt Fhl gk 4 2177 |zk+t — zF||?
n%}z?: ekl ekt ghtl _ gk
YL [l + (VA 2 b 4 L 2]

+ %@k — R ghtl ghy o ”mk-i-l z*||2

AP I CARE S - 7*).
Summing up this expression and (27)), and using the definition of Vn’c in (23)), we get
Vnk+1(j,k+1) — %Z?:1 [fz(xfﬂ) (sz(k+1),jk+1 _Iic+1> 1 ka+1 fHH } g(k+1)
9@*) + L 0, [Ai@l) + (T hi(b),k — 2l) + L ak — o2

||xk+1 k||2 + % Z?:1<ef+1 + n€£c+1’ Rl _ jk>.

\ N

By Young’s inequality and ef“ = el fori ¢ Sy due to (20), for any 3 > 0, we can estimate

7‘[1] — n%}z:l 1< k+1 +77§k+1 ~k+1 i‘k>
< gk S [et el Y2 sl - 207
k k k
< BlEH 324 S S e + 2L S VAT = VG2
@ _ 14212
< Bttt —zk)24 L[S o llef T+ T, ek 1]

Substituting this inequality into the last estimate, we eventually obtain (26). However, if E} | = 0,
then we can deduce from the above inequality that 3 can be set to zero. O

Now, we prove the following key result, which holds surely for any subset Sy, of [n].

Lemma A.5 (Sure descent lemma). Suppose that Assumption @ 22 and 3] hold. Let
{(zk, ¥, 2k 2% 2%)} be generated by Algorithmand ([20), and V,7(-) be defined by @3). Then,
the following estimate holds:

_ _ 2—a(Ln+1)—2L%n2—4 14+L2n? k
Vi) < viah) - Bttt s, Nt - ad?

_ (1 'Ys ||.rk+l kHQ + (1+n°L?) 2

773 k+1 (29)

2(14+nL
+ —gmgzg Sies, ekl + [lek 1)),

where E}%JA = %Zigsk llef | + %Ziesk ll€;
then we allow 3 = 0, and if e¥ = ef"‘l = O0foralli € S, then we allow 4 = 0.

%, and 3,74 > 0. In particular, if Ej |, =0,

20

Proof. First, using (26), we can further derive

V@) D LS () + (VAE), 8 - o) ¢ 2 R)

?

_ 1— _ (1+n%L?
+g(ah) — S5t — a4 LR

()
= & 2icss filwi ™) + & >icss (Vfilaith), ok — 2™ (30)
s, (V) 25— ab) 4 Zh 3k — a2

+ 3 Tigs,) + 5 D (V)2 — o) + 505 T 1ok = kP

= 1— = = (1+9°L?
g(ah) = Bgpdat - gt o BB

where in (*) we have used the fact that only users in Sy, perform update and added/subtracted z¥ in
the term (V f;(z" 1), zk — 2k +1y,

On the other hand, from the L-smoothness of f;, we have
L
filaf ™) + (V@) af —af ™) < filaf) + §Ilfﬂichrl —ai|*.
Substituting this inequality into (30), we can further bound it as
VnkJrl(ijrl) S - ZlESk fl() + 2n Zzesk ”:Ek_‘—1 k||2 + 1 ZiESk <Vfl(1'k+1), $f>
+ %Ziesk |z — 22+ L szsk filaf) + & Zz¢3k<vfl(xi€)’ zy)

o S, 2% — 282 4 g(2)

1— _ _ 1+4n2L>
_ 2;’/3)||xk+1 k:||2+(7;23)Ek+1

= LT A + T VA5 — o) 4 D, [-t
+ o Dies, 1T = 2P+ 5 s, (Vfilal) = Vilah), 2% — af)
+ ﬁ Zigsk 2% — 2F||2 + g(z%)
- Gttt — a4 SRR B
where we have added and subtracted + Y. s (V fi(x}), Z" — x}') to obtain the last equality.
Next, using the following elementary expression
128 =22 = (12t — 2 |® - 2(8® - af af — 2+ flaf - a2
into (31), we can further derive
Vyth @) < g(@) + 5 X0 | filad) + (Vila]), 3" — o) + g 7% = 2f |
+ g e, et =2+ o Zzesk (@it —af,af —7¥)
+ 5 Dies (Vilai ™) - sz(D7 =) + 9 Dies, 12t — 2t
_ (157173)||fk+1 —zk|2 + (lt;zysL)E1%+1 (32)
= VEE") + S s, 25 =22+ & Tics, (@ — 2k, 2k —)

1— _ 14+n2L2
~ Gt — a2 4 CEEA B,

+ 23 e (VSfilaf ™) = Vfi(ah), 28 — af).
From the update of g/€+1 for i € S, and similar to the proof of @), we have

mi@ _ =k _ a(yz nyrl)
B 10k) 4 2(VhE) - VAEY)
= L(ak —)+ L(Vileh) = V@) + L[gkt = (ek +neh)]
= L(ak —)+ L(Vilah) = V) + s,

where sf := (el ™! 4+ ngi !t — (ef +ngl)) with £ := V f;(2f) — V fi(=F).
Consequently, using the last expression and the L-smoothness of f;, we can further bound (32)) as

= 14+nL k k
VIR ET) < VEES) + S S, e — oI - i s, I =P

— i Vies @ =2k V(@) = Vi(ah) + Y, (sE T — o)
+ s (Vfilaf) = Vfi(ah), 2l T — 2k)
+ LS s IVA@EET) = V@D + 2 s, (5, Vi) = Vi(ah))

1— —k —k 14+n%L*
- Sgllattt -t P+ SRR

= VE@ER) + L Ses, IVFi(@) — Vi(ah)|? + REHD=2l s o flab - 2k)?

2amn

+ o Dies, (8, (@ = 2f) + (Vi@ = V fi(2f))

— o) gt — gk 4 S

g? — L? k Ln+1)-2 k
< VE@ER) 4 I Y s o — b2 B S b — k2

1— _ _ 14+n2L2
— Gt — b2 4 CEE B,

k k
+ig Lies [18517 + 2vallaf — 277 1? + 20an? |V fi(aF) — Vfilay 1]

_ 2—a(Ln+1)—2L%n2 k
_ Vnk($k) _ 2= gan)n n] Ziesk [E% +1 _ k|2

2~4 (14+L%n? k
D I [e i &

_ (1 ’Ys ||$k+1 —kHQ + (1+n?7jSL)El%+1

Finally, we bound ||s¥ H2 as follows:

Is¥1? = Zellef ™ +nel*t — (ef +nel)II?

2
L1k + e Y] + 0|V fi(ak) = V£ (25| + nl|V £l = VfF))]
209D (|l ek |12 4 [|efH2).

IN

\ /\

Substituting this 1nequa11ty into the last estimate, we obtain (29). The last statement follows from the
last statement of Lemmas[A 3] and [A4] O

A4 The descent property of Algorithm 1]

We prove a descent property of AlgorithmEI, where prox, ;. is evaluated approximately.
Lemma A.6. Suppose that Assumptlon a n and . hold. Let Vk(-) be defined by 23) and
Y1,72,74 > 0 be given. Let {(z¥,y¥ &% z*)} be generated by Algorzthmluszng
min{8, /17 + 64, — 1} d 0<n< V(4 —a)? — 1602y, (1 +4v) — «
an
4(1 + 474) g AL(1+ 20s)
Then, Vnk is bounded from bellow by F™*, i.e. Vnk > F* and the following estimate holds:

O<a< . (33)

n n
1
ﬁn Z |ZF — zF||? < Vnk(j;) — [V’“rl(R | Foe 1] ﬁ Z pleik +pgeik+1), 34
where
g .= bol2—a(lntl)— 2120 —dysa(1+L2n*)] o
o 2n(1+71)(1+L3n?) ’
_ 204mL)? | (49°L?) | af2—a(lntl)— 2L2n2—4w4(1+L2n2)]
P2 = Tome? T T 2n(T+L2n%)m (33)
272
p1 = p2 +7(1+n =

Here, if€; 1, = 0 forall i € [n] and k > 0, then we allow y; = v2 = y4 = p1 = p2 = 0.

22

Proof. First, to guarantee a descent property in ([29), we need to choose 7 > 0 and o > 0 such that
2 —a(Ln+1) — 2L*n* — 4y4a(1 + L?n?) > 0. We first need o such that 0 < o < , the

1+4'y
condition for 7 is

24+16a2v4(144v4)—
4L(14+2av4)

BV 17+64’y4
4(14+4v4)

0<n<n:= VACY

To guarantee 77 > 0, we need to choose 0 < a < L Combining both conditions on c, we

obtain the first condition for c in (33).

from below, we have

VSi(ah), sk - ak) + 2 - ob|?]

Now, to show the boundedness of V¥ (z*
VEGE) = g(a*) + 20 [fieh) +
g(@)+ 1370, {fz(f) — Lljzk —2k)? + ||;E’c - xf||2] (the L-smoothness of f;)

F@) +g(@) + (5 — L) 55 iy 7% - rc’“ll2
F* (sincen < % and Assumption .

)
{

ARV,

Y

(36)
Next, from @) we have
2

b2 < [R+l k2, T k12 k)2 }
ST T 2 e S 3 (It =t ey (eI e 1)
7 1€ESK

Moreover, from Assumption for a nonnegative random variable W} with i € Sy, by taking
expectation of this random variable w.r.t. Sy conditioned on Fj_1, we have

E [ZiESk W’Lk | ‘Fk_l] ZS (Sk -)ZZES ZL 1 ZS HeS ()Wk - @ Zz 1 pka'

Using this relation with W} := ||z¥ —z*||2, Wk .= Hef |2, and W} := |leF||2, and then combining
the results with the last inequality, we can derive that

k 2
E [Ziesk H:E - f”2 ‘]:k—l] = mzz 1p1||:U 758’6”2

2
— waityy Lio Pi(ller IR + llef)

k|2
= 2(1+L2na)(1+71) Zz 1 [Z% — 2|

V

(37

2
- (1+L’2n2)y1 > et (||ef+1||2 + H6§||2)=
where we have used p := min;e[,) p; > 0 in Assumption[3.1jand p; < 1 for all i € [n].
Taking expectation both sides of (29) w.r.t. S conditioned on Fj_1, and letting v3 := 1, we get
E [V (@) | Foo] < VE@H) + SEEEL ST [(L 4+ po) ek + pallef)]

+ 2Ll s 1Pz[||ekll2+ e]1°] (38)

yana?n

2—a(Ln+1)—2L%*n*—4 1412 k+1
_ [2—a(In+1) 2772” aya(n)]E [Ziesk ||.1‘ + 5”2 |]:k—l]-

Here, we have used EZ,; < L3577 [leF||2 + L5 o [llef]|? + [lef™"|?] and the fact that

E [Zbie,gk ek 2+ lles ™12 | Froa] = S0 1pz[lle’€|\2 + [lef™)1]. Combining (37) and (38)
we obtain

_ L
E [V (a4 | Fioa] < VE@ES) + SIS ek

)2 L? n
i [(tnL)® | (141)] Dot pi[HGkHQ + ||ef+1\|2]

yanan nn

2—a(Ln+1)—2L%n%—4 1+L2 k
4 elzmalind sl odonn(LEL] 3o | [||ek| + [lef 1]

_ pa[2—a(Ln+1)—2L%n" —davys(1+L%n)) k2
4An(1+L2n?)(14+~1)n Zz 1 ||$ Ty ||

Rearranging terms in the last inequality and using p; < 1 and [|ef||* < €2, foralli € [n] and k > 0

from (I9), we obtain (34). Note that if ¢; , = 0 for all ¢ € [n] and k& > 0, then we allow to set
Y1 = Y2 =4 = p1 = p2 = 0 as a consequence of the last statement in Lemma@, Lemma@
and Lemmal[A3]

23

A.5 Convergence rate and communication complexity of Algorithm [I]- The inexact variant

The proof of Theorem[3.1] First, from (34), we have

(1+nL)%(1 2(1+nL)>(1 = 7
(1+n) (+72)ZH$ k||2 < W [Vnk(xk)) [Vnk-i-l(xlc-&-l) | -kal]] ,

. (39)
2
+ 2L L2 N " (p1€] g + P26 1)
i=1

Substituting these estimates into (23)) of Lemma[A:3] we have
_ 2(14nL)? (14 _ R
Hgn(xk)HQ < (nn%ﬂ(v2) [Vnk(xk) _E [Vnk"'l(mk'H) | fk—l”
2(1+nL)*(1+ 14+nL)%(1+
+ (77”'32,2, = Z:'L:l(ple’bz,k? + p2€127k+1) + (777”3 "(}/2 72) Zz 1 2 k
Let us introduce three constants

2
Cr:= ‘Q(HWf;%ﬁ(lﬂ*z)a Cy:=p1C1, and Cs:=p2Cy + ‘(anv)'y(zlﬂﬂ

Now, taking the total expectation of the last estimate w.r.t. Fj and using the definition of C}
(2 =1,2,3), we have

B) B C n n
E[I6,)I7] < 1 (B[] ~BVEA @) + 23+ DY e
=1 =1

Summing up this inequality from & := 0 to k := K, and multiplying the result by K—_H, we get
K - - _
71 2reo E [1Ga(@)[?] < C1 (B [V (@)] - E [V, (@5 H)])
K n
+ n(K1+1) Dm0 it (Co€ly, + Cael).

Furthermore, from the initial condition z9 := 2% and z° := 2°, we have V,)(z") = g(2°) +
L3 fi(a®) = F(2°). In addition, E [V,X (25 +1)] > F* due to (36). Consequently, the last
estimate becomes
S
—_— E <
k=0
which proves (3).

Finally, let Z% be selected uniformly at random from {z°,--- , 2%} as the output of Algorithm
Then, from 8 and = >7 , f'%l 62,k < M for all K > 0, we have

o N 1 &
+1 [F(;po)—F] (K+1 ZZ CQElk'FCgelkJrl)

k=0 i=1

K 0 e]
E [1G,(z")1%] = KlH E[|6,@)2] < & [F(«?) f{]:l(c +Cy)M

Consequently, to guarantee E [||Q (~K)|I?] < &2, from the last estimate we need to choose K such

that SulF ()= f;(ﬁ(CZJer)M < £2. This condition leads to
0\ _ 1
kg1 CFE) = I+ (Cot Cy
g
Hence, we can take K := \‘Cl [F(zo)iF;];r(CbJrC‘q')MJ =0 (E%) as its lower bound. O

A.6 Convergence of Algorithm when p; = 1, i € [n] - The exact variant

The proof of Corollary[3.1] Under the exact varlant we can verify that the choice a = 1 and
n = 57 satisfies (33). As aresult, using p = L, from (33) we can exactly calculate 3 = 2L, while
p1 = p2 = 0. Consequently, (39) leads to

2
%Z”xf - ka2 < (1;;” [Vnk(fk) _F [Vnk-i-l(jlc-&-l) |]_-kﬂ” .

571 ’

24

Alternatively, using Lemma[A.3] we have
_ (1+nL)° _
16, (ZM)II* < s > llaf —z*|1%.
i=1

Combining the last two inequalities, we obtain

1Ga (@) < 2 (Vi) ~E [V @) | Fioa]]

— 16%Ln [Vnk(i’k) —E [Vnk+1(i‘k+1) |]:k:—l]] .
Now, taking the total expectation of the last estimate w.r.t. Fj, we have

160Ln
3

Summing this inequality from k£ = 0 to k = K, and then multiplying the result by ﬁ, we obtain

E [IIG,(@")11"] < (E[Vy @] —E [V @ h)) .

n

K
1 160Ln

—— > E t)|?] € o (E[VF(@@°)] —E [VFHH(KT)]). 40

71 LB I9EI < gy gy (B -E). o

Recall that from the initial condition zf := 2% and z° := 2°, we have V,)(z%) = g(z°) +

L3 fi(2%) = F(2°). In addition, E [V,X+1(zK*1)] > F* due to (36). As a result, (@0)
can be further upper bounded as
K

1 160Ln
—— Y E %] < 07— (F(2°) — F*
K1 2 91 < gy () -),
which exactly proves (6).
Finally, if 7€ is selected uniformly at random from {z°, - -- , 2} as the output of Algorithm|[l} then
we have
1 & 160Ln
E PPl = ——=) E i) |1?] < = (F(2%) — F¥).
19:)1) = gy R0, < g 3y (P =)

Consequently, to guarantee E [[|G, (25)||?] < €2, from the last estimate we need to choose K such

that 31&5(07% (F(2°) — F*) < 2. This condition leads to

160Ln[F(z°) — F*]
3e2 ’

Hence, we can take K := L%WJ = O (%) as its lower bound. O

K+12>

A.7 Convergence of Algorithm [T under relative accuracies

As suggested by a reviewer, we provide here an analysis of Algorithm[I] when relative accuracies are
used to evaluate prox, ¢,. Such a strategy has been widely used in the literature, including [28, 137].
Let us adopt this concept from [28] Definition 3.3] to our context as follows:

Definition A.1. For any i € Sy, given x¥ and yf“, we say that xf“ approximates prox, (yf“)
up to a bounded relative error if there is a constant §; > 0 (independent of k) such that

b+t — prox, ;, (yFI? < efpyy = Ol — 2f)? (41)

The following theorem states convergence of Algorithm [Tjunder the bounded relative error (T).
Theorem A.1. Suppose that Assumptions[2.1) and 3.1 hold, and the bounded relative error con-
dition @&T)) in Definition|A. 1| holds with 0; := Op; for a fixed constant § > 0. Let {(z¥ y¥, 2% %)}
be generated by Algorithm|l|using a relaxation stepsize o« = 1 and 9 := prox, , (y?) fori € [n]. If
4 and 0 are chosen such that 1 — 4v4 — 8C0 > 0 and 7 is chosen by

0<n<ij:= \/1+8(1+ZVL4()1(_1;’;154*8C0)717 W)

25

where C' ;= max {1 +n?L2, 2(1?717”2 } then the following bound holds

1 & v C[F(a0) — F*]
TH];)E [Hgn(xk)”] < (.7(——1—1)7 43)

where C' > 0 is computed by
& P21 — Ly — 20212 — 4v4(1 + L?*n?) — 8C)]
4 {4(1 + L2 + 26) + ﬁé} (1+nL)2

The remaining conclusions of this theorem are similar to Theorem[3.1| and we omit them here.

: (44)

Proof. Firstly, starting from (29), using a = 1, choosing 73 = 1, and noting that EIEH —
k1
m > igss [e¥]12 + £ 3 s, llef]2, we have

- _ 1—Ln—2L%n%—4~, (14 L2%n?
Vnk+1(xk+1) < Vnk(xk) _ [-Ln n2nnv4(n7)] Ziesk

1+n%L2
HUELD) (s eF]2 + Cics, NefTHI2)

2(1+nL)? k
+ 20D 5m o HleF 2 + el).

Bk

i

g2

If we define C' := max {1 +n?L?, 2(14;72”2 }, then we can further upper bound this estimate as

Vnk+1(jk+1) < Vnk(ik) _ [17Lnf2L2n;;3v4(1+L2n2)] Yics, ok +t — k)2
+ L (s, b2 + Ties, 1€EH12) + C 5 cs, ek]2 + flef 2]
= Vi(ah) - Il o)l 5 ookt - k)
+ O eI+ 2 s, eE)
R e N i
+ O b2 2 (e)
< Vi(ak) - Bk s Pl S bt — b2

> k
+ 28570y (lleF I+ lle %) -

™t = 2 | Fooa] = S0 pallal ™ — 2% we

Rearranging terms and noting that E [
obtain from the last estimate that

1—Ln—2L%n%—4v,(14+ L3n? n _ _
(1-Ln n2nnv4(+L7n")] Zi:l pin?H . foQ < Vnk(xk) _ Vnk+1(mk+1)
5 .
+ 20 i (e l1Z + lles %) -
Now, taking the total expectation of the last inequality w.r.t. Fj, we have
1—Ln—2L%n% -4y, (14 L3n? n
Ubn 2l Gl 570 piB [l —)]
<E[VE@H)] —E [V ()] + 22 50 E [Jleb]? + flef 2] -
Summing this inequality from k = 0 to k = K, we get

—Ln— L2 2_4 L2 2 K n _ _
[1-Ln-2 n2nn'm(1+ n°)] Zk:O Zl}:l p.E [foﬂ _ xmz} <E [VWO(Z,O)] _F [%K+1(xK+1)]

K i
+ % ko 2oier E [lleFl? + llef 2] -
If we choose €; o = 0 for ¢ € [n], then the last estimate reduces to

1€SE

K n

[1—Ln—2L2n;n,;m4(1+L2n2)] Z Zpi]E [”xiﬁq B foQ] <E [VUO(EO)] o) [VWKJrl (EKJrl)]
O (45)
+35 2 2 Bl

k=0 i=1

26

From (@T) in Deﬁnition we have [|ef ™2 = ||t —prox, , (yF |2 < €2,y = 0illaf T -
x¥||2. Using this condition in @, we have

[1—Ln—2L%n—4y,(1+L> 2‘] szE ka+1 fm <E [Vn0(£0)] _F [VWKJrl(fKJrl)]

2nn
k=0 :=1
n
k
+ % Z D OE [l — 2F|?] .
k=0 i=1

Now, we can choose 6; such that §; = HApi for given 6> 0. Plugging this choice of 6; into the last
estimate, we have

[17Ln72L277 7474 (1+L3n?) Zzpl ”xk—i-l fHQ] <E [VWO(i,O)] _F [VUK+1(§3K+1)}

k=0 i=1
+ﬁZsz (g™ —af)17

k=0 i=1

Rearranging terms in the above estimate, we arrive at

K n
[1—Ln—2L%n?—4~,(1+L%*n?)—8C4] k+1 k - K+1/=K
B Tra— ;};Piﬂf [l =27 1?] <E [V @")] - E [V" @)

From the initial condition 2 := 2% and z° := 29, we have V,)(z°) = g(«°) + £ >, fi(2°) =
F(2"). In addition, E [V, (25 +1)] > F* due to (36). Using these conditions, the last estimate
can be further upper bounded by

Pl — Ly — 20202 — dvyu (1 + L2n2) — 8CH] o= &
k=0 1:=1

where we have used p;, > p for all i € [n].

Now, we need to choose 7 and § such that 1 — Ly — 2L2n% — 4y, (1 + L?n?) — 8C0 > 0. First, we
need to choose 4 > 0 and 6 > 0 such that 1 — 4y, — 8C > 0. Then, the condition for 7 is

V148(14274) (1— 47, —8CH) —
4L(1+2’y4)

0<n<n:=

Next, we connect the term ||z ™! — 2%||2 with |G, (z¥)||? as follows. From (22) with o = 1 and
v1 = 1, we have

1
k2 k+1 _ k 2 k4172 k2
E " —x;|° < E [x; i ||° + €; + lle; }

Taking expecatation w.r.t. Sy, given Fj_1, and then taking full expectation, we obtain

WZL p;E [Hik —mi?”z] < Z?zl piE [||ka f||2]
+ @y Lot PAE [llef T2 + llef)1?]
< Y piE 2t — 2k 7]

+ rzmE Liet E (e 17 + llef 1]

Summing this inequality from k = 0 to k = K, we get

K _
T Loheo it PE[[12° — 2F|?] < S0, S, pilE [laft! — aF)?]
+ (1+L2172) Zk:o ST E N+ ek

27

Using the condition that €; o = 0, similar to (3], we have

K
1+Lz 7 Zk: 02 izt PiE [||a: _ka] < ko iz PiE [||33kJrl sz}
+ (1+[2,2n2) Zk:o Ei—l E [||e§+1||2]
K
< ko e PiE [kaH ﬂﬂ

+ (1+L22 7y Zk:o Zi:l 0;E [HI?H - foQ]

L%n%+420
= 1?-14_572-&;? Zk 02 iz1 PiE [kaH sz}
In fact, we can further bound this estimate as
1+ L2? +2é K
k2 k+1 k)2
1+L2222E xl||] 1+L2 ZZE ll; z||]7
k=0 i=1 k=0 i=1

8(1+L%n*)(14+nL)*

where we have used p < p; < 1. Next, multiply both sides of this inequality by Y ,
we obtain

K K n

1+1L)* o~ 1 8(1 4 L2n? + 20)(1 + nL)?
ALY, BRICEETE (+ Lo + 20)(1 + L) >3 B[kt atlF] 4
k=0 i=1

pn°n
Furthermore, from (23)), choosing 72 = 1 and summing the result from k£ = 0 to k = K, we get
K - 2(14+nL)* -
SicoE[IG,@)I1F] < 20 50 L B [llef — 2]
2
2(1+nL) Zk 02 ie 1E[”ekH }
L 2
”’” >0 i B [l —2*7] "
¢ BT o Gk [jat -) @
2(14nL
= M) Zk 02 iet B [llaf — 2]
2 B [k)

k=0 i=1

A

IN

where the last equality comes from the fact that §; = épi.

Now, plugging @7) into (@8) and using p; < 1, we can get

K _ 8[1+L%n>+20](1+nL)* | 2(14nL)?
S OB [l0y()17] < |t | 20t S ot - 41
(1+L2 2+2a)+ 0](14nL)>
= A i) SR [2]
From the definition of C' in (@), we can verify that
A A 2,2) 50 2
B[l — Ly — 20202 — 4y (1 + L27%) —8CH)] 2 [4(1 + L*n? + 20) + pﬂ (L+nL)
2nn5 pnn? .
Next, multiplying both sides of (#8)) by i, and then using (@9), we obtain
K _ 4(1+L272+9)+p9 (14nL)?
S GE[IG, 2] < OO0 K s [kt k2]
@ ~
< C[F@°) - F].
Finally, multiplying both sides of this inequality by ., we obtain @3). O

B Analysis of Algorithm 2 The Asynchronous Variant — asyncFedDR

This section provides the full proof of Lemma [B.2]and Theorem [4.1]in the main text. However, let us
first discuss an asynchronous implementation of Algorithm 2]and present the full description of our
probabilistic models based on [S]] used in Section@

28

B.1 Asynchronous implementation: Dual-memory approach

Let us provide more details on the implementation of our asynchronous algorithm. When a user
finishes its local update, the updated model (or model difference) is sent to the server for a proximal
aggregation step. When the server is performing a proximal aggregation step, other users might
need to read from the global model. To allow concurrent read/write operations, one easy method is
to have two models stored on the server, denoted as model 1 and model 2. At any given time, one
model is on “read” state (it is supposed to be read from) and the other will be on “write” state (it
will be written on when the server finishes aggregation). Suppose model 1 is on a “read” state and
model 2 is on a “write” state, then all users can read from model 1. When the server completes the
proximal aggregation, model 2 becomes the latest model and it will change to a “read” state while
model 1 is on a “write” state. This implementation detail is also discussed in [34], which is termed
by a dual-memory approach.

B.2 Probabilistic model

Let &% := (iz, d*) be a realization of a joint random vector £¥ := (iz, d*) of the user index i3, € [n]
and the delay vector d* = (d¥,.-- ,d*) € D := {0,1,--- ,7}" presented at the current iteration
k. We consider £ + 1 random vectors él (0 <1 < k) that form a concatenate random vector
E0F = (€9, ... €F). We also use £9F = (€0, ¢ ... | €F) for k + 1 possible values of the random

vector €%, Let) be the sample space of all sequences w := {(ir, d*) k>0 = {€*}rs0. We
define a cylinder Cx (%) := {w € Q : (wo, -+ ,wk) = £**} as a subset in 2 and C}, is the set of
all possible subsets Ck(g(”“) when ¢, t = 0,--- , k, take all possible values, where wj is the I-th

coordinate of w. Note that {Cy}, -, forms a partition of €2 and measurable. Let 7}, := o(C},) be
the o-algebra generated by Cj, and F := o(US,Cy,). Clearly, {F}},, forms a filtration such that
Fi € Fry1 € --- C Ffor k > 0 that is sufficient to cope with the evolution of Algorithm

For each Cj,(£%%) we also equip with a probability p(£%%) = P(Cy(¢%F)). Then, (2, F,P)
forms a probability space. Our conditional probability is defined as p((i,d) | &%F) :=
P(Cr 1 (£9%+1)) /P(Cr(£%%)), where we set p((i,d) | £%%) := 0 if p(¢°*) = 0. We do not
need to know these probabilities in advance. They are determined based on the particular system

such as hardware architecture, software implementation, asynchrony, and our strategy for selecting
active user.

Now, if X is a random variable defined on €2, then as shown in [5]], we have
EX|Fl= > p((i,d)])X, (G,d)). (50)
(i,d)E[n]xD
Note from Assumption .| that
p(i [%) == p((i,d) | %) > p. (51)
deD

Our probability model described above allows us to handle a variety class of asynchronous algorithms
derived from the DR splitting scheme. Here, we do not make independent assumption between the

active user 7, and the delay vector d*.

B.3 Preparatory lemmas

For the asynchronous algorithm, Algorithm 2] the following facts hold.

« For ¥ and y¥ updated by Algorithm [2} since S = {i\} and the update of y* and z¥
remain the same as in Algorithm [1|when the error e = 0, the relation remains true, i.e.
y¥ =2 + 9V fi(2F) and 2F = 22F — yF foralli € [n] and k > 0.

o Let xk=4" = [gh=di gk=d5 ... zk-di] be a delayed copy of the vector X¥ :=
[z, ... Z¥] € R™. Since at each iteration k, there is only one block i;, being updated, as
shown in [[5, 34], for all ¢ € [n], we can write

g =gk (@t -2t (52)
leJF

29

where JF = {k —dF k—df +1,--- k—1}C{k—7,--- ,k—1}.
These facts will be repeatedly used in the sequel.

Now, let us first prove the following lemma to provide a key estimate for establishing Lemma[B.2]

Lemma B.1 (Sure descent). Suppose that Assum, nons 22 and @1 hold for (1). Let
{(zk, yk, 2k 7% z*)} be generated by Algorithm 2| and V) be deﬁned as in 23). Then, for
all k > 0, the following estimate holds:

V(@) S (= k)| — 22 < V@R - fllel - ok |2

(53)
r o—k—1 _ _
+ e = (k= 1)+ 1)z =22,
where
2(1—a)=(2+a)L?n*~Lan if 212 <n
ann = 7

n?2(1—a)—(24a)L? 2—Lo¢n] a(14n>L?)(27%2—n)
ann3

otherwise.

Proof. Let Vn’C be defined by (23). For (x¥,2¥, y¥) updated as in Algorithm [2| the results of
Lemma still hold true. Hence, (26) still holds for Algorithmwith v3=0and B, =0,ie.

Vit @ty < g(@*) + 5 300, [fiaf ™) +(Vfilaf ™), 2% — o) + g la% — o))

ka-i-l *kHQ.

k+1 k+1

Using this inequality, the update of x; = a:f for i # iy, we can expand

Vit @t th) < g(@%) + 5 X, [fi@d) + (Vilaf), 7° — 2F) + 55 17° — 2F|?]
[fzk(AR RSN CER A —xf,flﬂ Vi@, a8 —ak) (54
k+1||2

for ¢ = iy, and x;

b — k4l ||;U’chl z*||2.

277n H
Now, by the L-smoothness of f;, , we have
L
i (@i + (Y fi (i), af, — 2t h) < fi(ad) + 5 e — A
Plugging this inequality into (34) and expanding the third last term of (34), we obtain

V@) < g(@) + 5 X, [fieh) +(Vilaf), 78 — 2f) + 55 17% — 2} 7]

+ L fin(@h) + Elloftt — 2k 12+ 2 (Vi (2i), 2% — af)
+ g ||2F — @k ||2 + o et =2k 12+ o (ah - 2k af, - 2F)
— gkt — 7|2

= g(@*) + 3 X0y [fileh) +(Vfilah), 75 — af) + 5 |7* — 2F))?]

+ G bt — |2 4 2V i (@) = Vi ah) 2 —ak) (s

k _
Lk ok ok -2k - Lt k2

l@

VE@E) + 2(V f, (25Y) = Vi, (2), 2% — 2k)
L fi, (a54) = Vi (), 2% — @y o QL) bt g 2

+ L(azlﬁ'l — gk ak fjk*dfw + n1n< il — gk ikidﬁc — zF)

nn \" ik 1 Tk ik i)
1kl _ k|2
L1 g,
k
From yf ! = y¥ + ("% — 2}) at Stepof Algorithm and the relation (2T)), we have

T — ok =$(yf,f1)@ Lkt gy 4 (szk(Y = Vi (k). (56)

A (2
o k k

30

This relation leads to

LV i (1) = Vi (), 2% — 2k) =

(7Y

$<vf7«k(k+1) Vflk(.’ﬂfk),l'f:—l 7‘%5;6) (57)
+ LIV fi () = V fi ()17,

and
k _k—d¥ k k
771n< z;jrl xka(Efk -z 1k> <vflk(+1) vflk(xigk%érl:l _1.7]1> (58)
k+1
W%H%f —af |I*.
Substituting and (58) into (53)), we obtain
—_ _ 1+L k k
VL (@) < VE(ER) + Q,m" it = 2E |1 + LIV fi (2) = V i (2512
- _k—d¥ _k—dF .
LV i @) = Vi (ah) @ — 2 0) 4 L(@ht —ab 2" — k)
LHﬂﬁ’”l— R (oA
nan 1k
_ Ly+1)—2 k& L2 k
@vww—“(S22y 2ok gk |2

_dk _k—dF _
TV i (@) = Vi (af,), @ — 2770 + L@t — ok 270 — 2h)
_ 1 ||£Ck+1 k||2.

Next, using Young’s inequality twice in the above estimate, we can further expand

_ _ a(Ln+1)4+2L%n%—2
VERL(ghtl) < Yk (gh) 4 QEEEBL 2 b gk |2 4 LV fy, (2571) = V i, (812

2nan
_ _k—dF k _k—dP
e A R e R AR
- ettt
2] _ Ln+2)4+2L%0%—2] | k+1 A
< Vnk(x)+ [a(Ln 2)ann n H%Jr _ kk||2 ||$ +1 _ ng“2 (59)
Lk — g2 - 25 1ZF — 22
- L2n2 4 Ln+2 +2L2 —2 K
= Vif(ah) o [e R a1 — e —

+ Lt — gk,

Using (52), we can bound ||£k_dfk — z%||2 as follows:
_k—dk _ ©2) _ _ 2
o — PR 5y 0 2]
<df S k. |21 — Z!|* (Young’s inequality and the definition of .J})
< Th | E = Z2 (since df <tin Assumption (60)

:T|:l S - -n) Y FE = 3 (1 (k=) 2'|1?]

=k—1 I=k—7+1
+ 72|kt - zk| 12,
Now, we consider two cases as follows.
Case 1: If n > 272, then by plugging (60) into (59), we finally arrive at
ViR (ghtl) 4 = ziik il = (=) =22 < VE@E")
+ Y= (=) + 1] - 2

2(1—a)—(2+ L%—anL) .k 2
— Bl Grap b cenl] g — gl |2 — BE2 gt — gk 2.

Rearranging the last estimate, we finally arrive at (33).

31

Case 2: if 272 > n, then using (2T)), we can show that
- 12 . .
24+ — (2 = [pros, (3+7) — pro, ()| < 25+ — 24|12

=z Ci @ = 2P

=52 Rl &F ||* (since only block i, is updated)
DL @k — k) - <me< EH) U, (ak)1?
< Zllatt — 2k |2 4+ 2LV £ (25 — Vi, ()]

(1+n2L2)” K+l _ ok ||2
]2

I /\

Substituting this inequality into the previous one, we can get
_ r ok _ _ _
Vi @Y + L el = (k= D2 = 2P < Vi)
r k-1 - -
+ o i = (k= 1)+ 13— P

N |:2(17a)7(2+a)n2L27a17L _ (1+n%L?) (272 —n) :| ka+1 k; ”2

2ann 2n3n
Simplifying the coefficients of this estimate, we finally arrive at (33).

To analyze Algorithm 2] we need the following key lemma.

Lemma B. 2 (Sure descent lemma). Suppose that Assumptions 2.1} 2.2 and 1] hold.
{(i ,y2 7% &k zk } be generated by Algorlthmand Vk be defined as in 23). Let

k(= - k—1 _ _
Vi(@h) = Vi@b) + o S [l = (k=) +][z — 2|2,

n
2
Suppose that we choose 0 < o < &vand 0 < 1 < 7, where ¢ 1= QTn;",
1 if2r2 <mn,
Q= 5)
Tre otherwise,
V16—8a—Ta%— o2
L) if2rs <,
and 77 = \/1678a7(7+4c+4c2)0427a
otherwise.

2L2+(1+c)a]

Then, the following statement holds:

14 Sk - ad _
Pkt — ab 12 < VE®) - T),

20
where
2(1—a)—(24+a)L?n?—Lan if 272 <
L ann -7
pe= n’[2(1=0) = (240) L*n’ — Lan)—a(L4n° L) (22 =n) e,
ann3 '
Moreover, p is positive.
Proof. 1f we define 17”’“ as in (62) of Lemma ie.
VE@ER) = VE(+—2 Z 1= (k—7)+ 1)z — 2,
l=k—71
then from (33)), we have
k+1(=k+1 k(= k+l k12
vy EM) < vREh) - *le i, Il

which is equivalent to (64).

(61)

Let

(62)

(63)

(64)

Now, we find conditions of « and 7 such that p and 6 are positive. We consider two cases as follows.

32

Case 1: If 272 < n, then

_ 2(1—a)—(2+a)L3n*—Lan
pi= ann .

Let us choose 0 < a < 1. To guarantee p > 0, we require 2(1 — a) > (2 + a)L?n? + Lan. In

\/L2a2+8(1fo¢)(2+a)L2 —La /T6—8a—Ta®—a
202 (24) = 2L(2Fa) . These are the

this case, we need to choose 0 < 1 <
choices in (63) when 272 < n.

Case 2: If 272 > n, then

n?[2(1—a)—(24a)L?n?—Lan]—a(14+n2L?)(27% —n)
p= ann3 '

Letc:= 27 == > 0. In order to guarantee that p > 0, we need to choose 0 < o < 1 and n > 0 such
that

2—2a—“(2;#> [2—&-oz+(X(iizg_")]L%z+Low77

2n? 2

and 0 <a < 5oy = 5he

Using the definition of c, the first condition becomes 2 — 2a — cae > Lam + (2 + a+ ca) L?n%. First,
we need to impose 2 — 2a0 — ca > 0, leading to 0 < o < 2%5 Next, we solve the above inequality
w.r.t. n > 0 to get

V/16—8a—(7T+4c+4c?)a?—a
2L[2+(14c)a]

O<n<n:=

These are the choices 1n (]@ when 27’ > n. To guarantee 1; > O we need to choose o <
4 we conclude that

1+ 1+4(2+c+c2)
under the choice of « and 7 as in (63)), we have p > 0 and 6 > 0. O

Next lemma bounds the term Y. ; E [||z* — 2¥||?] in order to bound E[Hgn(*k) 1]

Lemma B.3. Suppose that Assumptlonsm ﬂ and . hold. Let { z; Yk & k)} be generated
by Algorithm 2} Then, we have

n k+T
> E[z* - aF|?] Z [t ==t 01%], (65)
=1 t=k—

8a?(1+L3*n?)(r? +2Tnp) + 8n2(1+L%*n*+Ta? p)
where D := 5a7n?

Proof. Let ty,(i) := min {t € {0,--- , T} : p(i | &¥***=1) > p}. In fact, ¢4 (i) is the first time in
the iteration window [k, k 4+ T, user i is active, i.e. gets updated For any vy € (0, 1), we have

k+T - k+T _
o E(l12° =2t |* | ft—l] (w) = >tk 2imy PG [2zt — af?
S plat e - ke
(%) . B _ . ket (4 B 2
> P, et — k) — @k — a0 — @k — o))
. _ - ; ket (i _
> —2p I [l — af et — o — (k- o)
+P Y [I7F — |
(*;)A n =k _ k2 _ L|mk _ k|2
Py (178 — 2f)? = 3lla* — f|)?]
ket
—Ap I, O — R — ap Il — P,
where (*) comes from the reverse triangle inequality ||a — b||? > (||a|| — ||b|)? and (**) is due to

4flv]1® + 4]Is)|? + Fllull* = 2||ull]lv + s||. Note that the conditional expectation above is only taken
w.r.t. i, which is o(d¥, F},_1)-measurable. For simplicity of notation, we drop (w) in the sequel.

33

Rearranging the last inequality, we obtain

B 7% — k| < I E [ll2 — o |2 | Feoa | + 4D X1, 12400 — 22

+4p o [l — b
Next, we bound the term Y| [|zF () — k|2 as follows:
S bt ® gk = T (P
< S t(d) kH’“ “HEttt — b2 (Young’s inequality)

< TYN 12’“*“@(” 1||-t+1fgzt||2 (since t,(i) <T) (67)
= nT Y0 2t — 2|2

@2T1+ 2r2 k+T
e e aar LSS R

(66)

We can also bound Y, ||z; gt _ x¥||2 as follows:
ket k-t (6)—1
S ey T bl = T I SO @ DI
< S t(d) ki_tk(l)_l |zttt —)2 (Young’s inequality)

<

ST ettt =22 (since ty (i) < T)
k+T

Ty ettt —at ||?

(63)

(since only user i, is updated at iteration t).
Let us bound the first term on the rlght hand side of (66)) as follows:

fikTE [”ft o ”2 ‘ Fi 1] < ZZk+T [”_t d“ _xt ”2 | Fi 1]

(69)
+oy TR [Hft_gzw _].
However, similar to the proof of and (61)), we can show that
k+T _t—df. k+T
STt — a2 S e ST Lt - a2
< P et -t 0)

€D ki1 202149212
< S, R el — a2,

On the other hand, by using (56)), we have

||ft di, _xt ”2 _ ”yt+1 y ||2 (by the update ofyfk in Algorithm
D || 1@t —at)+ 21, @) - V@) o
< a2||g;t4rl §t||2+?HVf;t(mZH)—Vfgt(xi)”Q
< 2D ot gt
Therefore, plugging (70) and (71)) into (69), we have
PR [lat =2t 2] Fo| < WO ST R (ot - at |2 | Fi
L 4(1+772L2) SHT g [thﬂ 2t |2 |]:t71} (72)
= AP ST g [lat gt 2] 5.
Substituting (67)), (68), and (72) into (66), we obtain
B, 17k — a|? < MRl S B b o, |7 | Fic
+ SETCEED) St — w2 4+ 4T 42 |t — a2
< Mt Blrtetnll g a2 | 7y
e YA A

34

Finally, takm% full expectatlon both sides of the last inequality w.r.t. o(d*, F;_1), and multiplying
the result by %, we arrive at

n k+T
D E[l" - af|?] Z [l ==t 117]
=1 t=k—
where D = SUEEL ot i) | STRUSHLD)En] Thi inequality is exactly (83). O

B.4 The proof of Theoremd.1; Convergence of Algorithm

By Assumption[4.1] for each T iterations, the probability of each user i getting updated is at least
p > 0. Hence, from (64) of Lemma[B.2] we sum up from ¢ := k — 7 to ¢t := k + T, and have

k+T k+T

P St = _
Z th—i—l Z H2 < Z [V;(xt) . V;+1(xt+1)],
t k—1 t=k—1

where p > 0 is given in Lemma[B.2} Now, take full expectation both sides of this inequality w.r.t.
Fi., we obtain

k+T k+T
g STOE[laf -2l Pl < Y {]E[\W/,;"(a?t)] —E[V;“(ft“)ﬂ. (73)
t=k—1 t=k—1

Next, using (23) from Lemma[A.3|with v, = 0, we have
) (14+1L)* & .
1Gn ()7 < T Z g — 2*|%.
i=1

Taking full expectation both sides of this inequality, and then combining the result and (63)), we obtain

E [IG,(@)7] < CEBD ST R [|lafft — |7

where D is given in Lemma B3]
Combining the last inequality and (73], we arrive at

E [, (@)% < 2522 vl (B[Vi @) - E[Vi @)

nn?p

Averaging this inequality from k := 0to k := K, we get

wi DI E 0] < w5 Do DL [BT@) -ER)]
< K+1 [VO(0) — E[VTIK+T+1(EK+T+1)”7
where C' := %. Here, we have used the monotonicity of {E[V,*(z*)] } >0 and E[V;0(z°)] =

170(70Y ; ;
V,)(z°) in the last equality.

Now, recall from the definition of V*(-) and V;*(-) that

~0/- _ o o BB
Vo) = VO = F(2") and E [V,,k(xk)] > E[VE@EH)] S P
Substituting these relations into (74), we eventually get

K

¢
1 LENG I < e [P - F)

k=0

which is exactly (T0). Using the definition of p, 6, and D into C, we obtain its simplified formula as
in Theorem 4.1} The remaining conclusion of the theorem is a direct consequence of (I0). O

35

C Implementation Details and Additional Numerical Examples

In this section, we provide more details on the set up of numerical experiments and present additional
numerical results to illustrate the performance of our algorithms compared to others.

C.1 Details on numerical experiments

Parameter selection. We use the learning rate for local solver (SGD) as reported in [23]] to
approximately evaluate prox, . (y¥) at each user i € [n]. The learning rates are 0.01 for all synthetic
datasets, 0.01 for MNIST, and 0.003 for FEMNIST. We also perform a grid-search over multiple
values to select the parameter and stepsizes for FedProx, FedPD and FedDR. In particular, we choose
w € [0.001, 1] for FedProx, n € [1,1000] for FedPD, and n € [1,1000], o € [0, 1.99] for FedDR.
All algorithms perform local SGD updates with 20 epochs to approximately evaluate prox, , (y¥)
before sending the results to server for [proximal] aggregation.

Training models. For all datasets, we use fully-connected neural network as training models.
For all synthetic datasets, we use a neural network of size 60 x 32 x 10 where we use the format
input size x hiddden layer x output size. For MNIST, we use a network of size 784 x 128 x 10. For
FEMNIST used in the main text, we reuse the dataset from [23]] and a 784 x 128 x 26 model.

Composite examples. We test our algorithm under composite setting where we set g(x) =
0.01 ||z||,. In the first test, we choose n = 500, a = 1.95 and select the local learning rate (Ir) for
SGD to approximately evaluate prox,, (y¥) from the set {0.0025,0.005,0.0075,0.01,0.025} for
synthetic-(0,0) and {0.001, 0.003,0.005,0.008,0.01} for FEMNIST. Next, we fix the local learn-
ing rate at 0.01 for synthetic-(0,0) and 0.003 for FEMNIST then adjust the number of local epochs
in the set {5, 10, 15,20, 30} to evaluate prox,,, (yF). Finally, we test our algorithm when changing
the total number of users participating at each communication round |S|. For synthetic-(0,0)
dataset, we set |Si| € {5, 10, 15,20, 25}. For FEMNIST dataset, we set | S| € {10, 25, 50, 75, 100}.

Asynchronous example. To make the sample size larger for each user, we generate the FEMNIST
dataset using Leaf [4]. In the new dataset, there are actually 62 classes instead of 26 classes as used
in [23]]. Therefore, we denote this dataset as FEMNIST - 62 classes. In this new dataset, each user
has sample size ranging from 97 to 356. We implement the communication between server and user
using the distributed package in Pyt orch[ﬂas in [3]]. There are 21 threads created, one acts as server
and 20 others are users. To simulate the case when users have different computing power, we add a
certain amount of delay at the end of each user’s local update such that the total update time varies
between all users. For FEMNIST - 62 classes dataset, the model is a fully-connected neural network
of the size 784 x 128 x 62.

C.2 Additional numerical results

We first present two experiments on iid and non-iid datasets without using user sampling scheme as
shown in Figure[7] That is all users participate into the system at each communication round.

From Figure [/] FedAvg appears to perform best while the other three algorithms are comparable
in the iid setting. Similar behavior is also observed in [23]. For the non-iid datasets along with
Figure[2] we observe that the more non-iid the dataset is, the more unstable these algorithms behave.
In the synthetic-(1,1) dataset, FedDR appears to be the best followed by FedPD. FedProx also
performs much better than FedAvg in this test.

Figure [§] depicts the performance of 4 algorithms in terms of communication cost on the
synthetic-(1,1) dataset. We still observe that FedDR works well while FedProx and FedPD are
comparable but still better than FedAvg.

More results of experiments on the composite setting are presented in Figure[0] We observe that
the learning rate (Ir) of SGD needs to be tuned for each dataset and the local iteration should be
selected carefully to trade-off between local computation cost and inexactness of the evaluation of

'See https://pytorch.org/tutorials/beginner/dist_overview.html for more details.

36

https://pytorch.org/tutorials/beginner/dist_overview.html

synthetic-iid

TrainLoss

TrainAcc

—~m- FedProx
—A— FedPD
-@- FedDR

0 50 100 150
Comm. Rounds

0 50 100 150
Comm. Rounds

synthetic-(0,0)

0 50 100 150
Comm. Rounds

TrainLoss

TrainAcc

TestAcc

—4— FedAvg
02 ~m- FedProx
' —4— FedPD
-@- FedDR
; . ; T 0.05 . ; ; 0.0 . ; .]
0 50 100 150 0 50 100 150 0 50 100 150

Comm. Rounds

synthetic-(1,1)

Comm. Rounds

TrainLoss

TrainAcc

—~m- FedProx

—4— FedPD
-@- FedDR

0 50 100 150
Comm. Rounds

0 50 100 150
Comm. Rounds

0 50 100 150
Comm. Rounds

Figure 7: The performance of 4 algorithms on iid and non-iid synthetic datasets without user sampling
scheme. The first row is for one iid dataset, and the last two rows are for non-iid datasets.

We also vary the number of users sampled at each communication round. The results are depicted in
Figure [0 for two datasets. We observe that the performance when we sample smaller number of user
per round is not as good as larger ones in terms of communication rounds. However, this might not
be a fair comparison since fewer clients also require less communication cost. Therefore, we plot
these results in terms of number of bytes communicated. The results are depicted in Figure[IT} From
Figure[TT] FedDR performs very similarly under different choices of Sj.

We also compare FedDR and asyncFedDR using the FEMNIST dataset. The results are depicted in
Figure[T2] We can see that asyncFedDR is advantageous over FedDR to achieve lower loss value and

higher accuracies.

37

synthetic-(0,0)

0.84
0.6 1
2 g 9
o O
E g 2
£ © 0.4 k4]
= = = —4— FedAvg
—~m- FedProx
0.2 0.21 edPro;
—4— FedPD
-®- FedDR
r T T T T 0.0+ T T r T 0.0+ T T v)
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Bytes 1le6 # Bytes le6 # Bytes le6
synthetic-(1,1)
0.81 e
0.81 A "“"‘\ D
! N v A
N 0.6 0.6
S g
z 3
©]
Z 044 © 04 —4— FedAvg
~m- FedProx
0.24 0.21 —A— FedPD
-@®- FedDR
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Bytes 1le6 # Bytes le6 # Bytes le6

Figure 8: The performance of 4 algorithms without user sampling scheme on non-iid datasets in
terms of communication effort.

synthetic-(0,0), g=|| - ||1
0.95 0.90
0.90 1 0.851
o
z £0.851 2 0.80 —— Ir=0.0025
= O
£ = [—— Ir=0.005
0.80 1 0.75 | —— Ir=0.0075
— Ir=0.01
—— Ir=0.025
0.1+ T T T 0.75 T T T 0.70 — T T . 1
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Comm. Rounds # Comm. Rounds # Comm. Rounds
synthetic-(0,0), g = || - |1
0.7 1.00
0.6 0.95 1
@ 0.5 L 0-901
S <
£ 044 £ 0.854
© © !
£ = / —— epoch=10
0.3 0.801 —— epoch=15
0.2 0.75 1 —— epoch=20
—— epoch =30
0.1+ T T T 0.70 — T T T 0.70 T T . 1
50 100 150 200 0 50 100 150 200 0 50 100 150 200
Comm. Rounds # Comm. Rounds # Comm. Rounds

Figure 9: The performance of FedDR on synthetic dataset in composite setting.

38

synthetic-(0,0), g = || - |1

0.7 0.95
0.6
0.90 1
9031 Y o
S < < — |S =10
< 0.41 £ 0.85 2 0.80 | K
e g & — Isd=25
0.31 —— |S| =50
0.80 1 0.751
0.2 1 — |S| =75
— |S| =100
0.1+ T T T 1 0.75+ T T T 1 0.70 -+ T T v 1
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Comm. Rounds # Comm. Rounds # Comm. Rounds
FEMNIST, g=|| |1
3.0 1.00 0.85
2.54 0.95 1 0.80 1
2,01 0.90 1 0.75 1
1] Y [*]
o 1 o
3 < <
T 1.51 £ 0.85 1 2 0.70
© o]
= = =
1.0 0.80 1 0.65 1
0.54 0.751 0.60 1
0.0+ v T T 0.70 v T T 0.55 v T . 1
50 100 150 200 0 50 100 150 200 0 50 100 150 200

Comm. Rounds

Comm. Rounds

Comm. Rounds

Figure 10: The performance of FedDR in composite setting in terms of communication rounds.

synthetic-(0,0), g =1 - ||1

o
IS
o

TrainLoss
o
w
w

0.95

o
©
o

TrainAcc
o
©
w

0.30
0.80
0.25
0.20 0.75
0 2 4 6
Bytes
FEMNIST, g=||- |1
3.0
0.94 1
2,54 0.8
1 0.84
g 20 Y g 0.7 1
o e O
< 3
€154 £ 0.71 2
& & 8
F ol = = 0.6
: 0.6
0.5
1 0.5
05 Skl = 100
0.0+ T T T T T T T T T T r r . .
2 4 6 8 0 2 4 6 8 0 2 4 6 8
Bytes le8 # Bytes le8 # Bytes le8

Figure 11: The performance of FedDR in composite setting in terms of number of bytes.

FEMNIST - 62 classes

4.2
0.60
3.64 0.45 A
0.45 4
9 <4 %}
© 3.01 2 O
2 g < 0301
£ s 0301 2
= 2.4 [=
0.15 0.15 A
1.8 —— FedDR
| ——— asyncFedDR
0 1500 3000 4500 6000 7500 0 1500 3000 4500 6000 7500 0 1500 3000 4500 6000 7500

Time in seconds

Time in seconds

Time in seconds

Figure 12: The performance of FedDR and asyncFedDR on FEMNIST - 62 classes dataset.

39

