
A Notation

Generally, we use regular font letters a,A to denote scalars, lower-case bold symbols a to denote
vectors and upper-case bold symbols A for matrices.

Table 4: Overview of notation and matrix shapes
Random variables:
W : dout × din Weight matrix of a layer
U : Mout ×Min Inducing weight matrix
Ur : Mout × din Inducing row matrix
Uc : dout ×Min Inducing column matrix

Parameters:
Zr : Mout × dout,Zc : Min × din Inducing covariance parameters
Dr : Mout ×Mout,Dc : Min ×Min Inducing precision parameters (we use diagonal

matrices in our approach)
λ2 Conditional rescaling factor (< 1 reduces vari-

ance of weight distribution)

Hyperparameters:
σ2 Prior variance
σ2
max Maximum approximate posterior variance
λ2
max Maximum conditional rescaling

Other variables:
Σr : (dout +Mout)× (dout +Mout) Joint row covariance of W and U
Σc : (din +Min)× (din +Min) Joint column covariance of W and U
Lr,Lc Lower Cholesky factor of the joint row/column

covariance
Ψr : Mout ×Mout,Ψc : Min ×Min Marginal row/column inducing covariance

B Derivations of the auxiliary variational objective

When the variational distribution is constructed as a mixture distribution q(θ) =
∫
q(θ|a)q(a)da,

the original variational lower-bound becomes intractable:

log p(D) ≥ L(q(θ)) = Eq(θ)[log p(D|θ)] + Eq(θ)

[
log

p(θ)∫
q(θ|a)q(a)da

]
. (13)

However, notice that we can also rewrite the “marginal” q(θ) using Bayes’ rule: q(θ) = q(θ|a)q(a)
q(a|θ) ,

meaning that the variational lower-bound can be re-formulated as

L(q(θ)) = Eq(θ,a)[log p(D|θ)] + Eq(θ,a)

[
log

p(θ)q(a|θ)

q(θ|a)q(a)

]
. (14)

For many flexible mixture distributions, q(a|θ) remains intractable. Fortunately, notice that for any
distribution r(a|θ) with the same support as q(a|θ), we have:

Eq(θ,a)

[
log

p(θ)q(a|θ)

q(θ|a)q(a)

]
= Eq(θ,a)

[
log

p(θ)r(a|θ)

q(θ|a)q(a)

]
+ Eq(θ,a)

[
log

q(a|θ)

r(a|θ)

]
, (15)

and more importantly, the second term on the RHS of the above equation satisfies

Eq(θ,a)

[
log

q(a|θ)

r(a|θ)

]
= Eq(θ)[KL[q(a|θ)||r(a|θ)]] ≥ 0. (16)

This means we can remove this KL term and construct a lower-bound to the variational lower-bound:

log p(D) ≥ L(q(θ)) ≥ Eq(θ,a)[log p(D|θ)] + Eq(θ,a)

[
log

p(θ)r(a|θ)

q(θ|a)q(a)

]
:= L(q(θ,a)), (17)

15

which corresponds to the auxiliary variational lower-bound Eq. (2) presented in the main text. This
auxiliary bound can be improved by optimising r(a|θ) towards better approximating q(a|θ), and
it recovers the original variational lower-bound iff. r(a|θ) = q(a|θ). Still we emphasise that the
auxiliary bound is valid for any r(a|θ) with the same support as q(a|θ), which enables our design
presented in the main text to improve memory efficiency.

C An introduction to SVGP

This section provides a brief introduction to sparse variational approximation for variationally sparse
GP (SVGP). We use regression as a running example, but the principles of SVGP also apply to
other supervised learning tasks such as classification. Readers are also referred to e.g. Leibfried et al.
(2020) for a modern tutorial.

Assume we have a regression dataset D = {X,Y} where X = [x1, ...,xN] and Y = [y1, ...,yN].
In GP regression we build the following probabilistic model to address this regression task:

yn = f(xn) + εn, εn ∼ N (0, σ2I), f(·) ∼ GP(0,K(·, ·)). (18)

Here we put on the regression function f(·) a GP prior with zero mean function and covariance
function defined by kernel K(·, ·). In practice we can only evaluate the function f(·) on finite
number of inputs, but fortunately by construction, GP allows sampling of function values from a
joint Gaussian distribution. In detail, we can sample from the following Gaussian distribution to get
the function value samples f = [f(x1), ..., f(xN)] given the input locations X:

f ∼ N (0,KXX), KXX(m,n) = K(xm,xn). (19)

Therefore we can rewrite the probabilistic model in finite dimension as

p(Y|X, f(·)) = p(Y|f) =

N∏
n=1

N (yn; f(xn), σ2I), p(f |X) = N (f ; 0,KXX). (20)

Note that the GP prior can be extended to a larger set of inputs X ∪ X∗ as p(f , f∗|X,X∗) =
N ([f , f∗]; 0,K[X,X∗],[X,X∗]), where f∗ denotes the function values given the inputs X∗, and

K[X,X∗],[X,X∗] =

(
KXX KXX∗

KX∗X KX∗X∗

)
.

Importantly, this definition leaves the marginal prior unchanged (
∫
p(f , f∗|X,X∗)df∗ = p(f |X)),

and the conditional distribution p(f |f∗,X,X∗) is also Gaussian. This means predictive inference can
be done in the following way: given test inputs X∗, the posterior predictive for f∗ is

p(Y|X,X∗) =

∫
p(Y|f)p(f |X)p(f∗|f ,X,X∗)dfdf∗ =

∫
p(Y|f)p(f |X)df = p(Y|X), (21)

p(f∗|X,Y,X∗) =

∫
p(Y|f)p(f , f∗|X,X∗)

p(Y|X,X∗)
df

=

∫
p(Y|f)p(f |X)p(f∗|f ,X,X∗)

p(Y|X)
df

=

∫
p(f |X,Y)p(f∗|f ,X,X∗)︸ ︷︷ ︸

=p(f ,f∗|X,Y,X∗)

df .

(22)

Unfortunately the exact posterior p(f |X,Y) is intractable even for GP regression. Although in such
case p(f |X,Y) is Gaussian, evaluating this posterior requires inverting/decomposing an N × N
covariance matrix which has time complexity O(N3). Also the storage cost of O(N2) for the
posterior covariance is prohibitively expensive when N is large.

To address the intractability issue, we seek to define an approximate posterior q(f(·)), so that we
can evaluate it on X ∪X∗ and approximate the posterior as p(f , f∗|X,Y,X∗) ≈ q(f , f∗). SVGP
(Snelson & Ghahramani, 2006; Titsias, 2009) defines such approximate posterior by introducing
inducing inputs and outputs. Again this is done by noticing that we can extend the GP prior to an

16

even larger set of inputs X ∪X∗ ∪ Z, where Z = [z1, ...,zM] are called inducing inputs, and the
corresponding function values u = [f(z1), ..., f(zM)] are named inducing outputs:

p(f , f∗,u|X,X∗,Z) = N ([f , f∗,u]; 0,K[X,X∗,Z],[X,X∗,Z])

= p(u|Z)p(f , f∗|u,X,X∗,Z).
(23)

Importantly, marginal consistency still holds for any Z:
∫
p(f , f∗,u|X,X∗,Z)du = p(f , f∗|X,X∗)

(c.f. eq.(3) in the main text). Furthermore, the conditional distribution p(f , f∗|u,X,X∗,Z) is a
Gaussian distribution. Observing these, the SVGP approach defines the approximate posterior as

q(f , f∗,u) = p(f , f∗|X,X∗,Z∗)q(u), q(f , f∗) =

∫
q(f , f∗,u)du, (24)

and minimises an upper-bound of the KL divergence to find the optimal q(f , f∗):

KL[q(f , f∗)||p(f , f∗|X,Y,X∗)] = Eq(f ,f∗)

[
log

q(f , f∗)p(Y|X)

p(f , f∗,Y|X,X∗)

]
= log p(Y|X)+Eq(f ,f∗,u)

[
log

q(f , f∗,u)

p(Y|f)p(f , f∗,u|X,X∗,Z)
+
p(u|f , f∗,X,X∗,Z)

q(u|f , f∗)

]
= log p(Y|X)+Eq(f ,f∗,u)

[
log (((((((((

p(f , f∗|u,X,X∗,Z)q(u)

p(Y|f)(((((((((
p(f , f∗|u,X,X∗,Z)p(u|Z)

]
−Eq(f ,f∗) KL[q(u|f , f∗)||p(u|f , f∗,X,X∗,Z)]

≤ log p(Y|X)−{Eq(f)[log p(Y|f)]−KL[q(u)||p(u|Z)]︸ ︷︷ ︸
:=L(q(f ,u)

}.

(25)
As KL divergences are non-negative, the above derivations also means log p(Y|X) ≥ L(q(f ,u)),
and we can optimise the parameters in q to tighten the lower-bound. These variational parameters
include the distributional parameters of q(u) (e.g. mean and covariance if q(u) is Gaussian), as well
as the inducing inputs Z, since the variational lower-bound L(q(f ,u)) is valid for any settings of Z.
The lower-bound requires evaluating

q(f) =

∫
p(f , f∗|u,X,X∗,Z)q(u)df∗du =

∫
p(f |u,X,Z)q(u)du,

which can be done efficiently when M << N , as evaluating the conditional Gaussian p(f |u,X,Z)
has O(NM2 + M3) run-time cost. Similarly, once q is optimised, in prediction time one can
directly sample from q(f∗) by computing q(f∗) =

∫
p(f∗|u,X∗,Z)q(u)du, and by caching the

inverse/decomposition of both the covariacne matrix of q(u) and KZZ, predictive inference can be
approximated efficiently.

Using shorthand notations by dropping Z, e.g. p(u) = p(u|Z) and p(f |X,u) = p(f |u,X,Z), returns
the desired results discussed in Section 2 of the main text, if we set a = u and θ = f . In fact from
the above discussions, we see that θ in GP inference is infinite dimensional: θ = f 6=u, as we can
extend the finite collection of function values to include both f and f∗ for any X∗ 6= Z. By tying
the conditional distribution given u in both the GP prior and the approximate posterior q(f(·)), the
posterior belief updates are “compressed” into u space, which is also reflected by the name “sparse
approximation” of the approach.

D Derivations of the augmented (pseudo) prior

D.1 Inducing auxiliary variables: multivariate Gaussian case

Suppose each weight matrix has an isotropic Gaussian prior with zero mean, i.e. vec(W) ∼
N (0, σ2I) where vec concatenates the columns of a matrix into a vector and σ is the standard
deviation. Augmenting this Gaussian with an auxiliary variable U that also has a mean of zero and
some covariance that we are free to parameterise, the joint distribution is(

vec(W)
vec(U)

)
∼ N (0,Σ) with L =

(
σI 0
Z D

)
s.t. Σ = LL> =

(
σ2I σZ>

σZ ZZ> +D2

)

17

whereD is a positive diagonal matrix and Z a matrix with arbitrary entries. Through defining the
Cholesky decomposition of Σ we ensure its positive definiteness. By the usual rules of Gaussian
marginalisation, the augmented model leaves the marginal prior on W unchanged. Further, we can
analytically derive the conditional distribution on the weights given the inducing weights:

p(vec(W)| vec(U)) = N (µW|U,ΣW|U), (26)

µW|U = σZ>Ψ−1 vec(U), (27)

ΣW|U = σ2(I −Z>Ψ−1Z), (28)

Ψ = ZZ> +D2.

For inference, we now need to define an approximate posterior over the joint space q(W,U). We
will do so by factorising it as q(W,U) = q(W|U)q(U). Factorising the prior in the same way leads
to the following KL term in the ELBO:

KL [q(W,U)||p(W,U)] = Eq(U) [KL [q(W|U)||p(W|U]] + KL [q(U)||p(U)] (29)

D.2 Inducing auxiliary variables: matrix normal case

Now we introduce the inducing variables in matrix space, and, in addition to the inducing weight U,
we pad in two inducing matrices Ur, Uc, such that the full augmented prior is:(

W Uc

Ur U

)
∼ p(W,Uc,Ur,U) :=MN (0,Σr,Σc), (30)

with Lr =

(
σrI 0
Zr Dr

)
and Lc =

(
σcI 0
Zc Dc

)
s.t. Σr = LrL

>
r =

(
σ2
rI σrZ

>
r

σrZr ZrZ
>
r +D2

r

)
,

and Σc = LcL
>
c =

(
σ2
cI σcZ

>
c

σcZc ZcZ
>
c +D2

c

)
.

Matrix normal distributions have similar marginalisation and conditioning properties as multivari-
ate Gaussians. As such, the marginal both over some set of rows and some set of columns is
still a matrix normal. Hence, p(W) = MN (0, σ2

rI, σ
2
cI), and by choosing σrσc = σ this ma-

trix normal distribution is equivalent to the multivariate normal p(vec(W)) = N (0, σ2I). Also
p(U) =MN (0,Ψr,Ψc), where again Ψr = ZrZ

>
r +D2

r and Ψc = ZcZ
>
c +D2

c . Similarly, the
conditionals on some rows or columns are matrix normal distributed:

Uc|U ∼MN (σrZ
>
r Ψ−1

r U, σ2
r(I −Z>r Ψ−1

r Zr),Ψc),

Ur|U ∼MN (UΨ−1
c σcZc,Ψr, σ

2
c (I −Z>c Ψ−1

c Zc)),

W|Uc ∼MN
(
UcΨ

−1
c σcZc, σ

2
rI, σ

2
c (I −Z>c Ψ−1

c Zc)
)
,

W,Ur|Uc,U ∼MN (

(
Uc

U

)
Ψ−1

c σcZc,Σr, σ
2
c (I −Z>c Ψ−1

c Zc)), (31)

W|Ur,Uc,U ∼MN (MW, σ2
r(I −Z>r Ψ−1Zr), σ2

c (I −Z>c Ψ−1
c Zc)),

MW = σ(Z>r Ψ−1
r Ur + UcΨ

−1
c Zc −Z>r Ψ−1

r UΨ−1
c Zc).

E KL divergence for rescaled conditional weight distributions

For the conditional distribution on the weights, in the simplest case we set q(W|U) = p(W|U),
hence the KL divergence would be zero. For the most general case of arbitrary Gaussian distributions
with q = N (µq,Σq) and p = N (µp,Σp), the KL divergence is:

KL [q||p] =
1

2
(log

det Σp

det Σq
− d+ tr(Σ−1

p Σq) + (µp − µq)>Σ−1
p (µp − µq)), (32)

where d is the number of elements of µ. As motivated, it is desirable to make q(W|U) similar
to p(W|U). We consider a scalar rescaling of the covariance, i.e. for p = N (µ,Σ) we set

18

q = N (µ, λ2Σ). This leads to the final term, which is the Mahalanobis distance between the means
under p, cancelling out entirely and the log determinant and trace terms becoming a function of λ
only: with d = dim(vec(W)),

KL [q||p] =
1

2
(log

det Σ

detλ2Σ
− d+ tr(Σ−1λ2Σ))

=
1

2
(log

det Σ

λ2d det Σ
− d+ tr(λ2I))

=
1

2
(−2d log λ− d+ dλ2)

= d(
1

2
λ2 − log λ− 1

2
).

F The extended Matheron’s rule to matrix normal distributions

The original Matheron’s rule (Journel & Huijbregts, 1978; Hoffman & Ribak, 1991; Doucet, 2010)
for sampling conditional Gaussian variables states the following. If the joint multivariate Gaussian
distribution is (

vec(W)
vec(U)

)
∼ p(vec(W), vec(U)) := N (0,Σ),

Σ =

(
ΣWW ΣWU

ΣUW ΣUU

)
,

then, conditioned on U, sampling W ∼ p(vec(W), vec(U)) can be done as

vec(W) = vec(W̄) + ΣWUΣ−1
UU(vec(U)− vec(Ū)),

vec(W̄), vec(Ū) ∼ N (0,Σ).

Matheron’s rule can provide significant speed-ups if vec(U) has significantly smaller dimensions
than that of vec(W), and the Cholesky decomposition of Σ can be computed with low costs (e.g.
due to the specific structure in Σ). Recall from the main text that the augmented prior is

p(vec(W), vec(U)) = N
(

0,

(
σ2
cI ⊗ σ2

rI σcZ
>
c ⊗ σrZ>r

σcZc ⊗ σrZr Ψc ⊗Ψr

))
, (33)

and the corresponding conditional distribution is:

p(vec(W)| vec(U)) = N (σcσr vec(ZrΨ
−1
r UΨ−1

c Z>c), σ2
cσ

2
r(I −Z>c Ψ−1

c Zc ⊗Z>r Ψ−1
r Zr)).

(34)
Therefore, while dim(vec(U)) is indeed significantly smaller than of dim(vec(W)) by construction,
the joint covariance matrix does not support fast Cholesky decompositions, meaning that Matheron’s
rule for efficient sampling does not directly apply here.

However, in the full augmented space, the joint distribution does have an efficient matrix normal form:
p(W,Uc,Ur,Uc) =MN (0,Σr,Σc). Furthermore, the row and column covariance matrices Σr

and Σc are parameterised by their Cholesky decompositions, meaning that sampling from the joint
distribution p(W,Uc,Ur,U) can be done in a fast way. Importantly, Cholesky decompositions
for p(U)’s row and column covariance matrices Ψr and Ψc can be computed in O(M3

out) and
O(M3

in) time, respectively, which are much faster than the multi-variate Gaussian case that requires
O(M3

inM
3
out) time. Observing these, we extend Matheron’s rule to sample p(W|U) where p(W,U)

is the marginal distribution of p(W,Uc,Ur,Uc) =MN (0,Σr,Σc).

In detail, for drawing a sample from p(W|U) we need to draw a sample from the joint
p(W,U). To do so, we sample from the augmented prior W̄, Ūc, Ūr, Ū ∼ p(W̄, Ūc, Ūr, Ū) =
MN (0,Σr,Σc), computed using the Cholesky decompositions of Σr and Σc:(

W̄ Ūc

Ūr Ū

)
=

(
σrI 0
Zr Dr

)(
E1 E2

E3 E4

)(
σcI Z>c
0 Dc

)
,

where E1 ∈ Rdout×din , E2 ∈ Rdout×Min , E3 ∈ RMout×din , E4 ∈ RMout×Min are standard
Gaussian noise samples, and W̄ ∈ Rdout×din and Ū ∈ RMout×Min . Then we construct the

19

conditional sample W ∼ p(W|U) as follows, similar to Matheron’s rule in the multivariate Gaussian
case:

W = W̄ + σrσcZ
>
r Ψ−1

r (U − Ū)Ψ−1
c Zc. (35)

From the above equations we see that Ūr and Ūc do not contribute to the final W sample. Therefore
we do not need to compute Ūr and Ūc, and we write the separate expressions for W̄ and Ū as:

W̄ = σrσcE1, Ū = ZrE1Z
>
c︸ ︷︷ ︸

Ū1

+ZrE2Dc︸ ︷︷ ︸
Ū2

+DrE3Z
>
c︸ ︷︷ ︸

Ū3

+DrE4Dc︸ ︷︷ ︸
Ū4

. (36)

Note that Ū is a sum of four samples from matrix normal distributions. In particular, we have that:

Ū2
d∼MN (0,ZrZ

>
r ,D

2
c) and Ū3

d∼MN (0,D2
r ,ZcZ

>
c).

Hence instead of sampling the “long and thin” Gaussian noise matrices E2 and E3, we can reduce
variance by sampling standard Gaussian noise matrices Ẽ2, Ẽ3 ∈ RMout×Min , and calculate Ū as

Ū = ZrE1Z
>
c + L̂rẼ2Dc +DrẼ3L̂

>
c +DrE4Dc. (37)

This is enabled by calculating the Cholesky decompositions L̂rL̂
>
r = ZrZ

>
r and L̂cL̂

>
c = ZcZ

>
c ,

which have O(M3
out) and O(M3

in) run-time costs, respectively. As a reminder, the Cholesky factors
are square matrices, i.e. L̂r ∈ RMout×Mout , L̂c ∈ RMin×Min). We name the approach the extended
Matheron’s rule for sampling conditional Gaussians when the full joint has a matrix normal form.

To verify the proposed approach, we compute the mean and the variance of the random variable W
defined in Eq. (35), and check if they match the mean and variance of Eq. (34). First as W̄, Ū have
zero mean, it is straightforward to verify that E[W] = σrσcZ

>
r Ψ−1

r UΨ−1
c Zc which matches the

mean of Eq. (34). For the variance of vec(W), it requires computing the following terms:

V(vec(W)) =V(vec(W̄)) + V(vec(σrσcZ
>
r Ψ−1

r ŪΨ−1
c Zc))

− 2Cov[vec(W), vec(σrσcZ
>
r Ψ−1

r ŪΨ−1
c Zc)]

=:A1 +A2 − 2A3. (38)

First it can be shown that

A1 = σ2
rσ

2
cI since W̄ ∼MN (0, σ2

rI, σ
2
cI),

A2 = σ2
rσ

2
cZ
>
c Ψ−1

c Zc ⊗Z>r Ψ−1
r Zr

as Z>r Ψ−1
r ŪΨ−1

c Zc ∼MN (0,Z>r Ψ−1
r Zr,Z

>
c Ψ−1

c Zc).

For the correlation term A3, we notice that W̄ and Ū only share the noise matrix E1 in the joint
sampling procedure Eq. (36). This also means

A3 = σ2
rσ

2
cCov[vec(E1), vec(Z>r Ψ−1

r ZrE1Z
>
c Ψ−1

c Zc)]

= σ2
rσ

2
cZ
>
c Ψ−1

c Zc ⊗Z>r Ψ−1
r Zr.

Plugging inA1,A2,A3 into Eq. (38) verifies that V(vec(W)) matches the variance of the conditional
distribution p(vec(W)| vec(U)), showing that the proposed extended Matheron’s rule indeed draws
samples from the conditional distribution.

As for sampling W from q(W|U), since it has the same mean but a rescaled covariance as compared
with p(W|U), we can compute the samples by adapting the extend Matheron’s rule as follows. Notice
that the mean of W in Eq. (35) is E[W|U] = σrσcZ

>
r Ψ−1

r UΨ−1
c Zc, therefore by rearranging

terms, Eq. (35) can be re-written as

W =Z>r Ψ−1
r UΨ−1

c Zc + [W̄ − σrσcZ>r Ψ−1
r ŪΨ−1

c Zc]

:=mean + noise.

20

So sampling from q(W|U) can be done by rescaling the noise term in the above equation with the
scale parameter λ. In summary, the extended Matheron’s rule for sampling q(W|U) is as follows:

W = λW̄ + σrσcZ
>
r Ψ−1

r (U − λŪ)Ψ−1
c Zc,

W̄, Ū ∼ p(W̄, Ūc, Ūr, Ū).
(39)

Plugging in σrσc = σ here returns the conditional sampling rule Eq. (12) in the main text.

G Function-space view of inducing weights

Here we present the detailed derivations of Section 5.1. Assume a neural network layer with weight
W computes the following transformation of the input X = [x1, ...,xN],xi ∈ Rdin×1:

F = WX, H = g(F), W ∈ Rdout×din ,X ∈ Rdin×N ,

where g(·) is the non-linearity. Therefore the Gaussian prior p(W) = N (0, σ2I) induces a Gaussian
distribution on the linear transformation output F, in fact each of the rows in F = [f1, ..., fdout

]>, fi ∈
RN×1 has a Gaussian process form with linear kernel:

fi|X ∼ GP(0,KXX), KXX(m,n) = σ2x>mxn. (40)

Performing inference on F directly has O(N3 + doutN
2) cost, so a sparse approximation is needed.

Slightly different from the usual approach, we introduce “scaled noisy inducing outputs” Uc =
[uc

1, ...,u
c
dout

]> ∈ Rdout×Min in the following way, using shared inducing inputs Z>c ∈ Rdin×Min :

p(fi, ûi|X) = GP
(

0,

(
KXX KXZc

KZcX KZcZc

))
,

p(uc
i |ûi) = N

(
ûi

σc
, σ2

rD
2
c

)
,

with KZcX = σ2ZcX and KZcZc
= σ2ZcZ

>
c . By marginalising out the “noiseless inducing

outputs” ûi, we have the joint distribution p(fi,ui) as

p(uc
i) = N (0, σ2

rΨc), Ψc = ZcZ
>
c +D2

c ,

p(fi|X,uc
i) = N (σcσ

−2KXZc
Ψ−1

c uc
i ,KXX − σ−2KXZc

Ψ−1
c KZcX).

Collecting all the random variables in matrix forms, this leads to

p(Uc) =MN (0, σ2
rI,Ψc),

p(F|X,Uc) =MN (σcσ
−2UcΨ

−1
c KZcX, σ

2
rI, σ

−2
r (KXX − σ−2KXZc

Ψ−1
c KZcX)) (41)

=MN (UcΨ
−1
c σcZcX, σ

2
rI,X

>σ2
c (I −Z>c Ψ−1

c Zc)X).

Also recall from conditioning rules of matrix normal distributions, we have that

p(W|Uc) =MN
(
UcΨ

−1
c σcZc, σ

2
rI, σ

2
c (I −Z>c Ψ−1

c Zc)
)
.

Since for W ∼ MN (M,Σ1,Σ2) we have WX
d∼ MN (MX,Σ1,X

>Σ2X), this immediately
shows that p(F|X,Uc) is the push-forward distribution of p(W|Uc) for the operation F = WX. In
other words:

F ∼ p(F|X,Uc) ⇔ W ∼ p(W|Uc), F = WX.

This confirms the interpretation of Uc as "scaled noisy inducing outputs" that lie in the same space as
F. Notice that in the main text we provide a pictorial visualisation of Uc by selecting σc = 1. As the
inducing weights U are the focus of our analysis here, we conclude that this specific choice of σc is
without loss of generality.

So far the Uc variables assist the posterior inference to capture correlations across functions values of
different inputs. Up to now the function values remain independent across output dimensions, which
is also reflected by the diagonal row covariance matrices in the above matrix normal distributions. As
in neural networks the output dimension can be fairly large (e.g. dout = 1000), to further improve
memory efficiency, we proceed to project the column vectors of Uc to an Mout dimensional space

21

with Mout << dout. This dimension reduction step is done with a generative approach, similar to
probabilistic PCA (Tipping & Bishop, 1999):

U ∼MN (0,Ψr,Ψc),

Uc|U ∼MN (σrZ
>
r Ψ−1

r U, σ2
r(I −Z>r Ψ−1

r Zr),Ψc).
(42)

Note that the column covariance matrices in the above two matrix normal distributions are the same,
and the conditional sampling procedure is done by a linear transformation of the columns in U plus
noise terms. Again from the marginalisation and conditioning rules of matrix normal distributions,
we have that the full joint distribution Eq. (5), after proper marginalisation and conditioning, returns

p(U) =MN (0,Ψr,Ψc),

p(Uc|U) =MN (σrZ
>
r Ψ−1

r U, σ2
r(I −Z>r Ψ−1

r Zr),Ψc).

This means U can be viewed as “projected noisy inducing points” for the GPs p(F), whose corre-
sponding “inducing inputs” are row vectors in Zc. Similarly, column vectors in UrX can be viewed
as the noisy projections of the column vectors in F, in other words Ur can also be viewed as “neural
network weights” connecting the data inputs X to the projected output space that U lives in.

As for the variational objective, since q(W|U) and p(W|U) only differ in the scale of the covariance
matrices, it is straightforward to show that the push-forward distribution q(W|U) → q(F|X,U)
has the same mean as p(F|X,U), but with a different covariance matrix that scales p(F|X,U)’s
covariance matrix by λ2. As the operation F = WX maps W ∈ Rdout×din to F ∈ Rdout×N , this
means the conditional KL is scaled up/down, depending on whether N ≥ din or not:

KL[q(F|X,U)||p(F|X,U)] =
N

din
R(λ),

R(λ) := KL[q(W|U)||p(W|U)].

In summary, the push-forward distribution of q(W1:L,U1:L)→ q(F1:L,U1:L) is

q(F1:L,U1:L) =
∏L

l=1 q(Fl|Fl−1,Ul)q(Ul), F0 := X,

and the corresponding variational lower-bound for q(F1:L,U1:L) becomes (with D = (X,Y))

L(q(F1:L,U1:L)) = Eq(F1:L)[log p(Y|FL)]−
∑L

l=1

(
N
dl
in

R(λl) + KL[q(Ul)||p(Ul)]
)
, (43)

with dlin the input dimension of layer l.

Note that

Eq(F1:L)[log p(Y|FL)] = Eq(W1:L)[log p(Y|X,W1:L)] = Eq(W1:L)[log p(D|W1:L)]. (44)

Comparing equations eqs. (9) and (43), we see that the only difference between weight-space and
function-space variational objectives comes in the scale of the conditional KL term. Though not
investigated in the experiments, we conjecture that it could bring potential advantage to optimise the
following variational lower-bound:

L̃(q(F1:L,U1:L)) =Eq(F1:L)[log p(Y|FL)]−
∑L

l=1 (βlR(λl) + KL[q(Ul)||p(Ul)]) , (45)

βl = min(1,
N

dlin
).

The intuition is that, as uncertainty is expected to be lower when N ≥ din, it makes sense to use
β = 1 ≤ N/din to reduce the regularisation effect introduced by the KL term. In other words, this
allows the variational posterior to focus more on fitting the data, and in this “large-data” regime
over-fitting is less likely to appear. On the other hand, function-space inference approaches (such as
GPs) often return better uncertainty estimates when trained on small data (N < din). So choosing
β = N/din < 1 in this case would switch to function-space inference and thereby improving
uncertainty quality potentially. In the CIFAR experiments, the usage of convolutional filters leads
to the fact that N ≥ dlin for all ResNet layers. Therefore in those experiments βl = 1 for all layers,
which effectively falls back to the weight-space objective Eq. (9).

22

H Whitening and hierarchical inducing variables

The inducing weights U1:L further allow for introducing a single inducing weight matrix U that is
shared across the network. By doing so, correlations of weights between layers in the approximate
posterior are introduced. The inducing weights are then sampled jointly conditioned on the global
inducing weights. This requires that all inducing weight matrices are of the same size along at least
one axis, such that they can be concatenated along the other one.

The easiest way of introducing a global inducing weight matrix is by proceeding similarly to the
introduction of the per-layer inducing weights. As a pre-requisite, we need to work with “whitened”
inducing weights, i.e. set the covariance of the marginal p(Ul) to the identity and pre-multiply the
covariance block between Wl and Ul with the inverse Cholesky of Ψl. In this whitened model, the
full augmented prior per-layer is:(

W Uc

Ur U

)
∼ p(W,Uc,Ur,U) :=MN (0, Σ̃r, Σ̃r), (46)

with L̃r =

(
σrI 0
L−1

r Zr L−1
r Dr

)
(47)

s.t. Σ̃r = L̃rL̃
>
r =

(
σ2
rI σrZ

>
r L
−>
r

σrL
−1
r Zr I

)
and L̃c =

(
σcI 0
L−1

c Zc L−1
c Dc

)
(48)

s.t. Σ̃c = L̃cL̃
>
c =

(
σ2
cI σcZ

>
c L
−>
c

σcL
−1
c Zc I

)
.

One can verify that this whitened model leads to the same conditional distribution p(W|U) as
presented in the main text. After whitening, for each Ul we have that p(vec(Ul)) = N (0, I),
therefore we can also write their joint distribution as p(vec(U1:L)) = N (0, I). In order to construct
a matrix normal prior p(U1:L) = MN (0, I, I), the inducing weight matrices U1:L needs to be
stacked either along the rows or columns, requiring the other dimension to be matching across all
layers. Then, As the covariance is the identity with σ = σr = σc = 1, we can augment p(U1:L) in
the exact same way as we previously augmented the prior p(Wl) with Ul.

I Open-source code

We open-source our approach as a PyTorch wrapper bayesianize:
https://github.com/microsoft/bayesianize

bayesianize is a lightweight Bayesian neural network (BNN) wrapper, and the goal is to allow for
easy conversion of neural networks in existing scripts to BNNs with minimal changes to the code.
Currently the wrapper supports the following uncertainty estimation methods for feed-forward neural
networks and convolutional neural networks:

• Mean-field variational inference (MFVI) with fully factorised Gaussian (FFG) approxima-
tion, i.e. FFG-W in abbreviation.

• Variational inference with full-covariance Gaussian approximation (FCG-W).
• Inducing weight approaches, including FFG-U, FCG-U and Ensemble-U.

The main workhorse of our library is the bayesianize_ function, which turns deterministic
nn.Linear and nn.Conv layers into their Bayesian counterparts. For example, to construct a
Bayesian ResNet-18 that uses the variational inducing weight method, run:

import bnn
net = torchvision.models.resnet18()
bnn.bayesianize_(net, inference="inducing", inducing_rows=64, inducing_cols=64)

In the above code, inducing_rows corresponds to Mout and inducing_cols corresponds to Min.
In other words, they specify the dimensions of U ∈ RMout×Min . Then the converted BNN can be
trained in almost identical way as one would train a deterministic net:

23

https://github.com/microsoft/bayesianize

yhat = net(x_train)
nll = F.cross_entropy(yhat, y_train)
kl = sum(m.kl_divergence() for m in net.modules()

if hasattr(m, "kl_divergence"))
loss = nll + kl / dataset_size
loss.backward()
optim.step()

Note that while the call to the forward method of the net looks the same, it is no longer deterministic
because the weights are sampled, so subsequent calls will lead to different predictions. Therefore,
when testing, an average of multiple predictions is needed. For example, in BNN classification:

net.eval()
with torch.no_grad():

logits = torch.stack([net(x_test) for _ in range(num_samples)])
probs = logits.softmax(-1).mean(0)

In the above code, probs computes

p(y|x,D) ≈ 1

K

K∑
k=1

p(y|x,W(k)
1:L), W

(k)
1:L ∼ q,

where K is the number of Monte Carlo samples num_samples.

bayesianize also supports using different methods or arguments for different layers, by passing in
a dictionary for the inference argument. This way we can, for example, take a pre-trained ResNet
and only perform (approximate) Bayesian inference over the weights of the final, linear layer:

net = ... # load pre-trained network with net.fc as the last layer
bnn.bayesianize_(net, inference={

net.fc: {"inference": "fcg"}
})

optim = torch.optim.Adam(net.fc.parameters(), 1e-3)
then train the last Bayesian layer accordingly
...

For more possible ways of configuring the BNN settings, see example config json files in the
open-source repository.

J Experimental details

J.1 Regression experiments

Following (Foong et al., 2019), we sample 50 inputs each from U [−1,−0.7] and U [0.5, 1] as inputs
and targets y ∼ N (cos(0.4x+ 0.8), 0.01). As a prior we use a zero-mean Gaussian with standard
deviation 4√

din
for the weights and biases of each layer. Our network architecture has a single hidden

layer of 50 units and uses a tanh-nonlinearity. All three variational methods are optimised using
Adam (Kingma & Ba, 2015) for 20, 000 updates with an initial learning rate of 10−3. We average
over 32 MC samples from the approximate posterior for every update. For Ensemble-U and FCG-U
we decay the learning rate by a factor of 0.1 after 10, 000 updates and the size of the inducing
weight matrix is 2× 25 for the input layer (accounting for the bias) and 25× 1 for the output layer.
Ensemble-U uses an ensemble size of 8.

For NUTS we use the implementation provided in Pyro (Bingham et al., 2019). We draw a total
of 25, 000 samples, discarding the first 5000 as burn-in and using 1000 randomly selected ones for
prediction.

J.2 Classification experiments

We base our implementation on the Resnet-18 class in torchvision (Paszke et al., 2019), replacing the
input convolutional layer with a 3× 3 kernel size and removing the max-pooling layer. We train the

24

deterministic network on CIFAR-10 using Adam with a learning rate of 3× 10−4 for 200 epochs.
On CIFAR-100 we found SGD with a momentum of 0.9 and initial learning rate of 0.1 decayed by a
factor of 0.1 after 60, 120 and 160 epochs to lead to better accuracies. The ensemble is formed of the
five deterministic networks trained with different random seeds.

For FFG-W we initialised the mean parameters using the default initialisation in pytorch for the
corresponding deterministic layers. The initial standard deviations are set to 10−4. We train using
Adam for 200 epochs on CIFAR-10 with a learning rate of 3× 10−4, and 300 epochs on CIFAR-100
with an initial learning rate of 10−3, decaying by a factor of 0.1 after 200 epochs. On both datasets
we only use the negative log likelihood (NLL) part of the variational lower bound for the first 100
epochs as initialisation to the maximum likelihood parameter and then anneal the weight of the kl
term linearly over the following 50 epochs. For the prior we use a standard Gaussian on all weights
and biases and restrict the standard deviation of the posterior to be at most σmax = 0.1. We also
experimented with a larger upper limit of σmax = 0.3, but found this to negatively affect both
accuracy and calibration.

All the U-space approaches use Gaussian priors p(vec(Wl)) = N (0, 1/
√
din), motivated by the

connection to GPs. Hyperparameter and optimisation details for the inducing weight methods on
CIFAR-10 are discussed below in the details on the ablation study. We train all methods using Adam
for 300 epochs with a learning rate of 10−3 for the first 200 epochs and then decay by a factor
of 10. For the initial 100 epochs we train without the KL-term of the ELBO and then anneal its
weight linearly over the following 50 epochs. For the tables and figures in the main text, we set
λmax = 0.1 for Ensemble-U on both datasets, and σmax = 0.1, λmax = 0.03 on CIFAR-10 for
FFG-U. We initialise the entries of the Z matrices by sampling from a zero-mean Gaussian with
variance 1

M and set the diagonal entries of the D matrices to 10−3. For FFG-U we initialise the
mean of the variational Gaussian posterior in U-space by sampling from a standard Gaussian and
set the initial variances to 10−3. For Ensemble-U initialisation, we draw an M ×M shaped sample
from a standard Gaussian that is shared across ensemble members and add independent Gaussian
noise with a standard deviation of 0.1 for each member. We use an ensemble size of 5. During
optimisation, we draw 1 MC samples per update step for both FFG-U and Ensemble-U (such that
each ensemble member is used once). For testing we use 20 MC samples for all variational methods.
We fit BatchNorm parameters by minimising the NLL.

The study of hyper-parameter selection on CIFAR-10 We run the inducing weight method with
the following options:

• Row/column dimensions of Ul (M): M ∈ {16, 32, 64, 128}.
We set M = Min = Mout except for the last layer, where we use Min = M and Mout =
10.

• λmax values for FFG-U and Ensemble-U: λmax ∈ {0, 0.03, 0.1, 0.3}.
When λmax = 0 it means q(W|U) is a delta measure centered at the mean of p(W|U).

• σmax values for FFG-U: σmax = {0, 0.1, 0.3}.
When σmax = 0 we use a MAP estimate for U.

Each experiment is repeated with 5 random seeds to collect the averaged results on a single NVIDIA
RTX 2080TI. The models are trained with 100 epochs in total. We first run 50 epochs of maximum
likelihood to initialise the model, then run 40 epochs training on the modified variational lower-bound
with KL annealing (linear scaling schedule), finally we run 10 epochs of training with the variational
lower-bound (i.e. no KL annealing). We use Adam optimiser with learning rate 3e− 4 and the default
β1, β2 parameters in PyTorch’s implementation.

K Additional Results

Below in Tables 5 and 6 we provide extended versions of Table 2. This table contains standard
errors across the random seeds for the corresponding metrics and we additionally report NLLs and
Brier scores. The error bar results are not available for Ensemble-W, as it is constructed from the 5
independently trained deterministic neural network with maximum likelihood.

The results of pruning different fractions of the weights can be found in Table 7 for the in-distribution
uncertainty evaluation for Resnet-50 and the OOD detection in Table 8. For the pruning experiments,

25

Table 5: Complete in-distribution results for Resnet-50 on CIFAR10

Method Acc. ↑ NLL ↓ ECE ↓ Brier ↓
Deterministic 94.72±0.08 0.43±0.01 4.46±0.08 0.10±0.00

Ensemble-W 95.90 0.20 1.08 0.06
FFG-W 94.13±0.08 0.18±0.00 0.50±0.06 0.09±0.00

FFG-U (M=64) 94.40±0.05 0.17±0.00 0.64±0.06 0.08±0.00

FFG-U (M=128) 94.66±0.09 0.17±0.00 1.59±0.06 0.08±0.00

Ensemble-U (M=64) 94.94±0.07 0.16±0.00 0.45±0.06 0.08±0.00

Ensemble-U (M=128) 95.34±0.05 0.17±0.00 1.29±0.05 0.07±0.00

Table 6: Complete in-distribution results for Resnet-50 on CIFAR100

Method Acc. ↑ NLL ↓ ECE ↓ Brier ↓
Deterministic 75.73±0.16 2.14±0.01 19.69±0.15 0.43±0.00

Ensemble-W 79.33 1.23 6.51 0.31
FFG-W 74.44±0.27 1.01±0.01 4.24±0.10 0.35±0.00

FFG-U (M=64) 75.37±0.09 0.92±0.01 2.29±0.39 0.34±0.00

FFG-U (M=128) 75.88±0.13 0.91±0.00 6.66±0.15 0.34±0.00

Ensemble-U (M=64) 75.97±0.12 0.90±0.00 1.12±0.06 0.33±0.00

Ensemble-U (M=128) 77.61±0.11 0.94±0.00 6.00±0.12 0.32±0.00

we take the parameters from the corresponding full runs, set a fixed percentage of the weights to be
deterministically 0 and fine-tune the remaining weights with a new optimizer for 50 epochs. We use
Adam with a learning rate of 10−4. For FFG-W we select the weights with the smallest ratio of
absolute mean to standard deviation in the approximate posterior, and for FFG-U the Z parameters
with the smallest absolute value.

For FFG-W we find that pruning up to 90% of the weights only worsens ECE and NLL on the more
difficult CIFAR100 datasets. Pruning 99% of the weights worsens accuracy and OOD detection, but
interestingly improves ECE on CIFAR100, where accuracy is noticeably worse.

Pruning 25% and 50% of the Z parameters in FFG-U results in a total parameter count of 4, 408, 790
and 3, 106, 678, i.e. 18.7 and 13.2% of the deterministic parameters respectively on ResNet-50. Up
to pruning 50% of the Z parameters, we find that only ECE becomes slightly worse, although on
CIFAR100 it is still better than the ECE for FFG-W at 100% of the weights. Other metrics are
not affected neither on the in-distribution uncertainty or OOD detection, except for a minor drop in
accuracy.

Table 7: Pruning in-distribution uncertainty results for Resnet-50. The percentage refers to the
weights left for FFG-W and the number of Z parameters for FFG-U.

CIFAR10 CIFAR100
Method Acc. ↑ NLL ↓ ECE ↓ Brier ↓ Acc. ↑ NLL ↓ ECE ↓ Brier ↓
FFG-W (100%) 94.13±0.08 0.18±0.00 0.50±0.06 0.09±0.00 74.44±0.27 1.01±0.01 4.24±0.10 0.35±0.00

FFG-W (50%) 94.07±0.03 0.18±0.00 0.40±0.04 0.09±0.00 74.38±0.21 1.02±0.01 4.15±0.09 0.36±0.00

FFG-W (10%) 94.17±0.06 0.18±0.00 0.58±0.02 0.09±0.00 74.42±0.23 1.10±0.01 6.86±0.08 0.36±0.00

FFG-W (1%) 93.60±0.09 0.19±0.00 0.80±0.06 0.09±0.00 67.08±0.33 1.19±0.01 1.36±0.18 0.44±0.00

FFG-W (0.1%) 58.59±0.75 1.15±0.02 7.33±0.23 0.55±0.01 10.66±0.43 3.97±0.03 2.80±0.15 0.96±0.00

FFG-U (100%) 94.40±0.05 0.17±0.00 0.64±0.06 0.08±0.00 75.37±0.09 0.92±0.01 2.29±0.39 0.34±0.00

FFG-U (75%) 94.45±0.05 0.18±0.00 2.19±0.11 0.09±0.00 75.26±0.07 0.93±0.00 3.74±0.67 0.35±0.00

FFG-U (50%) 94.31±0.07 0.18±0.00 2.31±0.09 0.09±0.00 74.89±0.07 0.94±0.00 5.04±0.77 0.35±0.00

FFG-U (25%) 93.34±0.03 0.22±0.00 4.83±0.09 0.11±0.00 71.32±0.16 1.09±0.01 12.44±0.90 0.42±0.00

The number of parameters for FFG-U and Ensemble-U with an ensemble size of 5 in the ResNet-50
experiments are reported in Table 9. The corresponding parameter counts for pruning FFG-W and
FFG-U (M=64) are in Table 10.

In Tables 11 to 14 we report the numerical results for Fig. 5.

26

Table 8: Pruning OOD detection metrics for Resnet-50 trained on CIFAR10/100.

In-dist→ OOD C10→ C100 C10→ SVHN C100→ C10 C100→ SVHN
Method / Metric AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

FFG-W (100%) .88±.00 .90±.00 .90±.01 .86±.01 .76±.00 .79±.00 .80±.01 .69±.01

FFG-W (50%) .88±.00 .90±.00 .90±.00 .86±.00 .76±.00 .79±.00 .79±.01 .69±.01

FFG-W (10%) .88±.00 .90±.00 .90±.01 .87±.01 .76±.00 .79±.00 .79±.01 .69±.01

FFG-W (1%) .88±.00 .89±.00 .90±.01 .86±.01 .72±.00 .75±.00 .71±.02 .57±.02

FFG-W (0.1%) .65±.01 .65±.01 .38±.03 .24±.03 .56±.01 .59±.01 .31±.04 .21±.02

FFG-U (100%) .89±.00 .91±.00 .94±.01 .91±.01 .77±.00 .79±.00 .83±.01 .74±.01

FFG-U (75%) .89±.00 .91±.00 .94±.00 .91±.00 .77±.00 .79±.00 .82±.01 .72±.02

FFG-U (50%) .89±.00 .91±.00 .93±.00 .91±.00 .77±.00 .79±.00 .82±.01 .72±.02

FFG-U (25%) .88±.00 .90±.00 .92±.01 .88±.01 .75±.00 .77±.00 .82±.02 .72±.03

Table 9: Parameter counts for the inducing models with varying U size M .

M Method M = 16 M = 32 M = 64 M = 128 M = 256 Deterministic

Abs. value FFG-U 1, 384, 662 2, 771, 446 5, 710, 902 12, 253, 366 27, 992, 502 23, 520, 842
Ensemble-U 1, 426, 134 2, 937, 334 6, 374, 454 14, 907, 574 38, 609, 334

rel. size (%) FFG-U 5.89 11.78 24.28 52.10 119.01 100
Ensemble-U 6.06 12.49 27.10 63.38 164.15

In Tables 15 to 18 we report the corresponding results for pruning FFG-W and FFG-U. See Fig. 8
for visualisation.

27

Table 10: Pruning parameter counts for keeping fractions of the weights in FFG-W and the Z
parameters in FFG-U.

Method Abs. param. count rel. size (%)

FFG-W (100%) 46, 988, 564 199.8
FFG-W (50%) 23, 520, 852 100
FFG-W (10%) 4, 746, 682 20.2
FFG-W (1%) 522, 494 2.2
FFG-W (0.1%) 100, 075 0.4
FFG-U (100%) 5, 710, 902 24.28
FFG-U (75%) 4, 408, 790 18.7
FFG-U (50%) 3, 106, 678 13.2
FFG-U (25%) 1, 804, 566 7.7

Table 11: Corrupted CIFAR-10 accuracy (↑) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 87.90±2.31 82.02±2.84 76.31±3.80 68.91±4.81 57.94±5.10

Ensemble-W 89.45±2.27 83.94±2.71 78.40±3.61 71.18±4.53 60.15±4.82

FFG-W 83.80±2.43 76.22±3.10 69.30±4.11 61.82±4.66 50.72±4.68

FFG-U 86.90±2.47 80.33±3.14 74.34±4.06 67.23±4.75 57.00±4.83

Ensemble-U 87.35±2.39 80.45±3.19 73.89±4.23 66.52±4.96 54.89±5.26

Table 12: Corrupted CIFAR-10 ECE (↓) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 10.41±2.03 15.58±2.52 20.56±3.37 27.06±4.23 37.26±4.65

Ensemble-W 4.12±1.31 7.01±1.64 10.10±2.33 14.12±2.84 20.48±2.95

FFG-W 13.05±0.64 12.14±0.89 11.56±0.93 10.77±1.05 10.86±1.31

FFG-U 2.47±1.04 4.93±1.66 7.77±2.44 11.27±2.81 16.16±2.92

Ensemble-U 2.77±1.04 5.86±1.69 9.06±2.40 12.54±2.66 19.66±3.12

Table 13: Corrupted CIFAR-100 accuracy (↑) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 63.18±3.06 54.23±3.67 48.47±4.27 41.84±4.59 31.96±3.96

Ensemble-W 67.10±3.19 57.92±3.82 51.83±4.50 45.16±4.91 34.93±4.27

FFG-W 57.49±3.17 47.62±3.64 41.99±4.15 35.61±4.24 26.59±3.66

FFG-U 61.71±3.35 52.61±3.84 47.08±4.36 40.56±4.54 30.88±3.93

Ensemble-U 61.87±3.36 52.69±3.97 46.96±4.52 40.59±4.72 30.85±3.98

Table 14: Corrupted CIFAR-100 ECE (↓) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 30.06±2.70 37.50±3.17 42.48±3.66 48.41±4.06 57.19±3.60

Ensemble-W 12.31±2.04 17.03±2.31 20.36±2.61 24.16±2.98 29.72±2.49

FFG-W 14.28±0.78 11.07±1.11 11.13±0.85 11.21±1.29 11.96±1.68

FFG-U 4.64±1.66 7.80±2.03 10.42±2.39 13.98±2.83 19.17±2.72

Ensemble-U 5.84±1.91 10.28±2.43 13.60±2.96 17.54±3.42 23.56±3.16

28

Table 15: Corrupted CIFAR-10 accuracy (↑) values (in %) for pruning FFG-W and FFG-U.

Skew Intensity
Method 1 2 3 4 5

FFG-W (100%) 83.80±2.43 76.22±3.10 69.30±4.11 61.82±4.66 50.72±4.68

FFG-W (50%) 83.39±2.66 75.58±3.23 68.43±4.21 60.69±4.75 49.75±4.73

FFG-W (10%) 84.04±2.61 76.21±3.24 69.35±4.18 61.65±4.72 50.51±4.74

FFG-W (1%) 84.16±2.31 76.48±3.02 69.72±3.92 62.72±4.47 51.26±4.58

FFG-W (0.1%) 46.33±1.30 41.92±1.44 38.91±1.59 36.03±1.76 32.43±1.88

FFG-U (100%) 86.90±2.47 80.33±3.14 74.34±4.06 67.23±4.75 57.00±4.83

FFG-U (75%) 86.99±2.37 80.64±2.95 74.99±3.81 67.87±4.53 57.33±4.65

FFG-U (50%) 86.93±2.36 80.70±2.93 75.10±3.76 68.14±4.44 57.66±4.49

FFG-U (25%) 85.93±2.39 79.41±2.96 73.48±3.82 66.52±4.52 55.57±4.59

Table 16: Corrupted CIFAR-10 ECE (↓) values (in %) for pruning FFG-W and FFG-U.

Skew Intensity
Method 1 2 3 4 5

FFG-W (100%) 13.05±0.64 12.14±0.89 11.56±0.93 10.77±1.05 10.86±1.31

FFG-W (50%) 14.27±0.59 13.19±0.88 12.36±0.94 11.59±1.07 11.43±1.33

FFG-W (10%) 12.50±0.52 11.66±0.76 11.33±0.90 10.86±1.04 11.28±1.38

FFG-W (1%) 9.86±0.49 9.17±0.62 8.85±0.87 8.87±0.93 11.10±1.45

FFG-W (0.1%) 10.08±0.87 7.82±0.96 6.74±0.81 7.34±0.79 8.77±0.93

FFG-U (100%) 2.47±1.04 4.93±1.66 7.77±2.44 11.27±2.81 16.16±2.92

FFG-U (75%) 2.79±0.60 3.92±0.92 5.27±1.59 7.63±2.00 11.80±2.39

FFG-U (50%) 3.11±0.59 4.26±0.92 5.44±1.58 7.58±1.94 11.38±2.26

FFG-U (25%) 5.27±0.35 5.33±0.57 6.20±1.19 7.95±1.55 11.19±2.21

Table 17: Corrupted CIFAR-100 accuracy (↑) values (in %) for pruning FFG-W and FFG-U.

Skew Intensity
Method 1 2 3 4 5

FFG-W (100%) 57.49±3.17 47.62±3.64 41.99±4.15 35.61±4.24 26.59±3.66

FFG-W (50%) 57.16±3.16 47.33±3.65 41.43±4.18 35.02±4.25 25.89±3.58

FFG-W (10%) 58.77±3.18 48.61±3.69 42.89±4.25 36.33±4.35 26.97±3.70

FFG-W (1%) 50.64±2.89 41.70±3.35 37.35±3.69 31.56±3.65 23.84±3.05

FFG-W (0.1%) 6.72±0.23 6.00±0.24 5.77±0.28 5.43±0.33 4.82±0.33

FFG-U (100%) 61.71±3.35 52.61±3.84 47.08±4.36 40.56±4.54 30.88±3.93

FFG-U (75%) 61.47±3.41 52.25±3.95 46.84±4.46 40.37±4.65 30.48±3.97

FFG-U (50%) 60.76±3.46 51.68±3.96 46.28±4.43 39.84±4.61 29.85±3.92

FFG-U (25%) 58.11±3.20 49.06±3.64 43.62±4.09 37.20±4.23 27.93±3.60

Table 18: Corrupted CIFAR-100 ECE (↓) values (in %) for pruning FFG-W and FFG-U.

Skew Intensity
Method 1 2 3 4 5

FFG-W (100%) 14.28±0.78 11.07±1.11 11.13±0.85 11.21±1.29 11.96±1.68

FFG-W (50%) 15.42±0.84 12.04±1.19 11.85±0.91 11.77±1.31 11.71±1.61

FFG-W (10%) 10.85±0.84 9.08±0.95 9.96±1.10 10.97±1.74 13.35±1.98

FFG-W (1%) 14.86±1.10 11.99±1.13 11.78±1.20 11.48±1.47 11.37±1.64

FFG-W (0.1%) 3.21±0.57 4.47±0.55 5.28±0.70 6.53±0.96 7.79±1.01

FFG-U (100%) 4.64±1.66 7.80±2.03 10.42±2.39 13.98±2.83 19.17±2.72

FFG-U (75%) 4.78±1.58 7.29±1.91 9.59±2.33 13.05±2.91 18.39±2.87

FFG-U (50%) 5.31±1.55 7.10±1.81 9.06±2.18 12.35±2.82 17.43±2.83

FFG-U (25%) 9.74±0.99 8.17±1.01 8.67±1.21 10.53±1.85 13.22±2.15

29

0

50

100

Ac
cu

ra
cy

(%
) CIFAR10 CIFAR100

1 2 3 4 5
Skew intensity

0

20

40

EC
E(

%
)

1 2 3 4 5
Skew intensity

FFG-W (100%) FFG-W (50%) FFG-W (10%) FFG-W (1%) FFG-W (0.1%)

Figure 8: Accuracy (↑) and ECE (↓) on corrupted CIFAR for pruning FFG-W. We show the mean
and two standard errors for each metric on the 19 perturbations provided in (Hendrycks & Dietterich,
2019).

0

50

100

Ac
cu

ra
cy

(%
) CIFAR10 CIFAR100

1 2 3 4 5
Skew intensity

0

20

40

EC
E(

%
)

1 2 3 4 5
Skew intensity

FFG-U (100%) FFG-U (75%) FFG-U (50%) FFG-U (25%)

Figure 9: Accuracy (↑) and ECE (↓) on corrupted CIFAR for pruning FFG-U. We show the mean
and two standard errors for each metric on the 19 perturbations provided in (Hendrycks & Dietterich,
2019).

30

	Notation
	Derivations of the auxiliary variational objective
	An introduction to SVGP
	Derivations of the augmented (pseudo) prior
	Inducing auxiliary variables: multivariate Gaussian case
	Inducing auxiliary variables: matrix normal case

	KL divergence for rescaled conditional weight distributions
	The extended Matheron's rule to matrix normal distributions
	Function-space view of inducing weights
	Whitening and hierarchical inducing variables
	Open-source code
	Experimental details
	Regression experiments
	Classification experiments

	Additional Results

