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Abstract

We introduce MultiGrain, a neural network architecture that generates
compact image embedding vectors that solve multiple tasks of different
granularity: class, instance, and copy recognition. MultiGrain is trained
jointly for classification by optimizing the cross-entropy loss and for in-
stance/copy recognition by optimizing a self-supervised ranking loss. The
self-supervised loss only uses data augmentation and thus does not require
additional labels. Remarkably, the unified embeddings are not only much
more compact than using several specialized embeddings, but they also have
the same or better accuracy. When fed to a linear classifier, MultiGrain
using ResNet-50 achieves 79.4% top-1 accuracy on ImageNet, a +1.8%
absolute improvement over the the current state-of-the-art AutoAugment
method. The same embeddings perform on par with state-of-the-art instance
retrieval with images of moderate resolution. An ablation study shows that
our approach benefits from the self-supervision, the pooling method and the
mini-batches with repeated augmentations of the same image.

1 Introduction
Image recognition is central to computer vision, with dozens of new approaches being
proposed every year, each optimized for particular aspects of the problem. From coarse to
fine, we may distinguish the recognition of (a) classes, where one looks for a certain type
of object regardless of intra-class variations, (b) instances, where one looks for a particular
object despite changes in the viewing conditions, and (c) copies, where one looks for a copy of
a specific image despite edits. While these problems are in many ways similar, the standard
practice is to use specialized, and thus incompatible, image representations for each case.
Consider for example image retrieval, where the goal is to match a query image to a
large database of other images, whose applications include detection of copyrighted images
and exemplar-based recognition of unseen objects. Often one would like to search the
same collection with multiple granularities, by matching the query by class, instance, or
copy. Adopting multiple image embeddings, narrowly optimized for each granularity, means
multiplying the resource usage. Using a single embedding relevant to all these tasks reduces
both the computing time and the storage space. However, this might come at the cost of a
reduced accuracy.
In this paper we introduce MultiGrain, a compact embedding that, as illustrated in fig. 1,
can solve recognition tasks of different granularities while maintaining or surpassing the
accuracy of specialized embeddings. MultiGrain is obtained by training a Convolutional
Neural Network (CNN) jointly on the different tasks. CNNs trained for image classification
are known to be good universal features extractors. However, authors (Babenko & Lempitsky,
2015) have noted that the intermediate layers of such CNNs are generally better for low-level
tasks such as instance and copy recognition. In contrast, our work extracts a single global
embedding at the top of the network. The key is to optimize this embedding simultaneously
for classification and instance retrieval. In this manner, the same representation integrates
different degrees of invariance. Indeed, by definition, copies of the same image contain the
same instance, and images that contain the same instance also contain the same class.
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Figure 1: Top: Our goal is to extract an image
descriptor incorporating different levels of
granularity, so that we can solve, classification
and particular object recognition tasks: The
descriptor is either fed to a linear classifier, or
directly compared with cosine similarity.

Right: The MultiGrain architecture.
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As an additional contribution, we show that MultiGrain can be learned using only class-level
labels via self-supervised learning (Caron et al., 2018). The instance recognition is learned
for free, without labels specific to instance recognition: we use the identity of arbitrary images
as labels, and data augmentation to generate different versions of each image. We also
find that, unexpectedly, forming batches with multiple augmentations of the same image,
improves the classifier performance, even for models trained only for classification. This
contradicts the common knowledge that training batches should maximize diversity. Finally,
we incorporate in MultiGrain a pooling layer inspired by image retrieval that boosts the
classification accuracy for high-resolution images.
Overall, MultiGrain offers compelling performance both for classification and image retrieval,
including outperforming the SoTA classification accuracy on ImageNet for ResNet-50.

2 Related work
Image classification. Most CNNs designed for a wide range of tasks leverage a trunk
designed for classification, such as Residual networks (He et al., 2016). An improvement on
the trunk architecture translates to better accuracies in other tasks (He et al., 2017), see
eg. the detection task of LSVRC’15. Architectural improvements (Hu et al., 2018; Huang
et al., 2017; Xie et al., 2017) exhibit additional gains; training on weakly annotated data
(Mahajan et al., 2018) or using embedding loss at the class level (Wen et al., 2016) can also
improve the accuracy. To our knowledge, the state of the art on ILSVRC 2012 for a model
learned from scratch on Imagenet data only is currently held by the gigantic AmoebaNet-B
architecture (Huang et al., 2018) (557M parameters), which takes 480×480 images as input.
In our paper, we choose ResNet-50 (He et al., 2016) (25.6M parameters), as this architecture
is adopted in the literature in many works both on image classification and instance retrieval.
Image search. The objective of Image search is to find the images most similar to the query
in a large image collection. It is usually evaluated for more specific problems such as landmark
recognition (Philbin et al., 2007; Jégou et al., 2008), particular object recognition (Nister &
Stewenius, 2006) or copy detection (Douze et al., 2009). In this paper image retrieval refers
to instance-level retrieval, where object instances are as broad as possible, i.e., not restricted
to buildings, as in the Oxford/Paris benchmark. Typically, a query image is described by an
embedding vector, and the task amounts to searching the nearest neighbors of this vector in
the embedding space. Refinement steps include as geometric verification (Philbin et al., 2007),
query expansion (Chum et al., 2007; Tolias & Jégou, 2014), or database-side pre-processing
or augmentation (Tolias et al., 2016; Turcot & Lowe, 2009), but this paper focuses on the
first part. Traditionally, local image descriptors are aggregated to image embeddings, as
in the bag-of-words model (Sivic & Zisserman, 2003). It has since become apparent that
CNNs trained on classification datasets are competitive image feature extractors for instance
retrieval (Babenko et al., 2014; Gong et al., 2014; Razavian et al., 2014).
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classification retrieval
spatial pool. avg. pooling RMAC or GeM
loss cross-entropy triplet
batch samp. diverse not diverse
whitening no yes
resolution low high

(2242–3002) (800–1k×scaled)

Table 1: Differences between classifica-
tion and image retrieval: Retrieval archi-
tectures incorporate a final pooling layer
that is regionalized (RMAC of Tolias &
Jégou (2014)) or magnifies activations
(GeM of Radenović et al. (2018)). The
triplet loss (Gordo et al., 2016) requires a
batching strategy with pairs of matching
images.

Architectures for instance search are regular classification trunks, modified so the
pooling stage gives more spatial locality, to cope with small objects and clutter. A competitive
baseline for instance retrieval is the R-MAC image descriptor (Tolias et al., 2015). It
aggregates regionally pooled features extracted from an activation map. This pooling
combined with PCA whitening (Jégou & Chum, 2012) leads to efficient many-to-many
comparisons between image regions. Gordo et al. (2016; 2017) fine-tune this representation
end-to-end on an external image retrieval dataset. Unlike their approach, we do not assume
in this work that we have a domain-specific training set. Radenović et al. (2018) depart from
regional pooling by adopting a generalized mean pooling (see section 3.2). It is a spatial
pooling of the features raised to an exponent p over the whole image, which offers some
benefits as analyzed by Boureau et al. (2010) with respect to noise-to-signal ratio and in
simple image classification tasks.
Multi-task training stems from the observation that CNNs transfer to a wide range of
vision tasks (Razavian et al., 2014) and exhibit a high level of compressibility (Han et al.,
2015). Despite some successes with multi-task networks such as UberNet (Kokkinos, 2017),
their design and training still involve numerous heuristics. Ongoing lines of work investigate
efficient sharing of parameters (Rebuffi et al., 2018), and proper hyper-parameters settings
to weight the gradients from different tasks (Guo et al., 2018).
Data augmentation improves generalization and reduces over-fitting (Krizhevsky et al.,
2012). Traditionally, batches were made to contain random samples of the training set. The
recently introduced batch augmented (BA) (Hoffer et al., 2019) sampling strategy consists
in augmenting the size of the batches and filling them with data-augmented copies of the
same image. This yields better generalization performance, and uses computing resources
more efficiently through reduced data processing time. We show that this improvement can
be obtained using the same batch size, i.e., , with a lower number of distinct images per
batch. We see this repeated augmentations (RA) scheme as a way to boost the effect of
data augmentation over the course of the optimization. Thus, RA is a technique of general
interest, beyond large-scale distributed training.

3 Architecture design
In the current best practices, the architectures and training procedures used for class and
instance recognition differ significantly. This section describes the differences, summarized
in table 1, and our solutions to bridge them, leading to the MultiGrain architecture in fig. 1.

3.1 Training objective
MultiGrain is jointly optimized for the classification and retrieval tasks, which is obtained
by combining a classification loss and an instance retrieval loss in the optimization.
Classification loss. We adopt the standard cross-entropy loss. Given ei ∈ Rd the output
of eq. (4) for image i, wc ∈ Rd the parameters of a linear classifier1 for class c = 1, . . . , C,
and yi the ground-truth class for that image, then

`class(ei, [w1, . . . ,wC ], yi) = −〈wyi
, ei〉+ log

C∑
c=1

exp〈wc, ei〉. (1)

1 In practice, we also add a learnable bias term, which is equivalent to adding a constant feature
channel to the feature vector ei.
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Retrieval loss. The triplet loss (Schroff et al., 2015) imposes that a query image embedding
must be closer to the embedding of an image that matches it than to other embeddings.
The contrastive loss (Hadsell et al., 2006) imposes a stricter condition: all embedding
distances between pairs of matching images must be smaller than all embedding distances
between pairs of non-matching images. Optimizing both these losses depends on hard-to-tune
hyper-parameters, including how pairs and triplets are sampled.
Some of these issues are solved by the approach of Wu et al. (2017), which starts from a
batch of images and (1) normalizes their embeddings to the unit sphere, (2) samples negative
pairs using the current embedding similarity, and (3) uses the pairs in a margin loss (that
combines contrastive and triplet loss). Given images i, j ∈ B in a batch, the margin loss is
given by:

`retr(ei, ej , β, yij) = max{0, α+ yij(D(ei, ej)− β)} (2)
where D(ei, ej) = ‖ei/‖ei‖− ej/‖ej‖‖ is the Euclidean distance between the normalized
embeddings, the label yij is equal to +1 if the images match and to −1 otherwise, α > 0 is
the margin (a hyper-parameter), and β > 0 is a learnable parameter controlling the volume
of the space occupied embedding vectors. Due to the normalization, D(ei, ej) is equivalent
to a cosine similarity, which, up to whitening (section 3.4), is commonly used in retrieval.
We use distance-weighted sampling to sample pairs of images (see appendix A for details).
This sampling is suited to our joint training: it tolerates relatively small batch sizes (|B| ∼ 80
to 120) and a small amount of positives images (3 to 5) of each instance in the batch, without
the need for elaborate parameter tuning or offline sampling.
Joint loss. The joint loss on batch B is a combination weighted by a factor λ ∈ [0, 1]:

λ

|B|
·
∑
i∈B

`class(ei,w, yi) + 1− λ
|P(B)| ·

∑
(i,j)∈P(B)

`retr(ei, ej , β, yij). (3)

Note that the losses are normalized by the number of items in the corresponding summations.

3.2 Spatial pooling operators
For recognition tasks, one requires to encode the whole image as a single vector. The latter
is usually obtained by applying a global spatial pooling operator to the 3D activation tensor
produced by the convolutional trunk of the network. This should be contrasted with local
pooling operators, typically max pooling, that are found throughout the layers of CNNs to
achieve local invariance to small translations.
The choice of global pooling operator has a significant effect on the representation. Recent
architectures for classification, such as ResNet and DenseNet, use average pooling. Average
pooling is permutation invariant and hence less sensitive to geometric transformations. It is
also flexible as it allows the model to be applied to images of any size.
Image retrieval, on the other hand, requires more localized and fine-grained geometric
information than the one captured by average pooling. This is because (i) the representation
requires less invariance since object instances and landmarks are visually more similar and (ii)
images are often more cluttered, with just a small distinctive part that warrants identification.
Hence, the pooling should preserve local information. Next, we discuss the generalized mean
pooling operator as a solution to this problem.
Let x ∈ RC×W×H be the feature tensor computed by a convolutional neural network for
a given input image. The tensor represents a feature map with C channels, height H and
width W . Let u ∈ Ω = {1, . . . ,H} × {1, . . . ,W} be “pixel” in the map, c the channel, and
by xcu the tensor element at location u and channel c, so that x = [xcu]c=1,...,C,u∈Ω. The
generalized mean pooling (GeM) layer computes the generalized mean of each channel:

e =
[( 1
|Ω|

∑
u∈Ω

xp
cu

) 1
p

]
c=1,...,C

(4)

where the exponent p > 0 is a parameter. Average pooling and max pooling are equivalent
to GeM with p = 1, and p = ∞, respectively. Exponents in the range 1 < p < ∞ are a
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trade-off between the two (Bo & Sminchisescu, 2009; Boureau et al., 2010; Dollár et al.,
2009). GeM was introduced for image retrieval as a component of R-MAC that approximates
max pooling (Dollár et al., 2009), but (Radenović et al., 2018) showed it is competitive on
its own. (Boureau et al., 2010) studied this layer in the context of scene recognition/image
classification. MultiGrain uses it to bridge the two worlds, as well as to dynamically adapt
the network to varying image resolution.

3.3 Batching with repeated augmentation (RA)
We introduce repeated augmentations, a sampling scheme for training with SGD and data
augmentation. In RA we form an image batch B by sampling d|B|/me different images,
and transform them up to m times by a set of data augmentations. Thus, the instance
level ground-truth yij = +1 iff images i and j are two augmented versions of the same
image. The key difference with the standard sampling scheme in SGD is that samples are
not independent.
For a given learning rate, RA has lower performance than the standard i.i.d. scheme for small
batch sizes, but outperforms it with larger batches. This is different from the observation
of (Hoffer et al., 2019), who also consider repeated samples in a batch, but simultaneously
increase its size.
With standard sampling, two versions of the same image are seen only in different epochs.
We conjecture that correlated RA samples facilitate learning features that are invariant to
the only difference between the repeated images — the augmentations. Appendix D shows
this phenomenon in a simple artificial setting.

3.4 PCA whitening
We apply a step of PCA whitening to the embeddings to use them for retrieval, in accordance
with previous works (Gordo et al., 2017; Jégou & Chum, 2012). The Euclidean distance
between transformed features is equivalent to the Mahalanobis distance between the input
descriptors. The PCA is trained at the end of the CNN training, using an external dataset
of unlabelled images. The whitening operation Φ can be written as Φ(e) = S (e/‖e‖− µ)
given the whitening matrix S and centering vector µ.
The parameters of the classification layer have to be modified to take the whitened embed-
dings as input. For the classifier 〈wc, e〉 of eq. (1), we have 〈wc, e〉 = 〈wc,Φ−1(Φ(e))〉 =
‖e‖ (〈w′c,Φ(e)〉+ b′c) where w′c = S−>wc and b′c = 〈wc, µ〉 are the modified weight and bias
for class c. We observed that inducing decorrelation via a loss (Cogswell et al., 2016) is
insufficient to ensure that features generalize well, which concurs with prior works (Gordo
et al., 2017; Radenović et al., 2018).

3.5 Input sizes
In image classification, it is standard to resize and center-crop input images to a low resolution,
e.g. 224× 224 pixels (Krizhevsky et al., 2012). The benefits are a smaller memory footprint,
faster inference, and the possibility of batching the inputs if they are cropped to a common
size. On the other hand, image retrieval depends on finer details in the images, as an instance
can small or seen under a variety of scales. Feature extractors for image retrieval therefore
commonly use input sizes of 800 (Gordo et al., 2017) or 1024 (Radenović et al., 2018) pixels,
without cropping the image to a square. This is impractical for end-to-end training.
We train MultiGrain at the standard 224× 224 resolution, and use larger resolutions at test
time. Indeed, a network trained with a pooling exponent p and resolution s can be evaluated
at a larger resolution s∗ > s using a larger pooling exponent p∗ > p, see section 4.3.

λ s∗ = 224 500 800
1 p∗ = 3 4 4

0.5 p∗ = 3 4 5

Proxy task to cross-validate p∗. To select the exponent
p∗, suitable for all tasks, we create a synthetic retrieval task
IN-aug: we sample 2,000 images from the training set of
ImageNet, 2 per class, and create 5 augmented copies of each
of them. We query all images using the retrieval embeddings
and evaluate the retrieval accuracy on IN-aug by measuring
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how many of the first 5 augmentations of the image are ranked in top 5 positions. The
best-performing p∗ ∈ {1, 2, . . . , 10} on IN-aug is shown in the table.
The optimal p∗ obtained on IN-aug is a trade-off between retrieval and classification. Exper-
imentally, we observed that other choices are suitable for setting this parameter: fine-tuning
the p∗ using training inputs at a given resolution and back-propagating the cross-entropy
loss provides similar results and values of p∗ (but is more complex).

4 Experiments and Results
4.1 Experimental settings
Base architecture. We build MultiGrain using ResNet-50 as convolutional trunk (He
et al., 2016). The latter is optimized using SGD, starting with a learning rate of 0.2 which is
reduced tenfold at epochs 30, 60, 90 for a total of 120 epochs (a standard setting (Paszke
et al., 2017)). The batch size is |B| = 512 and an epoch “sees” a fixed number T = 5005
batches. With uniform sampling, one epoch does two passes over the training set; with RA
and m = 3, one epoch sees ∼ 2/3 of the images of the training set. The baselines are trained
using this longer schedule for a fair comparison.
Data augmentation. Use a standard set of data augmentations (Howard, 2013) detailed
in the appendix (table E.1); we refer to this set of augmentations as “full”. The baseline CNN
reaches 76.2% top-1 validation error when trained with cross-entropy alone and uniform
batch sampling (see table 2). This is on the high end of accuracies reported for the ResNet-
50 network (Goyal et al., 2017; He et al., 2016) without specially-crafted regularization
terms (Zhang et al., 2018), data augmentations (Cubuk et al., 2018) or external data.
Pooling exponent. During the training of our network, we consider two settings for the
GeM layer of section 3.2: we set either p = 1 or p = 3. Related work (Radenović et al.,
2018) and our preliminary experiments suggest that the value p = 3 improves the retrieval
performance. Appendix B illustrates the effect of this choice.
Input size and cropping. As described in section 3.5, we train our network on crops
of 224 × 224 pixels. For testing, we experiment with resolutions s∗ = 224, 500, 800. For
resolution s∗ = 224, we follow the usual classification protocol: the smallest side of the image
is resized to 256 and then a 224× 224 central crop is extracted. For resolution s∗ > 224, we
instead follow the protocol common in image retrieval: resize the largest side of the image to
s∗ and evaluate the network on the rectangular image without cropping.
Margin loss and batch sampling. We use m= 3 RA repetitions per batch. We use the
default margin loss hyperparameters of (Wu et al., 2017) (see appendix E). As in (Wu et al.,
2017) distance-weighted sampling is performed independently on each of the 4 GPUs used
for training.
Datasets. We train our networks on the ImageNet-2012 training set. Classification ac-
curacies are reported on the validation images. For image retrieval, we report the mean
average precision on the Holidays dataset (Jégou et al., 2008), with images rotated manually
when necessary, as in prior evaluations (Gordo et al., 2016). We also report the accuracy
on the UKB object recognition benchmark (Nister & Stewenius, 2006), which shows 2,550
objects under 4 viewpoints each; each image is used as a query to find its 4 closest neigh-
bors in embedding space; the number of correct neighbors is averaged across all images
(i.e., the score is in [0, 4]). We report the performance of our network in a copy detection
setting, indicating the mean average precision on the “strong” subset of the Inria Copydays
dataset (Douze et al., 2009), combined with 10k distractor images randomly sampled from
YFCC100M (Thomee et al., 2016). We call the combination C10k. The PCA whitening
transformations are computed from the features of 20k images from YFCC100M, distinct
from the C10k distractors.

4.2 Effect of the pooling exponent p∗ and the loss weighting λ

As a starting point, we use RA sampling and pooling exponent p = 3. This gives a 76.9%
top-1 validation accuracy on ImageNet, 0.7% points above the baseline, see table 2.
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Figure 2: Retrieval and classification accuracies as a function of pooling exponent p∗ and
the image resolution. At training time, the pooling was p = 3. Note the clear interaction
between the resolution s∗ and the pooling exponent p∗.

We now use larger images at test time, i.e., , we set s∗> 224 and vary the exponents p∗ 6= p= 3.
Figures 2a and 2b show the classification accuracy and the retrieval accuracy at different
resolutions, for different values of the exponent p∗. As expected, at s∗= 224, the pooling
exponent yielding best accuracy in classification is the exponent with which the network
has been trained, p∗= 3; instead, testing at larger scale requires an exponent p∗>p, both
for classification and for retrieval. In the following, we adopt the values obtained by our
cross-validation on IN-aug, see section 3.5.
We defer to appendix C for the study on the weighting parameter λ. We set λ= 0.5 in our
following experiments, as it gives the best classification accuracy at the practical resolutions
s∗= 224 and 500 pixels. As a reference, we also report a few results with λ= 1 (i.e., ignoring
the retrieval loss).

4.3 Classification results
From now on, our MultiGrain nets are trained at resolution s= 224 with exponent p= 1
or p= 3 in the GeM pooling. For each evaluation resolutions s∗= 224, 500, 800, the same
exponent p∗ is selected according to section 3.5, yielding a single embedding for classification
and for retrieval. Table 2 presents the classification results. There is a large improvement
in classification performance from our baseline ResNet-50 with p= 1, s= 224, “full” data
augmentation (76.2% top-1 accuracy), to a MultiGrain model at p= 3, λ= 0.5, s= 500
(78.6% top-1). We identify four sources for this improvement:

1. The RA batch sampling (section 3.3) yields an improvement of +0.6% (p= 1).
2. The retrieval loss helps the generalizing effect of data augmentation: +0.2% (p= 1).
3. p= 3 pooling: GeM at training (section 3.2) allows the margin loss to have a much stronger

effect thanks to increased localization of the features: +0.4%.
4. Expanding resolution: evaluating at resolution 500 adds +1.2% to the p= 3 MultiGrain

network, reaching the 78.6 top-1 accuracy. The p= 3 training yields sparser features, more
generalizable over different resolutions, and the p∗ pooling adaptation (without it the
performance at this resolution is only 78.0%).

The p∗ selection for evaluation at higher resolutions has its limits: at 800 pixels, due to
the large discrepancy between the training and testing scale for the feature extractor, the
accuracy drops to 77.2% (76.2% without the p∗ adaptation).
AutoAugment (AA) is a reinforcement learning approach to find data augmentations
that improve the accuracy of CNNs (Cubuk et al., 2018). We integrate the augmentations
found on their ResNet-50 model. To give more impact to AA, we do 270 passes over the
dataset, with batch size 512. MultiGrain with AA reaches 78.2% top-1 accuracy at s∗ = 224
(p= 3, λ= 0.5). To the best of our knowledge, this is the state-of-the-art for ResNet-50 when
evaluating at this resolution: it outperforms AA alone (77.6%) and mixup (Zhang et al.,
2018) (76.7%). Increasing the test resolution improves the accuracy to 79.4% at s∗ = 500.
We also experimented with other architecture, see appendix G. We observed that the GeM
pooling substantially increase the accuracy of off-the-shelf networks, with only a tiny fine-
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Architecture λ data resol. train-time pooling
aug. s∗ p = 1 p = 3

ResNet-50 full 224 76.2 / 92.9 76.2 / 93.1
MultiGrain 1 full 224 76.8 / 93.2 76.9 / 93.5
MultiGrain 0.5 full 224 77.0 / 93.6 77.4 / 93.6
MultiGrain 0.5 AA 224 77.4 / 93.6 78.2 / 93.9
MultiGrain 0.5 full 500 76.5 / 93.5 78.6 / 94.4
MultiGrain 0.5 AA 500 77.7 / 94.0 79.4 / 94.8
MultiGrain 0.5 full 800 73.5 / 93.5 77.2 / 93.5
MultiGrain 0.5 AA 800 74.1 / 91.8 77.8 / 93.9
PyTorch model zoo 224 76.1 / 92.9
mixup 224 76.7 / 94.4
BA (|B| = 1024) 224 76.9 / –
AutoAugment 224 77.6 / 93.8

Table 2: ImageNet 2012 valida-
tion performance at top-1 / top-
5 accuracies (%). Resnet-50 is
a classification baseline trained
with cross-entropy with our train-
ing schedule, data augmenta-
tion, and uniform batch sampling.
MultiGrain uses the same Resnet-
50 trunk. At resolutions s∗> 224
we evaluate with exponent p∗ as
described in section 3.5. We com-
pare mixup (Zhang et al., 2018),
BA (Hoffer et al., 2019), and Au-
toAugment (Cubuk et al., 2018).

Method resol. s∗ Holidays UKB CD10k
MultiGrain λ = 1 500 91.8 3.89 81.1
MultiGrain λ = 1 800 91.6 3.91 82.5
MultiGrain λ = 0.5 500 91.5 3.90 80.7
MultiGrain λ = 0.5 800 92.5 3.91 78.6
Fisher vectors 800 63.4 3.35 42.7
Neural codes 224 79.3 3.56
ResNet-50 RMAC 724 90.9
ResNet-50 RMAC 1024 93.3
ResNet-101 RMAC 800 91.4 3.89
GeM† 1024 93.9

Table 3: Instance search results and
baselines, on Holidays (% mAP) and
UKB (/4). We set p = 3 pooling at
training time for our MultiGrain mod-
els, and p∗ set as given in section 3.5.
We compare Fisher vectors (Jégou et al.,
2012), neural codes (Babenko et al.,
2014), RMAC (Gordo et al., 2016), and
GeM (Radenović et al., 2018). † GeM
is fine-tuned at resolution 362×362 on ad-
ditional retrieval data and uses multi-scale
input processing at an extra cost.

tuning. For example, we obtain a top-1 accuracy of 83.6 with a PNASNet-5-Large, a +0.9%
improvement over the original (Liu et al., 2018).

4.4 Retrieval results
Retrieval results are in table 3, an ablation study and copy detection results are in the
F. Our MultiGrain nets improve accuracies on all datasets with respect to the ResNet-50
baseline for comparable resolutions. Repeated augmentations (RA) is again a key ingredient
in this context. We compare with reported accuracies in (Gordo et al., 2016; 2017), without
additional training data. MultiGrain compares favorably with their results at the same
resolution (s∗ = 800). They reach accuracies above 93% mAP on Holidays but this requires
a resolution s≥ 1000 pixels.
Note that MultiGrain reaches a reasonable retrieval performance at resolution s∗= 500, an
interesting operating point compared to the traditional inference resolutions s= 800–1000 for
retrieval. Indeed, a forward pass of ResNet-50 on 16 processor cores takes 3.80s at resolution
500, against 18.9s at resolution 1024 (5× slower). Because of this quadratic increase in
timing, and the single embedding computed by MultiGrain, our solution is particularly apt
in large-scale or low-resource vision applications. At resolutions 500 the results with margin
loss (λ= 0.5) are slightly lower than without (λ=1). This is partly due to the limited transfer
from the IN-aug task to the variations observed in retrieval datasets.

5 Conclusion
MultiGrain is a unified embedding for image classification and instance retrieval. It relies on
a classical CNN trunk, with a GeM pooling layer, topped with two heads at training time.
We have discovered that this pooling layer allows us to increase the resolution of images used
at inference time, while maintaining a small resolution at training time. We have shown
that MultiGrain embeddings can perform well on classification and retrieval. Interestingly,
MultiGrain also sets a new state of the art on pure classification compared to all results
obtained with the same convolutional trunk. Our approach will be open-sourced.
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Appendix
We report a few details and additional experiments that did not fit in the main paper.
Appendix A outlines the repeated augmentation sampling algorithm. Appendix B illustrates
the effect of GeM pooling on activation maps. Appendix C studies the effect of the loss
weighting parameter. Appendix D shows the effect of data-augmented batches when training
a simple toy model. Appendix E lists the values of a few hyper-parameters used in our
method. Appendix F gives a some more ablation results in the retrieval setting. Finally,
Appendix G shows how to use the ingredients of MultiGrain to improve the accuracy of
an off-the-shelf pre-trained ConvNet at almost no additional training cost. It obtains what
appear to be the best reported classification results on imagenet-2012 for a convnet
with publicly available weights.

A Sampling pairs in image batches
We formalize the algorithm used to sample batches with repeated augmentations.
The loss of eq. (2) is computed on a subset of positive and negative pairs P(B) ⊂ B2 obtained
as P(B) = P+(B) ∪ P−(B) where (Wu et al., 2017):
P+(B) = {(i, j) ∈ B2 : yij = 1}, P−(B) =

⋃
(i,j)∈P+

{(i, j∗) with j∗ ∼ p(·|i)}. (A.1)

This means that one retains all positive pairs in the batch and then, for each positive pair
(i, j), generates a negative pair (i, j∗) by sampling j∗ with probability

p(j|i) ∝ min{τ, q−1(D(ei, ej))} · 1{yij=−1},

where τ > 0 is a parameter and q(z) ∝ zd−2(1 − z2/4) d−3
2 is a PDF that depends on the

embedding dimension d.

B Illustration of the effect of p∗

We visualize the effect of changing the GeM pooling exponent p on activation maps at different
resolutions. We focus on a single class (racing car) and make the simplistic assumption that
there is one channel of the activation map that reacts strongly to that class.
Then we can visualize the activation map for that channel on images. Figure B.1 shows a
typical result. By setting p = 3, the car is detected with high confidence and without spurious
detections. Boureau et al. (2010) analyse average- and max-pooling of sparse features. They
find that when the number of pooled features increases, it is beneficial to make them more
sparse, which is consistent with the observation we make here.

C Analysis of the tradeoff parameter
We analyze the impact of the tradeoff parameter λ between the two components of the loss
of eq. (3). Note, this parameter does not directly reflect the relative importance of the two
loss terms during training, since these are not homogeneous: λ= 0.5 does not mean that
they have equal importance.
Figure C.1 analyzes the actual relative importance of the classification and margin loss terms,
by measuring the average norm of the gradient back-propagated through the network at
epochs 0 and 120. One can see that λ= 0.5 means that the classification has slightly more
weight at the beginning of the training. The classification term becomes dominant at the end
of the training, meaning that the network has already learned to cancel data augmentation.
In terms of performance, λ= 0.1 leads to a poor classification accuracy. Interestingly, the
classification performance is higher for the intermediate λ= 0.5 (77.4% at s∗= 224) than for
λ= 1, see Table 2. Thus, the margin loss leads to a performance gain for the classification
task.
We set λ= 0.5 in our following experiments, as it gives the best classification accuracy at the
practical resolutions s∗= 224 and 500 pixels. As a reference, we also report a few results
with λ= 1.
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Input image resolution s∗ = 224
p∗ = 1 p∗ = 3

full resolution
p∗ = 1 p∗ = 3

Figure B.1: An off-the-shelf ResNet-50 reacts strongly on channel 909 of the last activation map
for class “racing car”. The image on the left is a hard example for the class. We show channel 909
for that image, at several resolutions and with GeM parameters p∗ = 1 and p∗ = 3. In the low
resolution version, the cars are too small to be visible individually on the activation map. In the
full resolution version, the location of the cars is more clear. In addition, p∗= 3 reduces the noisy
detections relative to the true locations.
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Figure C.1: Classification vs retrieval loss, measured as ‖gclass‖/(‖gclass‖+ ‖gretr‖), where
the gclass vector is the gradient from the λ`class component.
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Figure D.1: Evolution of the validation accuracy on ImageNet-val with and without data-
augmented batches.
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Figure D.2: Training set for the toy model in appendix D.

D Data-augmented batches: toy model
We have observed in section 3.3 and appendix C that training our architecture (ResNet-50
trunk) with data-augmented batches yields improvements with respect to the vanilla uniform
sampling scheme, despite the decrease in image diversity.
This observation holds even in the absence of ranking triplet loss, all things being equal
otherwise: same number of iterations per epoch, number of epochs, learning rate schedule,
and batch size. As an example, fig. D.1 shows the evolution of the validation accuracy of our
network trained under cross-entropy with our training schedule and a p = 1 pooling, batches
of size 512, with the data augmentation introduced in section 4.1, with uniform batches vs.
with batch sampling. While initial epochs suffer from the reduced diversity of the batches
compared to the uniformly-sampled variant, the reinforced effect on data augmentation
compensates for this in the long run, and makes the batch-augmented variant reach a higher
final accuracy.
Since we observe this better performance even for a pure image classification task, an
interesting question is whether this benefit is specific to our architecture and training method
(batch-norm, etc), or if it is more generally applicable? Hereafter we analyse a linear model
and synthetic classification task that seems to align with the second hypothesis.
We consider an idealized model of the effect of including different data-augmented instances
of the same image in one batch using standard stochastic gradient descent. We create
a synthetic training set D of points pictured in fig. D.2 of N = 100 positive and N = 100
negative training points pi = (pi

x, p
i
y) by sampling from two 2D Gaussian distributions:

pi
x ∼ N (µ = 0, σ = 1)

pi
y ∼ N (µ = y∗i , σ = 1)

(D.1)

with y∗i = ±1 being the ground truth label. We sample a test dataset in the same manner.
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Figure D.3: Evolution of the test accuracy of the SVM trained on the synthetic data,
averaged accross 100 runs.

Table E.1: Margin loss and data-augmentation parameters
parameter value
margin α 0.2
initial β0 1.2
β learning rate 0.1

We consider the SGD training of an SVM

fw(pi) = w>pi (D.2)

using the Hinge loss
`hinge = max (1− y∗i fw(pi), 0). (D.3)

We consider the symmetry across the x-axis

φ((pi
x, p

i
y)) = φ((pi

x,−pi
y)) (D.4)

as a label-preserving data-augmentation suited to our synthetic dataset. We train the SVM
(equation D.2) using one pass through the data-augmented dataset D̄ of size 4N , using
batches of size 2.
The only difference between the two optimization schedules is the order in which the samples
are batched and presented to the optimizer. We consider two batch sampling strategies:

• Uniform sampling: we sample the elements of the batch randomly from D̄, without
replacement;

• Paired sampling: we generate a batch by pairing a random element from D̄ and its
data-augmentation, removing these two elements from D̄.

Figure D.3 shows the evaluation of the accuracy with the iterations in both of these cases,
averaged across 100 runs. It is clear that pairing the data-augmented pairs in one batch
accelerates the convergence of this model.
This idealized experiment demonstrates that there are cases in which the repeated augmen-
tation scheme provides an optimization and generalization boost, and reinforces the effect of
data augmentation.

E Margin loss hyper-parameters
Table E.1 gives the value of the hyper-parameters for the margin loss used during the training
of our models.
Table E.2 gives the transformations in the full data augmentation used in our experiments
(section 4.1), along with their parameters.
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Table E.2: full data-augmentation transforms and parameters
transformation parameter range
horizontal flip

random resized crop scale ∈ [0.08, 1.0]
ratio ∈ [3/4, 4/3]

color jitter
brightness 0.3
contrast 0.3

saturation 0.3
lighting transform intensity 0.1

Table D.1: Full results including Copydays + 10k distractors (CD10k, % mAP), and ablation
study for the MultiGrain models. The Pytorch model simply extract the last activation layer
as a descriptor (Babenko et al., 2014). Resnet-50 corresponds to features extracted from a
classification baseline with p = 1 or p = 3 GeM pooling, trained with cross-entropy with our
training schedule, data augmentation, and uniform batch sampling.

Holidays UKB CD10k
Method λ s∗= 224 500 800 224 500 800 224 500 800
PyTorch model zoo 85.5 86.6 82.8 3.71 3.85 3.80 61.5 61.1 43.0
Resnet-50 trained with p = 1 pooling 83.5 88.8 87.1 3.60 3.79 3.82 59.2 69.9 66.2
Resnet-50 trained with p = 3 pooling 86.8 90.0 90.4 3.73 3.87 3.89 70.6 78.9 75.7
MultiGrain 1 88.9 91.8 91.6 3.78 3.89 3.91 75.1 81.2 82.5
MultiGrain 0.5 88.3 91.5 92.5 3.78 3.90 3.91 74.1 80.7 78.6
MultiGrain + AA 0.5 86.5 90.3 89.4 3.75 3.89 3.90 69.7 77.8 76.1

F Additional results and ablation study for Multigrain in
retrieval

Table D.1 reports additional results of the MultiGrain architecture, with an ablation study
analyzing the effect of each component.
As already reported in the main paper, for some datasets the choice of not using the triplet
loss (λ = 1) is as good or better than our generic choice (λ = 0.5). Of course, then the
embedding is not multi-purpose anymore. Overall, the different elements employed in our
architecture (RA and the layers specific to Multigrain) still give a significant improvement
over simply using the activations, and is competitive with the state of the art for the same
resolution/complexity.
Note, the AutoAugment data augmentation does not transfer well to the retrieval tasks. This
can be explained by their specificity to Imagenet classification. This shows the limitation of
a particular choice of data-augmentation if a single embedding for classification and retrieval
datasets is desired. Learning AutoAugment specifically for the retrieval task would certainly
help, but would probably also result in less general embeddings. Hence, data-augmentation
is a limiting factor for multi-purpose embeddings: improving for one task like classification
hurts the performance for other tasks.

Table E.1: Additional top-1/top-5 validation classification accuracies obtained by finetuning
p∗ for higher evaluation scales from off-the-shelf networks: NASNet (Zoph et al., 2018),
SENet (Hu et al., 2018) and PNASNet (Liu et al., 2018). The first column indicates
the training resolution s and the accuracy we measured at this resolution, with standard
evaluation (resize of the largest scale to s · 256/224 + center crop). The subsequent columns
show the accuracy measured at higher resolutions s∗ = 350, 400, 450, 500 without cropping,
together with the p∗ found by finetuning for these resolutions (appendix G).

original evaluation s∗ = 350 s∗ = 400 s∗ = 450 s∗ = 500
Architecture s acc. (%) p∗ acc. (%) p∗ acc. (%) p∗ acc. (%) p∗ acc. (%)
NASNet-A-Mobile 224 74.1/91.7 1.7 75.1/92.5 2.1 74.2/92.1 2.4 71.8/90.9 2.6 68.4/89.0
SENet154 224 81.3/95.5 1.6 82.6/96.2 1.6 83.0/96.5 1.6 83.1/96.5 1.7 82.7/96.3
PNASNet-5-Large 331 82.7/96.0 1.0 81.3/85.4 1.4 82.6/96.1 1.5 83.2/96.4 1.7 83.6/96.7
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G Evaluation of off-the-shelf classifiers at higher resolutions
In this section, we present some additional classification results using off-the-shelf pretrained
classification networks trained with standard average pooling (p = 1).
As outlined in sections 3.5 and 4.2, one of our contributions is a strategy for evaluating
classifier networks trained with GeM pooling at scale s and exponent p at a higher resolution
s∗ and adapted exponent p∗. It can be used on pretrained networks as well.
For an evaluation scale s∗, we use the alternative strategy described in section 3.5 to choose
p∗: we finetune the parameter p∗ by stochastic gradient descent, backpropagating the cross-
entropy loss on training images from imagenet, rescaled to the desired input resolution.
Compared to a full finetuning at this input resolution, this strategy has a limited memory
footprint, given that the backpropagation only has to be done on the ultimate classification
layer before reaching the pooling layer, allowing for an efficient computation of the gradient of
p∗. Experimentally we also found that this process converges on a few thousands of training
samples, while a finetuning of the classification layer would require several data-augmented
epochs on the full training set.
The finetuning is done using SGD with batches of |B| = 4 (non-cropped) images, with
momentum 0.9 and initial learning rate lr(0) = 0.005, decayed under a polynomial learning
rate decay

lr(i) = lr(0)
(

1− i

imax

)0.9
(G.1)

with imax the total number of iterations.
We select 50, 000 images from the training set (50 per category) for the fine-tuning and
do one pass on this reduced dataset. We use off-the-shelf pretrained convnets from the
Cadene/pretrained-model repository2. Table E.1 outlines the resulting validation accuracies.
We see that for each network there is a scale and choice of p∗ that performs better than the
standard evaluation.
These networks have not been trained using GeM pooling with p > 1; as exhibited in our
classification results (table 2) we found this to be another key ingredient in ensuring a higher
scale insensitivity and better performance at larger resolution. As in our main experiments
with the MultiGrain architecture with a ResNet-50 backbone, it is likely that these networks
would reach higher values when training from scratch with a p > 1 pooling, and adding
repeated augmentations and margin loss. However, running training experiments on these
large networks is significantly more expensive. Therefore, we leave this for future work.

2Url: https://github.com/Cadene/pretrained-models.pytorch
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