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ABSTRACT

We introduce Neural Markov Logic Networks (NMLNs), a statistical relational
learning system that borrows ideas from Markov logic. Like Markov Logic Net-
works (MLNs), NMLNs are an exponential-family model for modelling distri-
butions over possible worlds, but unlike MLNs, they do not rely on explicitly
specified first-order logic rules. Instead, NMLNs learn an implicit representation
of such rules as a neural network that acts as a potential function on fragments of
the relational structure. Interestingly, any MLN can be represented as an NMLN.
Similarly to recently proposed Neural theorem provers (Rocktäschel & Riedel,
2017), NMLNs can exploit embeddings of constants but, unlike NTPs, NMLNs
work well also in their absence. This is extremely important for predicting in set-
tings other than the transductive one. We showcase the potential of NMLNs on
knowledge-base completion tasks and on generation of molecular (graph) data.

1 INTRODUCTION

Parameters for a statistical relational model are typically estimated from one or more examples of
relational structures that typically consist of a large number of ground facts. Examples of such
structures are social networks (e.g. Facebook), protein-protein interaction networks, the Web, etc.
A challenging task is to learn a probability distribution over such relational structures from one or
few examples. One solution is based on the assumption that the relational structure has repeated
regularities; this assumption is implicitly or explicitly used in most works on statistical relational
learning. Then, statistics about these regularities can be computed for small substructures of the
training examples and used to construct a distribution over the relational structures. Together with
the maximum-entropy principle, this leads to distributions such as Markov logic networks (Richard-
son & Domingos, 2006; Kuželka et al., 2018)

In this paper, we propose Neural Markov Logic Networks (NMLN). Here, the statistics which are
used to model the probability distribution are not known in advance, but are modelled as neural
networks trained together with the probability distribution model. This is very powerful when com-
pared to classical MLNs, where either domain experts are required to design some useful statistics
about the domain of interest by hand (i.e. logical rules) or structure learning based on combinatorial
search needs to be performed. These requirements normally limit a wide application of these models
as out-of-the box tools. It is worth noticing that overtaking the need of such “feature-engineering”
is one of the reasons behind the massive adoption of deep learning techniques. However, not much
has been done in the same direction by the statistical relational learning community. Moreover, de-
signing statistics as neural networks allows a more fine-grained description of the data, opening the
doors to applications of our model to the generative setting.

CONTRIBUTIONS

The main contributions of this work are: (i) we introduce a new statistical relational model, which
overcomes actual limitations of both classical and recent related models such as (Richardson &
Domingos, 2006; Rocktäschel & Riedel, 2017; Sourek et al., 2018); (ii) we propose a theoretical
justification of the model as naturally emerging from a principle of Min-Max-entropy; (iii) we pro-
vide a Tensorflow implementation of this model; and (iv) we showcase its effectiveness on two quite
diverse problems: knowledge-base completion and generative modelling of small molecules.
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RELATED WORK

The need to extend relational models with neural components is a topic that has been receiving
increasing attention in the last few years. An integration of logic reasoning and neural models was
proposed based on fuzzy logic (Serafini & Garcez, 2016; Diligenti et al., 2017; Marra et al., 2019).
Here, neural models implementing FOL relations are optimized in order to satisfy differentiable
approximations of logical formulas obtained by means of fuzzy t-norm theory. However, the lack
of probabilistic arguments allows a sound application of such fuzzy-logic based methods only to
hard-constrained settings. In Manhaeve et al. (2018), the probabilistic logic programming language
ProbLog (De Raedt et al., 2007) is extended to allow probabilities of atoms to be predicted by
neural networks and to exploit differentiable algebraic generalizations of decision diagrams to train
these networks. Lifted relational neural networks (Sourek et al., 2018) unfold neural networks with
shared weights, as in convolutional networks, using forward chaining. A semantically very similar
approach was the one in Rocktäschel & Riedel (2017), where the authors implemented the Prolog
backward chaining with a soft unification scheme operating on constants and relations embeddings.
The proposed Neural Theorem prover was able to exploit the geometry of the embedding space to
improve its reasoning capabilities, but the need for embeddings prevents this model to be applicable
to settings different from the transductive one. Most importantly, neither of these latter two works
provides means for probabilistic modelling of relational structures.

The idea of exploiting neural networks to extract regularities in non-euclidean settings has been re-
cently revisited by the deep learning community in the context of Graph Neural Networks (GNN)
models (Scarselli et al., 2009; Defferrard et al., 2016; Xu et al., 2018). In GNNs, latent representa-
tions of nodes are obtained by an aggregation of neighboring nodes representation by means of an
iterative diffusion mechanism. However, the inference is performed only on neighborhoods induced
by the actual connections of the graph, preventing the exploitation of these models for modeling
distributions of structural properties of the graph. Lippi & Frasconi (2009) was an early attempt to
integrate MLNs with neural components. Here, an MLN was exploited to describe a conditional
distribution over ground atoms, given some features of the constants. In particular, the MLN was
reparametrized by a neural network evaluated on input features. However, this method still relied on
hand-crafted logical rules for modelling the distribution.

2 PRELIMINARIES

This paper follows the setting of so-called Model A from Kuželka et al. (2018). We consider a
function-free first-order logic language L, which is built from a set of constants C and predicates
R =

⋃
iRi, where Ri contains the predicates of arity i. For c1, c2, . . . , cm ∈ C and R ∈ Rm, we

call R(c1, c2, . . . , cm) a ground atom. We define possible world ω ∈ Ω as the pair (C,A), where
C ⊆ C, A is a subset of the set of all ground atoms that can be built from the constants in C and
any relation in R. We define the size of a possible world n = |C| and Ω is the set of all possible
worlds. A fragment ω〈S〉 is defined as the restriction of ω to the constants in S. It is again a pair
ω〈S〉 = (S,B), with S the constants of the restriction and B a set of ground atoms which only
use constants from S. Given a fragment ω〈S〉 and k = |S|, we can anonymize it by mapping the
constants in S with a permutation Ŝ of the integer set {1, 2, ..., k}. We call this an anonymized
fragment γ. Suppose we have a given world ω̂ of size n, we define Γk(ω̂) the collection of all the
anonymized fragments of width k of ω̂. It is easy to verify that |Γk(ω̂)| =

(
n
k

)
k!. The collection

Γk(ω̂) is a multiset, since, after anonymization, multiple fragments could be identical. An example
of the process of anonymization and of the identification of structural patterns among anonymized
fragments is shown in Figure 1.

3 NEURAL MARKOV LOGIC NETWORKS

3.1 INTUITION AND FORMULATION

Given a world ω̂ ∈ Ω, we are interested in models of the probability Pω , for a generic ω ∈ Ω.
To this end, we want to compute statistics on fragments of the given ω̂ and exploit them to con-
struct a distribution on (possibly larger and smaller) relational structures ω. Let us define φ(γ) as
a fragment potential function, which is simply a function from anonymized fragments of width k
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Figure 1: The process of individuating structural patterns in anonymized fragments. White
circles represent constants, while the two relations are represented as solid and dashed arrows (ab-
sence of an arrow means that the relation is false). The given world is shown on the left. Two
possible fragments are shown in the middle. All their possible anonymizations are shown on the
right. Grey circles show two repeated anonymized fragments found in two different fragments. The
model exploits these regularities on fragments to model the distribution of the larger structure.

to real numbers. We can search for a maximum-entropy distribution p(ω) such that the following
two expected values are the same: (i) the expected value of φ(γ) where γ is sampled uniformly
from Γk(ω̂) and (ii) the expected value of φ(γ′) where γ′ is sampled uniformly from Γk(ω) and ω
is sampled, in turn, from p(ω). The intuition here is that, at least on average, the fragments of the
given training example should look similar to the fragments of possible worlds sampled from the
distribution. It follows from (Kuželka et al., 2018) that the resulting maximum-entropy distribution
is an exponential-family distribution resembling Markov logic networks.

The max-entropy setting provides us with a sound starting point for designing statistical relational
models that generalize classical models such as Markov random fields. However, a necessary con-
dition for these models to be designed is that one can provide a set of statistics φ(ω) describing the
data. In this section, we show how to get rid of the need to provide statistics in advance and how to
learn these statistics together with the probabilistic model in a differentiable manner.

Let us consider a fragment neural potential function φ(γ;w). It is a parametric function with param-
eters w. Let Φ(ω;w) = 1

|Γk(ω)|
∑
γ∈Γk(ω) φ(γ;w) be the corresponding global neural potential.

We need a learning principle which would allow us to find a good φ(γ;w) to describe our data. To
this end, suppose we need to solve the maximum-entropy optimization problem, but without any
constraint on the statistics. The maximum-entropy solution in this case is the uniform distribution,
which assigns equal probability to all possble worlds ω. Now, suppose we add a single constraint
on a potential Φ̃(ω). If this potential is informative and makes some worlds more likely than others,
then the solution moves from the uniform distribution to another distribution with lower entropy.
Using this intuition, we can have a scheme where we maximize entropy by selecting the maximum-
entropy distribution and minimize it at the same time by choosing the most informative statistics.

The above considerations give rise to a Min-Max-Entropy model for the target probability distri-
bution Pω , which we call Neural Markov Logic Network and which we describe in turn. Let us
first define the Max-Entropy problem with the new neural potentials (stated here as minimization of
negative entropy):

min
Pω

∑
ω

Pω logPω (1)

subject to
∑
ω

Pω = 1, ∀ω : pω ≥ 0 (2)

∀i : EPω
[Φi(ω;wi)] = Φi(ω̂;wi) with 0 < i ≤M (3)
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For fixed wi’s, we can use Lagrangian duality to obtain the following solution of the maximum
entropy problem: Pω = 1

Z exp (
∑
i βiΦ(ω;wi)). Here, Z is a normalization constant and the pa-

rameters βi are solutions of the dual problem max
βi

{∑M
i=1 βiΦi(ω̂;wi)− logZ

}
, which coincides

with maximum-likelihood.1

Next we still need to incorporate the minimization of entropy by optimizing wi’s. Let us de-
note by H(β1, . . . , βM ,w1, . . . ,wM ) the entropy of the distribution Pω . Now, as previously
introduced, the selection of the optimal values wi is governed by the principle of minimiza-
tion of entropy, leading to the optimization problem: min

wi

max
βi

H(β1, . . . , βM ,w1, . . . ,wM ) =

−max
wi

min
βi

− H(β1, . . . , βM ,w1, . . . ,wM ) subject to the constraints (2) and (3). Plugging in the

dual problem and using strong duality, we obtain the following unconstrained optimization problem
which is equivalent to the maximization of log-likelihood: maxwi,βi

{∑M
i=1 βiΦi(ω̂;wi)− logZ

}
.

The maximization of the log-likelihood will be carried out by a gradient-based optimization scheme.
The gradients of the log-likelihood w.r.t. to both the parameters wi,j , where wi,j denotes the j-th
component of wi, and βi are:

∂ log(Pω̂)

∂wi,j
= βi

(
∂Φi(ω̂;wi)

∂wi,j
− Eω∼P

[
∂Φ(ω;wi)

∂wi,j

])
(4)

∂ log(Pω̂)

∂βi
=

(
Φi(ω̂;wi)− Eω∼P [Φi(ω;wi)]

)
(5)

At a stationary point, Eq. 5 recovers the initial constraint on statistics imposed in the maximization
of the entropy. However, the minimization of the entropy is mapped to a new requirement: at
stationary conditions, the expected value of the gradients of the Φi under the distribution must match
the gradients of the Φi evaluated at the data points.

3.2 VECTOR EMBEDDINGS OF DOMAIN ELEMENTS

By anonymizing a fragment, the model loses any trace of the identity of the constants involved in it,
preserving only their structural behaviours. While this feature is essential to allow the identification
of structural patterns also inside a single possible world, it prevents the model from having different
behaviour on specific constants. This, instead, is a basic feature of many existing transductive mod-
els, like NTP (Rocktäschel & Riedel, 2017), which exploit the geometry of a latent representation
space of constants to improve their prediction capabilities.

To this end, we define an embedding fragment neural potential φe(γ, Ŝ;w,Θ), which is function of
the anonymized fragment but also of the specific constants involved in it (i.e. the list of constants
Ŝ). In particular, in transductive settings, we always have a possible world ω̂ and we use the same
constant set S both during learning and inference. Let Θ ∈ Rn×d be a variable embedding matrix.
It can be considered a map from the constant set S to a latent real domain Rd, i.e. the embedding
space. Let c(Ŝ,Θ) be a function that concatenates the k rows of Θ corresponding to the k constants
in the restricted set Ŝ. Thus, the embedding fragment neural potential φe can be seen as a function
of both γ, which encodes the structural properties of the fragment and c(Ŝ,Θ), which encodes the
identity of constants by providing a latent representation for them. In other words, φe(γ, Ŝ;w,Θ) =

f(γ, c(Ŝ,Θ);w) for some neural function f parameterized by w. This is inspired by works in the
NLP community (Mikolov et al., 2013; Mnih & Kavukcuoglu, 2013), where the c function can
have different forms than concatenation. The components of the embedding vectors are treated as
any other weights of the potential functions and are updated using gradients computed according to
Eq. 4. Intuitively, the contrastive nature of the learning (Bordes et al., 2013; Trouillon et al., 2017),

1We note that the derivation of the dual problem follows easily from the derivations in (Kuželka et al.,
2018), which in turn rely on standard convex programming derivations from (Boyd & Vandenberghe, 2004;
Wainwright et al., 2008). Throughout this section we assume that a positive solution exists, which is needed
for the strong duality to hold; this is later guaranteed by adding noise during learning.
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leads to the development of similar embeddings for similar constants. As we show in Section 4.2,
the addition of embedding of constants helps improving the prediction capability of our model in
transductive settings.

3.3 INFERENCE

In order to design an optimization procedure to learn Neural Markov Logic Networks, we need to
rely on some methods to sample from the distribution. In this paper, we exploit MCMC methods,
in particular approximate Gibbs Sampling (GS) (Robert & Casella, 2013), to sample from Neural
Markov Logic Networks. The approximation comes from the fact that GS requires a large number
of steps before converging to the target distribution. However, we run it only for a limited number
of steps t, which, in some cases, is restricted to t = 1. When this happens, our method recovers a
discrete version of the Contrastive Divergence (CD) algorithm (Hinton, 2002).

Gibbs sampling cannot effectively handle distributions with a lot of determinism. In normal Markov
logic networks, sampling from such distributions may be tackled by an algorithm called MC-SAT
(Poon & Domingos, 2006). However, MC-SAT requires an explicit logical encoding of the deter-
ministic constraints, which is not available in Neural Markov Logic Networks where deterministic
constraints are implicitly encoded by the potential functions. In fact, only constraints that are almost
deterministic, i.e. having very large weights, can occur in Neural Markov Logic Networks but, at
least for Gibbs sampling, the effect is the same. Such distributions would naturally be learned in
our framework on most datasets. Our solution in this paper is to simply avoid learning distributions
with determinism by adding noise during training. In particular, we set a parameter πn ∈ [0, 1] and,
at the beginning of each training epoch, we inverted each ground atom of the input possible worlds
(True to False and vice versa) with probability πn. Moreover, this added noise prevents the model
to perfectly fit training data, acting as a regularizer (Bishop, 1995).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We implemented Neural Markov Logic Networks in Tensorflow. In order to maximally exploit the
parallel computations capabilities of GPUs, multiple Markov chains are run in parallel. This is also
useful because expected values of gradients (see Eq. 4 and 5) are computed on uncorrelated samples,
while sequential samples sampled from a unique chain are known to be highly correlated.

In experiments, the different global neural potentials Φi can rely on fragments of different sizes
k so that for small k, the model can focus on learning very local statistics of the data, while, for
large k, the model can focus on learning statistics on larger substructures. For example, if we
represent molecules as a relational structure (see Section 4.3), rings are inherently global statistics
which cannot be captured by local properties. This example underlines the importance of the choice
of k for a correct modeling of the data distribution. However, since a single evaluation of Φi(w)
requires a summation over d =

(
n
k

)
k! number of terms, the number of elements of the sum grows

exponentially with k (and polynomially, but very fast, with n). So exploiting large k is usually
admissible only for small domain sizes n.

4.2 KNOWLEDGE BASE COMPLETION

In Knowledge Base Completion (KBC), we are provided with an incomplete Knowledge Base (KB)
and asked to complete the missing part.

The KBC task is inherently in the transductive setting, since all the constants are exploited both
during the training and testing phase. Moreover, data are provided in a positive-only fashion: we
only know what is true and we cannot distinguish between unknown and false facts. Kuželka &
Davis (2019) studied KBC tasks under the missing-completely-at-random assumption and showed
consistency of learning by maximum-likelihood where both missing and false facts are treated in the
same way as false. Hence, here we also provide both unknown and false facts as false facts during
the training procedure.
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Figure 2: Knowledge Base Completion in the Smokers dataset. Circles represent constants. A
grey circle means that the predicate smokes is True. A white circle means that the value of the
predicate smokes is unknown. Links represent the relation friendOf (absence of an arrow means
that the relation is False). The given world is shown on the top (2a), while the completed knowledge
base is shown on the bottom (2b). The system learnt the symmetric nature of the friendship relation.
It learnt that a friend of at least two smokers is also a smoker, and that two smokers, who are friends
of the same person, are also friends.

Smokers. The “Smokers” dataset (Richardson & Domingos, 2006) is a classical example in sta-
tistical relational learning literature. Here, two relations are defined on a set of constants repre-
senting people: the unary predicate Smokes identifies those people who smoke, while the binary
predicate friendOf maps people to their friend. This dataset is often used to show how a sta-
tistical relational learning algorithm can model a distribution by finding a correlation of smok-
ing habits of friends. For example, in MLNs, one typically uses weighted logical rules such as:
∀x ∀y friendOf(x, y)→ smokes(x)↔ smokes(y). We learned a NMLN on the small smok-
ers dataset. Since no prior knowledge about the type of rules that are relevant was used by NMLNs,
the model itself had to identify which statistics are mostly informative of the provided data by learn-
ing the neural potential functions.

Here we use the Smokers dataset to define a Knowledge Base Completion task and to provide some
basic intuitions about what kind of rules the model could have learned. In Figure 2, we show the
setting before and after completion. In Figure 2b, we highlight only new facts whose marginal prob-
ability after training is significantly higher than the others, even though other facts have probabilities
higher than the prior.

Nations. The Nations dataset (Kok & Domingos, 2007) provides information about proper-
ties and relations among countries as ground facts, like economicaid(usa,israel) or
embassy(israel,poland). There are n = 14 constants (i.e. nations), 56 relations and 2565
true facts. This dataset has been recently exploited for a KBC task by Rocktäschel & Riedel (2017),
where some facts were removed from the dataset and the task was to predict them. The authors
compared the performances of the state-of-the-art ComplEx neural model (Trouillon et al., 2017)
with their proposed differentiable end-to-end neural theorem prover, showing that the combination
of the two was able to outperform both of the models. Unary predicates were removed since the
ComplEx model cannot deal with them. In this section, we show how we can use NMLNs to tackle
a KBC task on the Nations dataset.

We implemented the fragment neural potentials φ(γ) as 2 hidden-layer neural networks, with sig-
moidal hidden activations and linear output layer. The selection of the hyperparameters and the
early-stopping epoch have been selected by means of a held-out validation set (the splits are same
as the ones in Rocktäschel & Riedel (2017)). The size of layers has been selected from the interval
[75, 100, 150] for the first layer and [30, 50, 100] for the second layer. The embedding size has been
selected from the interval [2, 3, 5, 10]. The noise probability πn has been selected from the interval
[0, 0.01, 0.02, 0.03]. The number of parallel chains has been selected from the interval [10, 20, 30].

We followed the evaluation procedure in Rocktäschel & Riedel (2017). In particular, we took a test
fact and corrupted its first and second argument in all possible ways such that the corrupted fact is
not in the original KB. Subsequently, we predicted a ranking of every test fact and its corruptions to
calculate MRR and HITS@m. The ranking is based on marginal probabilities estimated by running
Gibbs sampling on the Neural Markov Logic Network; while training the network, we also run a
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Table 1: MRR and HITS@m on Nations.

Metric Model

ComplEx NTP NTPλ NMLN NMLN-Emb

MRR 0.75 0.75 0.74 0.77 0.810.810.81
HITS@1 0.62 0.62 0.59 0.64 0.710.710.71
HITS@3 0.84 0.86 0.890.890.89 0.86 0.890.890.89
HITS@10 0.990.990.99 0.990.990.99 0.990.990.99 0.990.990.99 0.990.990.99

parallel Gibbs sampling chain on a state in which we fix the known part of the KB as true. Here,
we compare the ComplEx model, the plain Neural Theorem Prover (NTP), the composition of the
previous two (NTPλ), our plain model (NMLN) and our model when using potentials with embed-
dings (NMLN-Emb). In Table 1 we report the results of the KBC task on Nations. Both our models
outperform competitors on the HITS@1 metric, with NMLN-Emb having a large gap over all the
other models. It is interesting to note that the plain NMLN still performs better than differentiable
provers, even if it is the only model which cannot exploit embeddings to perform reasoning and that
has to rely only on the relational structure of fragments to make predictions. Finally, NMLN-Emb
performs equally to or better than all the competitors in all the other metrics.

4.3 GRAPH GENERATION

One of the main features differentiating our model from standard MLNs is that we learn the statistics
φ(γ) in a differentiable manner. The obtained probability distribution is then often far more fine
grained than using predefined or hand-made statistics, that are limited to what the user considers
important and do not search for other interesting regularities in the data. This opens the doors to
the application of NMLNs to generative tasks in non-euclidean settings, which are receiving an
increasing interest recently (You et al., 2018; Li et al., 2018).

In generation tasks, our model is asked to learn the probability distribution of the relational structures
induced by a graph. Indeed, any FOL-description can be considered a multi-hyper graph; thus
generating in the FOL setting is applicable to generating in any graph domain. In particular, to
generate graphs, we can just use the same sampling technique used during training (i.e. Gibbs
Sampling) to extract new samples.

In this section, we describe a molecule generation task. We used as training data the ChEMBL
molecule database (Gaulton et al., 2016). We restricted the dataset to molecules with 8 heavy atoms.
We used the RDKit framework 2 to get a FOL representation of the molecules from their SMILES
encoding. In particular, we exploited only molecules having the most frequent atom types, i.e. C, N,
O, S, Cl, F, P, and we encoded only two kinds of bonds: SINGLE and DOUBLE. A more detailed
description of the data format is shown in the appendix.

We implemented the fragment neural potentials φ(γ) as neural networks with sigmoidal hidden
activations and linear output layer. The hyperparameters were selected from the following ranges:
the number of layers in [1, 2]; the hidden sizes of the layers in [30, 100, 150, 200]; the number of
fragment potentials in [1, 2], the size k of potentials in [2, 3, 4, 5, 6]. The number of parallel chains
was set to 5.

To qualitatively evaluate the results of this generative experiment, we follow Li et al. (2018), who
designed an LSTM-based architecture for generative molecule modelling and applied it in a similar
setting to ours. In Figure 3, we show a comparison between a sample of training data and a (random)
sample of molecules generated by the proposed model. In particular, 20 generated samples are
chosen randomly from the last 1000 samples extracted during the training procedure. By choosing
them randomly, we avoided to have very correlated samples, which is inherent in the Gibbs sampling
procedure. The generated samples resembles training data both in structural patterns and variety
fairly well. Furthermore, in Figure 4, we compare the statistics, used in Li et al. (2018) for a similar
task, on a sample of 1000 training and generated molecules. These statistics represent both general
structural properties applicable to any graph as well as chemical structural properties of molecules

2https://rdkit.org/
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Figure 3: Molecules generation. A comparison between a sample of training data and a (random)
sample of molecules generated by the proposed model. The generated samples fairly resembles
training data both in structural patterns and variety. Better viewed in color.
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Figure 4: Molecules generation. Comparing the distributions of some chemical properties of the
training data with the ones of generated data. The generated samples are capable of perfectly fitting
structural properties and to very well resembling functional properties.

(e.g. the topological polar surface area (TPSA) is a topological indicator of the capability of a
molecule to permeate a membrane as a function of the number of polar atoms it contains). These
statistics were computed using the RDkit framework.

5 CONCLUSIONS

In this paper we have introduced Neural Markov Logic Networks, a statistical relational learning
model combining representation learning power of neural networks with principled handling of
uncertainty in the maximum-entropy framework. The proposed system works remarkably well on
small domains. Although not explained in detail in this paper, it is also straightforward to add
standard logical features as used in MLNs to NMLNs.

The main future challenge is making NMLNs scale to larger domains. At the moment NMLNs do
not scale to large knowledge bases, which is not that surprising given that NMLNs can theoretically
represent any distribution. A more work should therefore be done in the direction of identifying
more tractable subclasses of NMLNs and exploiting insights from lifted inference literature (Braz
et al., 2005; Gogate & Domingos, 2011; den Broeck et al., 2011).
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A TRANSLATING MARKOV LOGIC NETWORKS TO NEURAL MARKOV LOGIC
NETWORKS

Markov logic networks are a popular statistical relational framework. It turns out that every Markov
logic network can be represented as a Neural Markov Logic Network with a single carefully selected
potential function. We give details of the translation between these two frameworks below. Essen-
tially what we need to show is that Model B from (Kuželka et al., 2018) can be translated to Model
A from that same work, which is close enough to Neural Markov Logic Networks and so we can
then easily encode the result to a Neural Markov Logic Network.

Kuželka et al. (2018) studies two maximum-entropy models, Model A, which is close to the
model that we study in this paper, and Model B, which is the same as Markov logic networks.
Syntactically, both models are encoded as sets of weighted first order logic formulas, e.g. Φ =
{(α1, w1), . . . , (αM , wm)}. In particular, given a positive integer k, Model A defines the following
distribution:

pA(ω) =
1

Z
exp

 ∑
(α,w)∈ΦA

w ·#k(α, ω)


where Z is the normalization constant and #(α, ω) is the fraction of size-k subsets S of constants
in the possible world ω for which ω〈S〉 |= α (i.e. the formula α is classically true in the fragment
of ω induced by S). Let us first define

φα,w(γ) =

{
w γ |= α

0 γ 6|= α

It is then easy to see that the distribution pA(ω) can also easily be encoded as a Neural Markov Logic
Network by selecting the potential function φ(γ) =

∑
(α,w)∈ΦA

φα,w(γ) and by carefully selecting
the weights βi in the Neural Markov Logic Network.

Next we show that all distributions in Model B can be translated to distributions in Model A. First
we will assume that the formulas αi do not contain any constants.

Model B is given by

pB(ω) =
1

Z
exp

 ∑
(β,v)∈ΦB

v · n(β, ω)


where n(β, ω) is the number3 of true injective groundings of the formula β in the possible world ω.
Hence, Model B is exactly the same as Markov logic networks up to the requirement on injectivity
of the groundings. However, as shown in (Buchman & Poole, 2015), any Markov logic network
can be translated into such modified Markov logic network with the injectivity requirement on the
groundings.

Let k be an integer greater or equal to the number of variables in any formula in ΦB . Now, let
Γ be the set of all size-k fragments. For every formula β in ΦB , we introduce a partition P on
Γ induced by the equivalence relation ∼β defined by: γ ∼β γ′ iff n(β, γ) = n(β, γ′). Since β
is assumed to not contain any constants, we can capture each of these equivalence classes C by a
(possibly quite big) first-order logic sentence without constants βC . Let Ci be the equivalence class
that contains fragments γ such that n(β, γ) = i. Let m(β, ω) =

∑
Ci∈P

∑
γ∈Γk(ω) i · 1(γ |= βC).

By construction, it holds m(β, ω) =
∑
γ∈Γk(ω) n(β, γ). Every true injective grounding of the

formula β, having l variables, is contained in
(
n−l
k−l
)

different size-k fragments of ω, each of which
gives rise to k! anonymized fragments in the multi-set Γk(ω). So m(β, ω) is over-counting the
number of true groundings n(β, ω) by a constant factor. It follows that, by carefully selecting the
weights of the formulas βC we can encode the distribution pB(ω) also in Model A. Although this
particular transformation that we have just sketched is not very efficient, it does show that Neural

3In (Kuželka et al., 2018), Model B is defined using fractions of true grounding substitutions instead of
numbers of true grounding substitutions. However, these two definitions are equivalent up to normalizations
and both work for our purposes but the latter one is a bit more convenient here. Hence we choose the latter one
here.
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Markov Logic Networks with potential functions of width k can express all distributions that can be
expressed by Markov logic networks containing formulas with at most k variables.

First-order logic formulas defining Markov logic networks may also contain constants. In Neural
Markov Logic Networks we may represent constants using vector-space embeddings as described in
the main text. One can then easily extend the argument sketched above to the case covering Markov
logic networks with constants.

B ALGORITHMS

In the following, we will show a learning algorithm for NMLNs that relies on approximated Gibbs
sampling.

The general learning algorithm for NMLN is described in Algorithm 1.

Algorithm 1 NMLN general learning algorithm
Input: ω̂: the given training world

1: procedure LEARN(ω̂)
2: η: learning rate
3: ω̃: M randomly initialized Markov chain states
4: while stopping criterion do
5: while chains convergence criterion do
6: ω̃← SAMPLE-STEP(ω̃, M , βi, wi)

7: ∂ log(Pω̂)
∂wi

← βi

(
∂Φi(ω̂;wi)

∂wi
− 1

M

∑
ω̃
∂Φ(ω̃;wi)
∂wi

)
8: ∂ log(Pω̂)

∂βi
←
(

Φi(ω̂;wi)− 1
M

∑
ω̃ Φi(ω;wi)

)
9: wi ← wi + η ∂ log(Pω̂)

∂wi

10: βi ← βi + η ∂ log(Pω̂)
∂βi

A possible sampling procedure, implementing the generic SAMPLE-STEP and exploiting Gibbs
Sampling, is described in Algorithm 2

Algorithm 2 Sampling Procedure
Input: ω̃: the current states of the chains
Input: M : the number of chains
Input:βi, wi: current parameters

1: procedure SAMPLE-STEP(ω̃, M , βi, wi)
2: s← 1 # sample index
3: i← 1 # ground atom index
4: n number of ground atoms in ω
5: while s ≤M do
6: ω = ω̃s # s-th chain
7: while i ≤ n do
8: p← Pωi=1|ωj\i

9: r ∈ [0, 1] from a uniform distribution
10: if r < p then
11: ω ← ωi = 1
12: else
13: ω ← ωi = 0

14: i← i+ 1
15: ω̃s = ω
16: s← s+ 1
17: return ω̃
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Figure 5: An example of molecule

C GENERATING MOLECULES

Even though molecules can be described with a high level of precision, using both spatial features
(i.e. atoms distances, bond length etc.) and chemical features (i.e. atom charge, atom mass, hy-
bridization), in this work, we focused mainly on structural symbolic descriptions of molecules.

In particular, we described a molecule using two sets of FOL predicates:

• Atom-type unary predicates: these are C, N, O, S, Cl, F, P.
• Bond-type binary predicate: these are SINGLE and DOUBLE.

An example of a molecule FOL description can be:

O(0), C(1), C(2), C(3), N(4), C(5), C(6), C(7), O(8), O(9)
SINGLE(0,1), SINGLE(1,0), SINGLE(1,2), SINGLE(2,1), SINGLE(2,3)
SINGLE(3,2), SINGLE(3,4), SINGLE(4,3), SINGLE(4,5), SINGLE(5,4)
SINGLE(5,6), SINGLE(6,5), SINGLE(5,7), SINGLE(7,5), DOUBLE(7,8)
DOUBLE(8,7), SINGLE(7,9), SINGLE(9,7), SINGLE(6,1), SINGLE(1,6)
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