BERTSCORE: EVALUATING TEXT GENERATION WITH BERT

Anonymous authors

Paper under double-blind review

Abstract

We propose BERTSCORE, an automatic evaluation metric for text generation. Analogously to common metrics, BERTSCORE computes a similarity score for each token in the candidate sentence with each token in the reference sentence. However, instead of exact matches, we compute token similarity using contextual embeddings. We evaluate using the outputs of 363 machine translation and image captioning systems. BERTSCORE correlates better with human judgments and provides stronger model selection performance than existing metrics. Finally, we use an adversarial paraphrase detection task and show that BERTSCORE is more robust to challenging examples when compared to existing metrics.

1 INTRODUCTION

Automatic evaluation of natural language generation, for example in machine translation and caption generation, requires comparing candidate sentences to annotated references. The goal is to evaluate semantic equivalence. However, commonly used methods rely on surface-form similarity only. For example, BLEU (Papineni et al., 2002), the most common machine translation metric, simply counts *n*-gram overlap between the candidate and the reference. While this provides a simple and general measure, it fails to account for meaning-preserving lexical and compositional diversity.

In this paper, we introduce BERTSCORE, a language generation evaluation metric based on pretrained BERT contextual embeddings (Devlin et al., 2019).¹ BERTSCORE computes the similarity of two sentences as a sum of cosine similarities between their tokens' embeddings.

BERTSCORE addresses two common pitfalls in *n*-gram-based metrics (Banerjee & Lavie, 2005). First, such methods often fail to robustly match paraphrases. For example, given the reference *people like foreign cars*, BLEU and METEOR (Banerjee & Lavie, 2005) incorrectly give a higher score to *people like visiting places abroad* compared to *consumers prefer imported cars*. This leads to performance underestimation when semantically-correct phrases are penalized because they differ from the surface form of the reference. In contrast to string matching (e.g., in BLEU) or matching heuristics (e.g., in METEOR), we compute similarity using contextualized token embeddings, which have been shown to be effective for paraphrase detection (Devlin et al., 2019). Second, *n*-gram models fail to capture distant dependencies and penalize semantically-critical ordering changes (Isozaki et al., 2010). For example, given a small window of size two, BLEU will only mildly penalize swapping of cause and effect clauses (e.g. *A because B* instead of *B because A*), especially when the arguments A and B are long phrases. In contrast, contextualized embeddings are trained to effectively capture distant dependencies and ordering.

We experiment with BERTSCORE on machine translation and image captioning tasks using the outputs of 363 systems by correlating BERTSCORE and related metrics to available human judgments. Our experiments demonstrate that BERTSCORE correlates highly with human evaluations. In machine translation, BERTSCORE shows stronger segment-level and system-level correlations with human judgments than existing metrics on multiple common benchmarks and demonstrates

¹Following our initial preprint publication simultaneous and follow-up work has been published further confirming our findings. We discuss this work in Section 7. We do not provide empirical comparison with follow up work, as it builds on our method. We do provide in this version of the paper extensive empirical evidence not available before, including large-scale model selection experiments.

strong model selection performance compared to BLEU. We also show that BERTSCORE is wellcorrelated with human annotators for image captioning, surpassing SPICE, a popular task-specific metric (Anderson et al., 2016). Finally, we test the robustness of BERTSCORE on the adversarial paraphrase dataset PAWS (Zhang et al., 2019), and show that it is more robust to adversarial examples than other metrics. The code for BERTSCORE is available at an_anonymized_link.

2 PROBLEM STATEMENT AND PRIOR METRICS

Natural language text generation is commonly evaluated using annotated reference sentences. Given a reference sentence x tokenized to k tokens $\langle x_1, \ldots, x_k \rangle$ and a candidate \hat{x} tokenized to l tokens $\langle \hat{x}_1, \ldots, \hat{x}_l \rangle$, a generation evaluation metric is a function $f(x, \hat{x}) \in \mathbb{R}$. Better metrics have a higher correlation with human judgments. Existing metrics can be broadly categorized into using n-gram matching, edit distance, embedding matching, or learned functions.

2.1 *n*-gram Matching Approaches

The most commonly used metrics for generation count the number of *n*-grams that occur in the reference x and candidate \hat{x} . The higher the *n* is, the more the metric is able to capture word order, but it also becomes more restrictive and constrained to the exact form of the reference.

Formally, let S_x^n and $S_{\hat{x}}^n$ be the lists of token *n*-grams $(n \in \mathbb{Z}_+)$ in the reference x and candidate \hat{x} sentences. The number of matched *n*-gram is $\sum_{w \in S_x^n} \mathbb{I}[w \in S_x^n]$, where $\mathbb{I}[\cdot]$ is an indicator function. The exact match precision (Exact-P_n) and recall (Exact-R_n) scores are:

$$\text{Exact-P}_n = \frac{\sum_{w \in S_{\hat{x}}^n} \mathbb{I}[w \in S_x^n]}{|S_{\hat{x}}^n|}, \quad \text{Exact-R}_n = \frac{\sum_{w \in S_x^n} \mathbb{I}[w \in S_{\hat{x}}^n]}{|S_x^n|}$$

Several popular metrics build upon one or both of these exact matching scores.

BLEU The most widely used metric in machine translation is BLEU (Papineni et al., 2002), which includes three modifications to Exact- P_n . First, each *n*-gram in the reference can be matched at most once. Second, the number of exact matches is accumulated for all reference-candidate pairs in the corpus and divided by the total number of *n*-grams in all candidate sentences. Finally, very short candidates are discouraged using a brevity penalty. Typically, BLEU is computed for multiple values of *n* (e.g. n = 1, 2, 3, 4) and the scores are averaged geometrically. A smoothed variant, SENT-BLEU (Koehn et al., 2007) is computed at the sentence level. In contrast to BLEU, BERTSCORE is not restricted to maximum *n*-gram length, but instead relies on contextualized embeddings that are able to capture dependencies of potentially unbounded length.

METEOR METEOR (Banerjee & Lavie, 2005) computes $Exact-P_1$ and $Exact-R_1$ while allowing backing-off from exact unigram matching to matching word stems, synonyms, and paraphrases. For example, *running* may match *run* if no exact match is possible. Non-exact matching uses an external stemmer, a synonym lexicon, and a paraphrase table. METEOR 1.5 (Denkowski & Lavie, 2014) weighs content and function words differently, and also applies importance weighting to different matching types. Recently, METEOR++ 2.0 further incorporates syntactic level paraphrasing knowledge. Because METEOR requires external resources, only five languages are supported with the full feature set, and eleven are partially supported. Similar to METEOR, BERTSCORE allows relaxed matches, but relies on BERT embeddings that are trained on large amounts of raw text and are currently available for 104 languages. BERTSCORE also supports importance weighting, which we estimate with simple corpus statistics.

Other Related Metrics NIST (Doddington, 2002) is a revised version of BLEU that weighs each *n*-gram differently and uses an alternative brevity penalty. Δ BLEU (Galley et al., 2015) modifies multi-reference BLEU by including human annotated negative reference sentences. CHRF (Popović, 2015) compares character *n*-grams, $n \leq 6$ in the reference and candidate sentences. CHRF++ (Popović, 2017) extends CHRF to include word bigram matching. ROUGE (Lin, 2004) is a commonly used metric for summarization evaluation. ROUGE-*n* (Lin, 2004) computes Exact-R_n (usually n = 1, 2), while ROUGE-*L* is a variant of Exact-R₁ with the numerator replaced by the length of the longest common subsequence. CIDER (Vedantam et al., 2015) is an image captioning metric that computes cosine similarity between tf-idf weighted *n*-grams. We adopt a similar approach to weigh tokens differently. Finally, Chaganty et al. (2018) and Hashimoto et al. (2019) combine automatic metrics with human judgments for text generation evaluation.

2.2 EDIT-DISTANCE-BASED METRICS

Several methods use word edit distance or word error rate (Levenshtein, 1966), which quantify similarity using the number of edit operations required to get from the candidate to the reference. TER (Snover et al., 2006) normalizes edit distance by the number of reference words, and ITER (Panja & Naskar, 2018) adds stem matching and better normalization. PER (Tillmann et al., 1997) computes position independent error rate, CDER (Leusch et al., 2006) models block reordering as an edit operation. CHARACTER (Wang et al., 2016) and EED (Stanchev et al., 2019) operate on the character level and achieve higher correlation with human judgements on some languages.

2.3 EMBEDDING-BASED METRICS

Word embeddings (Mikolov et al., 2013; Pennington et al., 2014; Grave et al., 2018; Nguyen et al., 2017; Athiwaratkun et al., 2018) are learned dense token representations. MEANT 2.0 (Lo, 2017) uses word embeddings and shallow semantic parses to compute lexical and structural similarity. YISI-1 (Lo et al., 2018) is similar to MEANT 2.0, but makes the use of semantic parses optional. Both methods use a relatively simple similarity computation, which inspires our approach, including using greedy matching (Corley & Mihalcea, 2005) and experimenting with a similar importance weighting to YISI-1. However, we use contextual embeddings, which capture the specific use of a token in a sentence, and potentially capture sequence information. We do not use external tools to generate linguistic structures, which makes our approach relatively simple and portable to new languages. Besides greedy matching, WMD (Kusner et al., 2015), WMD_O (Chow et al., 2019), and SMS (Clark et al., 2019) propose to use optimal matching based on earth mover's distance (Rubner et al., 1998) instead. The tradeoff² between greedy and optimal matching was studied by Rus & Lintean (2012). Sharma et al. (2018) compute similarity with sentence-level representations. In contrast, our token-level computation allows us to weigh tokens differently according to their importance.

2.4 LEARNED METRICS

Various metrics are trained to optimize correlation with human judgments. BEER (Stanojević & Sima'an, 2014) uses a regression model based on character n-grams and word bigrams. BLEND (Ma et al., 2017) uses regression to combine 29 existing metrics. RUSE (Shimanaka et al., 2018) combines three pre-trained sentence embedding models. All these methods require costly human judgments as supervision for each dataset, and risk poor generalization to new domains, even within a known language and task (Chaganty et al., 2018). Cui et al. (2018) and Lowe et al. (2017) train a neural model to predict if the input text is human-generated. This approach also has the risk of being optimized to existing data and generalizing poorly to new data. In contrast, the model underlying BERTSCORE is not optimized for any specific evaluation task.

3 BERTSCORE

Given a reference sentence $x = \langle x_1, \ldots, x_k \rangle$ and a candidate sentence $\hat{x} = \langle \hat{x}_1, \ldots, \hat{x}_l \rangle$, we use contextual embeddings to represent the tokens, and compute a weighted matching using cosine similarity and inverse document frequency scores. Figure 1 illustrates the computation.

Token Representation We use contextual embeddings to represent the tokens in the input sentences x and \hat{x} . In contrast to prior word embeddings (Mikolov et al., 2013; Pennington et al., 2014), contextual embeddings, such as BERT (Devlin et al., 2019) and ELMO (Peters et al., 2018), can generate different vector representations for the same word in different sentences depending on the surrounding words, which form the context of the target word. The models used to generate these embeddings are most commonly trained using various language modeling objectives, such as masked word prediction (Devlin et al., 2019).

²In Appendix C, we provide an ablation study of this design choice.

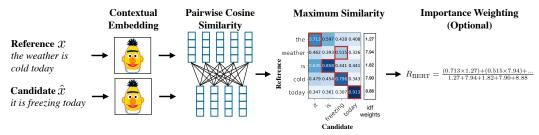


Figure 1: Illustration of the computation of the recall metric R_{BERT} . Given the reference x and candidate \hat{x} , we compute BERT embeddings and pairwise cosine similarity. We highlight the greedy matching in red, and include the optional idf importance weighting.

We experiment with different models (Section 4), using the tokenizer provided with each model. Given a tokenized reference sentence $x = \langle x_1, \ldots, x_k \rangle$, BERT generates a sequence of vectors $\langle \mathbf{x}_1, \ldots, \mathbf{x}_k \rangle$. Similarly, the tokenized candidate $\hat{x} = \langle \hat{x}_1, \ldots, \hat{x}_m \rangle$ is mapped to $\langle \hat{\mathbf{x}}_1, \ldots, \hat{\mathbf{x}}_l \rangle$. The main model we use is BERT, which tokenizes the input text into a sequence of word pieces (Wu et al., 2016), where unknown words are split into several commonly observed sequences of characters. The representation for each word piece is computed with a Transformer encoder (Vaswani et al., 2017) by repeatedly applying self-attention and nonlinear transformations in an alternating fashion. BERT embeddings have been shown to benefit various NLP tasks (Devlin et al., 2019; Liu, 2019; Huang et al., 2019; Yang et al., 2019a).

Similarity Measure The vector representation allows for a soft measure of similarity instead of exact-string (Papineni et al., 2002) or heuristic (Banerjee & Lavie, 2005) matching. The cosine similarity of a reference token x_i and a candidate token \hat{x}_j is $\frac{\mathbf{x}_i^{\top} \hat{\mathbf{x}}_j}{\|\mathbf{x}_i\| \|\hat{\mathbf{x}}_j\|}$. We use pre-normalized vectors, which reduces this calculation to the inner product $\mathbf{x}_i^{\top} \hat{\mathbf{x}}_j$. While this measure considers tokens in isolation, the contextual embeddings contain information from the rest of the sentence.

BERTSCORE The complete score matches each token in x to a token in \hat{x} to compute recall, and each token in \hat{x} to a token in x to compute precision. We use greedy matching to maximize the matching similarity score³ and each token is matched to the most similar token in the other sentence. We combine precision and recall to compute an F1 measure. For a reference x and candidate \hat{x} , the recall, precision, and F1 scores are:

$$R_{\text{BERT}} = \frac{1}{|x|} \sum_{x_i \in \hat{x}} \max_{\hat{x}_j \in \hat{x}} \mathbf{x}_i^\top \hat{\mathbf{x}}_j, \quad P_{\text{BERT}} = \frac{1}{|\hat{x}|} \sum_{\hat{x}_j \in \hat{x}} \max_{x_i \in x} \mathbf{x}_i^\top \hat{\mathbf{x}}_j, \quad F_{\text{BERT}} = 2 \frac{P_{\text{BERT}} \cdot R_{\text{BERT}}}{P_{\text{BERT}} + R_{\text{BERT}}}$$

Importance Weighting Previous work on similarity measures demonstrated that rare words can be more indicative for sentence similarity than common words (Banerjee & Lavie, 2005; Vedantam et al., 2015). BERTSCORE enables us to easily incorporate importance weighting. We experiment inverse document frequency (idf) scores computed from the test corpus. Given M reference sentences $\{x^{(i)}\}_{i=1}^{M}$, the idf score of a token w is

$$\operatorname{idf}(w) = -\log \frac{1}{M} \sum_{i=1}^{M} \mathbb{I}[w \in x^{(i)}]$$

where $\mathbb{I}[\cdot]$ is an indicator function. We do not use the full tf-idf measure because we process single sentences, where the term frequency (tf) is likely 1. For example, recall with idf weighting is

$$R_{\text{BERT}} = \frac{\sum_{x_i \in x} \operatorname{idf}(x_i) \max_{\hat{x}_j \in \hat{x}} \mathbf{x}_i^\top \hat{\mathbf{x}}_j}{\sum_{x_i \in x} \operatorname{idf}(x_i)} \quad .$$

Because we use reference sentences to compute idf, the idf scores remain the same for all systems evaluated on a specific test set. We apply plus-one smoothing to handle unknown words.

³We compare greedy matching with optimal assignment in Appendix C.

4 EXPERIMENTAL SETUP

We evaluate our approach on machine translation and image captioning.

Contextual Embedding Models We evaluate eleven pre-trained contextual embedding models, including variants of BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019b), XLNet (Yang et al., 2019b), and XLM (Lample & Conneau, 2019). We present the best-performing models in Section 5. We use the 24-layer RoBERTa_{large} model for English tasks, 12-layer BERT_{chinese} model for Chinese tasks, and the 12-layer cased multilingual BERT_{multi} model for other languages.⁴ We show the performance of all other models in Appendix E. Contextual embedding models generate embedding representations at every layer in the encoder network. Past work has shown that intermediate layers produce more effective representations for semantic tasks (Liu et al., 2019a). We use the WMT16 dataset (Bojar et al., 2016) as a validation set to select the best layer of each model (Appendix B).

Machine Translation Our main evaluation corpus is the WMT18 metric evaluation dataset (Ma et al., 2018), which contains predictions of 149 translation systems across 14 language pairs, gold references, and two types of human judgment scores. Segment-level human judgments assign a score to each reference-candidate pair. System-level human judgments associate each system with a single score based on all pairs in the test set. WMT18 includes translations from English to Czech, German, Estonian, Finnish, Russian, and Turkish, and from the same set of languages to English. We follow the WMT18 standard practice and use absolute Pearson correlation $|\rho|$ and Kendall rank correlation τ to evaluate metric quality, and compute significance with the Williams test (Williams, 1959) for $|\rho|$ and bootstrap re-sampling for τ as suggested by Graham & Baldwin (2014). We compute systemlevel scores by averaging BERTSCORE for every reference-candidate pair. We also experiment with hybrid systems by randomly sampling one candidate sentence from one of the available systems for each reference sentence (Graham & Liu, 2016). This enables system-level experiments with a higher number of systems. Human judgments of each hybrid system are created by averaging the WMT18 segment-level human judgments for the corresponding sentences in the sampled data. We compare BERTSCORES to one canonical metric for each category introduced in Section 2, and include the comparison with all other participating metrics from WMT18 in Appendix E.

In addition to the standard evaluation, we design model selection experiments. We use 10K hybrid systems super-sampled from WMT18. We randomly select 100 out of 10K hybrid systems, and rank them using the automatic metrics. We repeat this process 100K times. We report the percentage of the metric ranking agreeing with the human ranking on the best system (Hits@1). In Tables 22-27, we include two additional measures to the model selection study: (a) the mean reciprocal rank of the top metric-rated system according to the human ranking, and (b) the difference between the human score of the top human-rated system and that of the top metric-rated system.

Additionally, we report the same study on the WMT17 (Bojar et al., 2017) and the WMT16 (Bojar et al., 2016) datasets in Appendix E.⁵ This adds 202 systems to our evaluations.

Image Captioning We use the human judgments of twelve submission entries from the COCO 2015 Captioning Challenge. Each participating system generates a caption for each image in the COCO validation set (Lin et al., 2014), and each image has approximately five reference captions. Following Cui et al. (2018), we compute the Pearson correlation with two system-level metrics: the percentage of captions that are evaluated as better or equal to human captions (M1) and the percentage of captions that are indistinguishable from human captions (M2). We compute BERTSCORE with multiple references by scoring the candidate with each available reference and returning the highest score. We compare with eight task-agnostic metrics: BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin, 2004), CIDER (Vedantam et al., 2015), BEER (Stanojević & Sima'an, 2014), EED (Stanchev et al., 2019), CHRF++ (Popović, 2017), and CHARACTER (Wang et al., 2016). We also compare with two task-specific metrics: SPICE (Anderson et al., 2016) and LEIC (Cui et al., 2018). SPICE is computed using the similarity of scene graphs parsed from the reference and candidate captions. LEIC is trained to predict if a caption is written by a human given the image.

⁴All the models used are pre-trained and publicly available at https://github.com/huggingface/pytorch-transformers.

⁵For WMT16, we only conduct segment-level experiments on to-English pairs due to errors in the dataset.

Metric n	$en\leftrightarrow cs$ (5/5)	en⇔de (16/16)	en⇔et (14/14)	en⇔fi (9/12)	en⇔ru (8/9)	en⇔tr (5/8)	en⇔zh (14/14)
BLEU	.970/ .995	.971/ .981	.986/.975	.973/ .962	.979/ .983	.657 /.826	.978/.947
ITER	.975/.915	.990/ .984	.975/ .981	.996/.973	.937/.975	.861 /.865	.980/ –
RUSE	.981/ –	.997/ –	.990/ –	.991/ –	.988/ –	.853/ -	.981/ -
YiSi-1	.950/ .987	.992/ .985	.979/ .979	.973/.940	.991/.992	.958/.976	.951/ .963
P_{BERT}	.980/ .994	.998/.988	.990/.981	.995/.957	.982/ .990	.791/.935	.981/.954
R_{BERT}	.998/.997	.997/ .990	.986/ .980	.997/.980	.995/.989	.054/.879	.990/.976
F_{BERT}	.990/.997	.999/.989	.990/ .982	.998/.972	.990 /.990	.499 /.908	.988 /.967
F_{BERT} (idf)	.985/ .995	.999/.990	.992/.981	.992/ .972	.991/.991	.826/.941	.989/.973

Table 1: Absolute Pearson correlations with system-level human judgments on WMT18. For each language pair, the left number is the to-English correlation, and the right is the from-English. We bold correlations of metrics not significantly outperformed by any other metric under Williams Test for that language pair and direction. The numbers in parenthesis are the number of systems used for each language pair and direction.

Metric n	en⇔cs (10K/10K)	en⇔de (10K/10K)	en⇔et (10K/10K)	en⇔fi (10K/10K)	en⇔ru (10K/10K)	en⇔tr (10K/10K)	en⇔zh (10K/10K)
BLEU	.956/.993	.969/ .977	.981 /.971	.962/.958	.972/.977	.586/.796	.968/.941
ITER	.966/.865	.990/.978	.975/ .982	.989/.966	.943/.965	.742/.872	.978/ –
RUSE	.974/ –	.996/ –	.988/ –	.983/ –	.982/ –	.780/ –	.973/ –
YiSi-1	.942/.985	.991/.983	.976/.976	.964/.938	.985/.989	.881/.942	.943/.957
P_{BERT}	.965/.989	.995/.983	.990/.970	.976/.951	.976/.988	.846/.936	.975/.950
R_{BERT}	.989/.995	.997/ .991	.982/ .979	.989/ .977	.988/.989	.540/ .872	.981/.980
F_{BERT}	.978/ .993	.998/.988	.989/.978	.983/.969	.985/.989	.760/.910	.981 /.969
F_{BERT} (idf)	.982/.995	.998 /.988	.988 /.979	.989 /.969	.983/.987	.453/.877	.980/.963

Table 2: Absolute Pearson correlations with system-level human judgments on WMT18 for 10K hybrid super-sampled systems. For each language pair, the left number is the to-English correlation, and the right is the from-English. Bolding criteria is the same as in Table 1.

Metric	en⇔cs	en⇔de	en⇔et	en⇔fi	en⇔ru	en⇔tr	en⇔zh
BLEU	.134/.151	.803/.610	.756/.618	.461/.088	.228/.519	.095/.029	.658/.515
ITER	.154/.000	.814/.692	.742/.733	.475/.111	.234/.532	.102/.030	.673/ –
RUSE	.214/ –	.823/ –	.785/ –	.487/ –	.248/ –	.109/ –	.670/ –
YiSi-1	.159/.178	.809/.671	.749/.671	.467/ .230	.248/.544	.108/ .398	.613/.594
P_{BERT}	.173/.180	.706/.663	.764/ .771	.498/.078	.255/ .545	.140/.372	.661/.551
R_{BERT}	.163/ .184	.804/ .730	.770/.722	.494/.148	.260/.542	.005/.030	.677/ .657
F_{BERT}	.175/.184	.824 /.703	.769/.763	.501/.082	.262/.544	.142 /.031	.673/.629
F_{BERT} (idf)	.179/.178	.824 /.722	.760/.764	.503 /.082	.265 /.539	.004/.030	.678 /.595

Table 3: Model selection accuracies (Hits@1) on WMT18 hybrid systems. We report the average of 100K samples and the 0.95 confidence intervals are below 10^{-3} . We bold the highest numbers for each language pair and direction.

5 RESULTS

Machine Translation Tables 1-3 show system-level correlation to human judgements, correlations on hybrid systems, and model selection performance. We observe that BERTSCORE is consistently a top performer. In to-English results, RUSE (Shimanaka et al., 2018) shows competitive performance. However, RUSE is a supervised method trained on WMT16 and WMT15 human judgment data. In cases where RUSE models were not made available, such as for our from-English experiments, it is not possible to use RUSE without additional data and training work. Table 4 shows segment-level correlations. We see that BERTSCORE exhibits significantly higher performance compared to the other metrics. The large improvement over BLEU stands out, making BERTSCORE particularly suitable to analyze specific examples, where SENTBLEU is less reliable. In Appendix A, we provide qualitative examples to illustrate the segment-level performance difference between of

Metric	en⇔cs	en⇔de	$en \leftrightarrow et$	en⇔fi	en⇔ru	en⇔tr	en⇔zh
n	(5k/5k)	(78k/ 20k)	(57k/32k)	(16k/10k)	(10k/22k)	(9k/1k)	(33k/29k)
BLEU	.233/.389	.415/.620	.285/.414	.154/.355	.228/.330	.145/.261	.178/.311
ITER	.198/.333	.396/.610	.235/.392	.128/.311	.139/.291	029/.236	.144/ -
RUSE	.347/ -	.498/ –	.368/ -	.273/ –	.311/ –	.259/ –	.218/ -
YiSi-1	.319/.496	.488/.691	.351/.546	.231/.504	.300/.407	.234/.418	.211/.323
PBERT	.387/.541	.541/.715	.389/.549	.283/.486	.345/.414	.280/.328	.248/.337
RBERT	.388/ .570	.546/ .728	.391/ .594	.304/.565	.343/.420	.290/ .411	.255/ .367
$F_{ m BERT}$.404/.562	.550/.728	.397 /.586	.296/.546	.353 /.423	.292/.399	.264 /.364
$F_{ m BERT}$ (idf)	.408 /.553	.550/ .721	.395/585	.293/.537	.346/ .425	.296 /.406	.260/.366

Table 4: Kendall correlations with segment-level human judgments on WMT18. For each language pair, the left number is the to-English correlation, and the right is the from-English. We bold correlations of metrics not significantly outperformed by any other metric under bootstrap sampling for that language pair and direction. The numbers in parenthesis are the number of candidate-reference sentence pairs for each language pair and direction.

SENTBLEU and BERTSCORE. At the segment-level, BERTSCORE even significantly outperforms RUSE. Overall, we find that applying importance weighting using idf at times provides small benefit, but in other cases does not help. Understanding better when such importance weighting is likely to help is an important direction for future work, and likely depends on the domain of the text and the available test data. We continue without idf weighting for the rest of our experiments. While recall R_{BERT} , precision P_{BERT} , and F1 F_{BERT} alternate as the best measure in different setting, F1 F_{BERT} performs reliably well across all the different settings. Our overall recommendation is therefore to use F1. We present additional results using the full set of 351 systems and evaluation metrics in Tables 11-27 in the appendix, including for experiments with idf importance weighting, different contextual embedding models, and model selection.

Image Captioning Table 5 shows correlation results for the COCO Captioning Challenge. BERTSCORE outperforms all task-agnostic baselines by large margins. Image captioning presents a challenging evaluation scenario, and metrics based on strict *n*-gram matching, including BLEU and ROUGE, show weak correlations with human judgments. idf importance weighting shows significant benefit for this task, suggesting people attribute higher importance to content words. Finally, LEIC (Cui et al., 2018), a trained metric that takes images as additional inputs and is optimized specifically for the COCO data and this set of systems, outperforms all other methods.

Speed Despite the use of a large pre-trained model, computing BERTSCORE is relatively fast. We are able to process 192.5 candidate-reference pairs/second using a GTX-1080Ti GPU. The complete WMT18 en-de test set, which includes 2998 sentences, takes 15.6sec to process, compared to 5.4sec with SacreBLEU (Post, 2018), a common BLEU implementation. Given the sizes of commonly used test and validation sets, the increase in processing time is relatively marginal, and BERTSCORE is a good fit for using during training, validation (e.g., for stopping) and testing, especially when compared to the time costs of other development stages.

6 ROBUSTNESS ANALYSIS

We test the robustness of BERTSCORE using adversarial paraphrase classification. We use the Quora Question Pair corpus (QQP; Iyer et al., 2017) and the adversarial paraphrases from the Paraphrase Adversaries from Word Scrambling dataset (PAWS; Zhang et al., 2019). Both datasets contain pairs of sentences labeled to indicate whether they are paraphrases or not. Positive examples in QQP are real duplicate questions, while negative examples are related, but different questions. Sentence pairs in PAWS are generated through word swapping. For example, in PAWS, *Flights from New York to Florida* may be changed to *Flights from Florida to New York* and a good classifier should identify that these two sentences are not paraphrases. PAWS includes two parts- PAWS_{QQP}, which is based on the QQP data, and PAWS_{Wiki}. We use the PAWS_{QQP} development set which contains 667 sentences. For the automatic metrics, we use no paraphrase detection training data. We expect that pairs with higher score (or shorter edit distance) are more likely to be paraphrases. To evaluate the automatic metrics on QQA, we use the first 5000 sentences in the training set instead of

Metric	M1	M2
BLEU	-0.019*	-0.005*
METEOR	0.606*	0.594*
ROUGE-L	0.090*	0.096^{*}
CIDER	0.438*	0.440^{*}
SPICE	0.759*	0.750^{*}
Leic †	0.939*	0.949*
BEER	0.491	0.562
EED	0.545	0.599
CHRF++	0.702	0.729
CHARACTER	0.800	0.801
P_{BERT}	-0.105	-0.041
R_{BERT}	0.888	0.863
F_{BERT}	0.322	0.350
R_{BERT} (idf)	0.917	0.889

Туре	Method	QQP	PAWS _{QQP}
Trained on QQP (supervised)	DecAtt DIIN BERT	0.939* 0.952* 0.963*	0.263 0.324 0.351
Trained on QQP + PAWS _{QQP} (supervised)	DecAtt DIIN BERT	- - -	0.511 0.778 0.831
Metric (Not trained on QQP or PAWS _{OOP})	Bleu Meteor Rouge-L chrF++ BEER EED CharacTER	$\begin{array}{c} 0.707\\ 0.755\\ 0.740\\ 0.577\\ 0.741\\ 0.743\\ 0.698\end{array}$	$\begin{array}{c} 0.527 \\ 0.532 \\ 0.536 \\ 0.608 \\ 0.564 \\ 0.611 \\ 0.650 \end{array}$
	$P_{ extsf{BERT}}$ $R_{ extsf{BERT}}$ $F_{ extsf{BERT}}$ (idf)	0.757 0.744 0.761 0.777	0.687 0.685 0.685 0.693

Table 5: Pearson correlation on the 2015 COCO Captioning Challenge. See text for the details about M1 and M2. [†]: LEIC uses images as additional inputs. ^{*}: Cited from Cui et al. (2018). We bold the highest correlations of task-specific and task-agnostic metrics.

Table 6: Area under ROC curve (AUC) on QQP and PAWS_{QQP} datasets. The scores of trained DecATT (Parikh et al., 2016), DIIN (Gong et al., 2018), and fine-tuned BERT are reported by Zhang et al. (2019). *: score on the held-out test set of QQP. We bold the highest correlations of task-specific and task-agnostic metrics.

the the test set because the test labels are not available. We treat the first sentence as the reference and the second sentence as the candidate.

Table 6 reports the area under ROC curve (AUC) for existing models and automatic metrics. We observe that supervised classifiers trained on QQP perform worse than random guess on PAWS_{QQP}, i.e. these models predict the adversarial examples are more likely to be paraphrases. When adversarial examples are provided in training, state-of-the-art models like DIIN (Gong et al., 2018) and fine-tuned BERT are able to identify the adversarial examples but their performance still decreases significantly from their performance on QQP. Most metrics have decent performance on QQP, but show a significant performance drop on PAWS_{QQP}, almost down to chance performance. This suggests these metrics fail to to distinguish the harder adversarial examples. In contrast, the performance of BERTSCORE drops only slightly, showing more robustness than the other metrics.

7 DISCUSSION

We propose BERTSCORE, a new metric for evaluating generated text against gold standard references. BERTSCORE is purposely designed to be simple, task agnostic, and easy to use. Our analysis illustrates how BERTSCORE resolves some of the limitations of commonly used metrics, especially on challenging adversarial examples. We conduct extensive experiments with various configuration choices for BERTSCORE, including the contextual embedding model used and the use of importance weighting. Overall, our extensive experiments, including the ones in the appendix, show that BERTSCORE achieves better correlation than common metrics, and is effective for model selection. However, there is no one configuration of BERTSCORE that clearly outperforms all others. While the differences between the top configurations are often small, it is important for the user to be aware of the different trade-offs, and consider target domain and languages when selecting the exact configuration to use.

Briefly following our initial preprint publication, Zhao et al. (2019) published a concurrently developed method related to ours, but with a focus on integrating contextual word embeddings with earth mover's distance (Rubner et al., 1998) rather than our simple matching process. They also propose various improvements compared to our use of contextualized embeddings. We study these improvements in Appendix C and show that integrating them into BERTSCORE makes it equivalent or better than the EMD-based approach. Largely though, the effect of the different improvements on BERTSCORE is more modest compared to their method. Shortly after our initial publication, YiSi-1 was updated to use BERT embeddings, showing improved performance (Lo, 2019). This further corroborates our findings. Other recent related work includes training a model on top of BERT to maximize the correlation with human judgments (Mathur et al., 2019) and evaluating generation with a BERT model fine-tuned on paraphrasing (Yoshimura et al., 2019). More recent work shows the potential of using BERTSCORE with domain-specific embedding models, such as SciB-ERT (Beltagy et al., 2019), for abstractive text summarization (Gabriel et al., 2019).

In future work, we look forward to designing new task-specific metrics that use BERTSCORE as a subroutine and accommodate task-specific needs. Because BERTSCORE is fully differentiable, it also can be incorporated into a training procedure to compute a learning loss that reduces the mismatch between optimization and evaluation objectives.

REFERENCES

- Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. SPICE: Semantic propositional image caption evaluation. In *ECCV*, 2016.
- Ben Athiwaratkun, Andrew Wilson, and Anima Anandkumar. Probabilistic fasttext for multi-sense word embeddings. In ACL, 2018.
- Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for mt evaluation with improved correlation with human judgments. In *IEEvaluation@ACL*, 2005.
- Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific text. *ArXiv*, 2019.
- Ondřej Bojar, Yvette Graham, Amir Kamran, and Miloš Stanojević. Results of the WMT16 metrics shared task. In *WMT*, 2016.
- Ondřej Bojar, Yvette Graham, and Amir Kamran. Results of the WMT17 metrics shared task. In *WMT*, 2017.
- Arun Chaganty, Stephen Mussmann, and Percy Liang. The price of debiasing automatic metrics in natural language evalaution. In ACL, 2018.
- Julian Chow, Lucia Specia, and Pranava Madhyastha. WMDO: Fluency-based word mover's distance for machine translation evaluation. In *WMT*, pp. 494–500, 2019.
- Elizabeth Clark, Asli Celikyilmaz, and Noah A. Smith. Sentence mover's similarity: Automatic evaluation for multi-sentence texts. In ACL, pp. 2748–2760, 2019.
- Courtney Corley and Rada Mihalcea. Measuring the semantic similarity of texts. In *ACL Workshop*, EMSEE '05, 2005.
- Yin Cui, Guandao Yang, Andreas Veit, Xun Huang, and Serge J. Belongie. Learning to evaluate image captioning. *CVPR*, pp. 5804–5812, 2018.
- Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evaluation for any target language. In WMT@ACL, pp. 376–380, 2014.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In *NAACL-HLT*, 2019.
- George Doddington. Automatic evaluation of machine translation quality using n-gram cooccurrence statistics. In *HLT*, 2002.
- William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In *IWP*, 2005.

- Saadia Gabriel, Antoine Bosselut, Ari Holtzman, Kyle Lo, Asli elikyilmaz, and Yejin Choi. Cooperative generator-discriminator networks for abstractive summarization with narrative flow. *ArXiv*, 2019.
- Michel Galley, Chris Brockett, Alessandro Sordoni, Yangfeng Ji, Michael Auli, Chris Quirk, Margaret Mitchell, Jianfeng Gao, and William B. Dolan. deltaBLEU: A discriminative metric for generation tasks with intrinsically diverse targets. In *ACL*, 2015.
- Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional sequence to sequence learning. In *ICML*, 2017.
- Yichen Gong, Heng Luo, and Jian Zhang. Natural language inference over interaction space. In *ICLR*, 2018.
- Yvette Graham and Timothy Baldwin. Testing for significance of increased correlation with human judgment. In *EMNLP*, pp. 172–176, 2014.
- Yvette Graham and Qun Liu. Achieving accurate conclusions in evaluation of automatic machine translation metrics. In *NAACL*, 2016.
- Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov. Learning word vectors for 157 languages. *arXiv preprint arXiv:1802.06893*, 2018.
- Tatsu Hashimoto, Hugh Zhang, and Percy Liang. Unifying human and statistical evaluation for natural language generation. In *NAACL-HLT*, 2019.
- Chenyang Huang, Amine Trabelsi, and Osmar R Zaïane. ANA at semeval-2019 task 3: Contextual emotion detection in conversations through hierarchical LSTMs and BERT. *arXiv preprint arXiv:1904.00132*, 2019.
- Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, and Hajime Tsukada. Automatic evaluation of translation quality for distant language pairs. In *EMNLP*, 2010.
- Shankar Iyer, Nikhil Dandekar, and Kornel Csernai. First quora dataset release: Question pairs. https://tinyurl.com/y2y8u5ed, 2017.
- Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical machine translation. In ACL, 2007.
- Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document distances. In *ICML*, pp. 957–966, 2015.
- Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. arXiv, 2019.
- Gregor Leusch, Nicola Ueffing, and Hermann Ney. CDER: Efficient MT evaluation using block movements. In *EACL*, 2006.
- Vladimir Iosifovich Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Rever sals. *Soviet Physics Doklady*, 10, 1966.
- Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In ACL, 2004.
- Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In *ECCV*, 2014.
- Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and Noah A. Smith. Linguistic knowledge and transferability of contextual representations. *arXiv preprint arXiv:1903.08855*, 2019a.

Yang Liu. Fine-tune BERT for extractive summarization. arXiv preprint arXiv:1903.10318, 2019.

- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. arXiv, abs/1907.11692, 2019b.
- Chi-kiu Lo. MEANT 2.0: Accurate semantic mt evaluation for any output language. In *WMT*, pp. 589–597, 2017.
- Chi-kiu Lo. YiSi a unified semantic MT quality evaluation and estimation metric for languages with different levels of available resources. In *WMT*, pp. 507–513, 2019.
- Chi-kiu Lo, Michel Simard, Darlene Stewart, Samuel Larkin, Cyril Goutte, and Patrick Littell. Accurate semantic textual similarity for cleaning noisy parallel corpora using semantic machine translation evaluation metric: The NRC supervised submissions to the parallel corpus filtering task. In *WMT*, 2018.
- Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua Bengio, and Joelle Pineau. Towards an automatic Turing test: Learning to evaluate dialogue responses. In ACL, 2017.
- Qingsong Ma, Yvette Graham, Shugen Wang, and Qun Liu. Blend: a novel combined mt metric based on direct assessment – casict-dcu submission to WMT17 metrics task. In WMT, pp. 598– 603, 2017.
- Qingsong Ma, Ondrej Bojar, and Yvette Graham. Results of the WMT18 metrics shared task: Both characters and embeddings achieve good performance. In *WMT*, 2018.
- Nitika Mathur, Timothy Baldwin, and Trevor Cohn. Putting evaluation in context: Contextual embeddings improve machine translation evaluation. In ACL, pp. 2799–2808, 2019.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their compositionality. In *NIPS*, 2013.
- Dai Quoc Nguyen, Dat Quoc Nguyen, Ashutosh Modi, Stefan Thater, and Manfred Pinkal. A mixture model for learning multi-sense word embeddings. *ACL*, 2017.
- Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation. In WMT, 2018.
- Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. *arXiv preprint arXiv:1904.01038*, 2019.
- Joybrata Panja and Sudip Kumar Naskar. Iter: Improving translation edit rate through optimizable edit costs. In *WMT*, 2018.
- Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In ACL, 2002.
- Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention model for natural language inference. In *EMNLP*, 2016.
- Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word representation. In *EMNLP*, 2014.
- Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke S. Zettlemoyer. Deep contextualized word representations. In *NAACL-HLT*, 2018.
- Maja Popović. chrf: character n-gram f-score for automatic mt evaluation. In *WMT@ACL*, pp. 392–395, 2015.
- Maja Popović. chrf++: words helping character n-grams. In WMT, pp. 612–618, 2017.

Matt Post. A call for clarity in reporting BLEU scores. In WMT, pp. 186–191, 2018.

- Nils Reimers and Iryna Gurevych. Alternative weighting schemes for elmo embeddings. *arXiv* preprint arXiv:1904.02954, 2019.
- Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for distributions with applications to image databases. In *ICCV*, pp. 59–66. IEEE, 1998.
- Vasile Rus and Mihai Lintean. A comparison of greedy and optimal assessment of natural language student input using word-to-word similarity metrics. In *Proceedings of the Seventh Workshop on Building Educational Applications Using NLP*, pp. 157–162. ACL, 2012.
- Andreas Rckl, Steffen Eger, Maxime Peyrard, and Iryna Gurevych. Concatenated power mean word embeddings as universal cross-lingual sentence representations. *arXiv*, 2018.
- Shikhar Sharma, Layla El Asri, Hannes Schulz, and Jeremie Zumer. Relevance of unsupervised metrics in task-oriented dialogue for evaluating natural language generation. *arXiv preprint arXiv:1706.09799*, 2018.
- Hiroki Shimanaka, Tomoyuki Kajiwara, and Mamoru Komachi. Ruse: Regressor using sentence embeddings for automatic machine translation evaluation. In *WMT*, pp. 764–771, 2018.
- Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study of translation edit rate with targeted human annotation. In *AMTA*, 2006.
- Peter Stanchev, Weiyue Wang, and Hermann Ney. EED: Extended edit distance measure for machine translation. In *WMT*, pp. 514–520, 2019.
- Miloš Stanojević and Khalil Sima'an. Beer: Better evaluation as ranking. In *Proceedings of the Ninth Workshop on Statistical Machine Translation*, pp. 414–419, 2014.
- Christoph Tillmann, Stephan Vogel, Hermann Ney, Arkaitz Zubiaga, and Hassan Sawaf. Accelerated dp based search for statistical translation. In *EUROSPEECH*, 1997.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NIPS*, 2017.
- Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. CIDEr: Consensus-based image description evaluation. In *CVPR*, 2015.
- Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl, and Hermann Ney. Character: Translation edit rate on character level. In *WMT*, pp. 505–510, 2016.
- Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence understanding through inference. In ACL, 2018.
- Evan James Williams. Regression analysis. wiley, 1959.
- Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and Michael Auli. Pay less attention with lightweight and dynamic convolutions. In *ICLR*, 2019.
- Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and Jeffrey Dean. Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.
- Wei Yang, Haotian Zhang, and Jimmy Lin. Simple applications of BERT for ad hoc document retrieval. *arXiv preprint arXiv:1903.10972*, 2019a.
- Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. XLNet: Generalized autoregressive pretraining for language understanding. *arXiv*, 2019b.

- Ryoma Yoshimura, Hiroki Shimanaka, Yukio Matsumura, Hayahide Yamagishi, and Mamoru Komachi. Filtering pseudo-references by paraphrasing for automatic evaluation of machine translation. In *WMT*, 2019.
- Yuan Zhang, Jason Baldridge, and Luheng He. PAWS: Paraphrase adversaries from word scrambling. *arXiv preprint arXiv:1904.01130*, 2019.
- Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M. Meyer, and Steffen Eger. Moverscore: Text generation evaluating with contextualized embeddings and earth mover distance. *EMNLP*, 2019.

A QUALITATIVE ANALYSIS

Case	No.	Reference and Candidate Pairs	Human	$ F_{\text{BERT}} $	BLEU
	1.	x: At the same time Kingfisher is closing 60 B&Q outlets across the country \hat{x} : At the same time, Kingfisher will close 60 B & Q stores nationwide	38	125	530
LEU	2.	x: Hewlett-Packard to cut up to 30,000 jobs \hat{x} : Hewlett-Packard will reduce jobs up to 30.000	119	39	441
F _{BERT} > BLEU	3.	 x: According to opinion in Hungary, Serbia is "a safe third country". x: According to Hungarian view, Serbia is a "safe third country." 	23	96	465
FBERT	4.	x: Experts believe November's Black Friday could be holding back spending. \hat{x} : Experts believe that the Black Friday in November has put the brakes on spending	73	147	492
	5.	 x: And it's from this perspective that I will watch him die. x: And from this perspective, I will see him die. 	37	111	414
	6.	x: In their view the human dignity of the man had been violated. \hat{x} : Look at the human dignity of the man injured.	500	470	115
BERT	8.	<i>x</i> : For example when he steered a shot from Ideye over the crossbar in the 56th minute. \hat{x} : So, for example, when he steered a shot of Ideye over the latte (56th).	516	524	185
$BLEU > F_{BERT}$	7.	x: A good prank is funny, but takes moments to reverse. \hat{x} : A good prank is funny, but it takes only moments before he becomes a boomerang.	495	424	152
BLEI	9.	x: I will put the pressure on them and onus on them to make a decision. \hat{x} : I will exert the pressure on it and her urge to make a decision.	507	471	220
	10.	x: Transport for London is not amused by this flyposting "vandalism." \hat{x} : Transport for London is the Plaka animal "vandalism" is not funny.	527	527	246
	11.	x: One big obstacle to access to the jobs market is the lack of knowledge of the German language. \hat{x} : A major hurdle for access to the labour market are a lack of knowledge of English.	558	131	313
uman	12.	 x: On Monday night Hungary closed its 175 km long border with Serbia. x: Hungary had in the night of Tuesday closed its 175 km long border with Serbia. 	413	135	55
Hr ^	13.	x: They got nothing, but they were allowed to keep the clothes. \hat{x} : You got nothing, but could keep the clothes.	428	174	318
F _{BERT} > Human	14.	x: A majority of Republicans don't see Trump's temperament as a problem. \hat{x} : A majority of Republicans see Trump's temperament is not a problem.	290	34	134
	15.	x:His car was still running in the driveway. \hat{x} : His car was still in the driveway.	299	49	71
	16.	x: Currently the majority of staff are men. \hat{x} : At the moment the men predominate among the staff.	77	525	553
BERT	17.	x: There are, indeed, multiple variables at play. \hat{x} : In fact, several variables play a role.	30	446	552
n > 1	18.	 x: One was a man of about 5ft 11in tall. x: One of the men was about 1,80 metres in size. 	124	551	528
Human $> F_{BERT}$	19.	<i>x</i> : All that stuff sure does take a toll. \hat{x} : All of this certainly exacts its toll.	90	454	547
-	20.	x: Wage gains have shown signs of picking up. \hat{x} : Increases of wages showed signs of a recovery.	140	464	514

Table 7: Examples sentences where similarity ranks assigned by Human, F_{BERT} , and BLEU differ significantly on WMT16 German-to-English evaluation task. x: gold reference, \hat{x} : candidate outputs of MT systems. Rankings assigned by Human, F_{BERT} , and BLEU are shown in the right three columns. The sentences are ranked by the similarity, *i.e.* rank 1 is the most similar pair assigned by a score. An ideal metric should rank similar to humans.

We study BERTSCORE and SENTBLEU using WMT16 German-to-English (Bojar et al., 2016). We rank all 560 candidate-reference pairs by human score, BERTSCORE, or SENTBLEU from most similar to least similar. Ideally, the ranking assigned by BERTSCORE and SENTBLEU should be similar to the ranking assigned by the human score.

Table 7 first shows examples where BERTSCORE and SENTBLEU scores disagree about the ranking for a candidate-reference pair by a large number. We observe that BERTSCORE is effectively able to capture synonyms and changes in word order. For example, the reference and candidate sentences in pair 3 are almost identical except that the candidate replaces *opinion in Hungary* with *Hungarian view* and switches the order of the quotation mark (") and *a*. While BERTSCORE ranks the pair relatively high, SENTBLEU judges the pair as dissimilar, because it cannot match synonyms and is sensitive to the small word order changes. Pair 5. shows a set of changes that preserve the semantic meaning: replacing *to cut* with *will reduce* and swapping the order of *30,000* and *jobs*. BERTSCORE ranks the lower. We also see that SENTBLEU potentially over-rewards *n*-gram overlap, even when phrases are used very differently. In pair 6 both the candidate and the reference contain *the human dignity of the man*. Yet the two sentences convey very different meaning. BERTSCORE agrees with the human judgment and ranks the pair low. In contrast, SENTBLEU considers the pair as relatively similar because of the significant word overlap.

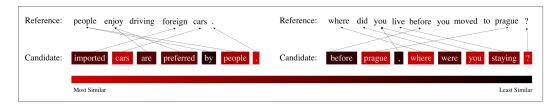


Figure 2: BERTSCORE visualization. The cosine similarity of each word matching in P_{BERT} are color-coded.

The bottom half of Table 7 shows examples where BERTSCORE and human judgment disagree about the ranking. We observe that BERTSCORE finds it difficult to detect factual errors. For example, BERTSCORE assigns high similarity to pair 11 when the translation replaces *German language* with *English* and pair 12 where the translation incorrectly outputs *Tuesday* when it is supposed to generate *Monday*. BERTSCORE also fails to identify that *5ft 11in* is equivalent with *1.80 metres* in pair 18. As a result, BERTSCORE assigns low similarity to the eighth pair in Table 7. It is worth noting that SENTBLEU also suffers from these limitations.

Figure 2 visualizes the BERTSCORE matching of two pairs of candidate and reference sentences. The figure illustrates how F_{BERT} matches synonymous phrases, such as *imported cars* and *foreign cars*. We also see that F_{BERT} effectively matches words even given a high ordering distortion, for example the token *people* in the figure.

B REPRESENTATION CHOICE

As suggested by previous works (Peters et al., 2018; Reimers & Gurevych, 2019), selecting a good layer or a good combination of layers from the BERT model is important. In designing BERTSCORE, we use WMT16 segment-level human judgment data as a development set to facilitate our representation choice. For Chinese models, we tune with the WMT17 "en-zh" data becuase the language pair "en-zh" is not available in the WMT16 dataset. In Figure 3, we plot the change of human correlation of $F_{\rm BERT}$ over different layers of BERT, RoBERTa, XLNet and XLM models. Based on results from different models, we identify a common trend that $F_{\rm BERT}$ computed with the intermediate representations tends to work better. We tune the number of layer to use for a range of publicly available models⁶. In Table 8, we document the result of our hyperparameter search.

Model	Total Number of Layers	Best Layer
bert-base-uncased	12	9
bert-large-uncased	24	18
bert-base-cased-finetuned-mrpc	12	9
bert-base-chinese	12	8
roberta-base	12	10
roberta-large	24	17
roberta-large-mnli	24	19
xlnet-base-cased	12	5
xlnet-large-cased	24	7
xlm-mlm-en-2048	12	7
xlm-mlm-100-1280	16	11

Table 8: Recommended layer of representation to be used for BERTSCORE. The layers are chosen based on a held-out validation set (WMT16).

⁶https://huggingface.co/pytorch-transformers/pretrained_models.html

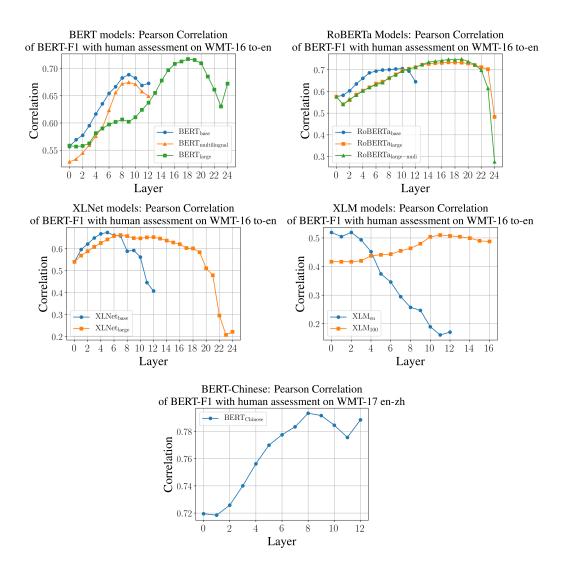


Figure 3: Pearson correlation of F_{BERT} computed with different models, across different layers, with segment-level human judgments on WMT16 to-English machine translation task. The WMT17 English-Chinese data is used for the BERT Chinese model. Layer 0 corresponds to using BPE embeddings. Consistently, correlation drops significantly in the final layers.

C ABLATION STUDY OF MOVERSCORE

Word Mover's Distance (WMD; Kusner et al., 2015) is a semantic similarity metric that relies on word embeddings and optimal transport. MOVERSCORE (Zhao et al., 2019) combine contextual embeddings and WMD for text generation evaluation. In contrast, BERTSCORE adopts a greedy approach to aggregate token-level information. In addition to introducing using WMD for generation evaluation, Zhao et al. (2019) also introduce various other improvements. Here, we do a detailed ablation study to understand the benefit of each improvement, and to investigate whether it can be applied to BERTSCORE. We use a 12-layer uncased BERT model on the WMT17 to-English segment-level data, the same setting as the Zhao et al. (2019).

We identify several differences between MOVERSCORE and BERTSCORE based on analyzing the released source code. We isolate each such feature, and mark it with a tag for our ablation study:

- 1. [MNLI] Use a BERT model fine-tuned on MNLI (Williams et al., 2018).
- 2. [PMEANS] Apply power means (Rckl et al., 2018) to aggregate the information of different layers.⁷
- 3. [IDF-L] For reference sentences, instead of computing the idf scores on the 560 sentences in the segment-level data ([IDF-S]), compute the idf scores on the 3005 sentences in the system-level data.
- 4. [SEP] For candidate sentences, recompute the idf scores on the candidate sentences. The weighting of reference tokens are kept the same as in [IDF-S]
- 5. [RM] Exclude punctuation marks and sub-word tokens (except the first subword in each word) from the matching.

We follow the setup of Zhao et al. (2019) and use their released fine-tuned BERT model to conduct the experiments. Table 9 shows the results of our ablation study. We report correlations for the two variants of WMD Zhao et al. (2019) study: unigrams (WMD1) and bigrams (WMD2). Our F_{BERT} corresponds to the vanilla setting and the importance weighted variant corresponds to the [IDF-S] setting. The complete MOVERSCORE metric corresponds to [IDF-S]+[SEP]+[PMEANS]+[MNLI]+[RM]. We make several observations. First, for all language pairs except fi-en and lv-en, we can replicate the reported performance. For these two language pairs, Zhao et al. (2019) did not release their implementations.⁸ Second, we confirm the effectiveness of [PMEANS] and [MNLI]. In Appendix E, we study more pre-trained models and further corroborate this conclusion. However, the contribution of other techniques, including [RM] and [SEP], seems less stable. Third, replacing greedy matching with WMD does not lead to consistent improvement. In fact, oftentimes BERTSCORE is the better metric when given the same setup. In general, for any given language pair, BERTSCORE is always among the best performing ones. Given the current results, it is not clear tht WMD is better than greedy matching for text generation evaluation.

⁷ Zhao et al. (2019) uses the embeddings from the last 5 layers from BERT and L2-normalizes the embedding vectors at each layer before computing the P-MEANs and L2-normalize the concatenated P-MEANS.

⁸A public comment on the project page indicates that some of the techniques are not applied for these two language pairs (https://github.com/AIPHES/emnlp19-moverscore/issues/1).

Ablation	Metric	cs-en	de-en	fi-en	lv-en	ru-en	tr-en	zh-en
	WMD1	0.628	0.655	0.795	0.692	0.701	0.715	0.699
Vanilla	WMD2	0.638	0.661	0.797	0.695	0.700	0.728	0.714
	F_{BERT}	0.659	0.680	0.817	0.702	0.719	0.727	0.717
	WMD1	0.636	0.662	0.824	0.709	0.716	0.728	0.713
IDF-S	WMD2	0.643	0.662	0.821	0.708	0.712	0.732	0.715
	F_{BERT}	0.657	0.681	0.823	0.713	0.725	0.718	0.711
	WMD1	0.633	0.659	0.825	0.708	0.716	0.727	0.715
IDF-L	WMD2	0.641	0.661	0.822	0.708	0.713	0.730	0.716
	F_{BERT}	0.655	0.682	0.823	0.713	0.726	0.718	0.712
	WMD1	0.651	0.660	0.819	0.703	0.714	0.724	0.715
IDF-L + SEP	WMD2	0.659	0.662	0.816	0.702	0.712	0.729	0.715
	F_{BERT}	0.664	0.681	0.818	0.709	0.724	0.716	0.710
IDF-L + SEP	WMD1	0.651	0.686	0.803	0.681	0.730	0.730	0.720
HDF-L + SEP + RM	WMD2	0.664	0.687	0.797	0.679	0.728	0.735	0.718
+ KM	F_{BERT}	0.659	0.695	0.800	0.683	0.734	0.722	0.712
	WMD1	0.658	0.663	0.820	0.707	0.717	0.725	0.712
IDF-L + SEP	WMD2	0.667	0.665	0.817	0.707	0.717	0.727	0.712
+ PMEANS	F_{BERT}	0.671	0.682	0.819	0.708	0.725	0.715	0.704
	WMD1	0.659	0.679	0.822	0.732	0.718	0.746	0.725
IDF-L + SEP	WMD2	0.664	0.682	0.819	0.731	0.715	0.748	0.722
+ MNLI	F_{BERT}	0.668	0.701	0.825	0.737	0.727	0.744	0.725
	WMD1	0.672	0.686	0.831	0.738	0.725	0.753	0.737
IDF-L + SEP	WMD2	0.677	0.690	0.828	0.736	0.722	0.755	0.735
+ PMEANS + MNLI	F_{BERT}	0.682	0.707	0.836	0.741	0.732	0.751	0.736
IDF-L + SEP	WMD1	0.670	0.708	0.821	0.717	0.738	0.762	0.744
+ PMEANS + MNLI	WMD2	0.679	0.709	0.814	0.716	0.736	0.762	0.738
+ RM	F_{BERT}	0.676	0.717	0.824	0.719	0.740	0.757	0.738

Table 9: Ablation Study of MOVERSCORE and BERTSCORE using Pearson correlations on the WMT17 to-English segment-level data. Correlations that are not outperformed by others for that language pair under Williams Test are bolded. We observe that using WMD does not consistently improve BERTSCORE.

D BERTSCORE OF RECENT MT MODELS.

Table 10 shows the BLEU scores and the BERTSCORES of pre-trained machine translation models on WMT14 English-to-German, WMT14 English-to-French, IWSLT14 German-to-English task. We used publicly available pre-trained models from fairseq (Ott et al., 2019)⁹. Because a pretrained Transformer model on IWSLT is not released, we trained our own using the fairseq library. We use multilingual cased BERT_{base}¹⁰ for English-to-German and English-to-French pairs, and English uncased BERT_{base}¹¹ for German-to-English pairs. Interestingly, the gap between a DynamicConv (Wu et al., 2019) trained on only WMT16 and a Transformer (Ott et al., 2018) trained on WMT16 and ParaCrawl¹² (about 30× more training data) becomes larger when evaluated with BERTSCORES rather than BLEU.

Task	Model	BLEU	P_{BERT}	$ R_{\text{BERT}} $	FBERT
WMT14 En-De	ConvS2S (Gehring et al., 2017) Transformer-big** (Ott et al., 2018) DynamicConv*** (Wu et al., 2019)	0.266 0.298 0.297	0.8499 0.8687 0.8664	0.8482 0.8664 0.8640	0.8488 0.8674 0.8650
WMT14 En-Fr	ConvS2S (Gehring et al., 2017) Transformer-big (Ott et al., 2018) DynamicConv (Wu et al., 2019)	0.408 0.432 0.432	0.8876 0.8932 0.8936	0.8810 0.8869 0.8873	0.8841 0.8899 0.8902
IWSLT14 De-En	Transformer-iwslt+ (Ott et al., 2019)LightConv (Wu et al., 2019)DynamicConv (Wu et al., 2019)	0.347 0.348 0.352	0.9368 0.9374 0.9380	0.9340 0.9338 0.9347	0.9354 0.9355 0.9363

Table 10: BLEU scores and BERTSCORES of publicly available pre-trained MT models in fairseq (Ott et al., 2019). *: trained on unconfirmed WMT data version, **: trained on WMT16 + ParaCrawl, ***: trained on WMT16, +: trained by us using fairseq.

⁹ Code and pre-trained model available at https://github.com/pytorch/fairseq.

¹⁰Hash code: bert-base-multilingual-cased_L9_version=0.2.0

¹¹Hash code: roberta-large_L17_version=0.2.0

¹²http://paracrawl.eu/download.html

E ADDITIONAL RESULTS

In this section, we present additional experimental results on the following datasets:

- 1. segment-level and system-level correlation studies on three years of WMT metric evaluation task (WMT16-18)
- 2. model selection study on WMT18 10K hybrid systems
- 3. system-level correlation study on 2015 COCO captioning challenge
- 4. robustness study on PAWS-QQP.

Following BERT (Devlin et al., 2019), a variety of Transformer-based (Vaswani et al., 2017) pretrained contextual embeddings have been proposed and released to the public. We conduct additional experiments with four types of pre-trained embeddings: BERT, XLM (Lample & Conneau, 2019), XLNet (Yang et al., 2019b), and RoBERTa (Liu et al., 2019b). XLM (Cross-lingual Language Model) is a Transformer pre-trained on translation language modeling (predicting masked tokens from a pair of sentence in two different languages) and masked language modeling tasks using multilingual training data. Yang et al. (2019b) modify the Transformer architecture and pre-train it on the permutation language modeling task resulting in some improvement on top of the original BERT when fine-tuned on several downstream tasks. Liu et al. (2019b) introduce RoBERTa (Robustly optimized BERT approach) and demonstrate that an optimized BERT model is comparable to or sometimes outperforms an XLNet on downstream tasks.

We perform a comprehensive study with the following pre-trained contextual embedding models¹³:

- 1. BERT (Devlin et al., 2019) models including bert-base-uncased, bert-large-uncased, bert-based-chinese , bert-base-multilingual-cased, and bert-base-cased-mrpc
- 2. RoBERTa (Liu et al., 2019b) models including roberta-base, roberta-large, and roberta-large-mnli
- 3. XLNet (Yang et al., 2019b) models including xlnet-base-cased and xlnet-base-large
- 4. XLM (Lample & Conneau, 2019) models including xlm-mlm-en-2048 and xlm-mlm-100-1280

E.1 WMT CORRELATION STUDY

Experimental setup Because of missing data in the released WMT16 dataset (Bojar et al., 2016), we are only able to experiment on to-English segment-level data which contains the outputs of 50 different systems on 6 langauge pairs. This data is used as the validation set for hyperparameter tuning (Appendix B). Table 11 shows the Pearson correlations of all participating metrics and BERTSCOREs computed with different pre-trained models. Significance testing for this dataset does not include the baseline metrics because the released dataset does not contain the original outputs from the baseline metrics. We therefore conduct significance testing using only BERTSCORE metrics.

The WMT17 dataset (Bojar et al., 2017) contains outputs of 152 different translations on 14 language pairs. We experiment on the segment-level and system-level data on both to-English and from-English language pairs. We exclude fi-en data from the segment-level experiment due to an error in the released data. We compare our results to all participating metrics and perform standard significance testing as done in Bojar et al. (2017). The results are presented in Tables 12-15.

The WMT18 dataset (Ma et al., 2018) contains outputs of 159 translation systems on 14 language pairs. In addition to the results presented in Tables 1-4, we complement the study with the correlations of all participating metrics in WMT18 and results from using different contextual models for BERTSCORE.

¹³denoted by names specified at https://huggingface.co/pytorch-transformers/ pretrained_models.html

Results Table 11-21 collectively showcase the effectiveness of BERTSCORE in correlating with human judgments. The improvement of BERTSCORE is more impressive on the segment-level than on the system-level. We also see that larger BERT models can produce better contextual representations (e.g. comparing $F_{\text{RoBERTa-Large}}$ and $F_{\text{BERT-Large}}$). In contrast, the smaller XLNet performs better than a large one. Based on the evidence shown in Figure 8 and Tables 11-21, we hypothesize that the permutation language task, though leading to a good set of model weights for fine-tuning on downstream tasks, does not necessarily produce informative pre-trained embeddings. We also observe that fine-tuning pre-trained models on a similar task, such as natural language inference (Williams et al., 2018), can lead to better human correlation in evaluating text generation. Therefore, for evaluating English sentences, we recommend computing BERTSCORE with a 24-layer RoBERTa model fine-tuned on the MNLI dataset. For evaluating Non-English sentences, both the multilingual BERT model and the XLM model trained on 100 languages are suitable candidates. We also recommend using domain-specific contextual embeddings when possible, such as using BERT Chinese models for evaluating Chinese tasks. In general, we advise users to consider target domain and languages when selecting the exact configuration to use.

E.2 MODEL SELECTION STUDY

Experimental setup Similar to Section 4, we use the 10K hybrid systems super-sampled from WMT18. We randomly select 100 out of 10K hybrid systems, rank them using automatic metrics, and repeat this process a 100K times. We add to the results in the main paper by adding the performance of all participating metrics in WMT18 and results from using embeddings from different contextual models for BERTSCORE. Specifically, we reuse the hybrid configuration and metric outputs released in WMT18. In addition to the Hits@1 measure, we evaluate the metrics by (a) mean reciprocal rank (MRR) of the top metric-rated system in human rankings and (b) the absolute human score difference (Diff) between the top metric- and human-rated systems. Hits@1 captures a metric's ability to select the best system. In contrast, the other two measures quantify the amount of error a metric makes in the selection process. Results of these experiments are in Table 22-27.

Results. The additional results further support our conclusion from Table 3. The MRR and Diff results also support our conclusion. BERTSCORES demonstrate better model selection performance. We also observe that the supervised metric RUSE displays strong model selection ability.

E.3 IMAGE CAPTIONING ON COCO

We follow the same experimental setup described in Section 4. Table 28 shows the correlations of several pre-trained contextual embeddings. We observe that precision-based methods such as BLEU and P_{BERT} are weakly correlated with human judgments on image captioning tasks. We hypothesize that this is because human judges prefer captions that capture the main objects in a picture for image captioning. In general, R_{BERT} has a high correlation, even surpassing the task-specific metric SPICE. While the fine-tuned RoBERTa-Large model does not result in the highest correlation, it is one of the best metrics.

E.4 ROBUSTNESS ANALYSIS ON PAWS-QQP

We present the full results of our robustness study described in Section 6. In general, Table 29 shows that BERTSCORE is more robust than other commonly used metrics.

We observe that BERTSCORE computed with the 24-layer RoBERTa model performs the best. Fine-tuning RoBERTa-Large on MNLI (Williams et al., 2018) can significantly improve the robustness against adversarial sentences; however, a fine-tuned BERT on MRPC (Microsoft Research Paraphrasing Corpus) (Dolan & Brockett, 2005) performs worse than its counterpart.

Setting	Metric n	cs-en 560	de-en 560	fi-en 560	ro-en 560	ru-en 560	tr-en 560
	DPMFcomb	0.713	0.584	0.598	0.627	0.615	0.663
	METRICS-F	0.696	0.601	0.557	0.662	0.613	0.649
	COBALT-F.	0.671	0.591	0.554	0.639	0.618	0.627
	UPF-COBA.	0.652	0.550	0.490	0.616	0.556	0.626
	MPEDA	0.644	0.538	0.513	0.587	0.545	0.616
	CHRF2	0.658	0.457	0.469	0.581	0.534	0.556
	CHRF3	0.660	0.455	0.472	0.582	0.535	0.555
Unsupervised	CHRF1	0.644	0.454	0.452	0.570	0.522	0.551
	UOW-REVAL	0.577	0.528	0.471	0.547	0.528	0.531
	WORDF3	0.599	0.447	0.473	0.525	0.504	0.536
	WORDF2	0.596	0.445	0.471	0.522	0.503	0.537
	WORDF1	0.585	0.435	0.464	0.508	0.497	0.535
	SENTBLEU	0.557	0.448	0.484	0.499	0.502	0.532
	DTED	0.394	0.254	0.361	0.329	0.375	0.267
Supervised	BEER	0.661	0.462	0.471	0.551	0.533	0.545
-	P _{BERT-Base}	0.729	0.617	0.719	0.651	0.684	0.678
	$R_{\text{BERT-Base}}$	0.729	0.639	0.616	0.693	0.660	0.660
	FBERT-Base	0.747	0.640	0.661	0.723	0.672	0.688
	$P_{\text{BERT-Base}}$ (no idf)	0.723	0.638	0.662	0.700	0.633	0.696
		0.745	0.656	0.638	0.697	0.653	0.674
	$R_{\text{BERT-Base}}$ (no idf) $F_{\text{BERT-Base}}$ (no idf)	0.745	0.663	0.666	0.714	0.662	0.703
	I BERI-Base (no idi)	0.747					
	PBERT-Base-MRPC	0.697	0.618	0.614	0.676	0.62	0.695
	R _{BERT-Base-MRPC}	0.723	0.636	0.587	0.667	0.648	0.664
	F _{BERT-Base-MRPC}	0.725	0.644	0.617	0.691	0.654	0.702
	P _{BERT-Base-MRPC} (idf)	0.713	0.613	0.630	0.693	0.635	0.691
	$R_{\text{BERT-Base-MRPC}}$ (idf)	0.727	0.631	0.573	0.666	0.642	0.662
	F _{BERT-Base-MRPC} (idf)	0.735	0.637	0.620	0.700	0.658	0.697
	$P_{\text{BERT-Large}}$	0.756	0.671	0.701	0.723	0.678	0.706
	$R_{\text{BERT-Large}}$	0.768	0.684	0.677	0.720	0.686	0.699
	$F_{\text{BERT-Large}}$	0.774	0.693	0.705	0.736	0.701	0.717
	P _{BERT-Large} (idf)	0.758	0.653	0.704	0.734	0.685	0.705
	$R_{\text{BERT-Large}}$ (idf)	0.771	0.680	0.661	0.718	0.687	0.692
	$F_{\text{BERT-Large}}$ (idf)	0.774	0.678	0.700	0.740	0.701	0.711
	$P_{\text{RoBERTa-Base}}$	0.738	0.642	0.671	0.712	0.669	0.671
	$R_{\text{RoBERTa-Base}}$	0.745	0.669	0.645	0.698	0.682	0.653
	F _{RoBERTa-Base}	0.761	0.674	0.686	0.732	0.697	0.689
	PRoBERTa-Base (idf)	0.751	0.626	0.678	0.723	0.685	0.668
Pre-Trained	$R_{\text{RoBERTa-Base}}$ (idf)	0.744	0.652	0.638	0.699	0.685	0.657
	F _{RoBERTa-Base} (idf)	0.767	0.653	0.688	0.737	0.705	0.685
	P _{RoBERTa-Large}	0.757	0.702	0.709	0.735	0.721	0.676
	$R_{\text{RoBERTa-Large}}$	0.765	0.713	0.686	0.718	0.714	0.676
	$F_{\text{RoBERTa-Large}}$	0.780	0.724	0.728	0.753	0.738	0.709
	P _{RoBERTa-Large} (idf)	0.771	0.682	0.705	0.727	0.714	0.681
	$R_{\text{RoBERTa-Large}}$ (idf)	0.762	0.695	0.683	0.711	0.708	0.678
	$F_{\text{RoBERTa-Large}}$ (idf)	0.786	0.704	0.727	0.747	0.732	0.711
	PRoBERTa-Large-MNLI	0.777	0.718	0.733	0.744	0.729	0.747
	R _{RoBERTa-Large-MNLI}	0.790	0.731	0.702	0.741	0.727	0.732
	F _{RoBERTa-Large-MNLI}	0.795	0.736	0.733	0.757	0.744	0.756
	P _{RoBERTa-Large-MNLI} (idf)	0.794	0.695	0.731	0.752	0.732	0.747
	R _{RoBERTa-Large-MNLI} (idf)	0.792	0.706	0.694	0.737	0.724	0.733
	F _{RoBERTa-Large-MNLI} (idf)	0.804	0.710	0.729	0.760	0.742	0.754
i	P _{XLNet-Base}	0.708	0.612	0.639	0.650	0.606	0.690
	R _{XLNet-Base}	0.728	0.630	0.617	0.645	0.621	0.675
	F _{XLNet-Base}	0.727	0.631	0.640	0.659	0.626	0.695
	$P_{\text{XLNet-Base}}$ (idf)	0.726	0.618	0.655	0.678	0.629	0.700
	$R_{\rm XLNet-Base}$ (idf)	0.734	0.633	0.618	0.66	0.635	0.682
	$F_{\text{XLNet-Base}}$ (idf)	0.739	0.633	0.649	0.681	0.643	0.702
i	P _{XL-NET-LARGE}	0.710	0.577	0.643	0.647	0.616	0.684
	R _{XL-NET-LARGE}	0.732	0.600	0.610	0.636	0.627	0.668
	F _{XL-NET-LARGE}	0.733	0.600	0.643	0.655	0.637	0.691
	$P_{\text{XL-NET-LARGE}}$ (idf)	0.728	0.574	0.652	0.669	0.633	0.681
		0.735	0.592	0.597	0.642	0.629	0.662
							0.685
	$R_{\text{XL-NET-LARGE}}$ (idf)	0.742	0.592	0.643	0.670	0.645	0.000
	$R_{\text{XL-NET-LARGE}}$ (idf) $F_{\text{XL-NET-LARGE}}$ (idf)	0.742					
	$\frac{R_{\text{XL-NET-LARGE}} \text{ (idf)}}{F_{\text{XL-NET-LARGE}} \text{ (idf)}}$	0.742	0.569	0.613	0.645	0.583	0.659
	$\frac{R_{\text{XL-NET-LARGE}} \text{ (idf)}}{F_{\text{XL-NET-LARGE}} \text{ (idf)}}$ $\frac{P_{\text{XLM-En}}}{R_{\text{XLM-En}}}$	0.742	0.569 0.603	0.613 0.577	0.645 0.645	0.583 0.609	0.659 0.644
	$\frac{R_{\text{XL-NET-LARGE}} \text{ (idf)}}{F_{\text{XL-NET-LARGE}} \text{ (idf)}}$ $\frac{P_{\text{XLM-En}}}{R_{\text{XLM-En}}}$ $-F_{\text{XLM-En}}$	0.742 0.688 0.715 0.713	0.569 0.603 0.597	0.613 0.577 0.610	0.645 0.645 0.657	0.583 0.609 0.610	0.659 0.644 0.668
	$\frac{R_{\text{XL-NET-LARGE}} \text{ (idf)}}{F_{\text{XL-NET-LARGE}} \text{ (idf)}}$ $\frac{P_{\text{XLM-En}}}{R_{\text{XLM-En}}}$	0.742	0.569 0.603	0.613 0.577	0.645 0.645	0.583 0.609	0.659 0.644 0.668 0.683 0.669

Table 11: Pearson correlations with segment-level human judgments on WMT16 to-English translations. Correlations of metrics not significantly outperformed by any other for that language pair are highlighted in bold.

Setting	Metric	cs-en 560	de-en 560	fi-en 560	lv-en 560	ru-en 560	tr-en 560	zh-e 560
	<i>n</i>							
	CHRF	0.514	0.531	0.671	0.525	0.599	0.607	0.59
	CHRF++	0.523	0.534	0.678	0.520	0.588	0.614	0.59
	MEANT 2.0	0.578	0.565	0.687	0.586	0.607	0.596	0.63
Unsupervised	MEANT 2.0-NOSRL	0.566	0.564	0.682	0.573	0.591	0.582	0.63
	SENTBLEU	0.435	0.432	0.571	0.393	0.484	0.538	0.51
	TREEAGGREG	0.486	0.526	0.638	0.446	0.555	0.571	0.53
	UHH_TSKM	0.507	0.479	0.600	0.394	0.465	0.478	0.47
	AUTODA	0.499	0.543	0.673	0.533	0.584	0.625	0.58
	BEER	0.511	0.530	0.681	0.515	0.577	0.600	0.58
Supervised	BLEND	0.594	0.571	0.733	0.577	0.622	0.671	0.66
	BLEU2VEC	0.439	0.429	0.590	0.386	0.489	0.529	0.52
	NGRAM2VEC	0.436	0.435	0.582	0.383	0.490	0.538	0.52
	$P_{\text{BERT-Base}}$	0.625	0.659	0.808	0.688	0.698	0.713	0.67
	$R_{\text{BERT-Base}}$	0.653	0.645	0.782	0.662	0.678	0.716	0.71
	$F_{\text{BERT-Base}}$	0.654	0.671	0.811	0.692	0.707	0.731	0.71
	$P_{\text{BERT-Base}}$ (idf)	0.626	0.668	0.819	0.708	0.719	0.702	0.66
	$R_{\text{BERT-Base}}$ (idf)	0.652	0.658	0.789	0.678	0.696	0.703	0.71
	$F_{\text{BERT-Base}}$ (idf)	0.657	0.680	0.823	0.712	0.725	0.718	0.71
	P _{BERT-Base-MRPC}	0.599 0.613	0.630 0.620	0.788 0.754	0.657 0.616	0.659 0.650	0.710 0.685	0.68 0.70
	RBERT-Base-MRPC	0.613	0.620	0.792	0.616	0.630	0.085	0.70
	F _{BERT-Base-MRPC}			0.792	0.680		0.717	0.68
	P _{BERT-Base-MRPC} (1df)	0.609	0.630			0.676		
	R _{BERT-Base-MRPC} (idf)	0.611	0.628	0.759	0.633	0.665	0.687	0.70
I	$F_{\text{BERT-Base-MRPC}}$ (idf)	0.633	0.649	0.803	0.678	0.690	0.719	0.71
	$P_{\text{BERT-Large}}$	0.638	0.685	0.816	0.717	0.719	0.746	0.69
	$R_{\text{BERT-Large}}$	0.661	0.676	0.782	0.693	0.705	0.744	0.73
	$F_{\text{BERT-Large}}$	0.666	0.701	0.814	0.723	0.730	0.760	0.73
	P _{BERT-Large} (idf)	0.644	0.692	0.827	0.728	0.729	0.734	0.68
	$R_{\text{BERT-Large}}$ (idf)	0.665	0.686	0.796	0.712	0.729	0.733	0.73
	$F_{\text{BERT-Large}}$ (idf)	0.671	0.707	0.829	0.738	0.745	0.746	0.72
	-	0.639	0.663	0.801	0.689	0.688	0.700	0.70
	P _{RoBERTa-Base}	0.648	0.652	0.768	0.651	0.669	0.684	0.73
	R _{RoBERTa-Base}	0.675	0.683	0.818	0.693	0.707	0.718	0.74
	$F_{ m RoBERTa-Base}$ $P_{ m RoBERTa-Base}$ (idf)		0.655	0.804	0.702	0.711	0.707	0.70
		0.629						
	$R_{\text{RoBERTa-Base}}$ (idf)	0.652	0.646	0.773	0.667	0.676	0.689	0.73
	$R_{\text{RoBERTa-Base}}$ (idf) $F_{\text{RoBERTa-Base}}$ (idf)	0.652 0.673	0.646 0.673	0.773 0.823	0.667 0.708	0.676 0.719	0.689 0.721	0.73 0.73
Pre-Trained	$\frac{R_{\text{RoBERTa-Base}} \text{ (idf)}}{F_{\text{RoBERTa-Base}} \text{ (idf)}}$ $\frac{P_{\text{RoBERTa-Large}}}{P_{\text{RoBERTa-Large}}}$	0.652 0.673	0.646 0.673 0.724	0.773 0.823 0.811	0.667 0.708 0.743	0.676 0.719 0.727	0.689 0.721 0.720	0.73 0.73 0.74
Pre-Trained	$\frac{R_{\rm RoBERTa-Base} (\rm idf)}{F_{\rm RoBERTa-Base} (\rm idf)}$ $\frac{P_{\rm RoBERTa-Large}}{R_{\rm RoBERTa-Large}}$	0.652 0.673 0.658 0.685	0.646 0.673 0.724 0.714	0.773 0.823 0.811 0.778	0.667 0.708 0.743 0.711	0.676 0.719 0.727 0.718	0.689 0.721 0.720 0.713	0.73 0.73 0.74 0.75
Pre-Trained	$\frac{R_{\rm RoBERTa-Base} (idf)}{F_{\rm RoBERTa-Base} (idf)}$ $\frac{P_{\rm RoBERTa-Large}}{R_{\rm RoBERTa-Large}}$ $F_{\rm RoBERTa-Large}$	0.652 0.673 0.658 0.685 0.710	0.646 0.673 0.724 0.714 0.745	0.773 0.823 0.811 0.778 0.833	0.667 0.708 0.743 0.711 0.756	0.676 0.719 0.727 0.718 0.746	0.689 0.721 0.720 0.713 0.751	0.73 0.73 0.74 0.75 0.77
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} ~({\rm idf}) \\ F_{\rm RoBERTa-Base} ~({\rm idf}) \\ \hline \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ P_{\rm RoBERTa-Large} ~({\rm idf}) \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644	0.646 0.673 0.724 0.714 0.745 0.721	0.773 0.823 0.811 0.778 0.833 0.815	0.667 0.708 0.743 0.711 0.756 0.740	0.676 0.719 0.727 0.718 0.746 0.734	0.689 0.721 0.720 0.713 0.751 0.736	0.73 0.73 0.74 0.75 0.77 0.73
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Base} \ ({\rm idf}) \\ \end{array} \\ \hline R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683	0.646 0.673 0.724 0.714 0.745 0.721 0.705	0.773 0.823 0.811 0.778 0.833 0.815 0.783	0.667 0.708 0.743 0.711 0.756 0.740 0.718	0.676 0.719 0.727 0.718 0.746 0.734 0.720	0.689 0.721 0.720 0.713 0.751 0.736 0.726	0.73 0.73 0.74 0.75 0.77 0.73 0.75
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} ~({\rm idf}) \\ F_{\rm RoBERTa-Base} ~({\rm idf}) \\ \hline \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ P_{\rm RoBERTa-Large} ~({\rm idf}) \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644	0.646 0.673 0.724 0.714 0.745 0.721	0.773 0.823 0.811 0.778 0.833 0.815	0.667 0.708 0.743 0.711 0.756 0.740	0.676 0.719 0.727 0.718 0.746 0.734	0.689 0.721 0.720 0.713 0.751 0.736	0.73 0.73 0.74 0.75 0.77 0.73 0.75
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Base} \ ({\rm idf}) \\ \hline \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \hline \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \hline \\ F_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \hline \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683	0.646 0.673 0.724 0.714 0.745 0.721 0.705	0.773 0.823 0.811 0.778 0.833 0.815 0.783	0.667 0.708 0.743 0.711 0.756 0.740 0.718	0.676 0.719 0.727 0.718 0.746 0.734 0.720	0.689 0.721 0.720 0.713 0.751 0.736 0.726	0.73 0.73 0.74 0.75 0.77 0.73 0.75 0.75
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Base} \ ({\rm idf}) \\ \end{array} \\ \hline R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.838	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761	0.676 0.719 0.727 0.718 0.746 0.734 0.720 0.752	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764	0.73 0.73 0.74 0.75 0.77 0.73 0.75 0.76
Pre-Trained	$\frac{R_{\rm RoBERTa-Base} (\rm idf)}{F_{\rm RoBERTa-Base} (\rm idf)}$ $\frac{P_{\rm RoBERTa-Large}}{R_{\rm RoBERTa-Large}}$ $\frac{F_{\rm RoBERTa-Large}}{F_{\rm RoBERTa-Large} (\rm idf)}$ $\frac{P_{\rm RoBERTa-Large} (\rm idf)}{F_{\rm RoBERTa-Large} (\rm idf)}$ $\frac{P_{\rm RoBERTa-Large} (\rm idf)}{F_{\rm RoBERTa-Large} (\rm idf)}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.838 0.822	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761 0.764	0.676 0.719 0.727 0.718 0.746 0.734 0.720 0.752 0.741	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754	0.73 0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.73 0.73
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} ~ ({\rm idf}) \\ \hline R_{\rm RoBERTa-Base} ~ ({\rm idf}) \\ \hline R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ \hline R_{\rm RoBERTa-Large} \\ \hline R_{\rm RoBERTa-Large} ~ ({\rm idf}) \\ \hline R_{\rm RoBERTa-Large} ~ ({\rm idf}) \\ \hline R_{\rm RoBERTa-Large} ~ ({\rm idf}) \\ \hline R_{\rm RoBERTa-Large-MNLI} \\ \hline R_{\rm RoBERTa-Large-MNLI} \\ \hline R_{\rm RoBERTa-Large-MNLI} \\ \hline R_{\rm ROBERTa-Large-MNLI} \\ \hline \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.725	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.838 0.822 0.785	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761 0.764 0.732	0.676 0.719 0.727 0.718 0.746 0.734 0.720 0.752 0.741 0.741	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.750	0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Base} \ ({\rm idf}) \\ \hline \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \hline \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \hline \\ F_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \hline \\ \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \hline \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \hline \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \hline \\ \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \hline \\ \\ R_{\rm RoBERTa-Large-MNLI} \\ \hline \\ \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.725 0.747	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.838 0.822 0.785 0.822	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761 0.764 0.732 0.764	0.676 0.719 0.727 0.718 0.746 0.734 0.720 0.752 0.741 0.741 0.758	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.750 0.767	0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.73 0.76 0.76 0.73
Pre-Trained	R _{ROBERTa-Base} (idf) F _{ROBERTa-Base} (idf) P _{ROBERTa-Large} R _{ROBERTa-Large} F _{ROBERTa-Large} (idf) R _{ROBERTa-Large} MILI R _{ROBERTa-Large} - MNLI R _{ROBERTa-Large} - MNLI R _{ROBERTa-Large} - MNLI	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722 0.686	0.646 0.673 0.724 0.714 0.721 0.721 0.705 0.737 0.736 0.725 0.747 0.733	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.838 0.822 0.785 0.822 0.785 0.822 0.836	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761 0.764 0.732 0.764 0.772	0.676 0.719 0.727 0.718 0.746 0.734 0.720 0.752 0.741 0.741 0.741 0.758 0.760	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.750 0.767 0.767	0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.73 0.76 0.73 0.76 0.73 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722 0.686 0.697 0.714	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.725 0.747 0.733 0.717 0.734	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.838 0.822 0.785 0.822 0.785 0.822 0.836 0.796 0.835	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761 0.764 0.732 0.764 0.772 0.741 0.774	0.676 0.719 0.727 0.718 0.746 0.734 0.720 0.752 0.741 0.741 0.741 0.758 0.760 0.753 0.773	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.750 0.767 0.767 0.767 0.757 0.776	0.73 0.74 0.75 0.75 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\frac{R_{\rm RoBERTa-Base} (\rm idf)}{F_{\rm RoBERTa-Large}}$ $\frac{P_{\rm RoBERTa-Large}}{F_{\rm RoBERTa-Large}}$ $\frac{P_{\rm RoBERTa-Large} (\rm idf)}{R_{\rm RoBERTa-Large} (\rm idf)}$ $\frac{P_{\rm RoBERTa-Large} (\rm idf)}{F_{\rm RoBERTa-Large} (\rm idf)}$ $\frac{P_{\rm RoBERTa-Large} (\rm idf)}{F_{\rm RoBERTa-Large} (\rm idf)}$ $\frac{P_{\rm RoBERTa-Large-MNLI}}{F_{\rm RoBERTa-Large-MNLI}}$ $\frac{P_{\rm RoBERTa-Large-MNLI}}{F_{\rm RoBERTa-Large-MNLI} (\rm idf)}$ $\frac{P_{\rm XLNET-Base}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.706 0.706 0.706 0.722 0.686 0.697 0.714 0.595	0.646 0.673 0.724 0.714 0.745 0.705 0.737 0.736 0.725 0.747 0.733 0.717 0.740	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.838 0.838 0.822 0.785 0.822 0.836 0.796 0.835 0.779	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761 0.764 0.732 0.764 0.772 0.741 0.774	0.676 0.719 0.727 0.718 0.746 0.734 0.720 0.752 0.741 0.758 0.760 0.753 0.773 0.626	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.750 0.767 0.767 0.767 0.767 0.767 0.776	0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ idf) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \\ r_{\rm RoBERTa-Large} \\ r_{\rm RoBERTa-Large-MNLI} \\ idf) \\ R_{\rm RoBERTa-Large-MNLI} \\ r_{\rm ROBERTA-LARGE} \\ r_{\rm ROBERTA$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.703 0.703 0.706 0.722 0.686 0.697 0.714 0.595 0.603	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.737 0.733 0.717 0.733 0.717 0.730	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.838 0.838 0.838 0.822 0.785 0.822 0.785 0.822 0.836 0.796 0.835 0.779 0.746	0.667 0.708 0.743 0.711 0.756 0.740 0.740 0.761 0.764 0.772 0.764 0.772 0.741 0.774 0.774	0.676 0.719 0.727 0.718 0.746 0.734 0.740 0.752 0.741 0.741 0.741 0.753 0.760 0.753 0.773 0.626 0.624	0.689 0.721 0.720 0.713 0.751 0.736 0.764 0.764 0.767 0.767 0.767 0.767 0.767 0.767 0.767	0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} \ ({\rm idf}) \\ \end{array} \\ \begin{array}{c} P_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ \end{array} \\ \begin{array}{c} P_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ \end{array} \\ \begin{array}{c} P_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ \end{array} \\ \begin{array}{c} P_{\rm XLNET-Base} \\ R_{\rm XLNET-Base} \\ F_{\rm XLNET-Base} \\ \end{array} \\ \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722 0.686 0.697 0.714 0.595 0.603 0.610	0.646 0.673 0.724 0.714 0.725 0.721 0.705 0.737 0.736 0.725 0.747 0.733 0.717 0.740 0.579 0.560 0.580	0.773 0.823 0.811 0.778 0.813 0.815 0.783 0.833 0.833 0.822 0.785 0.822 0.785 0.822 0.785 0.822 0.796 0.835 0.779 0.746 0.775	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761 0.764 0.732 0.764 0.772 0.764 0.772 0.741 0.774 0.632	0.676 0.719 0.727 0.718 0.746 0.734 0.720 0.752 0.741 0.741 0.741 0.758 0.760 0.753 0.773 0.626 0.624 0.639	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.750 0.767 0.767 0.767 0.767 0.767 0.776 0.776 0.688 0.689 0.700	0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ idf) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} \ ({\rm idf}) \\ r_{\rm RoBERTa-Large} \ ({\rm idf}) \\ idf) \\ R_{\rm RoBERTa-Large-MNLI} \\ F_{\rm RoBERTa-Large-MNLI} \\ idf) \\ F_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ F_{\rm ROBERTA-Large-MNLI}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722 0.686 0.697 0.714 0.714 0.595 0.603 0.610 0.616	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.736 0.733 0.717 0.733 0.717 0.730 0.579 0.560 0.580 0.603	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.838 0.822 0.785 0.822 0.785 0.822 0.785 0.822 0.796 0.835 0.796 0.779 0.746 0.775 0.795	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761 0.764 0.764 0.764 0.764 0.764 0.772 0.764 0.772 0.741 0.774 0.632 0.665	0.676 0.719 0.727 0.718 0.746 0.734 0.720 0.752 0.741 0.753 0.741 0.753 0.760 0.753 0.773 0.624 0.639 0.659	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.750 0.767 0.767 0.767 0.767 0.776 0.688 0.689 0.700 0.693	0.733 0.744 0.755 0.777 0.733 0.755 0.766 0.733 0.766 0.730 0.766 0.730 0.766 0.730 0.766 0.730 0.766 0.730 0.766 0.730 0.746 0.755 0.766 0.765 0.765 0.776 0.775 0.776 0.775 0.776 0.775 0.776 0.775 0.776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.77776 0.7776 0.77776 0.77776 0.77776 0.77776 0.77776 0.77776 0.77776 0.77776 0.77776 0.77776 0.777776 0.7777777777
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} - {\rm MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ \\ R_{\rm ROBERTa-Large-MNLI} \ ({\rm idf}) \\ \\ R_{\rm ROBERTa-Large-MNLI} \ ({\rm idf}) \\ \\ \hline \\ R_{\rm NLNET-Base} \\ F_{\rm XLNET-Base} \\ R_{\rm XLNET-Base} \\ \\ R_{\rm XLNET-Base} \ ({\rm idf}) \\ \\ \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722 0.686 0.697 0.714 0.595 0.603 0.610 0.616 0.614	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.736 0.737 0.733 0.717 0.733 0.717 0.733 0.717 0.740 0.579 0.580 0.603 0.603 0.583	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.822 0.785 0.822 0.785 0.822 0.785 0.822 0.796 0.796 0.796 0.775 0.775 0.775 0.765	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761 0.764 0.764 0.764 0.764 0.764 0.764 0.772 0.764 0.772 0.741 0.774 0.632 0.665 0.665 0.660	0.676 0.719 0.727 0.718 0.746 0.734 0.720 0.752 0.741 0.752 0.741 0.753 0.760 0.753 0.760 0.753 0.773 0.626 0.624 0.639 0.659 0.648	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.776 0.688 0.689 0.700 0.693 0.697	0.7330 0.744 0.755 0.776 0.777 0.735 0.766 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.775 0.776 0.755 0.775 0.775 0.755 0.775 0.755 0.755 0.775 0.755 0.755 0.775 0.756 0.755 0.755 0.755 0.756 0.755 0.755 0.756 0.755 0.756 0.755 0.756 0.755 0.756 0.755 0.756 0.755 0.756 0.755 0.756 0.755 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.766
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Base} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ idf) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ F_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large} \ ({\rm idf}) \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \ ({\rm idf}) \\ R_{\rm ROBERTA-Large-MNLI} \ ({\rm $	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722 0.686 0.697 0.714 0.595 0.603 0.610 0.616 0.614 0.627	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.735 0.737 0.736 0.733 0.717 0.733 0.717 0.740 0.579 0.560 0.603 0.603 0.583 0.603	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.838 0.822 0.785 0.822 0.785 0.822 0.836 0.796 0.835 0.779 0.746 0.775 0.795 0.765 0.795	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761 0.764 0.764 0.764 0.764 0.772 0.764 0.772 0.741 0.774 0.632 0.665 0.665 0.660 0.663	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.746\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.741\\ 0.758\\ 0.760\\ 0.753\\ \textbf{0.760}\\ 0.753\\ \textbf{0.773}\\ \textbf{0.626}\\ 0.624\\ 0.639\\ 0.659\\ 0.648\\ 0.665\\ \end{array}$	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.688 0.689 0.700 0.693 0.697 0.707	0.733 0.74 0.755 0.777 0.733 0.755 0.766 0.733 0.766 0.733 0.766 0.733 0.766 0.733 0.766 0.733 0.766 0.736 0.766 0.736 0.766 0.736 0.766 0.745 0.755 0.776 0.775 0.775 0.776 0.775 0.776 0.775 0.776 0.775 0.776 0.775 0.776 0.775 0.776 0.775 0.776 0.775 0.776 0.775 0.776 0.775 0.776 0.777 0.776 0.776 0.777 0.776 0.777 0.776 0.777 0.776 0.777 0.776 0.777 0.776 0.777 0.777 0.777 0.777 0.777 0.777 0.7770 0.7770 0.77700000000
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ (\mathrm{idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large} \ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \\ R_{\rm XLNET-Base} \\ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ F_{\rm XLNET-Base} \ (\mathrm{idf}) \\ \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722 0.686 0.697 0.714 0.595 0.603 0.610 0.616 0.614 0.627	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.725 0.737 0.736 0.725 0.747 0.733 0.717 0.740 0.579 0.560 0.583 0.583 0.583 0.583 0.583 0.583	0.773 0.823 0.811 0.778 0.833 0.815 0.783 0.838 0.822 0.785 0.822 0.785 0.822 0.785 0.796 0.796 0.796 0.795 0.795	0.667 0.708 0.743 0.711 0.756 0.740 0.718 0.761 0.764 0.732 0.764 0.732 0.764 0.732 0.741 0.772 0.741 0.774 0.632 0.617 0.665 0.6663 0.6648	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.746\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.741\\ 0.753\\ 0.760\\ 0.753\\ \textbf{0.773}\\ \textbf{0.626}\\ 0.624\\ 0.639\\ 0.668\\ 0.6648\\ 0.665\\ \hline 0.648\\ 0.665\\ \hline \end{array}$	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.750 0.767 0.757 0.767 0.767 0.757 0.776 0.688 0.689 0.700 0.693 0.697 0.707 0.694	0.73 0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.76 0.73 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} ~ (\mathrm{idf}) \\ F_{\rm RoBERTa-Base} ~ (\mathrm{idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large} \\ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large} \\ (\mathrm{idf}) \\ F_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ (\mathrm{idf}) \\ R_{\rm ROBERTa-Large-MNLI} \\ R_{\rm XLNET-Base} \\ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \\ R_{\rm XLNET-Base} \\ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \\ R_{\rm XLNET-Base}$	0.652 0.673 0.658 0.685 0.685 0.710 0.644 0.683 0.703 0.706 0.722 0.686 0.697 0.714 0.595 0.603 0.610 0.616 0.614 0.622	0.646 0.673 0.724 0.745 0.721 0.705 0.737 0.736 0.725 0.747 0.733 0.717 0.747 0.733 0.717 0.560 0.580 0.580 0.603 0.583 0.603 0.622 0.601	0.773 0.823 0.811 0.783 0.815 0.783 0.838 0.838 0.838 0.838 0.838 0.838 0.785 0.785 0.796 0.796 0.795 0.795 0.795 0.795 0.795	0.667 0.708 0.743 0.711 0.756 0.740 0.740 0.740 0.764 0.732 0.764 0.742 0.741 0.772 0.617 0.636 0.665 0.640 0.665 0.648 0.628	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.746\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.758\\ 0.760\\ 0.753\\ \textbf{0}.773\\ \textbf{0}.773\\ \textbf{0}.626\\ 0.624\\ 0.639\\ 0.648\\ 0.665\\ \textbf{0}.648\\ 0.645\\ \end{array}$	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.7069 0.688 0.689 0.700 0.693 0.697 0.700	0.733 0.74 0.755 0.777 0.733 0.755 0.76 0.73 0.766 0.73 0.766 0.73 0.766 0.73 0.766 0.73 0.766 0.73 0.766 0.73 0.766 0.73 0.766 0.73 0.766 0.73 0.745 0.745 0.745 0.745 0.745 0.776 0.775 0.776 0.775 0.776 0.775 0.776 0.775 0.776 0.776 0.776 0.775 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.766 0.776 0.766 0.776 0.766 0.776 0.766 0.766 0.766 0.776 0.766 0.766 0.766 0.776 0.766 0.776 0.766 0.776 0.766 0.776 0.766 0.776 0.766 0.777 0.766 0.777 0.766 0.767 0.766 0.777 0.766 0.777 0.766 0.777 0.766 0.777 0.766 0.777 0.766 0.777 0.766 0.777 0.766 0.777 0.766 0.777 0.776 0.777 0.776 0.777 0.776 0.777 0.776 0.777 0.776 0.777 0.776 0.777 0.777 0.776 0.777 0.777 0.776 0.7770 0.7770 0.7770 0.7770 0.7770 0.7770 0.77700 0.77700000000
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ (\mathrm{idf}) \\ F_{\rm RoBERTa-Base} \ (\mathrm{idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large} \ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large} \ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Large} \\ R_$	0.652 0.673 0.658 0.685 0.700 0.644 0.683 0.703 0.694 0.706 0.722 0.686 0.697 0.714 0.595 0.603 0.610 0.616 0.614 0.627 0.622 0.635	0.646 0.673 0.724 0.745 0.721 0.705 0.737 0.736 0.736 0.733 0.717 0.740 0.579 0.580 0.580 0.583 0.603 0.603 0.622 0.601 0.627	0.773 0.823 0.811 0.783 0.815 0.783 0.838 0.838 0.838 0.822 0.785 0.796 0.796 0.796 0.775 0.795 0.795 0.795 0.795 0.795 0.795 0.794	0.667 0.708 0.743 0.711 0.756 0.740 0.740 0.718 0.761 0.764 0.732 0.764 0.772 0.741 0.774 0.632 0.617 0.636 0.665 0.640 0.663 0.628 0.654	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.746\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.741\\ 0.753\\ 0.760\\ 0.753\\ 0.760\\ 0.753\\ 0.760\\ 0.624\\ 0.639\\ 0.626\\ 0.624\\ 0.639\\ 0.655\\ 0.664\\ 0.664\\ \end{array}$	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.688 0.689 0.700 0.693 0.697 0.707 0.707	0.73 0.73 0.74 0.75 0.77 0.75 0.77 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ (\mathrm{idf}) \\ F_{\rm RoBERTa-Base} \ (\mathrm{idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \ (\mathrm{idf}) \\ R_{\rm NLNET-Base} \ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Large} \\ R_{\rm X$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722 0.686 0.697 0.714 0.595 0.603 0.610 0.614 0.627 0.620 0.622 0.635	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.737 0.733 0.717 0.733 0.717 0.740 0.579 0.560 0.583 0.603 0.583 0.603 0.622 0.601 0.627 0.633	0.773 0.823 0.811 0.778 0.815 0.783 0.815 0.783 0.822 0.785 0.822 0.785 0.822 0.796 0.796 0.796 0.775 0.795 0.795 0.795 0.795 0.795 0.795 0.796 0.798 0.794 0.808	$\begin{array}{c} 0.667\\ 0.708\\ 0.743\\ 0.711\\ 0.756\\ 0.740\\ 0.718\\ \textbf{0.761}\\ 0.764\\ 0.732\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.772}\\ 0.741\\ \textbf{0.774}\\ \textbf{0.632}\\ 0.617\\ 0.636\\ 0.665\\ 0.640\\ 0.663\\ 0.668\\ 0.628\\ 0.654\\ 0.673\\ \end{array}$	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.740\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.741\\ 0.758\\ 0.760\\ 0.753\\ 0.760\\ 0.753\\ 0.760\\ 0.626\\ 0.629\\ 0.664\\ 0.665\\ 0.664\\ 0.665\\ 0.664\\ 0.665\\ \end{array}$	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.688 0.689 0.700 0.693 0.697 0.707 0.684 0.684 0.705 0.688	0.73 0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.73 0.75 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.76 0.73 0.76 0.76 0.76 0.73 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ (\mathrm{idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large} \ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \ (\mathrm{idf}) \\ R_{\rm RUNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Large} \\ R_{\rm XLNET-Large} \\ R_{\rm XLNET-Large} \\ R_{\rm XLNET-Large} \ (\mathrm{idf}) \\ \end{array}$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722 0.686 0.697 0.714 0.595 0.603 0.610 0.614 0.627 0.620 0.622 0.635 0.635 0.635 0.625	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.737 0.736 0.737 0.736 0.737 0.736 0.747 0.733 0.717 0.740 0.579 0.560 0.603 0.603 0.603 0.603 0.603 0.622 0.601 0.627 0.633 0.611	0.773 0.823 0.811 0.778 0.835 0.815 0.783 0.822 0.783 0.822 0.785 0.822 0.785 0.822 0.785 0.822 0.796 0.796 0.795 0.795 0.795 0.795 0.795 0.795 0.796 0.796 0.796 0.796 0.796 0.796	$\begin{array}{c} 0.667\\ 0.708\\ 0.743\\ 0.711\\ 0.756\\ 0.740\\ 0.718\\ \textbf{0.761}\\ \textbf{0.764}\\ 0.764\\ 0.732\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.772}\\ 0.636\\ 0.665\\ 0.640\\ 0.663\\ \textbf{0.648}\\ 0.628\\ 0.654\\ 0.673\\ 0.646\\ \end{array}$	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.740\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.741\\ 0.753\\ 0.760\\ 0.753\\ 0.760\\ 0.753\\ 0.760\\ 0.624\\ 0.639\\ 0.648\\ 0.665\\ 0.648\\ 0.645\\ 0.648\\ 0.645\\ 0.664\\ 0.672\\ 0.661\\ \end{array}$	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.7693 0.688 0.689 0.700 0.694 0.684 0.705 0.688 0.682	0.73 0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.73 0.75 0.76 0.76 0.73 0.76 0.76 0.73 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ (\mathrm{idf}) \\ F_{\rm RoBERTa-Base} \ (\mathrm{idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \ (\mathrm{idf}) \\ R_{\rm NLNET-Base} \ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Large} \\ R_{\rm X$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722 0.686 0.697 0.714 0.595 0.603 0.610 0.614 0.627 0.620 0.622 0.635	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.737 0.733 0.717 0.733 0.717 0.740 0.579 0.560 0.583 0.603 0.583 0.603 0.622 0.601 0.627 0.633	0.773 0.823 0.811 0.778 0.815 0.783 0.815 0.783 0.822 0.785 0.822 0.785 0.822 0.796 0.796 0.796 0.775 0.795 0.795 0.795 0.795 0.795 0.795 0.796 0.798 0.794 0.808	$\begin{array}{c} 0.667\\ 0.708\\ 0.743\\ 0.711\\ 0.756\\ 0.740\\ 0.718\\ \textbf{0.761}\\ 0.764\\ 0.732\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.772}\\ 0.741\\ \textbf{0.774}\\ \textbf{0.632}\\ 0.617\\ 0.636\\ 0.665\\ 0.640\\ 0.663\\ 0.668\\ 0.628\\ 0.654\\ 0.673\\ \end{array}$	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.740\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.741\\ 0.758\\ 0.760\\ 0.753\\ 0.760\\ 0.753\\ 0.760\\ 0.626\\ 0.629\\ 0.664\\ 0.665\\ 0.664\\ 0.665\\ 0.664\\ 0.665\\ \end{array}$	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.688 0.689 0.700 0.693 0.697 0.707 0.684 0.684 0.705 0.688	0.73 0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.73 0.75 0.76 0.76 0.73 0.76 0.76 0.73 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \ (\mathrm{idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large} \ (\mathrm{idf}) \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \\ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Base} \ (\mathrm{idf}) \\ R_{\rm XLNET-Large} \\ R_{\rm XLNET-Large} \\ R_{\rm XLNET-Large} \\ R_{\rm XLNET-Large} \ (\mathrm{idf}) $	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.706 0.722 0.686 0.697 0.714 0.595 0.603 0.610 0.616 0.614 0.627 0.622 0.635 0.635 0.635 0.635 0.626 0.646	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.737 0.736 0.737 0.733 0.717 0.733 0.717 0.740 0.579 0.560 0.603 0.603 0.603 0.603 0.603 0.603 0.603 0.622 0.633 0.611 0.636	0.773 0.823 0.811 0.778 0.835 0.815 0.783 0.822 0.785 0.822 0.785 0.822 0.785 0.822 0.785 0.822 0.785 0.822 0.796 0.796 0.796 0.795 0.795 0.795 0.795 0.795 0.795 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.795 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.796 0.795 0.795 0.795 0.796	$\begin{array}{c} 0.667\\ 0.708\\ 0.743\\ 0.711\\ 0.756\\ 0.740\\ 0.718\\ \textbf{0.761}\\ 0.764\\ 0.732\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.772}\\ 0.636\\ 0.665\\ 0.640\\ 0.663\\ 0.663\\ 0.648\\ 0.673\\ 0.646\\ 0.675\\ \end{array}$	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.746\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.741\\ 0.753\\ 0.760\\ 0.753\\ 0.760\\ 0.753\\ 0.760\\ 0.624\\ 0.669\\ 0.648\\ 0.665\\ 0.648\\ 0.665\\ 0.648\\ 0.665\\ 0.664\\ 0.672\\ 0.661\\ 0.682\\ \end{array}$	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.769 0.688 0.689 0.700 0.693 0.697 0.707 0.694 0.688 0.682 0.705	0.73 0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.75 0.76 0.73 0.75 0.76 0.73 0.75 0.76 0.73 0.75 0.76 0.73 0.75 0.76 0.73 0.75 0.76 0.73 0.75 0.76 0.76 0.73 0.75 0.76 0.76 0.73 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \mbox{ (idf)}\\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \mbox{ (idf)} \\ R_{\rm RoBERTa-Large} \mbox{ (idf)} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \mbox{ (idf)} \\ R_{\rm XLNET-Base} \mbox{ (idf)} \\ R_{\rm XLNET-Large} \mbox{ (idf)} \\ R_{\rm XLMET-Large} (i$	0.652 0.673 0.658 0.685 0.685 0.710 0.644 0.683 0.703 0.703 0.706 0.706 0.702 0.686 0.697 0.714 0.595 0.603 0.610 0.616 0.614 0.627 0.622 0.635 0.622 0.635 0.626 0.635 0.622 0.635 0.626 0.635	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.735 0.725 0.733 0.717 0.733 0.717 0.733 0.717 0.560 0.580 0.580 0.603 0.583 0.603 0.622 0.601 0.627 0.633 0.611 0.633	0.773 0.823 0.811 0.783 0.815 0.783 0.838 0.838 0.838 0.838 0.785 0.785 0.795 0.746 0.775 0.795 0.795 0.795 0.795 0.796 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.795	$\begin{array}{c} 0.667\\ 0.708\\ 0.743\\ 0.711\\ 0.756\\ 0.740\\ 0.718\\ \textbf{0.761}\\ \textbf{0.761}\\ 0.764\\ \textbf{0.732}\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.774}\\ \textbf{0.774}\\ \textbf{0.764}\\ \textbf{0.632}\\ 0.617\\ 0.636\\ 0.663\\ 0.663\\ \textbf{0.648}\\ 0.628\\ 0.654\\ 0.673\\ 0.646\\ 0.675\\ \textbf{0.631}\\ \end{array}$	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.746\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.758\\ 0.760\\ 0.753\\ 0.773\\ 0.773\\ 0.773\\ 0.626\\ 0.624\\ 0.639\\ 0.648\\ 0.665\\ 0.664\\ 0.665\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.672\\ 0.664\\ 0.662\\ 0.662\\ 0.664\\ 0.662\\ 0.662\\ 0.662\\ 0.662\\ 0.662\\ 0.662\\ 0.662\\ 0.662\\ 0.662\\ 0.662\\ 0.662\\ 0.$	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.777 0.777 0.688 0.689 0.700 0.693 0.707 0.707 0.707 0.694 0.684 0.705 0.682 0.700 0.672	0.73 0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.73 0.76 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.75 0.76 0.73 0.75 0.76 0.73 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \mbox{ (idf)}\\ F_{\rm RoBERTa-Large} \mbox{ (idf)}\\ F_{\rm RoBERTa-Large} \mbox{ (idf)}\\ R_{\rm RoBERTa-Large} \mbox{ (idf)}\\ R_{\rm RoBERTa-Large} \mbox{ (idf)}\\ R_{\rm RoBERTa-Large} \mbox{ (idf)}\\ F_{\rm RoBERTa-Large} \mbox{ (idf)}\\ R_{\rm RoBERTa-Large-MNLI} \mbox{ (idf)}\\ R_{\rm XLNET-Base} \mbox{ (idf)}\\ R_{\rm XLNET-Base} \mbox{ (idf)}\\ R_{\rm XLNET-Base} \mbox{ (idf)}\\ R_{\rm XLNET-Base} \mbox{ (idf)}\\ R_{\rm XLNET-Large} \mbox{ (idf)}\\ R_{\rm XLMET-Large} \mbox{ (idf)}\\ R_{\rm X$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.706 0.722 0.686 0.697 0.714 0.697 0.714 0.695 0.603 0.610 0.616 0.612 0.622 0.635 0.622 0.635 0.622 0.635 0.626 0.646 0.565 0.592	0.646 0.673 0.724 0.745 0.721 0.705 0.737 0.736 0.725 0.747 0.733 0.717 0.740 0.579 0.560 0.603 0.603 0.603 0.603 0.603 0.622 0.601 0.627 0.633 0.611 0.633 0.634 0.594 0.586	0.773 0.823 0.811 0.778 0.815 0.783 0.815 0.783 0.822 0.785 0.796 0.796 0.796 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.796 0.794 0.808 0.770 0.808 0.770 0.808	$\begin{array}{c} 0.667\\ 0.708\\ 0.743\\ 0.711\\ 0.756\\ 0.740\\ 0.718\\ \textbf{0.761}\\ \textbf{0.764}\\ 0.764\\ 0.772\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.772}\\ 0.741\\ \textbf{0.774}\\ \textbf{0.632}\\ 0.665\\ 0.665\\ 0.665\\ 0.665\\ 0.665\\ 0.665\\ 0.664\\ 0.673\\ 0.664\\ 0.673\\ 0.631\\ 0.618\\ \end{array}$	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.740\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.741\\ 0.741\\ 0.753\\ 0.760\\ 0.753\\ 0.760\\ 0.753\\ 0.773\\ 0.626\\ 0.624\\ 0.639\\ 0.648\\ 0.665\\ 0.664\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.649\\ 0.647\\ 0.668\\ 0.647\\ 0.668\\ 0.647\\ 0.672\\ 0.668\\ 0.647\\ 0.672\\ 0.668\\ 0.$	0.689 0.721 0.720 0.713 0.754 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.693 0.693 0.693 0.697 0.700 0.694 0.688 0.688 0.700 0.694 0.688 0.682 0.700	0.73 0.73 0.74 0.75 0.76 0.77 0.73 0.75 0.76 0.73 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} (\mathrm{idf}) \\ F_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ R_{\rm RoBERTa-Large} \\ F_{\rm RoBERTa-Large} \\ \mathrm{idf}) \\ R_{\rm RoBERTa-Large} (\mathrm{idf}) \\ R_{\rm RoBERTa-Large} (\mathrm{idf}) \\ R_{\rm RoBERTa-Large} (\mathrm{idf}) \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ R_{\rm RoBERTa-Large-MNLI} \\ \mathrm{RoBERTa-Large-MNLI} \\ \mathrm{ROBERTa-Large} \\ \mathrm{RXLNET-Base} \\ \mathrm{RXLNET-Base} \\ \mathrm{RXLNET-Base} \\ \mathrm{RXLNET-Base} \\ \mathrm{RXLNET-Large} \\ RXLNET-Lar$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.694 0.703 0.694 0.702 0.686 0.697 0.714 0.595 0.603 0.610 0.614 0.627 0.620 0.622 0.635 0.635 0.635 0.635 0.626 0.646 0.595	0.646 0.673 0.724 0.714 0.745 0.721 0.705 0.737 0.736 0.737 0.736 0.733 0.717 0.733 0.717 0.740 0.579 0.560 0.583 0.603 0.603 0.603 0.603 0.622 0.601 0.627 0.633 0.627 0.633 0.611 0.594 0.586 0.594	0.773 0.823 0.811 0.778 0.815 0.783 0.815 0.783 0.822 0.785 0.822 0.785 0.822 0.785 0.822 0.796 0.796 0.796 0.775 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.794 0.808 0.770 0.809 0.734 0.768	0.667 0.708 0.743 0.711 0.756 0.740 0.740 0.718 0.761 0.764 0.762 0.764 0.772 0.764 0.772 0.741 0.774 0.632 0.617 0.636 0.665 0.640 0.665 0.640 0.665 0.654 0.654 0.675 0.631 0.611 0.611	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.740\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.741\\ 0.758\\ 0.760\\ 0.753\\ 0.760\\ 0.753\\ 0.760\\ 0.626\\ 0.624\\ 0.639\\ 0.659\\ 0.648\\ 0.665\\ 0.664\\ 0.665\\ 0.664\\ 0.672\\ 0.664\\ 0.662\\ 0.664\\ 0.672\\ 0.664\\ 0.664\\ 0.672\\ 0.664\\ 0.$	0.689 0.721 0.720 0.713 0.751 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.688 0.689 0.700 0.693 0.697 0.707 0.688 0.682 0.705 0.688 0.705 0.688	0.73 0.73 0.74 0.75 0.77 0.73 0.75 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.75 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.76 0.73 0.76 0.73 0.76 0.73 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Pre-Trained	$\begin{array}{c} R_{\rm RoBERTa-Base} \mbox{ (idf)}\\ F_{\rm RoBERTa-Large} \mbox{ (idf)}\\ F_{\rm RoBERTa-Large} \mbox{ (idf)}\\ R_{\rm RoBERTa-Large} \mbox{ (idf)}\\ R_{\rm RoBERTa-Large} \mbox{ (idf)}\\ R_{\rm RoBERTa-Large} \mbox{ (idf)}\\ F_{\rm RoBERTa-Large} \mbox{ (idf)}\\ R_{\rm RoBERTa-Large-MNLI} \mbox{ (idf)}\\ R_{\rm XLNET-Base} \mbox{ (idf)}\\ R_{\rm XLNET-Base} \mbox{ (idf)}\\ R_{\rm XLNET-Base} \mbox{ (idf)}\\ R_{\rm XLNET-Base} \mbox{ (idf)}\\ R_{\rm XLNET-Large} \mbox{ (idf)}\\ R_{\rm XLMET-Large} \mbox{ (idf)}\\ R_{\rm X$	0.652 0.673 0.658 0.685 0.710 0.644 0.683 0.703 0.706 0.722 0.686 0.697 0.714 0.697 0.714 0.695 0.603 0.610 0.616 0.612 0.622 0.635 0.622 0.635 0.622 0.635 0.626 0.646 0.565 0.592	0.646 0.673 0.724 0.745 0.721 0.705 0.737 0.736 0.725 0.747 0.733 0.717 0.740 0.579 0.560 0.603 0.603 0.603 0.603 0.603 0.622 0.601 0.627 0.633 0.611 0.633 0.634 0.594 0.586	0.773 0.823 0.811 0.778 0.815 0.783 0.815 0.783 0.822 0.785 0.796 0.796 0.796 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.796 0.794 0.808 0.770 0.808 0.770 0.808	$\begin{array}{c} 0.667\\ 0.708\\ 0.743\\ 0.711\\ 0.756\\ 0.740\\ 0.718\\ \textbf{0.761}\\ \textbf{0.764}\\ 0.764\\ 0.772\\ 0.764\\ \textbf{0.772}\\ 0.764\\ \textbf{0.772}\\ 0.741\\ \textbf{0.774}\\ \textbf{0.632}\\ 0.665\\ 0.665\\ 0.665\\ 0.665\\ 0.665\\ 0.665\\ 0.664\\ 0.673\\ 0.664\\ 0.673\\ 0.631\\ 0.618\\ \end{array}$	$\begin{array}{c} 0.676\\ 0.719\\ 0.727\\ 0.718\\ 0.740\\ 0.734\\ 0.720\\ 0.752\\ 0.741\\ 0.741\\ 0.758\\ 0.760\\ 0.753\\ 0.760\\ 0.753\\ 0.760\\ 0.753\\ 0.624\\ 0.639\\ 0.648\\ 0.665\\ 0.664\\ 0.664\\ 0.664\\ 0.662\\ 0.664\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.664\\ 0.662\\ 0.649\\ 0.647\\ 0.668\\ 0.648\\ 0.647\\ 0.668\\ 0.648\\ 0.647\\ 0.668\\ 0.648\\ 0.647\\ 0.668\\ 0.648\\ 0.$	0.689 0.721 0.720 0.713 0.754 0.736 0.726 0.764 0.754 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.693 0.693 0.693 0.697 0.700 0.694 0.688 0.688 0.700 0.694 0.688 0.682 0.700	0.73 0.73 0.74 0.75 0.76 0.77 0.73 0.75 0.76 0.73 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76

Table 12: Absolute Pearson correlations with segment-level human judgments on WMT17 to-English translations. Correlations of metrics not significantly outperformed by any other for that language pair are highlighted in bold.

Setting	Metric	en-cs	en-de	en-fi	en-lv	en-ru	en-tr	en-zh
	n	32K	3K	3K	3K	560	247	560
	Correlation	τ	au	au	au	r	au	r
	AUTODA	0.041	0.099	0.204	0.130	0.511	0.409	0.609
	AUTODA-TECTO	0.336	-	-	-	-	-	-
	CHRF	0.376	0.336	0.503	0.420	0.605	0.466	0.608
	CHRF+	0.377	0.325	0.514	0.421	0.609	0.474	-
Unsupervised	CHRF++	0.368	0.328	0.484	0.417	0.604	0.466	0.602
-	MEANT 2.0	-	0.350	-	-	-	-	0.727
	MEANT 2.0-NOSRL	0.395	0.324	0.565	0.425	0.636	0.482	0.705
	SENTBLEU	0.274	0.269	0.446	0.259	0.468	0.377	0.642
	TREEAGGREG	0.361	0.305	0.509	0.383	0.535	0.441	0.566
	BEER	0.398	0.336	0.557	0.420	0.569	0.490	0.622
C	BLEND	-	-	-	-	0.578	-	-
Supervised	BLEU2VEC	0.305	0.313	0.503	0.315	0.472	0.425	-
	NGRAM2VEC	-	-	0.486	0.317	-	-	-
	$P_{BERT-Multi}$	0.412	0.364	0.561	0.435	0.606	0.579	0.759
	$R_{\text{BERT-Multi}}$	0.443	0.430	0.587	0.480	0.663	0.571	0.804
	$F_{\text{BERT-Multi}}$	0.440	0.404	0.587	0.466	0.653	0.587	0.806
	PBERT-Multi (idf)	0.411	0.328	0.568	0.444	0.616	0.555	0.741
	$R_{\text{BERT-Multi}}$ (idf)	0.449	0.416	0.591	0.479	0.665	0.579	0.796
Pre-Trained	F _{BERT-Multi} (idf)	0.447	0.379	0.588	0.470	0.657	0.571	0.793
The Trumba	$P_{\rm XLM-100}$	0.406	0.383	0.553	0.423	0.562	0.611	0.722
	$R_{\rm XLM-100}$	0.446	0.436	0.587	0.458	0.626	0.652	0.779
	$F_{\rm XLM-100}$	0.444	0.424	0.577	0.456	0.613	0.628	0.778
	$P_{\rm XLM-100}$ (idf)	0.419	0.367	0.557	0.427	0.571	0.595	0.719
	$R_{\rm XLM-100}$ (idf)	0.450	0.424	0.592	0.464	0.632	0.644	0.770
	$F_{\rm XLM-100}$ (idf)	0.448	0.419	0.580	0.459	0.617	0.644	0.771

Table 13: Absolute Pearson correlation (|r|) and Kendall correlation (τ) with segment-level human judgments on WMT17 from-English translations. Correlations of metrics not significantly outperformed by any other for that language pair are highlighted in bold.

Setting	Metric	cs-en	de-en	fi-en	lv-en	ru-en	tr-en	zh-ei
	n	4	11	6	9	9	10	16
	BLEU	0.971	0.923	0.903	0.979	0.912	0.976	0.864
	CDER	0.989	0.930	0.927	0.985	0.922	0.973	0.904
	CHARACTER	0.972	0.974	0.946	0.932	0.958	0.949	0.799
	CHRF	0.939	0.968	0.938	0.968	0.952	0.944	0.859
	CHRF++	0.940	0.965	0.927	0.973	0.945	0.960	0.880
	MEANT 2.0	0.926	0.950	0.941	0.970	0.962	0.932	0.838
Unsupervised	MEANT 2.0-NOSRL	0.902	0.936	0.933	0.963	0.960	0.896	0.800
	NIST	1.000	0.931	0.931	0.960	0.912	0.971	0.849
	PER	0.968	0.951	0.896	0.962	0.911	0.932	0.87
	TER TreeAggreg	0.989	0.906 0.920	0.952 0.977	0.971 0.986	0.912 0.918	0.954 0.987	0.842
	UHH_TSKM	0.985	0.920	0.977	0.980	0.918	0.987	0.80
	WER	0.990	0.896	0.921	0.969	0.914	0.987	0.839
	AUTODA	0.438	0.959	0.925	0.973	0.907	0.916	0.734
с · і	BEER	0.972	0.960	0.955	0.978	0.936	0.972	0.902
Supervised	BLEND	0.968	0.976	0.958	0.979	0.964	0.984	0.894
	BLEU2VEC	0.989	0.936	0.888	0.966	0.907	0.961	0.886
	NGRAM2VEC	0.984	0.935	0.890	0.963	0.907	0.955	0.880
	P _{BERT-Base}	0.975	0.936	0.991	0.993	0.918	0.981	0.892
	$R_{\text{BERT-Base}}$	0.995	0.975	0.944	0.978	0.953	0.991	0.975
	F _{BERT-Base}	0.987	0.961	0.979	0.991	0.937	0.991	0.953
	P _{BERT-Base} (idf)	0.983	0.937	0.998	0.992	0.939	0.985	0.87
	$R_{\text{BERT-Base}}$ (idf)	0.997	0.981	0.962	0.968	0.977	0.985	0.949
	F _{BERT-Base} (idf)	0.992	0.967	0.995	0.992	0.960	0.996	0.95
	PBERT-Base-MRPC	0.982	0.926	0.990	0.987	0.916	0.970	0.89
	R _{BERT-Base-MRPC}	0.999	0.979	0.950	0.982	0.957	0.977	0.98
	FBERT-Base-MRPC	0.994	0.957	0.986	0.994	0.938	0.980	0.96
	PBERT-Base-MRPC (idf)	0.989	0.936	0.992	0.979	0.931	0.976	0.892
	R _{BERT-Base-MRPC} (idf)	0.999	0.987	0.962	0.980	0.975	0.979	0.973
	F _{BERT-Base-MRPC} (idf)	0.997	0.968	0.995	0.997	0.956	0.989	0.963
Ì	Parama i	0.981	0.937	0.991	0.996	0.921	0.987	0.905
	P _{BERT-Large}	0.996	0.975	0.953	0.985	0.954	0.992	0.97
	R _{BERT-Large}	0.990	0.960	0.981	0.995	0.934	0.992	0.95
	F _{BERT-Large}	0.986	0.938	0.998	0.995	0.939	0.994	0.89
	$P_{\text{BERT-Large}}$ (idf) $R_{\text{BERT-Large}}$ (idf)	0.997	0.982	0.967	0.979	0.974	0.992	0.966
	$F_{\text{BERT-Large}}$ (idf)	0.994	0.965	0.993	0.995	0.958	0.998	0.959
		0.987	0.930	0.984	0.966	0.916	0.963	0.955
	P _{RoBERTa-Base}	0.987	0.930	0.984	0.900	0.910	0.905	0.95
	R _{RoBERTa-Base}	0.999	0.982	0.947	0.979	0.930	0.980	0.98
	F _{RoBERTa-Base}	0.990	0.938	0.995	0.955	0.929	0.985	0.962
	P _{RoBERTa-Base} (idf)	0.990	0.938	0.963	0.950	0.929	0.986	0.902
	$R_{\text{RoBERTa-Base}}$ (idf) $F_{\text{RoBERTa-Base}}$ (idf)	0.996	0.970	0.999	0.994	0.952	0.989	0.982
Pre-Trained	P _{RoBERTa-Large}	0.989	0.948	0.984	0.949	0.927	0.960	0.96
manied	R _{RoBERTa-Large}	0.998	0.988	0.957	0.983	0.969	0.982	0.984
	F _{RoBERTa-Large}	0.996	0.973	0.997	0.991	0.949	0.984	0.98
	$P_{\text{RoBERTa-Large}}$ (idf)	0.989	0.959	0.975	0.935	0.944	0.968	0.974
	$R_{\text{RoBERTa-Large}}$ (idf)	0.995	0.991	0.962	0.979	0.981	0.981	0.970
	F _{RoBERTa-Large} (idf)	0.996	0.982	0.998	0.991	0.965	0.991	0.98
	P _{RoBERTa-Large-MNLI}	0.994	0.963	0.995	0.990	0.944	0.981	0.974
	R _{RoBERTa-Large-MNLI}	0.995	0.991	0.962	0.981	0.973	0.985	0.98
	FROBERTA-Large-MNLI	0.999	0.982	0.992	0.996	0.961	0.988	0.98
						0.955	0.988	
	P _{RoBERTa-Large-MNLI} (idf)	0.995	0.970	0.997	0.985			
	P _{RoBERTa-Large-MNLI} (idf) R _{RoBERTa-Large-MNLI} (idf)	0.994	0.992	0.967	0.977	0.983	0.988	0.972
	$ \begin{array}{ c c } P_{\rm RoBERTa-Large-MNLI} (\rm idf) \\ R_{\rm RoBERTa-Large-MNLI} (\rm idf) \\ F_{\rm RoBERTa-Large-MNLI} (\rm idf) \end{array} $							0.972
	$ \begin{array}{ c c } P_{\rm RoBERTa-Large-MNLI} (\rm idf) \\ R_{\rm RoBERTa-Large-MNLI} (\rm idf) \\ F_{\rm RoBERTa-Large-MNLI} (\rm idf) \end{array} $	0.994 0.999	0.992	0.967 0.996	0.977 0.997	0.983 0.972	0.988	0.972 0.98
	$\frac{P_{\text{RoBERTa-Large-MNLI}}(\text{idf})}{P_{\text{RoBERTa-Large-MNLI}}(\text{idf})}$ $\frac{P_{\text{XLNET-Base}}}{P_{\text{XLNET-Base}}}$	0.994	0.992 0.989	0.967	0.977	0.983	0.988 0.994	0.972 0.98 0.960
	$\frac{P_{\text{RoBERTa-Large-MNLI}}(\text{idf})}{R_{\text{RoBERTa-Large-MNLI}}(\text{idf})}$ $\frac{P_{\text{RoBERTa-Large-MNLI}}(\text{idf})}{P_{\text{XLNET-Base}}}$ $\frac{R_{\text{XLNET-Base}}}{R_{\text{XLNET-Base}}}$	0.994 0.999 0.988	0.992 0.989 0.938	0.967 0.996 0.993	0.977 0.997 0.993	0.983 0.972 0.914	0.988 0.994 0.974	0.972 0.983 0.960 0.980
	$\frac{P_{\text{RoBERTa-Large-MNLI}}(\text{idf})}{P_{\text{RoBERTa-Large-MNLI}}(\text{idf})}$ $\frac{P_{\text{XLNET-Base}}}{P_{\text{XLNET-Base}}}$	0.994 0.999 0.988 0.999	0.992 0.989 0.938 0.978	0.967 0.996 0.993 0.956	0.977 0.997 0.993 0.977	0.983 0.972 0.914 0.946	0.988 0.994 0.974 0.981	0.972 0.98 0.960 0.980 0.973
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ F_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ \hline \\ P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ F_{\text{XLNET-Base}} \end{array}$	0.994 0.999 0.988 0.999 0.996	0.992 0.989 0.938 0.978 0.963	0.967 0.996 0.993 0.956 0.986	0.977 0.997 0.993 0.977 0.991	0.983 0.972 0.914 0.946 0.932	0.988 0.994 0.974 0.981 0.981	0.972 0.98 0.960 0.980 0.973 0.935
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ \overline{P_{\text{RoBERTa-Large-MNLI}}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ \overline{P_{\text{XLNET-Base}}} \\ P_{\text{XLNET-Base}} \\ \overline{P_{\text{XLNET-Base}}} (\text{idf}) \\ \hline \end{array}$	0.994 0.999 0.988 0.999 0.996 0.992	0.992 0.989 0.938 0.978 0.963 0.951	0.967 0.996 0.993 0.956 0.986 0.998	0.977 0.997 0.993 0.977 0.991 0.996	0.983 0.972 0.914 0.946 0.932 0.930	0.988 0.994 0.974 0.981 0.981 0.982	0.972 0.983 0.960 0.986 0.978 0.978 0.939 0.955
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ \overline{P_{\text{RoBERTa-Large-MNLI}}} (\text{idf}) \\ \hline \\ P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ P_{\text{XLNET-Base}} (\text{idf}) \\ R_{\text{XLNET-Base}} (\text{idf}) \\ F_{\text{XLNET-Base}} (\text{idf}) \\ \end{array}$	0.994 0.999 0.988 0.999 0.996 0.992 0.999 0.998	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974	0.967 0.996 0.993 0.956 0.986 0.998 0.968 0.996	0.977 0.997 0.993 0.977 0.991 0.996 0.973 0.994	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950	0.988 0.994 0.974 0.981 0.981 0.982 0.987 0.990	0.972 0.983 0.960 0.978 0.978 0.978 0.955 0.976
	PROBERTa-Large-MNLI (idf) ROBERTa-Large-MNLI (idf) FROBERTa-Large-MNLI (idf) PXLNET-Base RXLNET-Base FXLNET-Base INTE-Base	0.994 0.999 0.998 0.996 0.992 0.999 0.998 0.998	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944	0.967 0.996 0.993 0.956 0.986 0.998 0.968 0.996	0.977 0.997 0.993 0.977 0.991 0.996 0.973 0.994 0.995	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924	0.988 0.994 0.974 0.981 0.981 0.982 0.987 0.990 0.982	0.972 0.982 0.960 0.988 0.978 0.939 0.939 0.955 0.970 0.944
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ F_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ F_{\text{XLNET-Base}} (\text{idf}) \\ R_{\text{XLNET-Base}} (\text{idf}) \\ \hline R_{\text{XLNET-Base}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} \\ \hline R_{\text{XLNET-Base}} \\ \hline R_{\text{XLNET-Large}} \\ \hline R_{\text{XLNET-Large}} \\ \end{array}$	0.994 0.999 0.998 0.996 0.992 0.999 0.998 0.998	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.981	0.967 0.996 0.993 0.956 0.986 0.998 0.968 0.996 0.996 0.945	0.977 0.997 0.993 0.977 0.991 0.996 0.973 0.994 0.995 0.971	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.961	0.988 0.994 0.974 0.981 0.981 0.982 0.987 0.990 0.982 0.986	0.972 0.987 0.960 0.988 0.978 0.939 0.955 0.970 0.944 0.958
	PRoBERTa-Large-MNLI (idf) RoBERTa-Large-MNLI (idf) FROBERTa-Large-MNLI (idf) PKINET-Base RXLNET-Base FXLNET-Base PXLNET-Base Inter-Base InterBase Inter-Base	0.994 0.999 0.998 0.999 0.996 0.999 0.998 0.998 0.991 0.996 0.999	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.981 0.969	0.967 0.996 0.993 0.956 0.986 0.998 0.968 0.996 0.996 0.945 0.986	0.977 0.997 0.993 0.977 0.991 0.996 0.973 0.994 0.995 0.971 0.992	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.961 0.945	0.988 0.994 0.974 0.981 0.982 0.987 0.990 0.982 0.982 0.986 0.992	0.972 0.983 0.960 0.988 0.978 0.939 0.955 0.970 0.944 0.958 0.965
	PRoBERTa-Large-MNLI (idf) RoBERTa-Large-MNLI (idf) FROBERTa-Large-MNLI (idf) PXLNET-Base RXLNET-Base PXLNET-Base PXLNET-Base PXLNET-Base Inter-Base PXLNET-Base Inter-Base Inter-Base <tr< td=""><td>0.994 0.999 0.998 0.999 0.996 0.992 0.999 0.998 0.998 0.991 0.996 0.999 0.995</td><td>0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.981 0.969 0.955</td><td>0.967 0.996 0.993 0.956 0.986 0.998 0.968 0.996 0.996 0.996 0.945 0.986 0.999</td><td>0.977 0.993 0.977 0.991 0.996 0.973 0.994 0.995 0.971 0.992 0.996</td><td>0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.961 0.945 0.941</td><td>0.988 0.994 0.974 0.981 0.982 0.987 0.990 0.982 0.986 0.992 0.985</td><td>0.972 0.988 0.966 0.987 0.935 0.975 0.975 0.976 0.942 0.955 0.966 0.933</td></tr<>	0.994 0.999 0.998 0.999 0.996 0.992 0.999 0.998 0.998 0.991 0.996 0.999 0.995	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.981 0.969 0.955	0.967 0.996 0.993 0.956 0.986 0.998 0.968 0.996 0.996 0.996 0.945 0.986 0.999	0.977 0.993 0.977 0.991 0.996 0.973 0.994 0.995 0.971 0.992 0.996	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.961 0.945 0.941	0.988 0.994 0.974 0.981 0.982 0.987 0.990 0.982 0.986 0.992 0.985	0.972 0.988 0.966 0.987 0.935 0.975 0.975 0.976 0.942 0.955 0.966 0.933
	PROBERTa-Large-MNLI (idf) RROBERTa-Large-MNLI (idf) FROBERTa-Large-MNLI (idf) PALDET-Base RXLNET-Base PXLNET-Base PXLNET-Base International structure PXLNET-Base International structure RXLNET-Base International structure PXLNET-Base International structure International structure PXLNET-Large PXLNET-Large PXLNET-Large PXLNET-Large PXLNET-Large International structure International structure PXLNET-Large International structure International structure <t< td=""><td>0.994 0.999 0.998 0.999 0.996 0.992 0.999 0.998 0.998 0.999 0.995 0.993</td><td>0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.981 0.969 0.955 0.985</td><td>0.967 0.993 0.956 0.986 0.988 0.968 0.998 0.996 0.996 0.996 0.945 0.986 0.999 0.951</td><td>0.977 0.997 0.993 0.977 0.991 0.996 0.973 0.994 0.995 0.971 0.992 0.996 0.960</td><td>0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.961 0.945 0.941 0.945</td><td>0.988 0.994 0.974 0.981 0.981 0.982 0.987 0.990 0.982 0.986 0.992 0.985 0.974</td><td>0.972 0.988 0.973 0.935 0.975 0.975 0.976 0.942 0.955 0.976 0.944 0.955 0.966 0.937 0.916</td></t<>	0.994 0.999 0.998 0.999 0.996 0.992 0.999 0.998 0.998 0.999 0.995 0.993	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.981 0.969 0.955 0.985	0.967 0.993 0.956 0.986 0.988 0.968 0.998 0.996 0.996 0.996 0.945 0.986 0.999 0.951	0.977 0.997 0.993 0.977 0.991 0.996 0.973 0.994 0.995 0.971 0.992 0.996 0.960	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.961 0.945 0.941 0.945	0.988 0.994 0.974 0.981 0.981 0.982 0.987 0.990 0.982 0.986 0.992 0.985 0.974	0.972 0.988 0.973 0.935 0.975 0.975 0.976 0.942 0.955 0.976 0.944 0.955 0.966 0.937 0.916
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ F_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} (\text{idf}) \\ \hline R_{\text{XLNET-Base}} (\text{idf}) \\ \hline R_{\text{XLNET-Base}} (\text{idf}) \\ \hline P_{\text{XLNET-Large}} \\ R_{\text{XLNET-Large}} \\ R_{\text{XLNET-Large}} \\ \hline R_{\text{XLNET-Large}} \\ \hline R_{\text{XLNET-Large}} \\ \hline R_{\text{XLNET-Large}} \\ (\text{idf}) \\ \hline F_{\text{XLNET-Large}} \\ \hline (\text{idf}) \\ \hline \end{array}$	0.994 0.999 0.998 0.999 0.996 0.992 0.999 0.998 0.998 0.991 0.996 0.999 0.995 0.993 1.000	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.981 0.969 0.955 0.985 0.978	0.967 0.993 0.956 0.986 0.988 0.968 0.996 0.996 0.996 0.945 0.986 0.999 0.951 0.994	0.977 0.993 0.993 0.977 0.991 0.996 0.973 0.994 0.995 0.971 0.992 0.996 0.960 0.960 0.993	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.961 0.945 0.941 0.945 0.941 0.975 0.962	0.988 0.994 0.974 0.981 0.982 0.987 0.990 0.982 0.986 0.992 0.985 0.974 0.994	0.972 0.985 0.960 0.978 0.935 0.975 0.976 0.942 0.958 0.965 0.937 0.910 0.954
	PROBERTa-Large-MNLI (idf) RROBERTa-Large-MNLI (idf) FROBERTa-Large-MNLI (idf) PXLNET-Base RXLNET-Base PXLNET-Base Image: PXLNET-Large	0.994 0.999 0.998 0.999 0.996 0.999 0.998 0.998 0.998 0.999 0.999 0.995 0.993 1.000 0.983	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.981 0.969 0.955 0.955 0.978 0.978	0.967 0.993 0.956 0.986 0.998 0.998 0.996 0.996 0.996 0.945 0.986 0.999 0.951 0.994	0.977 0.997 0.993 0.977 0.991 0.996 0.973 0.994 0.995 0.971 0.992 0.996 0.992 0.996 0.993 0.993	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.964 0.945 0.941 0.945 0.941 0.945 0.962	0.988 0.994 0.974 0.981 0.982 0.987 0.990 0.982 0.986 0.992 0.985 0.974 0.994 0.973	0.972 0.983 0.960 0.978 0.978 0.978 0.978 0.976 0.977 0.942 0.965 0.976 0.937 0.910 0.952
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNLI}} (\text{idf})\\ R_{\text{RoBERTa-Large-MNLI}} (\text{idf})\\ R_{\text{RoBERTa-Large-MNLI}} (\text{idf})\\ \hline P_{\text{ROBERTa-Large-MNLI}} (\text{idf})\\ \hline P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} (\text{idf})\\ R_{\text{XLNET-Base}} (\text{idf})\\ \hline P_{\text{XLNET-Large}} \\ R_{\text{XLNET-Large}} \\ R_{\text{XLNET-Large}} \\ R_{\text{XLNET-Large}} \\ R_{\text{XLNET-Large}} \\ \hline \end{array}$	0.994 0.999 0.996 0.996 0.992 0.998 0.998 0.998 0.999 0.995 0.993 1.000 0.983 0.983	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.944 0.981 0.969 0.955 0.955 0.978 0.933 0.978	0.967 0.993 0.956 0.986 0.998 0.998 0.996 0.996 0.996 0.996 0.995 0.986 0.999 0.951 0.999 0.951 0.994 0.994	0.977 0.993 0.977 0.991 0.996 0.994 0.995 0.971 0.992 0.997 0.996 0.996 0.996 0.960 0.993 0.989 0.988 0.983	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.941 0.941 0.945 0.941 0.945 0.941 0.955 0.962	0.988 0.994 0.974 0.981 0.982 0.987 0.990 0.982 0.982 0.985 0.992 0.985 0.974 0.994	0.972 0.983 0.966 0.988 0.975 0.935 0.975 0.976 0.942 0.955 0.910 0.955 0.910 0.955
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ P_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ P_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} \\ P_{\text{XLNET-Base}} \\ P_{\text{XLNET-Base}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} (\text{idf}) \\ \hline P_{\text{XLNET-Large}} \\ P_{\text{XLNET-Large}} \\ P_{\text{XLNET-Large}} \\ P_{\text{XLNET-Large}} \\ \hline P_{\text{XLMET-Large}} \\ \hline P_{\text{XLM-En}} \\ \hline P_{\text{XLM-En}} \\ \hline P_{\text{XLM-En}} \\ \hline P_{\text{XLM-En}} \\ \end{array}$	0.994 0.999 0.998 0.999 0.996 0.999 0.998 0.998 0.998 0.995 0.995 0.995 0.995 0.993 1.000 0.983 0.998	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.944 0.969 0.955 0.978 0.978 0.978 0.978	0.967 0.996 0.993 0.956 0.986 0.998 0.968 0.996 0.945 0.986 0.999 0.951 0.994 0.994 0.949 0.985	0.977 0.997 0.993 0.977 0.991 0.996 0.960 0.993 0.993 0.989 0.983 0.985	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.941 0.945 0.941 0.975 0.962 0.918 0.957 0.938	0.988 0.994 0.974 0.981 0.982 0.987 0.990 0.982 0.986 0.992 0.985 0.974 0.994 0.973 0.985 0.984	0.972 0.983 0.966 0.988 0.975 0.935 0.975 0.975 0.942 0.955 0.937 0.910 0.955 0.910 0.955 0.910 0.955
	PROBERTa-Large-MNLI (idf) RROBERTa-Large-MNLI (idf) FROBERTa-Large-MNLI (idf) FROBERTa-Large-MNLI (idf) PXLNET-Base RXLNET-Base PXLNET-Base International problem PXLNET-Base International problem RXLNET-Base International problem PXLNET-Base International problem PXLNET-Large PXLNET-Large PXLNET-Large PXLNET-Large PXLNET-Large International problem PXLMET-Large International problem PXLM-En PXLM-En PXLM-En PXLM-En PXLM-En PXLM-En PXLM-En PXLM-En PXLM-En <td>0.994 0.999 0.999 0.996 0.992 0.999 0.998 0.998 0.995 0.993 1.000 0.983 0.994 0.994 0.994</td> <td>0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.981 0.969 0.955 0.985 0.978 0.933 0.978</td> <td>0.967 0.996 0.993 0.956 0.986 0.998 0.996 0.996 0.996 0.945 0.986 0.999 0.951 0.994 0.994 0.985 0.994 0.985 0.997</td> <td>0.977 0.993 0.993 0.997 0.996 0.973 0.994 0.995 0.971 0.992 0.996 0.960 0.960 0.960 0.993 0.989 0.989 0.985 0.992</td> <td>0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.961 0.945 0.941 0.945 0.962 0.962 0.962 0.918 0.957 0.938 0.939</td> <td>0.988 0.994 0.974 0.981 0.982 0.982 0.986 0.990 0.985 0.974 0.994 0.973 0.985 0.974</td> <td>0.979 0.972 0.983 0.966 0.988 0.973 0.955 0.970 0.942 0.955 0.910 0.955 0.928 0.972 0.966 0.972</td>	0.994 0.999 0.999 0.996 0.992 0.999 0.998 0.998 0.995 0.993 1.000 0.983 0.994 0.994 0.994	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.981 0.969 0.955 0.985 0.978 0.933 0.978	0.967 0.996 0.993 0.956 0.986 0.998 0.996 0.996 0.996 0.945 0.986 0.999 0.951 0.994 0.994 0.985 0.994 0.985 0.997	0.977 0.993 0.993 0.997 0.996 0.973 0.994 0.995 0.971 0.992 0.996 0.960 0.960 0.960 0.993 0.989 0.989 0.985 0.992	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.961 0.945 0.941 0.945 0.962 0.962 0.962 0.918 0.957 0.938 0.939	0.988 0.994 0.974 0.981 0.982 0.982 0.986 0.990 0.985 0.974 0.994 0.973 0.985 0.974	0.979 0.972 0.983 0.966 0.988 0.973 0.955 0.970 0.942 0.955 0.910 0.955 0.928 0.972 0.966 0.972
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ P_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ P_{\text{RoBERTa-Large-MNLI}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} \\ P_{\text{XLNET-Base}} \\ P_{\text{XLNET-Base}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} (\text{idf}) \\ \hline P_{\text{XLNET-Large}} \\ P_{\text{XLNET-Large}} \\ P_{\text{XLNET-Large}} \\ P_{\text{XLNET-Large}} \\ \hline P_{\text{XLMET-Large}} \\ \hline P_{\text{XLM-En}} \\ \hline P_{\text{XLM-En}} \\ \hline P_{\text{XLM-En}} \\ \hline P_{\text{XLM-En}} \\ \end{array}$	0.994 0.999 0.998 0.999 0.996 0.999 0.998 0.998 0.998 0.995 0.995 0.995 0.995 0.993 1.000 0.983 0.998	0.992 0.989 0.938 0.978 0.963 0.951 0.986 0.974 0.944 0.981 0.969 0.955 0.978 0.978 0.978 0.978	0.967 0.996 0.993 0.956 0.986 0.998 0.968 0.996 0.945 0.986 0.999 0.951 0.994 0.994 0.949 0.985	0.977 0.997 0.993 0.977 0.991 0.996 0.960 0.993 0.993 0.989 0.983 0.985	0.983 0.972 0.914 0.946 0.932 0.930 0.964 0.950 0.924 0.941 0.945 0.941 0.975 0.962 0.918 0.957 0.938	0.988 0.994 0.974 0.981 0.982 0.987 0.990 0.982 0.986 0.992 0.985 0.974 0.994 0.973 0.985 0.984	0.972 0.983 0.966 0.988 0.975 0.935 0.975 0.975 0.942 0.955 0.937 0.910 0.955 0.910 0.955 0.910 0.955

Table 14: Absolute Pearson correlations with system-level human judgments on WMT17 to-English translations. Correlations of metrics not significantly outperformed by any other for that language pair are highlighted in bold.

Setting	Metric	en-cs	en-de	en-lv	en-ru	en-tr	en-zh
	n	14	16	17	9	8	11
	BLEU	0.956	0.804	0.866	0.898	0.924	_
	CDER	0.968	0.813	0.930	0.924	0.957	_
	CHARACTER	0.981	0.938	0.897	0.939	0.975	0.933
	CHRF	0.976	0.863	0.955	0.950	0.991	0.976
	CHRF++	0.974	0.852	0.956	0.945	0.986	0.976
	MEANT 2.0	_	0.858	_	_	_	0.956
Unsupervised	MEANT 2.0-NOSRL	0.976	0.770	0.959	0.957	0.991	0.943
	NIST	0.962	0.769	0.935	0.920	0.986	-
	PER	0.954	0.687	0.851	0.887	0.963	-
	TER	0.955	0.796	0.909	0.933	0.967	-
	TREEAGGREG	0.947	0.773	0.927	0.921	0.983	0.938
	UHH_TSKM	_	_	_	_	_	_
	WER	0.954	0.802	0.906	0.934	0.956	_
	AUTODA	0.975	0.603	0.729	0.850	0.601	0.976
	BEER	0.970	0.842	0.930	0.944	0.980	0.914
Supervised	BLEND	_	_	_	0.953	_	_
	BLEU2VEC	0.963	0.810	0.859	0.903	0.911	-
	NGRAM2VEC	-	_	0.862	_	_	_
	PBERT-Multi	0.959	0.798	0.960	0.946	0.981	0.970
	$R_{\mathrm{BERT-Multi}}$	0.982	0.909	0.957	0.980	0.979	0.994
	$F_{\mathrm{BERT-Multi}}$	0.976	0.859	0.959	0.966	0.980	0.992
	P _{BERT-Multi} (idf)	0.963	0.760	0.960	0.947	0.984	0.971
	$R_{\text{BERT-Multi}}$ (idf)	0.985	0.907	0.955	0.981	0.984	0.982
Pre-Trained	F _{BERT-Multi} (idf)	0.979	0.841	0.958	0.968	0.984	0.991
	P _{XLM-100}	0.967	0.825	0.965	0.953	0.974	0.977
	$R_{\rm XLM-100}$	0.980	0.902	0.965	0.982	0.977	0.979
	$F_{\rm XLM-100}$	0.979	0.868	0.969	0.971	0.976	0.986
	$P_{\rm XLM-100}$ (idf)	0.968	0.809	0.965	0.955	0.980	0.975
	$R_{\rm XLM-100}$ (idf)	0.981	0.894	0.964	0.984	0.983	0.968
	$F_{\rm XLM-100}$ (idf)	0.979	0.856	0.966	0.973	0.982	0.979

Table 15: Absolute Pearson correlations with system-level human judgments on WMT17 from-English translations. Correlations of metrics not significantly outperformed by any other for that language pair are highlighted in bold.

Satting	Matria		da an	at an	f. an		ta on	ah a
Setting	Metric n	cs-en 5K	de-en 78K	et-en 57K	fi-en 16K	ru-en 10K	tr-en 9K	zh-e 33K
	CHARACTER	0.256	0.450	0.286	0.185	0.244	0.172	0.20
	ITER	0.198	0.396	0.235	0.128	0.139	-0.029	0.14
	METEOR++	0.270	0.457	0.329	0.207	0.253	0.204	0.17
Unsupervised	SENTBLEU	0.233	0.415	0.285	0.154	0.228	0.145	0.17
F	UHH_TSKM	0.274	0.436	0.300	0.168	0.235	0.154	0.15
	YISI-0	0.301	0.474	0.330	0.225	0.294	0.215	0.20
	YISI-1	0.319	0.488	0.351	0.231	0.300	0.234	0.21
	YISI-1 SRL	0.317	0.483	0.345	0.237	0.306	0.233	0.20
	BEER	0.295	0.481	0.341	0.232	0.288	0.229	0.21
Supervised	BLEND	0.322	0.492	0.354	0.226	0.290	0.232	0.21
	RUSE	0.347	0.498	0.368	0.273	0.311	0.259	0.21
	$P_{\text{BERT-Base}}$	0.349	0.522	0.373	0.264	0.325	0.264	0.23
	$R_{\text{BERT-Base}}$	0.370	0.528	0.378	0.291	0.333	0.257	0.24
	$F_{\text{BERT-Base}}$	0.373	0.531	0.385	0.287	0.341	0.266	0.24
	$P_{\text{BERT-Base}}$ (idf)	0.352	0.524	0.382	0.27	0.326	0.277	0.23
	$R_{\text{BERT-Base}}$ (idf)	0.368	0.536	0.388	0.300	0.340	0.284	0.24
	F _{BERT-Base} (idf)	0.375	0.535	0.393	0.294	0.339	0.289	0.24
	$P_{\text{BERT-Base-MRPC}}$	0.343	0.520	0.365	0.247	0.333	0.25	0.22
	R _{BERT-Base-MRPC}	0.370	0.524	0.373	0.277	0.34	0.261	0.24
	$F_{\text{BERT-Base-MRPC}}$	0.366	0.529	0.377	0.271	0.342	0.263	0.24
	P _{BERT-Base-MRPC} (idf)	0.348	0.522	0.371	0.25	0.318	0.256	0.22
	$R_{\text{BERT-Base-MRPC}}$ (idf)	0.379	0.531	0.383	0.285	0.339	0.266	0.24
	F _{BERT-Base-MRPC} (idf)	0.373	0.534	0.383	0.274	0.342	0.275	0.24
	PBERT-LARGE	0.361	0.529	0.380	0.276	0.340	0.266	0.24
	R _{BERT-LARGE}	0.386	0.532	0.386	0.297	0.347	0.268	0.24
	$F_{\text{BERT-LARGE}}$	0.402	0.537	0.390	0.296	0.344	0.274	0.25
	PBERT-LARGE (idf)	0.377	0.532	0.390	0.287	0.342	0.292	0.24
	$R_{\text{BERT-LARGE}}$ (idf)	0.386	0.544	0.396	0.308	0.356	0.287	0.25
	F _{BERT-LARGE} (idf)	0.388	0.545	0.399	0.309	0.358	0.300	0.25
	P _{RoBERTa-Base}	0.368	0.53	0.371	0.274	0.318	0.265	0.23
	$R_{\text{RoBERTa-Base}}$	0.383	0.536	0.376	0.283	0.336	0.253	0.24
	$F_{\rm RoBERTa-Base}$	0.391	0.540	0.383	0.273	0.339	0.270	0.24
	P _{RoBERTa-Base} (idf)	0.379	0.528	0.372	0.261	0.314	0.265	0.23
	R _{RoBERTa-Base} (idf)	0.389	0.539	0.384	0.288	0.332	0.267	0.24
	F _{RoBERTa-Base} (idf)	0.400	0.540	0.385	0.274	0.337	0.277	0.24
	P _{RoBERTa-LARGE}	0.387	0.541	0.389	0.283	0.345	0.280	0.24
Pre-Trained	R _{RoBERTa-LARGE}	0.388	0.546	0.391	0.304	0.343	0.290	0.25
	$F_{\text{RoBERTa-LARGE}}$	0.404	0.550	0.397	0.296	0.353	0.292	0.26
	PROBERTA-LARGE (idf)	0.391	0.540	0.387	0.280	0.334	0.284	0.25
	$R_{\text{RoBERTa-LARGE}}$ (idf)	0.386	0.548	0.394	0.305	0.338	0.295	0.25
	F _{RoBERTa-LARGE} (idf)	0.408	0.550	0.395	0.293	0.346	0.296	0.26
	P _{RoBERTa-Large-MNLI}	0.397	0.549	0.396	0.299	0.351	0.295	0.25
	$R_{\rm RoBERTa-Large-MNLI}$	0.404	0.553	0.393	0.313	0.351	0.279	0.25
	F _{RoBERTa-Large-MNLI}	0.418	0.557	0.402	0.312	0.362	0.290	0.25
	P _{RoBERTa-Large-MNLI} (idf)	0.414	0.552	0.399	0.301	0.349	0.306	0.24
	$R_{\text{RoBERTa-Large-MNLI}}$ (idf)	0.412	0.555	0.400	0.316	0.357	0.289	0.25
	F _{RoBERTa-Large-MNLI} (idf)	0.417	0.559	0.403	0.309	0.357	0.307	0.25
							0.247	0.23
	PVI Nat. Base	0 3 3 5	0 514	0 359	0 243	0 308		
	P _{XLNet-Base} R _{XI Net-Base}	0.335	0.514 0.515	0.359 0.362	0.243 0.261	0.308 0.311		
	$R_{\text{XLNet-Base}}$	0.351	0.515	0.362	0.261	0.311	0.227	0.23
	$R_{\rm XLNet-Base}$ $F_{\rm XLNet-Base}$	0.351 0.351	0.515 0.517	0.362 0.365	0.261 0.257	0.311 0.315	0.227 0.25	0.23 0.23
	$egin{array}{c} R_{ ext{XLNet-Base}} \ F_{ ext{XLNet-Base}} \ P_{ ext{XLNet-Base}} \ (ext{idf}) \end{array}$	0.351	0.515	0.362	0.261	0.311	0.227	0.23 0.23 0.23
	$R_{\rm XLNet-Base}$ $F_{\rm XLNet-Base}$	0.351 0.351 0.339	0.515 0.517 0.516	0.362 0.365 0.366	0.261 0.257 0.258	0.311 0.315 0.307	0.227 0.25 0.261	0.23 0.23 0.23 0.23
	$\begin{array}{c} R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ P_{\rm XLNet-Base} \ ({\rm idf}) \\ R_{\rm XLNet-Base} \ ({\rm idf}) \\ F_{\rm XLNet-Base} \ ({\rm idf}) \end{array}$	0.351 0.351 0.339 0.364 0.355	0.515 0.517 0.516 0.521 0.524	0.362 0.365 0.366 0.371 0.374	0.261 0.257 0.258 0.268 0.265	0.311 0.315 0.307 0.317 0.320	0.227 0.25 0.261 0.242 0.261	0.23 0.23 0.23 0.23 0.23 0.24
	$\begin{array}{c} R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ P_{\rm XLNet-Base} \\ (idf) \\ R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ \hline \end{array}$	0.351 0.351 0.339 0.364 0.355 0.344	0.515 0.517 0.516 0.521 0.524 0.522	0.362 0.365 0.366 0.371 0.374 0.371	0.261 0.257 0.258 0.268 0.265 0.252	0.311 0.315 0.307 0.317 0.320 0.316	0.227 0.25 0.261 0.242 0.261 0.261	0.23 0.23 0.23 0.23 0.24 0.24
	$\begin{array}{c} R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ P_{\rm XLNet-Base} \\ (idf) \\ R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ \hline \end{array}$	0.351 0.351 0.339 0.364 0.355 0.344 0.358	0.515 0.517 0.516 0.521 0.524 0.522 0.522	0.362 0.365 0.366 0.371 0.374 0.371 0.374	0.261 0.257 0.258 0.268 0.265 0.252 0.275	0.311 0.315 0.307 0.317 0.320 0.316 0.332	0.227 0.25 0.261 0.242 0.261 0.261 0.264 0.249	0.23 0.23 0.23 0.23 0.24 0.23 0.23
	$\begin{array}{c} R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ P_{\rm XLNet-Base} \\ (idf) \\ R_{\rm XLNet-Base} \\ (idf) \\ F_{\rm XLNet-Base} \\ R_{\rm XL-NET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ F_{\rm XL-NET-LARGE} \\ \end{array}$	0.351 0.351 0.339 0.364 0.355 0.344 0.358 0.357	0.515 0.517 0.516 0.521 0.524 0.522 0.524 0.523	0.362 0.365 0.366 0.371 0.374 0.374 0.374 0.380	0.261 0.257 0.258 0.268 0.265 0.252 0.275 0.265	0.311 0.315 0.307 0.317 0.320 0.316 0.332 0.334	0.227 0.25 0.261 0.242 0.261 0.264 0.249 0.263	0.23 0.23 0.23 0.24 0.24 0.23 0.23 0.23
	$\begin{array}{c} R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ P_{\rm XLNet-Base} \\ (idf) \\ R_{\rm XLNet-Base} \\ (idf) \\ F_{\rm XLNet-Base} \\ (idf) \\ \hline \\ F_{\rm XLNET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ F_{\rm XL-NET-LARGE} \\ \hline \\ P_{\rm XL-NET-LARGE} \\ (idf) \\ \hline \end{array}$	0.351 0.351 0.339 0.364 0.355 0.344 0.358 0.357 0.348	0.515 0.517 0.516 0.521 0.524 0.522 0.524 0.524 0.530 0.520	0.362 0.365 0.366 0.371 0.374 0.374 0.374 0.374 0.380 0.373	0.261 0.257 0.258 0.268 0.265 0.252 0.275 0.265 0.265	0.311 0.315 0.307 0.317 0.320 0.316 0.332 0.334 0.319	0.227 0.25 0.261 0.242 0.261 0.264 0.264 0.263 0.265	0.23 0.23 0.23 0.23 0.24 0.23 0.23 0.23 0.23 0.23
	$\begin{array}{c} R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ P_{\rm XLNet-Base} ({\rm idf}) \\ R_{\rm XLNet-Base} ({\rm idf}) \\ F_{\rm XLNet-Base} ({\rm idf}) \\ \hline \end{array} \\ \hline \begin{array}{c} P_{\rm XL-NET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ F_{\rm XL-NET-LARGE} \\ P_{\rm XL-NET-LARGE} ({\rm idf}) \\ R_{\rm XL-NET-LARGE} ({\rm idf}) \\ \end{array} \\ \end{array}$	0.351 0.351 0.339 0.364 0.355 0.344 0.358 0.357 0.348 0.366	0.515 0.517 0.516 0.521 0.524 0.522 0.524 0.520 0.520 0.529	0.362 0.365 0.366 0.371 0.374 0.374 0.374 0.380 0.373 0.378	0.261 0.257 0.258 0.268 0.265 0.252 0.275 0.265 0.260 0.278	0.311 0.315 0.307 0.317 0.320 0.316 0.332 0.334 0.319 0.331	$\begin{array}{c} 0.227\\ 0.25\\ 0.261\\ 0.242\\ 0.261\\ \end{array}$ $\begin{array}{c} 0.264\\ 0.249\\ 0.263\\ 0.265\\ 0.266\\ \end{array}$	0.23 0.23 0.23 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.24
	$\begin{array}{c} R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ idf) \\ R_{\rm XLNet-Base} (idf) \\ R_{\rm XLNet-Base} (idf) \\ \hline \\ F_{\rm XL-NET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ F_{\rm XL-NET-LARGE} \\ \hline \\ R_{\rm XL-NET-LARGE} (idf) \\ R_{\rm XL-NET-LARGE} (idf) \\ \hline \\ F_{\rm XL-NET-LARGE} (idf) \\ \hline \\ \end{array}$	0.351 0.351 0.339 0.364 0.355 0.344 0.358 0.357 0.348 0.366 0.375	0.515 0.517 0.516 0.521 0.524 0.522 0.524 0.520 0.520 0.529 0.530	0.362 0.365 0.366 0.371 0.374 0.374 0.374 0.374 0.373 0.373 0.378 0.382	0.261 0.257 0.258 0.268 0.265 0.265 0.265 0.265 0.260 0.278 0.274	0.311 0.315 0.307 0.317 0.320 0.316 0.332 0.334 0.319 0.331 0.332	0.227 0.25 0.261 0.242 0.261 0.264 0.249 0.263 0.265 0.266 0.274	0.23 0.23 0.23 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.24
	$\begin{array}{c} R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ P_{\rm XLNet-Base} \\ (idf) \\ R_{\rm XLNet-Base} \\ (idf) \\ F_{\rm XLNet-Base} \\ R_{\rm XL-NET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ (idf) \\ R_{\rm XL-NET-LARGE} \\ (idf) \\ R_{\rm XL-NET-LARGE} \\ (idf) \\ F_{\rm XL-NET-LARGE} \\ (idf) \\ \hline \\ P_{\rm XLM-En} \\ \end{array}$	0.351 0.351 0.339 0.364 0.355 0.344 0.358 0.357 0.348 0.366 0.375	0.515 0.517 0.516 0.521 0.524 0.522 0.524 0.520 0.520 0.529 0.530 0.529 0.530	0.362 0.365 0.366 0.371 0.374 0.374 0.374 0.374 0.373 0.373 0.378 0.382 0.366	0.261 0.257 0.258 0.268 0.265 0.265 0.265 0.275 0.265 0.265 0.260 0.278 0.274	0.311 0.315 0.307 0.317 0.320 0.316 0.332 0.334 0.331 0.332 0.331 0.332	0.227 0.25 0.261 0.242 0.261 0.264 0.263 0.265 0.266 0.274 0.259	0.23 0.23 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.24 0.24
	$\begin{array}{c} R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ P_{\rm XLNet-Base} \\ (idf) \\ R_{\rm XLNet-Base} \\ (idf) \\ F_{\rm XLNet-Base} \\ R_{\rm XL-NET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ (idf) \\ R_{\rm XL-NET-LARGE} \\ (idf) \\ R_{\rm XL-NET-LARGE} \\ (idf) \\ \hline \\ P_{\rm XLM-En} \\ R_{\rm XLM-En} \\ R_{\rm XLM-En} \\ \end{array}$	0.351 0.351 0.339 0.364 0.355 0.344 0.355 0.344 0.357 0.348 0.357 0.348 0.366 0.375 0.349 0.358	0.515 0.517 0.516 0.521 0.524 0.522 0.524 0.520 0.520 0.529 0.530 0.529 0.530	0.362 0.365 0.366 0.371 0.374 0.374 0.374 0.370 0.373 0.378 0.378 0.382 0.366 0.364	0.261 0.257 0.258 0.268 0.265 0.265 0.265 0.265 0.265 0.260 0.278 0.274 0.274 0.244	0.311 0.315 0.307 0.317 0.320 0.316 0.332 0.334 0.319 0.331 0.332 0.310 0.320	0.227 0.25 0.261 0.242 0.261 0.264 0.249 0.263 0.265 0.266 0.274 0.259 0.244	0.23 0.23 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.24 0.24 0.24 0.24
	$\begin{array}{c} R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ P_{\rm XLNet-Base} \\ (idf) \\ R_{\rm XLNet-Base} \\ (idf) \\ F_{\rm XLNet-Base} \\ R_{\rm XL-NET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ (idf) \\ \hline \\ R_{\rm XL-NET-LARGE} \\ R_{\rm XLM-En} \\ R_{\rm XLM-En} \\ F_{\rm XLM-En} \\ F_{\rm XLM-En} \\ \end{array}$	0.351 0.351 0.339 0.364 0.355 0.344 0.355 0.344 0.357 0.348 0.357 0.348 0.366 0.375 0.349 0.358 0.358	0.515 0.517 0.516 0.521 0.522 0.524 0.520 0.520 0.529 0.530 0.529 0.530 0.516 0.518 0.525	0.362 0.365 0.366 0.371 0.374 0.374 0.374 0.370 0.373 0.378 0.378 0.382 0.366 0.364 0.373	0.261 0.257 0.258 0.268 0.265 0.265 0.265 0.265 0.260 0.278 0.274 0.274 0.244 0.264 0.259	0.311 0.315 0.307 0.317 0.320 0.316 0.332 0.334 0.319 0.331 0.332 0.310 0.320 0.320	0.227 0.25 0.261 0.242 0.261 0.264 0.263 0.265 0.265 0.266 0.274 0.259 0.244 0.258	0.23 0.23 0.23 0.24 0.23 0.24 0.23 0.23 0.23 0.24 0.23 0.23 0.24 0.24 0.24
	$\begin{array}{c} R_{\rm XLNet-Base} \\ F_{\rm XLNet-Base} \\ P_{\rm XLNet-Base} \\ (idf) \\ R_{\rm XLNet-Base} \\ (idf) \\ F_{\rm XLNet-Base} \\ R_{\rm XL-NET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ R_{\rm XL-NET-LARGE} \\ (idf) \\ R_{\rm XL-NET-LARGE} \\ (idf) \\ R_{\rm XL-NET-LARGE} \\ (idf) \\ \hline \\ P_{\rm XLM-En} \\ R_{\rm XLM-En} \\ R_{\rm XLM-En} \\ \end{array}$	0.351 0.351 0.339 0.364 0.355 0.344 0.355 0.344 0.357 0.348 0.357 0.348 0.366 0.375 0.349 0.358	0.515 0.517 0.516 0.521 0.524 0.522 0.524 0.520 0.520 0.529 0.530 0.529 0.530	0.362 0.365 0.366 0.371 0.374 0.374 0.374 0.370 0.373 0.378 0.378 0.382 0.366 0.364	0.261 0.257 0.258 0.268 0.265 0.265 0.265 0.265 0.265 0.260 0.278 0.274 0.274 0.244	0.311 0.315 0.307 0.317 0.320 0.316 0.332 0.334 0.319 0.331 0.332 0.310 0.320	0.227 0.25 0.261 0.242 0.261 0.264 0.249 0.263 0.265 0.266 0.274 0.259 0.244	0.23 0.23 0.23 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.23

Table 16: Kendall correlations with segment-level human judgments on WMT18 to-English translations. Correlations of metrics not significantly outperformed by any other for that language pair are highlighted in bold.

Setting	Metric n	en-cs 5K	en-de 20K	en-et 32K	en-fi 10K	en-ru 22K	en-tr 1K	en-zh 29K
	CHARACTER	0.414	0.604	0.464	0.403	0.352	0.404	0.313
	ITER	0.333	0.610	0.392	0.311	0.291	0.236	-
Unsupervised	SentBLEU	0.389	0.620	0.414	0.355	0.330	0.261	0.311
Ulisupervised	YISI-0	0.471	0.661	0.531	0.464	0.394	0.376	0.318
	YISI-1	0.496	0.691	0.546	0.504	0.407	0.418	0.323
	YISI-1 SRL	-	0.696	-	-	-	-	0.310
Companying 4	BEER	0.518	0.686	0.558	0.511	0.403	0.374	0.302
Supervised	BLEND	-	-	-	-	0.394	-	-
	P _{BERT-Multi}	0.541	0.715	0.549	0.486	0.414	0.328	0.337
	$R_{BERT-Multi}$	0.570	0.728	0.594	0.565	0.420	0.411	0.367
	$F_{\text{BERT-Multi}}$	0.562	0.728	0.586	0.546	0.423	0.399	0.364
	$P_{\text{BERT-Multi}}$ (idf)	0.525	0.7	0.54	0.495	0.423	0.352	0.338
	$R_{\text{BERT-Multi}}$ (idf)	0.569	0.727	0.601	0.561	0.423	0.420	0.374
Pre-Trained	$F_{\text{BERT-Multi}}$ (idf)	0.553	0.721	0.585	0.537	0.425	0.406	0.366
The Trutheu	$P_{\rm XLM-100}$	0.496	0.711	0.561	0.527	0.417	0.364	0.340
	$R_{\rm XLM-100}$	0.564	0.724	0.612	0.584	0.418	0.432	0.363
	$F_{\rm XLM-100}$	0.533	0.727	0.599	0.573	0.421	0.408	0.362
	$P_{\text{XLM-100}}$ (idf)	0.520	0.710	0.572	0.546	0.421	0.370	0.328
	$R_{\rm XLM-100}$ (idf)	0.567	0.722	0.609	0.587	0.420	0.439	0.365
	$F_{\rm XLM-100}$ (idf)	0.554	0.724	0.601	0.584	0.422	0.389	0.355

Table 17: Kendall correlations with segment-level human judgments on WMT18 from-English translations. Correlations of metrics not significantly outperformed by any other for that language pair are highlighted in bold.

Setting	Metric	cs-en	de-en	et-en	fi-en	ru-en	tr-en	zh-e
	n	5	16	14	9	8	5	14
	BLEU	0.970	0.971	0.986	0.973	0.979	0.657	0.97
	CDER	0.972	0.980	0.990	0.984	0.980	0.664	0.98
	CHARACTER	0.970	0.993	0.979	0.989	0.991	0.782	0.95
	ITER	0.975	0.990	0.975	0.996	0.937	0.861	0.98
	METEOR++	0.945	0.991	0.978	0.971	0.995	0.864	0.96
Thomas and	NIST	0.954	0.984	0.983	0.975	0.973	0.970	0.96
Unsupervised	PER	0.970	0.985	0.983	0.993	0.967	0.159	0.93
	TER UHH_TSKM	0.950 0.952	$0.970 \\ 0.980$	0.990 0.989	$0.968 \\ 0.982$	$0.970 \\ 0.980$	0.533 0.547	0.97. 0.98
	WER	0.952	0.960	0.989	0.961	0.968	0.041	0.97
	YISI-0	0.951	0.991	0.975	0.901	0.988	0.954	0.97
	YISI-1	0.950	0.994	0.979	0.973	0.988	0.954	0.95
	YISI-1 SRL	0.965	0.995	0.981	0.977	0.992	0.869	0.96
	BEER	0.958	0.994	0.985	0.991	0.982	0.870	0.97
Supervised	BLEND	0.973	0.991	0.985	0.994	0.993	0.801	0.97
Supervised	RUSE	0.981	0.997	0.990	0.991	0.988	0.853	0.98
	P _{BERT-Base}	0.965	0.995	0.986	0.973	0.976	0.941	0.97
	R _{BERT-Base}	0.994	0.991	0.979	0.992	0.991	0.067	0.98
	F _{BERT-Base}	0.982	0.994	0.983	0.986	0.985	0.949	0.98
	$P_{\text{BERT-Base}}$ (idf)	0.961 0.996	0.993 0.994	$0.987 \\ 0.977$	0.988 0.995	0.976 0.995	0.984 0.874	0.97 0.98
	$R_{\text{BERT-Base}}$ (idf) $F_{\text{BERT-Base}}$ (idf)	0.990	0.994	0.984	0.995	0.995	0.874 0.994	0.98
	_							
	P _{BERT-Base-MRPC}	0.957	0.994	0.989	0.953	0.976	0.798	0.97
	R _{BERT-Base-MRPC}	0.992	0.994	0.983	0.988	0.993	0.707	0.99
	FBERT-Base-MRPC	0.975	0.995	0.987	0.975	0.986	0.526	0.98
	P _{BERT-Base-MRPC} (idf)	0.957	0.997	0.989	0.967	0.975	0.894	0.98
	$R_{\text{BERT-Base-MRPC}}$ (idf)	0.991	0.997	0.981	0.994	0.993	0.052	0.98
	$F_{\text{BERT-Base-MRPC}}$ (idf)	0.975	0.998	0.987	0.985	0.987	0.784	0.98
	$P_{\text{BERT-Large}}$	0.978	0.992	0.987	0.971	0.977	0.920	0.97
	$R_{\text{BERT-Large}}$	0.997	0.990	0.985	0.990	0.992	0.098	0.99
	$F_{\text{BERT-Large}}$	0.989	0.992	0.987	0.983	0.985	0.784	0.98
	P _{BERT-Large} (idf)	0.977	0.992	0.988	0.986	0.976	0.980	0.97
	$R_{\text{BERT-Large}}$ (idf)	0.998	0.993	0.983	0.996	0.995	0.809	0.98
	F _{BERT-Large} (idf)	0.989	0.993	0.986	0.993	0.987	0.976	0.98
	P _{RoBERTa-Base}	0.970	0.995	0.991	0.998	0.976	0.796	0.98
	$R_{\text{RoBERTa-Base}}$	0.996	0.996	0.982	0.998	0.994	0.477	0.99
	F _{RoBERTa-Base}	0.984	0.997	0.989	0.999	0.987	0.280	0.98
	$P_{\text{RoBERTa-Base}}$ (idf)	0.966	0.993	0.991	0.994	0.977	0.880	0.98
	$R_{\text{RoBERTa-Base}}$ (idf)	0.995	0.998	0.981	0.998	0.995	0.230	0.98
	$F_{\text{RoBERTa-Base}}$ (idf)	0.981	0.998	0.989	0.997	0.988	0.741	0.99
	_	0.980	0.998	0.990	0.995	0.982	0.791	0.98
Pre-Trained	P _{RoBERTa-Large}	0.980	0.997	0.990	0.995 0.997	0.982	0.054	0.98
	R _{RoBERTa-Large}	0.990	0.999	0.990	0.998	0.990	0.499	0.98
	F _{RoBERTa-Large} P _{RoBERTa-Large} (idf)	0.972	0.997	0.993	0.985	0.982	0.920	0.98
	$R_{\text{RoBERTa-Large}}$ (idf)	0.972	0.997	0.984	0.985	0.982	0.578	0.98
	$F_{\text{RoBERTa-Large}}$ (idf)	0.985	0.999	0.992	0.992	0.991	0.826	0.98
	P _{RoBERTa-Large-MNLI}	0.989	0.998	0.994	0.998	0.985	0.908	0.98
	R _{RoBERTa-Large-MNLI}	1.000	0.996	0.988	0.996	0.995	0.097	0.99
	F _{RoBERTa-Large-MNLI}	0.996	0.998	0.992	0.998	0.992	0.665	0.98
	P _{RoBERTa-Large-MNLI} (idf)	0.986	0.998	0.994	0.993	0.986	0.989	0.98
	R _{RoBERTa-Large-MNLI} (idf)	0.999 0.995	0.997 0.998	0.986 0.991	0.997 0.996	0.993 0.993	0.633 0.963	0.99 0.99
	F _{RoBERTa-Large-MNLI} (idf)							
	P _{XLNET-Base}	0.970	0.996	0.986	0.990	0.979	0.739	0.98
	$R_{\text{XLNET-Base}}$	0.994	0.997	0.979	0.995	0.994	0.795	0.99
	F _{XLNET-Base}	0.983	0.997	0.983	0.993	0.987	0.505	0.98
	$P_{\text{XLNET-Base}}$ (idf)	0.968	0.998	0.986	0.990	0.978	0.923	0.98
	$R_{\text{XLNET-Base}}$ (idf)	0.993	0.998	0.978	0.996	0.994	0.439	0.98
	F _{XLNET-Base} (idf)	0.981	0.999	0.984	0.995	0.989	0.722	0.98
<u> </u>	$P_{\text{XLNET-Large}}$	0.969	0.998	0.986	0.995	0.979	0.880	0.98
	ALINE I-Large	0.995	0.997	0.977	0.997	0.995	0.430	0.98
	R _{XLNET-Large}	0.775			0.997	0.988		0.98
		0.983	0.998	0.983	0.997	0.900	0.713	0.20
	$R_{\text{XLNET-Large}}$		0.996	0.983 0.986	0.997	0.988	0.713 0.939	
	$R_{ m XLNET-Large}$ $F_{ m XLNET-Large}$	0.983						0.97
	$R_{ m XLNET-Large}$ $F_{ m XLNET-Large}$ $P_{ m XLNET-Large}$ (idf)	0.983 0.963	0.996	0.986	0.995	0.978	0.939	0.97 0.98
	$R_{XLNET-Large}$ $F_{XLNET-Large}$ (idf) $R_{XLNET-Large}$ (idf) $R_{XLNET-Large}$ (idf) $F_{XLNET-Large}$ (idf)	0.983 0.963 0.992 0.978	0.996 0.997 0.997	0.986 0.975 0.983	0.995 0.993 0.996	0.978 0.996 0.990	0.939 0.531 0.886	0.97 0.98 0.98
	$\begin{array}{c} R_{\rm XLNET-Large} \\ F_{\rm XLNET-Large} \\ P_{\rm XLNET-Large} \\ ({\rm idf}) \\ R_{\rm XLNET-Large} \\ F_{\rm XLNET-Large} \\ P_{\rm XLM-En} \end{array}$	0.983 0.963 0.992 0.978 0.965	0.996 0.997 0.997 0.996	0.986 0.975 0.983 0.990	0.995 0.993 0.996 0.978	0.978 0.996 0.990 0.980	0.939 0.531 0.886 0.946	0.97 0.98 0.98 0.98
	$\frac{R_{\rm XLNET-Large}}{F_{\rm XLNET-Large}}$ $\frac{P_{\rm XLNET-Large}}{R_{\rm XLNET-Large}}$ (idf) $\frac{R_{\rm XLNET-Large}}{R_{\rm XLNET-Large}}$ (idf) $\frac{P_{\rm XLM-En}}{R_{\rm XLM-En}}$	0.983 0.963 0.992 0.978 0.965 0.990	0.996 0.997 0.997 0.996 0.995	0.986 0.975 0.983 0.990 0.984	0.995 0.993 0.996 0.978 0.996	0.978 0.996 0.990 0.980 0.996	0.939 0.531 0.886 0.946 0.286	0.97 0.98 0.98 0.98 0.98
	$\begin{array}{c} R_{\rm XLNET-Large} \\ F_{\rm XLNET-Large} \\ P_{\rm XLNET-Large} ({\rm idf}) \\ R_{\rm XLNET-Large} ({\rm idf}) \\ \hline \\ F_{\rm XLNET-Large} ({\rm idf}) \\ \hline \\ P_{\rm XLM-En} \\ R_{\rm XLM-En} \\ F_{\rm XLM-En} \\ \hline \end{array}$	0.983 0.963 0.992 0.978 0.965 0.990 0.978	0.996 0.997 0.997 0.996 0.995 0.997	0.986 0.975 0.983 0.990 0.984 0.988	0.995 0.993 0.996 0.978 0.996 0.990	0.978 0.996 0.990 0.980 0.980 0.989	0.939 0.531 0.886 0.946 0.286 0.576	0.97 0.98 0.98 0.98 0.98 0.98
	$\frac{R_{\rm XLNET-Large}}{F_{\rm XLNET-Large}}$ $\frac{P_{\rm XLNET-Large}}{R_{\rm XLNET-Large}}$ (idf) $\frac{R_{\rm XLNET-Large}}{R_{\rm XLNET-Large}}$ (idf) $\frac{P_{\rm XLM-En}}{R_{\rm XLM-En}}$	0.983 0.963 0.992 0.978 0.965 0.990	0.996 0.997 0.997 0.996 0.995	0.986 0.975 0.983 0.990 0.984	0.995 0.993 0.996 0.978 0.996	0.978 0.996 0.990 0.980 0.996	0.939 0.531 0.886 0.946 0.286	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Table 18: Absolute Pearson correlations with system-level human judgments on WMT18 to-English translations. Correlations of metrics not significantly outperformed by any other for that language pair are highlighted in bold.

Setting	Metric	en-cs	en-de	en-et	en-fi	en-ru	en-tr	en-zh
	n	5	16	14	12	9	8	14
	BLEU	0.995	0.981	0.975	0.962	0.983	0.826	0.947
	CDER	0.997	0.986	0.984	0.964	0.984	0.861	0.961
	CHARACTER	0.993	0.989	0.956	0.974	0.983	0.833	0.983
	ITER	0.915	0.984	0.981	0.973	0.975	0.865	-
	Meteor++	_	_	_	_	_	_	_
	NIST	0.999	0.986	0.983	0.949	0.990	0.902	0.950
Unsupervised	PER	0.991	0.981	0.958	0.906	0.988	0.859	0.964
	TER	0.997	0.988	0.981	0.942	0.987	0.867	0.963
	UHH_TSKM	-	_	-	-	_	-	-
	WER	0.997	0.986	0.981	0.945	0.985	0.853	0.957
	YISI-0	0.973	0.985	0.968	0.944	0.990	0.990	0.957
	YISI-1	0.987	0.985	0.979	0.940	0.992	0.976	0.963
	YISI-1 SRL	-	0.990	_	-	_	-	0.952
	BEER	0.992	0.991	0.980	0.961	0.988	0.965	0.928
Supervised	BLEND	_	_	_	_	0.988	_	_
	RUSE	-	_	-	-	_	-	_
	P _{BERT-Multi}	0.994	0.988	0.981	0.957	0.990	0.935	0.954
	$R_{\text{BERT-Multi}}$	0.997	0.990	0.980	0.980	0.989	0.879	0.976
	$F_{\mathrm{BERT-Multi}}$	0.997	0.989	0.982	0.972	0.990	0.908	0.967
	$P_{\text{BERT-Multi}}$ (idf)	0.992	0.986	0.974	0.954	0.991	0.969	0.954
	$R_{\text{BERT-Multi}}$ (idf)	0.997	0.993	0.982	0.982	0.992	0.901	0.984
Pre-Trained	$F_{\text{BERT-Multi}}$ (idf)	0.995	0.990	0.981	0.972	0.991	0.941	0.973
The Trained	$P_{\rm XLM-100}$	0.984	0.992	0.993	0.972	0.993	0.962	0.965
	$R_{\rm XLM-100}$	0.991	0.992	0.992	0.989	0.992	0.895	0.983
	$F_{\rm XLM-100}$	0.988	0.993	0.993	0.986	0.993	0.935	0.976
	$P_{\rm XLM-100}$ (idf)	0.982	0.992	0.994	0.975	0.993	0.968	0.964
	$R_{\rm XLM-100}$ (idf)	0.993	0.993	0.991	0.989	0.993	0.911	0.986
	$F_{\rm XLM-100}$ (idf)	0.989	0.993	0.994	0.985	0.993	0.945	0.979

Table 19: Absolute Pearson correlations with system-level human judgments on WMT18 from-English translations. Correlations of metrics not significantly outperformed by any other for that language pair are highlighted in bold.

Setting	Metric n	cs-en 10K	de-en 10K	et-en 10K	fi-en 10K	ru-en 10K	tr-en 10K	zh-e 10K
	BLEU	0.956	0.969	0.981	0.962	0.972	0.586	0.96
	CDER	0.964	0.980	0.988	0.976	0.974	0.577	0.97
	CHARACTER	0.960	0.992	0.975	0.979	0.984	0.680	0.94
	ITER	0.966	0.990	0.975	0.989	0.943	0.742	0.97
	METEOR++ NIST	0.937	0.990 0.982	$0.975 \\ 0.980$	0.962 0.965	0.989 0.965	0.787 0.862	0.95 0.95
Unsupervised	PER	0.942	0.982	0.980	0.983	0.905	0.043	0.93
onsupervised	TER	0.942	0.970	0.988	0.960	0.963	0.450	0.92
	UHH_TSKM	0.943	0.979	0.987	0.974	0.973	0.443	0.97
	WER	0.942	0.961	0.989	0.953	0.962	0.072	0.96
	YISI-0	0.947	0.992	0.972	0.969	0.982	0.863	0.95
	YISI-1	0.942	0.991	0.976	0.964	0.985	0.881	0.94
	YISI-1 SRL	0.957	0.994	0.978	0.968	0.986	0.785	0.95
	BEER	0.950	0.993	0.983	0.982	0.976	0.723	0.96
Supervised	BLEND	0.965	0.990	0.982	0.985	0.986	0.724	0.96
	RUSE	0.974	0.996	0.988	0.983	0.982	0.780	0.97
	$P_{\text{BERT-Base}}$	0.954	0.992	0.984	0.980	0.970	0.917	0.96
	$R_{\text{BERT-Base}}$	0.988	0.994	0.974	0.987	0.988	0.801	0.97
	$F_{\text{BERT-Base}}$	0.973	0.994	0.981	0.987	0.982	0.924	0.97
	PBERT-Base (idf)	0.957	0.994	0.983	0.966	0.970	0.875	0.96
	$R_{\text{BERT-Base}}$ (idf)	0.986	0.990	0.976	0.984	0.984	0.019	0.98
	F _{BERT-Base} (idf)	0.974	0.993	0.980	0.978	0.978	0.853	0.97
i	$P_{\text{BERT-Base-MRPC}}$	0.949	0.995	0.986	0.960	0.969	0.832	0.97
	R _{BERT-Base-MRPC}	0.983	0.997	0.979	0.986	0.986	0.099	0.98
	FBERT-Base-MRPC	0.967	0.997	0.984	0.978	0.981	0.722	0.97
	PBERT-Base-MRPC (idf)	0.949	0.994	0.986	0.946	0.969	0.743	0.96
	R _{BERT-Base-MRPC} (idf)	0.984	0.994	0.980	0.980	0.986	0.541	0.98
	F _{BERT-Base-MRPC} (idf)	0.967	0.995	0.984	0.968	0.979	0.464	0.97
	$P_{\text{BERT-Large}}$	0.969	0.991	0.985	0.979	0.970	0.915	0.96
	$R_{\text{BERT-Large}}$	0.990	0.993	0.980	0.988	0.988	0.745	0.97
	$F_{\text{BERT-Large}}$	0.982	0.993	0.984	0.986	0.981	0.909	0.97
	P _{BERT-Large} (idf)	0.970	0.991	0.984	0.963	0.971	0.858	0.97
	$R_{\text{BERT-Large}}$ (idf)	0.989	0.990	0.982	0.982	0.985	0.047	0.98
	F _{BERT-Large} (idf)	0.981	0.991	0.984	0.976	0.978	0.722	0.97
i	P _{RoBERTa-Base}	0.959	0.992	0.988	0.986	0.971	0.809	0.97
	$R_{\text{RoBERTa-Base}}$	0.987	0.997	0.978	0.989	0.988	0.238	0.98
	F _{RoBERTa-Base}	0.973	0.997	0.987	0.989	0.982	0.674	0.98
	P _{RoBERTa-Base} (idf)	0.963	0.994	0.988	0.989	0.970	0.711	0.97
	R _{RoBERTa-Base} (idf)	0.988	0.996	0.979	0.989	0.987	0.353	0.98
	F _{RoBERTa-Base} (idf)	0.976	0.997	0.986	0.990	0.980	0.277	0.98
	$P_{\text{RoBERTa-Large}}$	0.965	0.995	0.990	0.976	0.976	0.846	0.97
Pre-Trained	$R_{\text{RoBERTa-Large}}$	0.989	0.997	0.982	0.989	0.988	0.540	0.98
	$F_{\text{RoBERTa-Large}}$	0.978	0.998	0.989	0.983	0.985	0.760	0.98
	PRoBERTa-Large (idf)	0.972	0.997	0.988	0.986	0.976	0.686	0.97
	R _{RoBERTa-Large} (idf)	0.990	0.996	0.983	0.989	0.989	0.096	0.98
	F _{RoBERTa-Large} (idf)	0.982	0.998	0.988	0.989	0.983	0.453	0.98
i	PRoBERTa-Large-MNLI	0.978	0.997	0.991	0.984	0.980	0.914	0.97
	RoBERTa-Large-MNLI	0.991	0.996	0.984	0.989	0.987	0.566	0.98
	$F_{\text{RoBERTa-Large-MNLI}}$	0.987	0.998	0.989	0.988	0.986	0.873	0.98
	P _{RoBERTa-Large-MNLI} (idf)	0.982	0.998	0.992	0.990	0.978	0.822	0.97
	$R_{\text{RoBERTa-Large-MNLI}}$ (idf)	0.992	0.996	0.985	0.988	0.988	0.022	0.98
	FROBERTA-Large-MNLI (idf)	0.989	0.998	0.990	0.990	0.985	0.583	0.98
i	$P_{\text{XLNET-Base}}$	0.960	0.997	0.984	0.982	0.972	0.849	0.97
	$R_{\text{XLNET-Base}}$	0.985	0.997	0.975	0.988	0.988	0.303	0.98
	F _{XLNET-Base}	0.974	0.998	0.981	0.986	0.982	0.628	0.98
	P _{XLNET-Base} (idf)	0.962	0.995	0.983	0.982	0.972	0.657	0.97
	$R_{\text{XLNET-Base}}$ (idf)	0.986	0.996	0.976	0.987	0.987	0.666	0.98
	F _{XLNET-Base} (idf)	0.975	0.996	0.980	0.985	0.981	0.259	0.98
i	D	0.955	0.995	0.983	0.986	0.972	0.875	0.97
	I'XLNFT_I arge		0.996	0.972	0.984	0.989	0.491	0.97
	P _{XLNET-Large} R _{XLNET-Large}	0.984						
	$R_{\text{XLNET-Large}}$	0.984 0.971	0.996	0.980	0.987	0.984	0.821	0.97
	$R_{ m XLNET-Large}$ $F_{ m XLNET-Large}$			0.980 0.983	0.987 0.987	0.984	0.821	
	$R_{XLNET-Large}$ $F_{XLNET-Large}$ $P_{XLNET-Large}$ (idf)	0.971	0.996					0.97
	$R_{ m XLNET-Large}$ $F_{ m XLNET-Large}$	0.971 0.961	0.996 0.997	0.983	0.987	0.973	0.816	0.97 0.98
	R _{XLNET-Large} F _{XLNET-Large} P _{XLNET-Large} (idf) R _{XLNET-Large} (idf) F _{XLNET-Large} (idf)	0.971 0.961 0.987 0.976	0.996 0.997 0.996 0.997	0.983 0.975 0.980	0.987 0.989 0.989	0.973 0.988 0.982	0.816 0.320 0.623	0.97 0.98 0.98
	$\begin{array}{c} R_{\rm XLNET-Large} \\ F_{\rm XLNET-Large} \\ P_{\rm XLNET-Large} \\ ({\rm idf}) \\ R_{\rm XLNET-Large} \\ F_{\rm XLNET-Large} \\ \hline \\ P_{\rm XLMET-Large} \\ \hline \end{array}$	0.971 0.961 0.987 0.976 0.953	0.996 0.997 0.996 0.997 0.995	0.983 0.975 0.980 0.988	0.987 0.989 0.989 0.979	0.973 0.988 0.982 0.974	0.816 0.320 0.623 0.918	0.97 0.98 0.98 0.97
	$\frac{R_{\rm XLNET-Large}}{F_{\rm XLNET-Large}}$ $\frac{P_{\rm XLNET-Large}({\rm idf})}{R_{\rm XLNET-Large}({\rm idf})}$ $\frac{P_{\rm XLNET-Large}({\rm idf})}{P_{\rm XLM-En}}$	0.971 0.961 0.987 0.976 0.953 0.983	0.996 0.997 0.996 0.997 0.995 0.996	0.983 0.975 0.980 0.988 0.980	0.987 0.989 0.989 0.979 0.988	0.973 0.988 0.982 0.974 0.991	0.816 0.320 0.623 0.918 0.561	0.97 0.98 0.98 0.97 0.97
	$\begin{array}{c} R_{\rm XLNET-Large} \\ F_{\rm XLNET-Large} \\ P_{\rm XLNET-Large} ({\rm idf}) \\ R_{\rm XLNET-Large} ({\rm idf}) \\ \hline \\ F_{\rm XLNET-Large} ({\rm idf}) \\ \hline \\ P_{\rm XLM-En} \\ R_{\rm XLM-En} \\ F_{\rm XLM-En} \\ \end{array}$	0.971 0.961 0.987 0.976 0.953 0.983 0.969	0.996 0.997 0.996 0.997 0.995 0.995 0.996 0.997	0.983 0.975 0.980 0.988 0.980 0.986	0.987 0.989 0.989 0.979 0.988 0.986	0.973 0.988 0.982 0.974 0.991 0.985	0.816 0.320 0.623 0.918 0.561 0.869	0.97 0.98 0.98 0.97 0.97 0.97
	$\frac{R_{\rm XLNET-Large}}{F_{\rm XLNET-Large}}$ $\frac{P_{\rm XLNET-Large}({\rm idf})}{R_{\rm XLNET-Large}({\rm idf})}$ $\frac{P_{\rm XLNET-Large}({\rm idf})}{P_{\rm XLM-En}}$	0.971 0.961 0.987 0.976 0.953 0.983	0.996 0.997 0.996 0.997 0.995 0.996	0.983 0.975 0.980 0.988 0.980	0.987 0.989 0.989 0.979 0.988	0.973 0.988 0.982 0.974 0.991	0.816 0.320 0.623 0.918 0.561	0.97 0.97 0.98 0.98 0.97 0.97 0.97 0.97 0.97

Table 20: Absolute Pearson correlations with human judgments on WMT18 to-English language pairs for 10K hybrid systems. Correlations of metrics not significantly outperformed by any other for that language pair are highlighted in bold.

Setting	Metric	en-cs	en-de	en-et	en-fi	en-ru	en-tr	en-zh
_	n	10K						
	BLEU	0.993	0.977	0.971	0.958	0.977	0.796	0.941
	CDER	0.995	0.984	0.981	0.961	0.982	0.832	0.956
	CHARACTER	0.990	0.986	0.950	0.963	0.981	0.775	0.978
	ITER	0.865	0.978	0.982	0.966	0.965	0.872	-
	Meteor++	—	—	_	_	_	_	-
	NIST	0.997	0.984	0.980	0.944	0.988	0.870	0.944
Unsupervised	PER	0.987	0.979	0.954	0.904	0.986	0.829	0.950
	TER	0.995	0.986	0.977	0.939	0.985	0.837	0.959
	UHH_TSKM	-	-	-	-	-	-	-
	WER	0.994	0.984	0.977	0.942	0.983	0.824	0.954
	YISI-0	0.971	0.983	0.965	0.942	0.988	0.953	0.951
	YISI-1	0.985	0.983	0.976	0.938	0.989	0.942	0.957
	YISI-1 SRL	-	0.988	—	—	_	—	0.948
	BEER	0.990	0.989	0.978	0.959	0.986	0.933	0.925
Supervised	BLEND	_	_	—	_	0.986	_	-
	RUSE	-	_	_	_	_	-	-
	PBERT-Multi	0.989	0.983	0.970	0.951	0.988	0.936	0.950
	$R_{\mathrm{BERT-Multi}}$	0.995	0.991	0.979	0.977	0.989	0.872	0.980
	$F_{\mathrm{BERT-Multi}}$	0.993	0.988	0.978	0.969	0.989	0.910	0.969
	$P_{\text{BERT-Multi}}$ (idf)	0.992	0.986	0.978	0.954	0.988	0.903	0.950
	$R_{\text{BERT-Multi}}$ (idf)	0.995	0.988	0.977	0.976	0.987	0.850	0.972
Pre-Trained	$F_{\text{BERT-Multi}}$ (idf)	0.995	0.988	0.979	0.969	0.987	0.877	0.963
	P _{XLM-100}	0.980	0.990	0.991	0.972	0.991	0.936	0.959
	$R_{\rm XLM-100}$	0.991	0.990	0.989	0.985	0.991	0.882	0.981
	$F_{\rm XLM-100}$	0.987	0.990	0.991	0.981	0.991	0.915	0.974
	$P_{\text{XLM-100}}$ (idf)	0.982	0.990	0.990	0.968	0.991	0.931	0.960
	$R_{\rm XLM-100}$ (idf)	0.989	0.990	0.990	0.985	0.990	0.867	0.978
	$F_{\rm XLM-100}$ (idf)	0.986	0.991	0.991	0.982	0.991	0.905	0.972

Table 21: Absolute Pearson correlations with human judgments on WMT18 from-English language pairs for 10K hybrid systems. Correlations of metrics not significantly outperformed by any other for that language pair are highlighted in bold.

BLEU CDER 0.135 0.162 0.175 0.175 0.460 0.475 0.757 0.460 0.493 0.234 0.036 0.087 0.087 0.087 0.660 0.087 0.087 Unsupervised TER METEOR++ 0.152 0.154 0.152 0.814 0.746 0.747 0.426 0.747 0.426 0.230 0.0357 0.046 0.0387 0.057 0.046 Unsupervised TER PER 0.151 0.151 0.864 0.760 0.466 0.470 0.240 0.024 0.030 0.0450 0.035 0.025 0.046 0.026 0.026 0.026 0.030 0.0450 0.027 0.000 0.0420 0.000 0.0410 0.043 0.023 0.000 0.0410 0.043 0.023 0.000 0.0410 0.043 0.023 0.000 0.0410 0.043 0.027 0.000 0.0410 0.043 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Setting	Metric	cs-en	de-en	et-en	fi-en	ru-en	tr-en	zh-en
CDER 0.162 0.795 0.764 0.493 0.234 0.087 0.660 Unsupervised TTER 0.152 0.814 0.746 0.474 0.234 0.087 0.660 Unsupervised NIET 0.152 0.814 0.746 0.474 0.234 0.000 0.673 NIET 0.130 0.780 0.760 0.474 0.238 0.135 0.655 PER 0.121 0.766 0.660 0.228 0.100 0.652 VIBL 0.180 0.786 0.470 0.232 0.100 0.652 Supervised BEER 0.150 0.811 0.765 0.485 0.237 0.030 0.675 Supervised BEER 0.190 0.815 0.778 0.484 0.254 0.000 0.661 Rusert-mac 0.190 0.815 0.778 0.484 0.254 0.010 0.652 Supervised BEER 0.105 0.811 0.776 0.476	Setting								
CHARACTER 0.146 0.737 0.096 0.096 0.201 0.082 0.534 Unsupervised ITER 0.132 0.814 0.744 0.474 0.474 0.474 0.474 0.474 0.474 0.474 0.476 0.456 0.238 0.135 0.665 Unsupervised PER 0.139 0.789 0.768 0.476 0.476 0.476 0.427 0.000 0.662 WER 0.149 0.776 0.686 0.470 0.620 0.100 0.652 Supervised BEER 0.165 0.811 0.765 0.484 0.237 0.030 0.675 Supervised BEER 0.165 0.811 0.775 0.485 0.237 0.030 0.675 Ruser-mae 0.184 0.820 0.779 0.484 0.245 0.000 0.610 0.779 0.485 0.277 0.436 0.246 0.450 Supervised Patter-mae 0.1810 0.777 0.481									
MBETEOR++ NIST 0.112 0.0840 0.0540 0.0550 0.0570 0.0560 0.0570 0.0560 0.0570 0.0560 0.0570 0.0560 0.0570 0.0560 0.0570 0.0560 0.0570 0.0560 0.0570 0.0560 0.0570 0.0560 0.0571 0.0560 0.0571 0.0560 0.0571 0.0560 0.0571 0.0560 0.0571 0.0560 0.0571 0.0560 0.0571 0.0560 0.0571 0.0560 0.0571 0.0560 0.0571 0.0581 0.0570 0.0481 0.0230 0.0572 0.0560 0.0571 0.0481 0.0230 0.0572 0.0570 0.0481 0.0230 0.0572 Supervised BEER 0.150 0.814 0.073 0.484 0.244 0.000 0.010									
Unsupervised NIST 0.136 0.802 0.739 0.469 0.228 0.00 0.602 TER 0.139 0.789 0.768 0.470 0.232 0.001 0.652 WER 0.149 0.776 0.768 0.490 0.240 0.002 0.642 WER 0.149 0.776 0.760 0.441 0.223 0.000 0.643 YISI-1 0.157 0.808 0.752 0.448 0.230 0.030 0.617 Supervised BEER 0.150 0.811 0.755 0.448 0.231 0.032 0.620 RUSE 0.121 0.823 0.778 0.448 0.236 0.030 0.611 RUSE 0.190 0.811 0.778 0.448 0.240 0.030 0.611 RUSE 0.190 0.811 0.776 0.478 0.244 0.260 0.674 RUSE 0.213 0.821 0.767 0.413 0.255 0.130		ITER	0.152	0.814	0.746	0.474	0.234	0.100	0.673
Unsupervised PER 0.121 0.764 0.068 0.475 0.232 0.001 0.652 UHH.TSKM 0.191 0.803 0.768 0.469 0.232 0.001 0.652 WER 0.149 0.776 0.469 0.240 0.002 0.643 YISI-1 0.157 0.808 0.780 0.483 0.220 0.006 0.629 Supervised BEER 0.165 0.811 0.760 0.471 0.254 0.000 0.615 Supervised BEER 0.159 0.814 0.760 0.484 0.224 0.010 0.615 Supervised BEER 0.190 0.815 0.778 0.484 0.264 0.014 0.653 FBERT-Base 0.190 0.815 0.778 0.444 0.265 0.144 0.660 Patert-Base-MeRC 0.190 0.815 0.778 0.474 0.265 0.144 0.670 Patert-Base-MeRC 0.190 0.826 0.756									
TER 0.139 0.789 0.768 0.470 0.232 0.001 0.652 WER 0.149 0.776 0.760 0.471 0.227 0.000 0.642 YISI-1 0.148 0.780 0.765 0.484 0.230 0.010 0.633 Supervised BLERD 0.155 0.814 0.765 0.484 0.230 0.030 0.675 Supervised BLERD 0.184 0.820 0.778 0.484 0.234 0.030 0.617 RUSE 0.121 0.823 0.788 0.484 0.243 0.030 0.617 RUSE 0.121 0.823 0.788 0.448 0.266 0.140 0.633 REGET-Base 0.190 0.811 0.776 0.448 0.266 0.140 0.633 REGET-Base-MERC 0.190 0.701 0.481 0.246 0.147 0.526 0.767 0.491 0.260 0.671 PatterT-Base-MERC 0.197 0.8									
UHH.TSEM 0.191 0.803 0.768 0.469 0.224 0.000 0.654 YISI-1 0.148 0.776 0.780 0.783 0.229 0.106 0.629 YISI-1 0.157 0.880 0.752 0.464 0.254 0.008 0.620 Supervised BEER 0.165 0.811 0.765 0.484 0.220 0.100 0.612 RUSE 0.213 0.823 0.778 0.448 0.226 0.100 0.612 PBERT-Base 0.190 0.815 0.778 0.448 0.226 0.140 0.663 PBERT-Base (dfl) 0.192 0.815 0.778 0.443 0.248 0.026 0.653 RBERT-Base (dfl) 0.192 0.819 0.771 0.443 0.248 0.026 0.653 RBERT-Base-MERC 0.190 0.701 0.766 0.487 0.254 0.126 0.653 RBERT-Base-MERC 0.190 0.810 0.779 0.444 0.2	Unsupervised								
WER YISI-0 YISI-1 0.149 0.776 0.760 0.471 0.229 0.000 0.652 VISI-1 Supervised BEER 0.159 0.814 0.763 0.484 0.230 0.030 0.620 Supervised BLEND 0.184 0.820 0.775 0.444 0.243 0.008 0.620 RUSE 0.123 0.823 0.778 0.444 0.244 0.000 0.615 RUSE 0.120 0.823 0.778 0.448 0.250 0.100 0.615 RBERT-Base 0.190 0.811 0.775 0.448 0.260 0.140 0.633 RBERT-Base (dr) 0.190 0.813 0.775 0.448 0.262 0.081 0.660 RBERT-Base (dr) 0.190 0.817 0.775 0.448 0.262 0.081 0.663 RBERT-Base-MBPC 0.190 0.826 0.776 0.493 0.262 0.081 0.663 RBERT-Base-MBPC 0.190 0.826 0.756									
YISI-1 0.148 0.780 0.780 0.283 0.229 0.106 0.629 Supervised BEER 0.157 0.884 0.752 0.464 0.243 0.008 0.620 Supervised BLEND 0.184 0.823 0.778 0.484 0.224 0.008 0.621 RUSE 0.213 0.823 0.778 0.484 0.226 0.100 0.611 Rustr-Base 0.190 0.815 0.778 0.448 0.226 0.114 0.663 Patter-Base 0.194 0.819 0.775 0.474 0.225 0.114 0.670 Patter-Base (dfl) 0.192 0.808 0.771 0.483 0.224 0.025 0.663 Rustr-Base-Marc 0.190 0.701 0.766 0.487 0.254 0.126 0.651 Rustr-Base-Marc 0.190 0.821 0.767 0.493 0.226 0.631 0.669 Patter-Base-Marc 0.190 0.821 0.767									
YISI-1 SRL 0.159 0.814 0.763 0.484 0.243 0.008 0.620 Supervised BEER 0.165 0.811 0.765 0.485 0.237 0.030 0.617 RUSE 0.213 0.823 0.778 0.448 0.254 0.000 0.611 Patert-Base 0.190 0.815 0.778 0.448 0.226 0.141 0.655 Patert-Base 0.190 0.819 0.775 0.477 0.255 0.144 0.670 Patert-Base-Marc 0.190 0.819 0.775 0.477 0.255 0.144 0.670 Patert-Base-Marc 0.190 0.701 0.766 0.487 0.224 0.126 0.653 Right-Base-Marc 0.190 0.701 0.766 0.487 0.224 0.126 0.653 Right-Base-Marc 0.190 0.820 0.765 0.497 0.224 0.000 0.801 Patert-Base-Marc 0.190 0.810 0.778 0.477 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
BEER 0.165 0.811 0.765 0.485 0.237 0.030 0.675 Supervised BLEND 0.184 0.820 0.779 0.484 0.254 0.003 0.611 RUSE 0.213 0.823 0.788 0.484 0.250 0.109 0.672 PhERT-Base 0.190 0.815 0.778 0.448 0.226 0.019 0.655 Rugert-Base 0.190 0.815 0.778 0.448 0.226 0.0144 0.650 Rugert-Base 0.190 0.817 0.774 0.428 0.226 0.660 Pagert-Base-MBRC 0.190 0.701 0.766 0.487 0.224 0.126 0.669 Pagert-Base-MBRC 0.190 0.824 0.767 0.491 0.260 0.147 0.668 Pagert-Base-MBRC 0.190 0.826 0.765 0.493 0.228 0.000 0.671 Pagert-Base-MBRC 0.190 0.810 0.772 0.485 0.266			0.157	0.808			0.250		0.613
Supervised BLEND 0.184 0.823 0.778 0.484 0.224 0.003 0.611 RUSE 0.213 0.823 0.788 0.487 0.250 0.109 0.612 REET-lase 0.199 0.815 0.778 0.486 0.261 0.109 0.631 REET-lase 0.199 0.815 0.778 0.448 0.262 0.014 0.650 REET-lase 0.190 0.817 0.777 0.474 0.255 0.131 0.650 REET-lase-MRC 0.190 0.817 0.777 0.487 0.224 0.008 0.660 REET-lase-MRC 0.190 0.826 0.765 0.492 0.247 0.125 0.661 ReET-lase-MRC 0.199 0.826 0.765 0.492 0.224 0.010 0.676 REET-lase-MRC 0.190 0.821 0.760 0.497 0.224 0.000 0.660 REET-lase 0.190 0.810 0.772 0.493 0.226<		YISI-1 SRL	0.159	0.814	0.763	0.484	0.243	0.008	0.620
RUSE 0.213 0.823 0.788 0.487 0.250 0.109 0.672 RBERT-Base 0.190 0.815 0.778 0.466 0.261 0.130 0.655 RBERT-Base 0.194 0.819 0.817 0.775 0.474 0.265 0.144 0.670 Paper-Base (idf) 0.199 0.817 0.775 0.477 0.255 0.144 0.670 Paper-Base (idf) 0.190 0.701 0.766 0.487 0.226 0.081 0.669 Paper-Base-MRC 0.190 0.701 0.766 0.487 0.226 0.081 0.669 Paper-Base-MRC (idf) 0.190 0.826 0.765 0.493 0.224 0.126 0.633 Paper-Base-MRC (idf) 0.200 0.823 0.760 0.495 0.228 0.000 0.612 Paper-Lage 0.194 0.820 0.767 0.495 0.224 0.013 0.576 Paper-Lage 0.199 0.810 0.779 0		BEER	0.165	0.811	0.765	0.485	0.237	0.030	0.675
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Supervised								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		RUSE	0.213	0.823	0.788	0.487	0.250	0.109	0.672
$Pre-Trained \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		PBERT-Base	0.190	0.815	0.778	0.468	0.261	0.130	0.655
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			0.189	0.813	0.775	0.481	0.266	0.014	0.663
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\mbox{Pre-Trained} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$ Pre-Trained \left \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.199	0.811	0.772	0.494	0.262	0.006	0.673
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		PROBERTS-Base	0.173	0.675	0.757	0.502	0.258	0.126	0.654
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.173	0.820	0.764	0.498	0.262	0.090	0.669
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.172	0.691	0.755	0.503	0.252	0.123	0.661
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$F_{\text{RoBERTa-Base}}$ (idf)	0.178	0.820	0.758	0.501	0.260	0.001	0.674
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dre Trained	PRoBERTa-Large							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tic-Traincu								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.186	0.771	0.762	0.496	0.247	0.153	0.658
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		R _{XI NFT-Base}				a 10 1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.178				0.241		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		R _{XLNET-Base} (idf)							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		F _{XLNET-Base} (idf)	0.182	0.821	0.755	0.505	0.250	0.000	0.670
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		P _{XLNET-Large}							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$R_{\text{XLM-En}}$ (idf) 0.202 0.812 0.761 0.490 0.250 0.003 0.668									
				0.821	0.766	0.490	0.263	0.003	0.672

Table 22: Model selection accuracies (Hits@1) on to-English WMT18 hybrid systems. We report the average of 100K samples and the 0.95 confidence intervals are below 10^{-3} . We bold the highest numbers for each language pair and direction.

Setting	Metric	cs-en	de en	et en	fi-en	ru an	tr-en	zh-en
Setting	BLEU	0.338	de-en 0.894	et-en 0.866	0.666	ru-en 0.447	0.265	0.799
	CDER	0.358	0.894	0.800	0.689	0.447	0.265	0.799
	CHARACTER	0.349	0.854	0.814	0.690	0.429	0.254	0.739
	ITER	0.356	0.901	0.856	0.676	0.454	0.278	0.811
	METEOR++	0.369	0.895	0.798	0.662	0.470	0.174	0.757
	NIST	0.338	0.894	0.857	0.672	0.446	0.323	0.803
Unsupervised	PER TER	0.325	$0.866 \\ 0.885$	0.771 0.873	0.663 0.673	0.435 0.447	0.021 0.063	0.754 0.792
	UHH_TSKM	0.342	0.885	0.873	0.671	0.447	0.063	0.792
	WER	0.353	0.876	0.868	0.674	0.443	0.034	0.790
	YISI-0	0.344	0.881	0.834	0.681	0.452	0.275	0.776
	YISI-1	0.352	0.896	0.864	0.671	0.470	0.285	0.765
	YISI-1 SRL	0.351	0.901	0.871	0.682	0.464	0.086	0.770
	BEER	0.364	0.899	0.871	0.684	0.460	0.125	0.811
Supervised	BLEND	0.382	0.904	0.880	0.681	0.473	0.077	0.767
	RUSE	0.417	0.906	0.885	0.686	0.468	0.273	0.809
	$P_{\text{BERT-Base}}$	0.386	0.901	0.880	0.674	0.481	0.318	0.793
	$R_{\text{BERT-Base}}$	0.383	0.899	0.877	0.683	0.486	0.100	0.804
	F _{BERT-Base}	0.388	0.903	0.879	0.678	0.484	0.331	0.808
	$P_{\text{BERT-Base}}$ (idf)	0.390	0.902	0.877	0.681	0.475	0.318	0.786
	$R_{\text{BERT-Base}}$ (idf) $F_{\text{BERT-Base}}$ (idf)	0.390	0.896 0.902	0.874 0.876	0.686 0.685	0.475 0.483	0.077 0.225	0.811 0.806
ļ								
	P _{BERT-Base-MRPC}	0.392	0.832	0.872	0.686	0.475	0.319	0.791
	R _{BERT-Base-MRPC}	0.397	0.908 0.907	0.870 0.872	0.691 0.690	0.478 0.481	0.025 0.335	0.811 0.806
	$F_{\text{BERT-Base-MRPC}}$ $P_{\text{BERT-Base-MRPC}}$ (idf)	0.398	0.907	0.872	0.690	0.467	0.335	0.800
	$R_{\text{BERT-Base-MRPC}}$ (idf)	0.400	0.906	0.867	0.691	0.479	0.018	0.817
	$F_{\text{BERT-Base-MRPC}}$ (idf)	0.400	0.905	0.869	0.693	0.475	0.097	0.812
	$P_{\text{BERT-Large}}$	0.398	0.901	0.880	0.678	0.481	0.327	0.799
	R _{BERT-Large}	0.391	0.897	0.879	0.690	0.490	0.085	0.810
	$F_{\text{BERT-Large}}$	0.397	0.898	0.882	0.684	0.486	0.328	0.810
	P _{BERT-Large} (idf)	0.398	0.900	0.875	0.685	0.475	0.323	0.794
	R _{BERT-Large} (idf)	0.395	0.895	0.873	0.692	0.488	0.080	0.813
	F _{BERT-Large} (idf)	0.398	0.899	0.875	0.691	0.482	0.086	0.810
	$P_{\text{RoBERTa-Base}}$	0.372	0.814	0.866	0.697	0.475	0.313	0.795
	$R_{\text{RoBERTa-Base}}$	0.366	0.902	0.870	0.683	0.483	0.026	0.813
	F _{RoBERTa-Base}	0.374	0.904	0.870	0.694	0.480	0.224	0.808
	$P_{\text{RoBERTa-Base}}$ (idf)	0.373	0.825	0.865	0.697	0.470	0.303	0.802
	R _{RoBERTa-Base} (idf)	0.374	0.898	0.866	0.688	0.486	0.028	0.816
ļ	F _{RoBERTa-Base} (idf)	0.380	0.904	0.866	0.696	0.479	0.037	0.812
Pre-Trained	$P_{\text{RoBERTa-Large}}$	0.375	0.833	0.871	0.693	0.474	0.327	0.800
	$R_{\text{RoBERTa-Large}}$	0.366	0.895	0.874	0.689	0.480	0.039	0.816
	$F_{\text{RoBERTa-Large}}$ $P_{\text{RoBERTa-Large}}$ (idf)	0.378	0.907 0.905	0.874 0.866	0.694 0.694	0.480 0.475	0.324 0.220	0.811 0.806
	$R_{\text{RoBERTa-Large}}$ (idf)	0.368	0.885	0.869	0.692	0.487	0.030	0.819
	$F_{\text{RoBERTa-Large}}$ (idf)	0.382	0.907	0.868	0.696	0.484	0.048	0.815
: 		0.383	0.909	0.880	0.698	0.480	0.323	0.795
	$P_{ m RoBERTa-Large-MNLI}$ $R_{ m RoBERTa-Large-MNLI}$	0.378	0.880	0.880	0.692	0.480	0.078	0.811
	FROBERTa-Large-MNLI	0.385	0.909			0.484	0.286	0.809
			0.909	0.879	0.697			
		0.389	0.909	0.879 0.874	0.697 0.698	0.478	0.268	0.803
	P _{RoBERTa-Large-MNLI} (idf) R _{RoBERTa-Large-MNLI} (idf)							
	P _{RoBERTa-Large-MNLI} (idf)	0.389	0.905	0.874	0.698	0.478	0.268	0.803
	$\begin{array}{l} P_{\text{RoBERTa-Large-MNLI}} \left(\text{idf} \right) \\ R_{\text{RoBERTa-Large-MNLI}} \left(\text{idf} \right) \\ F_{\text{RoBERTa-Large-MNLI}} \left(\text{idf} \right) \end{array}$	0.389 0.380	0.905 0.874	0.874 0.870	0.698 0.691	0.478 0.483	0.268 0.079	0.803 0.814
	$P_{\text{RoBERTa-Large-MNLI}}$ (idf) $R_{\text{RoBERTa-Large-MNLI}}$ (idf)	0.389 0.380 0.387	0.905 0.874 0.906 0.875 0.907	0.874 0.870 0.872	0.698 0.691 0.696	0.478 0.483 0.482 0.469 0.477	0.268 0.079 0.082 0.342 0.026	0.803 0.814 0.811
	$\frac{P_{\text{RoBERTa-Large-MNLI}}(\text{idf})}{R_{\text{RoBERTa-Large-MNLI}}(\text{idf})}$ $\frac{P_{\text{XLNET-Base}}}{R_{\text{XLNET-Base}}}$ $\frac{F_{\text{XLNET-Base}}}{F_{\text{XLNET-Base}}}$	0.389 0.380 0.387 0.385 0.381 0.385	0.905 0.874 0.906 0.875 0.907 0.907	0.874 0.870 0.872 0.869 0.869 0.871	0.698 0.691 0.696 0.692 0.693 0.694	0.478 0.483 0.482 0.469 0.477 0.476	0.268 0.079 0.082 0.342 0.026 0.128	0.803 0.814 0.811 0.796 0.809 0.810
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ F_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ F_{\text{XLNET-Base}} \\ P_{\text{XLNET-Base}} (\text{idf}) \end{array}$	0.389 0.380 0.387 0.385 0.381 0.385 0.381	0.905 0.874 0.906 0.875 0.907 0.907 0.904	0.874 0.870 0.872 0.869 0.869 0.871 0.864	0.698 0.691 0.696 0.692 0.693 0.694 0.699	$\begin{array}{c} 0.478\\ 0.483\\ 0.482\\ \hline 0.469\\ 0.477\\ 0.476\\ 0.464\\ \end{array}$	0.268 0.079 0.082 0.342 0.026 0.128 0.289	0.803 0.814 0.811 0.796 0.809 0.810 0.794
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ F_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ \hline \\ P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ F_{\text{XLNET-Base}} \\ P_{\text{XLNET-Base}} (\text{idf}) \\ R_{\text{XLNET-Base}} (\text{idf}) \end{array}$	0.389 0.380 0.387 0.385 0.381 0.385 0.381 0.384	0.905 0.874 0.906 0.875 0.907 0.907 0.904 0.903	0.874 0.870 0.872 0.869 0.869 0.871 0.864 0.863	0.698 0.691 0.696 0.692 0.693 0.694 0.699 0.696	$\begin{array}{c} 0.478 \\ 0.483 \\ 0.482 \\ \hline 0.469 \\ 0.477 \\ 0.476 \\ 0.464 \\ 0.479 \\ \hline \end{array}$	0.268 0.079 0.082 0.342 0.026 0.128 0.289 0.013	0.803 0.814 0.811 0.796 0.809 0.810 0.794 0.812
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ F_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ \hline \\ P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ F_{\text{XLNET-Base}} (\text{idf}) \\ R_{\text{XLNET-Base}} (\text{idf}) \\ R_{\text{XLNET-Base}} (\text{idf}) \\ \hline \\ \end{array}$	0.389 0.380 0.387 0.385 0.381 0.385 0.381 0.384 0.384 0.384	0.905 0.874 0.906 0.875 0.907 0.907 0.904 0.903 0.905	0.874 0.870 0.872 0.869 0.869 0.871 0.864 0.863 0.864	0.698 0.691 0.696 0.692 0.693 0.694 0.699 0.696 0.699	$\begin{array}{c} 0.478\\ 0.483\\ 0.482\\ \hline 0.469\\ 0.477\\ 0.476\\ 0.464\\ 0.479\\ 0.472\\ \end{array}$	0.268 0.079 0.082 0.342 0.026 0.128 0.289 0.013 0.032	0.803 0.814 0.811 0.796 0.809 0.810 0.794 0.812 0.809
	ProBERTa-Large-MNL1 (idf) RRoBERTa-Large-MNL1 (idf) FROBERTa-Large-MNL1 (idf) PXLNET-Base RXLNET-Base PXLNET-Base PXLNET-Base (idf) RXLNET-Base (idf) PXLNET-Large	0.389 0.380 0.387 0.385 0.381 0.385 0.381 0.384 0.384 0.384 0.384	0.905 0.874 0.906 0.875 0.907 0.907 0.904 0.903 0.905 0.844	0.874 0.870 0.872 0.869 0.869 0.871 0.864 0.863 0.864 0.863	0.698 0.691 0.696 0.692 0.693 0.694 0.699 0.699 0.689	0.478 0.483 0.482 0.469 0.477 0.476 0.476 0.464 0.479 0.472 0.367	0.268 0.079 0.082 0.342 0.026 0.128 0.289 0.013 0.032 0.338	0.803 0.814 0.811 0.796 0.809 0.810 0.794 0.812 0.809 0.799
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ \overline{P_{\text{RoBERTa-Large-MNL1}} (\text{idf})} \\ \hline P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ \overline{P_{\text{XLNET-Base}}} \\ \overline{P_{\text{XLNET-Large}}} \\ \overline{P_{\text{XLNET-Large}}} \\ \end{array}$	0.389 0.380 0.387 0.385 0.381 0.385 0.381 0.384 0.384 0.384 0.384 0.384	0.905 0.874 0.906 0.875 0.907 0.907 0.904 0.903 0.905 0.844 0.905	$\begin{array}{c} 0.874\\ 0.870\\ 0.872\\ \hline 0.869\\ 0.869\\ 0.871\\ 0.864\\ 0.863\\ 0.864\\ \hline 0.873\\ 0.871\\ \hline \end{array}$	0.698 0.691 0.696 0.692 0.693 0.694 0.699 0.696 0.699 0.689 0.689	$\begin{array}{c} 0.478\\ 0.483\\ 0.482\\ \hline 0.469\\ 0.477\\ 0.476\\ 0.464\\ 0.479\\ 0.472\\ \hline 0.367\\ 0.482\\ \end{array}$	0.268 0.079 0.082 0.342 0.026 0.128 0.013 0.032 0.338 0.031	0.803 0.814 0.811 0.796 0.809 0.810 0.794 0.812 0.809 0.799 0.800
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} (\text{idf}) \\ R_{\text{XLNET-Base}} (\text{idf}) \\ R_{\text{XLNET-Base}} (\text{idf}) \\ \hline R_{\text{XLNET-Base}} (\text{idf}) \\ \hline R_{\text{XLNET-Base}} (\text{idf}) \\ \hline R_{\text{XLNET-Base}} \\ R_{\text{XLNET-Large}} \\ \hline R_{\text{XLNET-Large}} \\ \hline R_{\text{XLNET-Large}} \\ \hline \end{array}$	0.389 0.380 0.387 0.385 0.381 0.385 0.381 0.384 0.384 0.384 0.384 0.384 0.392 0.389 0.393	0.905 0.874 0.906 0.875 0.907 0.907 0.904 0.903 0.905 0.844 0.905 0.907	$\begin{array}{c} 0.874\\ 0.870\\ 0.872\\ \hline 0.869\\ 0.869\\ 0.871\\ 0.864\\ 0.863\\ 0.864\\ \hline 0.873\\ 0.871\\ 0.876\\ \hline \end{array}$	0.698 0.691 0.696 0.692 0.693 0.694 0.699 0.699 0.699 0.689 0.690 0.691	$\begin{array}{c} 0.478\\ 0.483\\ 0.482\\ \hline 0.469\\ 0.477\\ 0.476\\ 0.476\\ 0.479\\ 0.472\\ \hline 0.367\\ 0.482\\ 0.483\\ \hline \end{array}$	0.268 0.079 0.082 0.26 0.128 0.026 0.128 0.013 0.032 0.338 0.031 0.348	0.803 0.814 0.811 0.796 0.809 0.810 0.794 0.812 0.809 0.799 0.800 0.812
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ F_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ P_{\text{XLNET-Base}} (\text{idf}) \\ R_{\text{XLNET-Base}} (\text{idf}) \\ \hline R_{\text{XLNET-Base}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} (\text{idf}) \\ \hline P_{\text{XLNET-Large}} \\ R_{\text{XLNET-Large}} \\ F_{\text{XLNET-Large}} \\ \hline P_{\text{XLNET-Large}} \\ \hline P_{\text{XLNET-Large}} \\ \hline P_{\text{XLNET-Large}} \\ \hline (\text{idf}) \end{array}$	0.389 0.380 0.387 0.385 0.381 0.385 0.381 0.384 0.384 0.384 0.384 0.384 0.392 0.389 0.393 0.393	0.905 0.874 0.906 0.875 0.907 0.907 0.904 0.903 0.905 0.844 0.905 0.907 0.899	$\begin{array}{c} 0.874\\ 0.870\\ 0.872\\ \hline 0.869\\ 0.869\\ 0.871\\ 0.864\\ 0.863\\ 0.864\\ \hline 0.873\\ 0.871\\ 0.876\\ 0.870\\ \hline \end{array}$	0.698 0.691 0.692 0.693 0.694 0.699 0.696 0.699 0.689 0.689 0.690 0.691 0.694	$\begin{array}{c} 0.478\\ 0.483\\ 0.482\\ \hline 0.469\\ 0.477\\ 0.476\\ 0.464\\ 0.479\\ 0.472\\ \hline 0.367\\ 0.482\\ 0.483\\ 0.387\\ \end{array}$	0.268 0.079 0.082 0.342 0.026 0.128 0.289 0.013 0.032 0.338 0.031 0.348 0.333	0.803 0.814 0.811 0.796 0.809 0.810 0.794 0.812 0.809 0.799 0.800 0.812 0.794
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ F_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ P_{\text{XLNET-Base}} (\text{idf}) \\ R_{\text{XLNET-Base}} (\text{idf}) \\ \hline R_{\text{XLNET-Large}} \\ \hline R_{\text{XLNET-Large}} \\ R_{\text{XLNET-Large}} \\ F_{\text{XLNET-Large}} \\ F_{\text{XLNET-Large}} \\ \hline R_{\text{XLNET-Large}} \\ \hline R_{\text{XLNET-Large} \\ \hline R_{\text{XLNET-Large}} \\ \hline R_{\text{XLNET-Large} \\ \hline R_{\text{XLNET-Large}} \\ \hline R_{\text{XLNET-Large} \\ \hline R_{$	0.389 0.380 0.387 0.385 0.381 0.385 0.381 0.384 0.384 0.384 0.384 0.384 0.392 0.389 0.393 0.393 0.395	0.905 0.874 0.906 0.875 0.907 0.907 0.904 0.903 0.905 0.844 0.905 0.907 0.899 0.901	$\begin{array}{c} 0.874\\ 0.870\\ 0.872\\ \hline 0.869\\ 0.869\\ 0.871\\ 0.864\\ 0.863\\ 0.864\\ \hline 0.873\\ 0.871\\ 0.876\\ 0.870\\ 0.868\\ \end{array}$	0.698 0.691 0.692 0.693 0.694 0.699 0.696 0.699 0.689 0.690 0.691 0.694 0.690	$\begin{array}{c} 0.478\\ 0.483\\ 0.482\\ \hline 0.469\\ 0.477\\ 0.476\\ 0.464\\ 0.479\\ 0.472\\ \hline 0.367\\ 0.482\\ 0.483\\ 0.387\\ 0.483\\ \hline \end{array}$	0.268 0.079 0.082 0.342 0.026 0.128 0.289 0.013 0.032 0.338 0.031 0.348 0.333 0.023	$\begin{array}{c} 0.803\\ 0.814\\ 0.811\\ \hline 0.796\\ 0.809\\ 0.810\\ 0.794\\ 0.812\\ 0.809\\ \hline 0.799\\ 0.800\\ 0.812\\ 0.794\\ 0.810\\ \hline 0.810\\ \hline \end{array}$
	$\begin{array}{c} P_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ R_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ F_{\text{RoBERTa-Large-MNL1}} (\text{idf}) \\ \hline P_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ R_{\text{XLNET-Base}} \\ P_{\text{XLNET-Base}} (\text{idf}) \\ R_{\text{XLNET-Base}} (\text{idf}) \\ \hline R_{\text{XLNET-Base}} (\text{idf}) \\ \hline P_{\text{XLNET-Large}} \\ R_{\text{XLNET-Large}} \\ F_{\text{XLNET-Large}} \\ R_{\text{XLNET-Large}} \\ R_{\text{XLNET-Large}} \\ (\text{idf}) \\ R_{\text{XLNET-Large}} \\ (\text{idf}) \\ \hline R_{\text{XLNET-Large}} \\ (\text{idf}) \\ \hline R_{\text{XLNET-Large}} \\ (\text{idf}) \\ \hline \end{array}$	0.389 0.380 0.387 0.385 0.381 0.385 0.381 0.384 0.384 0.384 0.392 0.389 0.393 0.393 0.395 0.396	0.905 0.874 0.906 0.875 0.907 0.904 0.903 0.904 0.903 0.905 0.844 0.905 0.907 0.899 0.901 0.906	$\begin{array}{c} 0.874\\ 0.870\\ 0.872\\ \hline 0.869\\ 0.869\\ 0.864\\ 0.863\\ 0.864\\ \hline 0.873\\ 0.871\\ 0.876\\ 0.870\\ 0.876\\ 0.870\\ 0.868\\ 0.870\\ \hline \end{array}$	0.698 0.691 0.696 0.692 0.693 0.694 0.699 0.699 0.699 0.689 0.690 0.691 0.694 0.690 0.693	$\begin{array}{c} 0.478\\ 0.483\\ 0.482\\ 0.469\\ 0.477\\ 0.476\\ 0.464\\ 0.479\\ 0.472\\ 0.472\\ 0.483\\ 0.483\\ 0.483\\ 0.478\\ \end{array}$	0.268 0.079 0.082 0.342 0.026 0.128 0.289 0.013 0.032 0.338 0.031 0.338 0.031 0.333 0.023 0.128	$\begin{array}{c} 0.803\\ 0.814\\ 0.811\\ \hline 0.796\\ 0.809\\ 0.810\\ 0.794\\ 0.812\\ 0.809\\ \hline 0.799\\ 0.800\\ 0.812\\ 0.794\\ 0.810\\ 0.811\\ \hline \end{array}$
	PROBERTa-Large-MNL1 (idf) RRoBERTa-Large-MNL1 (idf) FROBERTa-Large-MNL1 (idf) PXLNET-Base RXLNET-Base PXLNET-Base PXLNET-Base idf) RXLNET-Large RXLNET-Large PXLNET-Large PXLNET-Large idf) RXLNET-Large idf) FXLNET-Large idf) PXLNET-LARGE idf) PXLNET-PXLNET PXLNET PXLNET-PXLNET PXL	0.389 0.380 0.387 0.385 0.381 0.385 0.381 0.384 0.384 0.384 0.392 0.393 0.393 0.395 0.396 0.394	0.905 0.874 0.906 0.875 0.907 0.907 0.904 0.903 0.905 0.905 0.844 0.905 0.907 0.899 0.901 0.906 0.891	0.874 0.870 0.872 0.869 0.869 0.871 0.864 0.863 0.864 0.873 0.871 0.876 0.870 0.870 0.868 0.870 0.880	0.698 0.691 0.696 0.692 0.693 0.694 0.699 0.699 0.699 0.690 0.691 0.694 0.690 0.693 0.693	$\begin{array}{c} 0.478\\ 0.483\\ 0.482\\ 0.469\\ 0.477\\ 0.476\\ 0.464\\ 0.472\\ 0.472\\ 0.472\\ 0.483\\ 0.483\\ 0.483\\ 0.483\\ 0.478\\ 0.476\\ \end{array}$	0.268 0.079 0.082 0.342 0.026 0.128 0.28 0.013 0.032 0.338 0.031 0.333 0.023 0.128 0.322	0.803 0.814 0.811 0.796 0.809 0.810 0.794 0.812 0.809 0.800 0.812 0.794 0.810 0.811 0.811 0.802
	PROBERTA-Large-MNL1 (idf) PROBERTA-Large-MNL1 (idf) PROBERTA-Large-MNL1 (idf) PXLNET-Base PXLNET-Base PXLNET-Base PXLNET-Base (idf) PXLNET-Base (idf) PXLNET-Large PXLNET-LARGE PXLNET-PXLNE	0.389 0.380 0.387 0.385 0.381 0.385 0.381 0.385 0.381 0.384 0.384 0.384 0.392 0.393 0.393 0.395 0.396 0.394 0.401	0.905 0.874 0.906 0.875 0.907 0.907 0.904 0.903 0.905 0.844 0.905 0.890 0.901 0.906 0.891 0.903	0.874 0.870 0.872 0.869 0.869 0.871 0.864 0.863 0.864 0.873 0.874 0.876 0.876 0.876 0.870 0.880 0.870	0.698 0.691 0.696 0.692 0.693 0.694 0.699 0.699 0.699 0.699 0.690 0.691 0.694 0.690 0.693 0.693	$\begin{array}{c} 0.478\\ 0.483\\ 0.482\\ 0.469\\ 0.477\\ 0.476\\ 0.464\\ 0.479\\ 0.472\\ 0.367\\ 0.483\\ 0.387\\ 0.483\\ 0.478\\ 0.478\\ 0.476\\ 0.483\\ \end{array}$	0.268 0.079 0.082 0.342 0.026 0.128 0.033 0.032 0.338 0.031 0.333 0.023 0.128 0.322 0.322	0.803 0.814 0.811 0.796 0.809 0.810 0.794 0.812 0.809 0.799 0.800 0.812 0.799 0.800 0.812 0.794 0.810 0.811 0.811 0.802 0.803
	Proberta-Large-MNL1 (idf) Rroberta-Large-MNL1 (idf) Froberta-Large-MNL1 (idf) FXLNET-Base RXLNET-Base PXLNET-Base Idf) RXLNET-Large RXLNET-Large RXLNET-Large RXLNET-Large FXLNET-Large Idf) RXLNET-LARGE RXLNET-LARGE Idf) RXLNET-RXLNET-RXLNET RXLNET	$\begin{array}{c} 0.389\\ 0.380\\ 0.387\\ 0.387\\ 0.385\\ 0.381\\ 0.385\\ 0.384\\ 0.384\\ 0.384\\ 0.384\\ 0.392\\ 0.393\\ 0.393\\ 0.393\\ 0.395\\ 0.396\\ 0.394\\ 0.401\\ 0.400\\ \end{array}$	0.905 0.874 0.906 0.875 0.907 0.907 0.904 0.903 0.905 0.905 0.907 0.899 0.901 0.906 0.891 0.903 0.903 0.903	$\begin{array}{c} 0.874\\ 0.870\\ 0.872\\ \end{array}\\ \begin{array}{c} 0.869\\ 0.869\\ 0.871\\ 0.864\\ 0.863\\ 0.864\\ 0.873\\ 0.864\\ 0.873\\ 0.876\\ 0.870\\ 0.876\\ 0.870\\ 0.880\\ 0.875\\ 0.878\\ \end{array}$	0.698 0.691 0.696 0.692 0.693 0.694 0.696 0.699 0.699 0.690 0.691 0.694 0.690 0.693 0.693	$\begin{array}{c} 0.478\\ 0.483\\ 0.482\\ \hline 0.469\\ 0.477\\ 0.476\\ 0.464\\ 0.479\\ 0.472\\ \hline 0.367\\ 0.483\\ 0.387\\ 0.483\\ 0.478\\ \hline 0.476\\ 0.483\\ 0.483\\ 0.483\\ \hline 0.476\\ 0.483\\ 0.483\\ \hline 0$	0.268 0.079 0.082 0.342 0.026 0.128 0.013 0.032 0.338 0.031 0.338 0.023 0.128 0.322 0.322 0.082 0.234	0.803 0.814 0.811 0.796 0.809 0.810 0.794 0.812 0.809 0.799 0.809 0.812 0.809 0.812 0.812 0.812 0.810 0.811 0.811
	PROBERTA-Large-MNL1 (idf) PROBERTA-Large-MNL1 (idf) PROBERTA-Large-MNL1 (idf) PXLNET-Base PXLNET-Base PXLNET-Base PXLNET-Base (idf) PXLNET-Base (idf) PXLNET-Large PXLNET-LARGE PXLNET-PXLNE	0.389 0.380 0.387 0.385 0.381 0.385 0.381 0.385 0.381 0.384 0.384 0.384 0.392 0.393 0.393 0.395 0.396 0.394 0.401	0.905 0.874 0.906 0.875 0.907 0.907 0.904 0.903 0.905 0.844 0.905 0.890 0.901 0.906 0.891 0.903	0.874 0.870 0.872 0.869 0.869 0.871 0.864 0.863 0.864 0.873 0.874 0.876 0.876 0.876 0.870 0.880 0.870	0.698 0.691 0.696 0.692 0.693 0.694 0.699 0.699 0.699 0.699 0.690 0.691 0.694 0.690 0.693 0.693	$\begin{array}{c} 0.478\\ 0.483\\ 0.482\\ 0.469\\ 0.477\\ 0.476\\ 0.464\\ 0.479\\ 0.472\\ 0.367\\ 0.483\\ 0.387\\ 0.483\\ 0.478\\ 0.478\\ 0.476\\ 0.483\\ \end{array}$	0.268 0.079 0.082 0.342 0.026 0.128 0.033 0.032 0.338 0.031 0.333 0.023 0.128 0.322 0.322	0.803 0.814 0.811 0.796 0.809 0.810 0.794 0.812 0.809 0.799 0.800 0.812 0.799 0.800 0.812 0.794 0.810 0.811 0.811 0.802 0.803

Table 23: Mean Reciprocal Rank (MRR) of the top metric-rated system on to-English WMT18 hybrid systems. We report the average of 100K samples and the 0.95 confidence intervals are below 10^{-3} . We bold the highest numbers for each language pair and direction.

Setting	Metric	cs-en	de-en	et-en	fi-en	ru-en	tr-en	zh-e
-	BLEU	3.85	0.45	1.01	2.17	2.34	4.48	3.19
	CDER	3.88	0.43	0.87	1.33	2.30	4.58	3.43
	CHARACTER	3.77	0.49	0.94	2.07	2.25	4.07	3.37
	ITER	3.55	0.46	1.25	1.43	4.65	3.11	2.92
	METEOR++	3.70	0.41	0.69	1.13	2.28	1.40	3.50
	NIST	3.93	0.49	1.10	1.19	2.36	1.42	3.92
Unsupervised	PER	2.02	0.46	1.71	1.49	2.25	4.22	3.20
1	TER	3.86	0.43	1.14	1.14	4.34	5.18	3.82
	UHH_TSKM	3.98	0.40	1.27	1.10	2.23	4.26	3.47
	WER	3.85	0.44	1.48	1.18	4.87	5.96	3.72
	YISI-0	3.81	0.48	0.72	1.20	1.75	1.40	3.44
	YISI-1	3.88	0.44	0.65	1.13	2.17	1.32	3.40
	YISI-1 SRL	3.67	0.41	0.64	1.20	2.15	1.31	3.55
C	BEER	3.82	0.41	0.79	1.08	1.92	1.96	3.43
Supervised	BLEND	3.77	0.41	0.66	1.09	2.21	1.28	3.40
	RUSE	3.13	0.32	0.64	1.03	1.51	1.94	3.15
	$P_{\text{BERT-Base}}$	3.97	0.36	0.72	1.16	2.20	1.25	3.20
	$R_{\text{BERT-Base}}$	1.51	0.43	0.60	1.65	1.33	1.34	3.50
	$F_{\text{BERT-Base}}$	3.70	0.36	0.59	1.08	1.92	1.27	3.3
	$P_{\text{BERT-Base}}$ (idf)	3.94	0.36	0.64	1.18	2.06	2.55	3.5
	$R_{\text{BERT-Base}}$ (idf)	1.54	0.43	0.63	1.87	1.12	5.96	3.3
	$F_{\text{BERT-Base}}$ (idf)	2.75	0.39	0.60	1.10	1.38	1.26	3.5
	_							
	PBERT-Base-MRPC	4.02	0.35	0.74	1.15	1.09	3.33	3.0
	RBERT-Base-MRPC	2.66	0.43	0.62	1.75	1.10	5.64	3.3
	FBERT-Base-MRPC	3.89	0.36	0.60	1.09	1.08	3.82	3.2
	PBERT-Base-MRPC (idf)	4.02	0.35	0.67	1.18	1.48	3.30	3.4
	$R_{\text{BERT-Base-MRPC}}$ (idf)	1.63	0.43	0.65	1.93	1.13	7.26	3.1
	$F_{\text{BERT-Base-MRPC}}$ (idf)	3.86	0.38	0.61	1.11	1.14	4.24	3.2
	$P_{\text{BERT-Large}}$	3.82	0.34	0.66	1.12	2.10	1.31	3.60
	$R_{\text{BERT-Large}}$	1.49	0.40	0.59	1.56	1.17	1.35	3.6
	$F_{\text{BERT-Large}}$	1.71	0.35	0.58	1.08	1.65	1.29	3.6
	$P_{\text{BERT-Large}}$ (idf)	3.74	0.35	0.65	1.12	1.90	1.98	3.7
	$R_{\text{BERT-Large}}$ (idf)	1.51	0.42	0.62	1.86	1.10	5.84	3.2
		1.49	0.38	0.60	1.17	1.24	1.96	3.5
	F _{BERT-Large} (idf)							
	P _{RoBERTa-Base}	3.89	0.37	0.75	1.18	1.07	3.45	2.62
	R _{RoBERTa-Base}	1.92	0.39	0.64	1.57	1.11	5.75	3.1
	$F_{\text{RoBERTa-Base}}$	3.56	0.37	0.59	1.10	1.08	3.79	2.9
	$P_{\text{RoBERTa-Base}}$ (idf)	3.89	0.38	0.67	1.20	1.30	3.27	3.4
	R _{RoBERTa-Base} (idf)	1.61	0.42	0.67	1.65	1.14	6.55	2.95
	$F_{\text{RoBERTa-Base}}$ (idf)	3.18	0.38	0.60	1.11	1.13	6.54	3.1
	P _{RoBERTa-Large}	3.64	0.36	0.71	1.10	1.03	2.69	2.5
Pre-Trained	$R_{\text{RoBERTa-Large}}$	1.60	0.37	0.64	1.51	1.09	3.91	3.2
			0.35	0.58	1.06		3.57	2.95
	PROBERTA-Large	2.38	0.35	0.58	1.13	1.05 1.08	3.18	2.9
	P _{RoBERTa-Large} (idf)							
	R _{RoBERTa-Large} (idf)	1.55	0.39	0.66	1.59	1.10	6.66 5.58	3.1
	F _{RoBERTa-Large} (idf)	1.68	0.37	0.59	1.08	1.08	5.58	2.9
	PROBERTA-Large-MNLI	2.14	0.35	0.61	1.07	1.09	1.21	3.3
	$R_{\text{RoBERTa-Large-MNLI}}$	1.45	0.37	0.64	1.49	1.10	4.42	3.5
	F _{RoBERTa-Large-MNLI}	1.42	0.35	0.59	1.07	1.07	1.27	3.4
	P _{RoBERTa-Large-MNLI} (idf)	1.55	0.35	0.60	1.08	1.12	1.54	3.8
	R _{RoBERTa-Large-MNLI} (idf)	1.45	0.39	0.64	1.65	1.09	5.89	3.3
	F _{RoBERTa-Large-MNLI} (idf)	1.42	0.36	0.60	1.10	1.08	3.80	3.4
		3.90	0.37				2.47	2.9
	$P_{\text{XLNET-Base}}$		0.45	0.68	1.07	1.16		
	R _{XLNET-Base}	1.71	0.45	0.72	1.58	1.07	6.29	3.3
	F _{XLNET-Base}	3.78	0.39	0.62	1.05	1.07	3.60	3.2
	$P_{\text{XLNET-Base}}$ (idf)	3.90	0.46	0.65	1.08	2.93	3.30	3.3
	R _{XLNET-Base} (idf)	1.51	0.45	0.82	1.78	1.12	10.77	3.1
	F _{XLNET-Base} (idf)	3.67	0.42	0.66	1.11	1.22	7.13	3.2
	P _{XLNET-Large}	3.94	0.37	0.71	1.10	21.10	1.85	2.9
	R _{XLNET-Large}	2.23	0.41	0.69	1.34	1.07	4.46	3.40
	F _{XLNET-Large}	3.84	0.36	0.60	1.03	1.07	3.38	3.2
	$P_{\text{XLNET-Large}}$ (idf)	3.92	0.41	0.64	1.12	21.10	3.24	3.3
	$R_{\text{XLNET-Large}}$ (idf)	1.60	0.43	0.78	1.70	1.09	6.13	3.20
	$F_{\text{XLNET-Large}}$ (idf)	3.80	0.38	0.63	1.06	1.09	3.72	3.2
	. <i>D</i>	3.88	0.33	0.75	1.16	2.16	1.28	3.29
	$P_{\text{XLM-En}}$	1.02				1.21	3.30	3.4
	$R_{\rm XLM-En}$	1.98	0.41	0.60	1.41			
	$R_{ m XLM-En}$ $F_{ m XLM-En}$	3.78	0.36	0.61	1.09	1.71	1.30	3.40
	$R_{ m XLM-En} \ F_{ m XLM-En} \ P_{ m XLM-En}$ (idf)	3.78 3.84	0.36 0.36	0.61 0.69	1.09 1.17	1.71 1.86	1.30 1.33	3.4(3.47
	$R_{ m XLM-En}$ $F_{ m XLM-En}$	3.78	0.36	0.61	1.09	1.71	1.30	3.40 3.47 3.30 3.43

Table 24: Absolute Difference (×100) of the top metric-rated and the top human-rated system on to-English WMT18 hybrid systems. *Smaller difference signify higher agreement with human scores.* We report the average of 100K samples and the 0.95 confidence intervals are below 10^{-3} . We bold the lowest numbers for each language pair and direction.

Setting	Metric	en-cs	en-de	en-et	en-fi	en-ru	en-tr	en-zh
	BLEU	0.151	0.611	0.617	0.087	0.519	0.029	0.515
	CDER	0.163	0.663	0.731	0.081	0.541	0.032	0.552
	CHARACTER	0.135	0.737	0.639	0.492	0.543	0.027	0.667
	ITER	0.000	0.691	0.734	0.112	0.534	0.031	-
	Meteor++	_	_	_	_	_	_	-
	NIST	0.182	0.662	0.549	0.083	0.537	0.033	0.553
Unsupervised	PER	0.179	0.555	0.454	0.062	0.535	0.032	0.539
	TER	0.175	0.657	0.550	0.065	0.545	0.029	0.551
	UHH_TSKM	-	-	-	_	_	_	-
	WER	0.155	0.643	0.552	0.067	0.538	0.029	0.546
	YISI-0	0.154	0.674	0.622	0.356	0.523	0.383	0.600
	YISI-1	0.178	0.670	0.674	0.230	0.548	0.396	0.595
	YISI-1 SRL	-	0.708	—	—	—	—	0.537
	BEER	0.174	0.670	0.662	0.113	0.555	0.296	0.531
Supervised	BLEND	_	-	_	_	0.559	_	-
	RUSE	-	-	-	-	_	_	-
	PBERT-Multi	0.181	0.665	0.771	0.077	0.550	0.373	0.550
	$R_{\mathrm{BERT-Multi}}$	0.184	0.728	0.722	0.146	0.544	0.031	0.657
	$F_{\text{BERT-Multi}}$	0.185	0.703	0.764	0.081	0.548	0.032	0.629
	$P_{\text{BERT-Multi}}$ (idf)	0.175	0.713	0.769	0.080	0.542	0.031	0.549
Pre-Trained	$R_{\text{BERT-Multi}}$ (idf)	0.177	0.725	0.752	0.178	0.538	0.031	0.628
	$F_{\text{BERT-Multi}}$ (idf)	0.178	0.721	0.766	0.081	0.543	0.030	0.594
	P _{XLM-100}	0.175	0.669	0.748	0.079	0.550	0.314	0.582
	$R_{\rm XLM-100}$	0.195	0.671	0.770	0.222	0.555	0.034	0.658
	$F_{\rm XLM-100}$	0.187	0.670	0.775	0.099	0.552	0.034	0.615
	$P_{\rm XLM-100}$ (idf)	0.163	0.664	0.750	0.091	0.550	0.288	0.578
	$R_{\rm XLM-100}$ (idf)	0.191	0.681	0.770	0.231	0.548	0.033	0.645
	$F_{\rm XLM-100}$ (idf)	0.180	0.672	0.774	0.127	0.550	0.033	0.616

Table 25: Model selection accuracies (Hits@1) on to-English WMT18 hybrid systems. We report the average of 100K samples and the 0.95 confidence intervals are below 10^{-3} . We bold the highest numbers for each language pair and direction.

Setting	Metric	en-cs	en-de	en-et	en-fi	en-ru	en-tr	en-zh
	BLEU	0.363	0.764	0.766	0.323	0.714	0.205	0.666
	CDER	0.371	0.803	0.851	0.319	0.729	0.210	0.700
	CHARACTER	0.346	0.853	0.781	0.667	0.732	0.205	0.809
	ITER	0.044	0.825	0.853	0.365	0.717	0.210	_
	Meteor++	_	_	_	_	_	_	-
	NIST	0.393	0.803	0.710	0.326	0.726	0.211	0.698
Unsupervised	PER	0.387	0.719	0.624	0.301	0.725	0.211	0.678
	TER	0.384	0.798	0.708	0.305	0.733	0.209	0.695
	UHH_TSKM	_	-	_	_	-	-	_
	WER	0.367	0.787	0.710	0.308	0.728	0.209	0.696
	YISI-0	0.370	0.811	0.775	0.553	0.715	0.602	0.753
	YISI-1	0.390	0.808	0.811	0.439	0.735	0.612	0.750
	YISI-1 SRL	-	0.835	_	_	_	_	0.691
	BEER	0.388	0.808	0.804	0.353	0.739	0.507	0.683
Supervised	BLEND	_	-	_	_	0.742	_	-
	RUSE	-	-	—	—	—	—	_
	PBERT-Multi	0.395	0.805	0.876	0.314	0.736	0.586	0.694
	$R_{\mathrm{BERT-Multi}}$	0.401	0.849	0.844	0.368	0.732	0.212	0.802
	$F_{\text{BERT-Multi}}$	0.400	0.832	0.872	0.317	0.735	0.214	0.775
	$P_{\text{BERT-Multi}}$ (idf)	0.390	0.839	0.875	0.320	0.730	0.213	0.691
Pre-Trained	$R_{\text{BERT-Multi}}$ (idf)	0.395	0.847	0.864	0.398	0.727	0.212	0.776
	$F_{\text{BERT-Multi}}$ (idf)	0.395	0.844	0.873	0.319	0.730	0.212	0.739
	$P_{\rm XLM-100}$	0.391	0.808	0.862	0.316	0.735	0.522	0.733
	$R_{\rm XLM-100}$	0.413	0.809	0.876	0.435	0.738	0.216	0.803
	$F_{\rm XLM-100}$	0.404	0.809	0.878	0.333	0.737	0.216	0.767
	$P_{\rm XLM-100}$ (idf)	0.377	0.805	0.863	0.326	0.735	0.497	0.729
	$R_{\rm XLM-100}$ (idf)	0.409	0.816	0.876	0.444	0.733	0.214	0.793
	$F_{\rm XLM-100}$ (idf)	0.396	0.810	0.878	0.355	0.735	0.214	0.767

Table 26: Mean Reciprocal Rank (MRR) of the top metric-rated system on to-English WMT18 hybrid systems. We report the average of 100K samples and the 0.95 confidence intervals are below 10^{-3} . We bold the highest numbers for each language pair and direction.

Setting	Metric	en-cs	en-de	en-et	en-fi	en-ru	en-tr	en-zh
	BLEU	1.26	6.36	2.59	0.92	0.76	9.40	3.01
	CDER	1.25	6.70	1.90	1.41	0.87	9.37	1.75
	CHARACTER	1.23	6.90	2.19	4.35	0.93	5.22	1.64
	ITER	1.25	9.14	2.52	1.52	1.35	7.33	_
	Meteor++	-	_	_	_	_	_	_
	NIST	1.24	5.28	2.55	1.02	0.75	8.82	3.34
Unsupervised	PER	1.25	6.62	4.92	7.43	0.68	9.76	2.31
	TER	1.21	6.02	4.34	2.17	0.73	8.80	1.43
	UHH_TSKM	-	_	_	_	—	—	-
	WER	1.22	6.15	4.19	2.43	0.72	9.28	1.49
	YISI-0	1.25	6.62	1.53	1.46	0.75	3.47	2.87
	YISI-1	1.22	6.27	1.21	1.13	0.71	3.51	3.33
	YISI-1 SRL	-	6.57	_	_	-	_	3.71
	BEER	1.21	5.96	1.84	0.77	0.74	3.36	1.96
Supervised	BLEND	_	_	_	_	0.71	_	_
	RUSE	-	_	_	-	_	-	_
	PBERT-Multi	1.17	3.27	1.38	1.24	0.75	4.14	2.08
	$R_{\text{BERT-Multi}}$	1.16	6.68	0.77	0.94	0.68	3.22	1.31
	$F_{\text{BERT-Multi}}$	1.15	5.17	0.90	0.98	0.71	3.26	1.62
	$P_{\text{BERT-Multi}}$ (idf)	1.14	3.82	1.66	1.27	0.76	4.57	2.04
Pre-Trained	$R_{\text{BERT-Multi}}$ (idf)	1.15	6.97	0.83	3.65	0.68	3.32	1.37
	$F_{\text{BERT-Multi}}$ (idf)	1.14	5.63	1.13	1.19	0.71	3.38	1.58
	P _{XLM-100}	1.22	6.30	1.14	0.79	0.74	3.73	2.21
	$R_{\rm XLM-100}$	1.18	6.89	0.76	0.77	0.66	3.26	1.68
	$F_{\rm XLM-100}$	1.19	6.44	0.82	0.76	0.69	3.21	1.57
	$P_{\rm XLM-100}$ (idf)	1.21	6.61	1.07	0.78	0.72	5.59	2.02
	$R_{\rm XLM-100}$ (idf)	1.19	7.07	0.77	0.77	0.66	3.33	1.60
	$F_{\rm XLM-100}$ (idf)	1.20	6.57	0.86	0.76	0.68	3.28	1.56

Table 27: Absolute Difference (×100) of the top metric-rated and the top human-rated system on to-English WMT18 hybrid systems. *Smaller difference indicate higher agreement with human scores*. We report the average of 100K samples and the 0.95 confidence intervals are below 10^{-3} . We bold the lowest numbers for each language pair and direction.

BLEU-1 0.124^* 0.037^* BLEU-3 0.004^* 0.037^* BLEU-3 0.004^* 0.004^* BLEU-3 0.004^* 0.000^* BLEU-4 -0.019^* 0.000^* METEOR 0.606^* 0.000^* ROUGE-L 0.090^* 0.000^* CIDER 0.438^* 0.000^* DLEIC † 0.939^* 0.000^* BEER 0.491 0.00^* CHRF++ 0.702 0.00^* CHRF++ 0.702 0.00^* CHRF-++ 0.702 0.00^* PBERT-Base 0.313 0.00^* PBERT-Base 0.531 0.00^* PBERT-Base 0.531 0.00^* PBERT-Base 0.531 0.00^* PBERT-Base 0.570^* 0.00^* PBERT-Base 0.570^* 0.00^* PBERT-Base 0.756^* 0.0454^* PBERT-Base 0.756^* 0.649^* <th></th> <th></th> <th></th>			
BLEU-2 0.37^* 0.004^* BLEU-3 0.004^* 0.004^* BLEU-4 -0.019^* -0.000^* METEOR 0.606^* 0.00^* ROUGE-L 0.990^* 0.000^* CIDER 0.438^* 0.000^* BEER 0.491^* 0.000^* BEER 0.491^* 0.000^* CHRF++ 0.702^* 0.000^* CHRF++ 0.702^* 0.000^* CHRF++ 0.702^* 0.000^* PBERT-Base 0.313^* 0.000^* PBERT-Base 0.531^* 0.00^* PBERT-Base 0.531^* 0.00^* PBERT-Base 0.570^* 0.00^* PBERT-Base 0.252^* 0.00^* PBERT-Base 0.470^* 0.888^* PBERT-Base 0.756^* 0.00^* PBERT-Large 0.756^* 0.00^* PBERT-Large 0.756^* 0.00^* PBERT-Large 0.756^* <td< td=""><td>Metric</td><td>M1</td><td>M2</td></td<>	Metric	M1	M2
BLEU-3 0.004^* 0.00 BLEU-4 -0.019^* -0.019^* -0.019^* -0.019^* -0.000^* 0.00^*	BLEU-1	0.124*	0.135*
BLEU-4 -0.019^* -0.009^* METEOR 0.606^* 0.090^* 0.000^* CIDER 0.438^* 0.00^* 0.00^* SPICE 0.759^* 0.00^* 0.00^* LEIC 0.939^* 0.00^* 0.00^* BEER 0.491^* 0.00^* CHARACTER 0.800^* 0.00^* CHARACTER 0.800^* 0.00^* PBERT-Base 0.531^* 0.00^* PBERT-Base 0.679^* 0.00^* PBERT-Base 0.679^* 0.00^* PBERT-Base 0.610^* 0.252^* 0.00^* PBERT-Base 0.610^* 0.00^* 0.00^* PBERT-Base-MRPC 0.644^* 0.00^* 0.00^* PBERT-Base-MRPC 0.644^* 0.00^* PBERT-Base 0.756^* 0.00^* PBERT-Large 0.649^* 0.00^* PBERT-Large 0.649^* 0.00^* PBERT-Large 0.010^* <t< td=""><td>BLEU-2</td><td>0.037*</td><td>0.048*</td></t<>	BLEU-2	0.037*	0.048*
BLEU-4 -0.019^* -0.009^* METEOR 0.606^* 0.090^* 0.000^* CIDER 0.438^* 0.00^* 0.00^* SPICE 0.759^* 0.00^* 0.00^* LEIC 0.939^* 0.00^* 0.00^* BEER 0.491^* 0.00^* CHARACTER 0.800^* 0.00^* CHARACTER 0.800^* 0.00^* PBERT-Base 0.531^* 0.00^* PBERT-Base 0.679^* 0.00^* PBERT-Base 0.679^* 0.00^* PBERT-Base 0.610^* 0.252^* 0.00^* PBERT-Base 0.610^* 0.00^* 0.00^* PBERT-Base-MRPC 0.644^* 0.00^* 0.00^* PBERT-Base-MRPC 0.644^* 0.00^* PBERT-Base 0.756^* 0.00^* PBERT-Large 0.649^* 0.00^* PBERT-Large 0.649^* 0.00^* PBERT-Large 0.010^* <t< td=""><td>BLEU-3</td><td>0.004^{*}</td><td>0.016*</td></t<>	BLEU-3	0.004^{*}	0.016*
METEOR 0.606^* 0.000^* ROUGE-L 0.900^* 0.000^* CIDER 0.438^* 0.5 SPICE 0.759^* 0.5 LEIC † 0.939^* 0.6 BEER 0.491 0.606^* CHARACTER 0.800 0.606^* CHARACTER 0.800 0.679^* BEER-Base 0.513 0.679^* PBERT-Base 0.531^* 0.679^* PBERT-Base (idf) 0.243^* 0.679^* PBERT-Base (idf) 0.243^* 0.644^* PBERT-Base-MRPC 0.644^* 0.679^* PBERT-Base-MRPC (idf) 0.254^* 0.649^* PBERT-Base-MRPC (idf) 0.254^* 0.649^* PBERT-Large (idf) 0.327^* 0.649^* PBERT-Large (idf) 0.327^* 0.649^* PBERT-Large (idf) 0.645^* 0.67^* PRoBERTa-Base (idf) 0.256^* 0.67^* PRoBERTa-Large (idf) 0.632^* 0.67^*			-0.005*
ROUGE-L 0.090^* $0.$ CIDER 0.438^* $0.$ SPICE 0.759^* $0.$ LEIC 0.939^* $0.$ BEER 0.491 $0.$ EED 0.545 $0.$ CHRF++ 0.702 $0.$ CHARACTER 0.800 $0.$ PBERT-Base 0.531 $0.$ RBERT-Base 0.531 $0.$ PBERT-Base 0.579 $0.$ PBERT-Base-MRPC 0.470 $0.$ PBERT-Base-MRPC (idf) 0.756 $0.$ PBERT-Large (idf) 0.377 $0.$ PBERT-Large (idf) 0.327 $0.$ PBERT-Large (idf) 0.649 $0.$ PBERT-Large (idf) 0.223 $0.$ RobERTa-Base (idf) <			0.594*
CIDER 0.438^* $0.$ SPICE 0.759^* $0.$ LEIC [†] 0.939^* $0.$ BEER 0.491 $0.$ CHARACTER 0.800 $0.$ CHARACTER 0.800 $0.$ PBERT-Base 0.531 $0.$ RBERT-Base 0.531 $0.$ PBERT-Base 0.579 $0.$ PBERT-Base 0.579 $0.$ PBERT-Base 0.470 $0.$ PBERT-Base 0.470 $0.$ PBERT-Base 0.756 $0.$ PBERT-Large 0.454 $0.$ PBERT-Large 0.649 $0.$ PBERT-Large 0.645 $0.$ <td></td> <td></td> <td>0.096*</td>			0.096*
SPICE 0.759^* $0.$ LEIC 0.939^* $0.$ BEER 0.491 $0.$ BEER 0.491 $0.$ CHRF++ 0.702 $0.$ CHARACTER 0.800 $0.$ PBERT-Base 0.531 $0.$ PBERT-Base 0.531 $0.$ PBERT-Base 0.531 $0.$ PBERT-Base 0.531 $0.$ PBERT-Base 0.679 $0.$ PBERT-Base 0.759 $0.$ PBERT-Base 0.750 $0.$ PBERT-Base-MRPC 0.644 $0.$ PBERT-Base-MRPC 0.470 $0.$ PBERT-Large 0.454 $0.$ PBERT-Large 0.454 $0.$ PBERT-Large 0.454 $0.$ PBERT-Large 0.454 $0.$ PBERT-Large 0.649 $0.$ PBERT-Large 0.649 $0.$ PBERT-Large 0.647 0			0.090
LEIC 0.939^* $0.$ BEER 0.491 $0.$ CHRF++ 0.702 $0.$ CHRF++ 0.702 $0.$ CHARACTER 0.800 $0.$ PBERT-Base 0.511 $0.$ $RBERT-Base$ 0.531 $0.$ $P_BERT-Base$ 0.531 $0.$ $P_BERT-Base$ 0.531 $0.$ $R_BERT-Base$ 0.531 $0.$ $P_BERT-Base$ 0.252 $0.$ $R_BERT-Base$ 0.454 $0.$ $P_BERT-Large$ <td></td> <td></td> <td></td>			
BEER 0.491 0.545 CHRF++ 0.702 0.545 CHARACTER 0.800 0.702 PBERT-Base 0.313 0.702 RBERT-Base 0.313 0.702 RBERT-Base 0.531 0.79 RBERT-Base (idf) 0.243 0.79 RBERT-Base (idf) 0.243 0.791 RBERT-Base (idf) 0.579 0.794 RBERT-Base-MRPC 0.470 0.794 RBERT-Base-MRPC (idf) 0.794 0.794 RBERT-Large (idf) 0.327 0.766 RBERT-Large (idf) 0.327 0.766 RBERT-Large (idf) 0.327 0.766 PBERT-Large (idf) 0.327 0.766 PBERT-Large (idf) 0.6454 0.790 PBERT-Large (idf) 0.6454 0.766 PRoBERTa-Large (idf) 0.256 0.766 PROBERTa-Large (idf) 0.6454 0.766 PROBERTa-Large (idf) 0.063 0.766 <tr< td=""><td></td><td></td><td>0.750*</td></tr<>			0.750*
EED 0.545 0.702 CHRF++ 0.702 0.702 CHARACTER 0.800 0.702 PBERT-Base 0.313 0.702 RBERT-Base 0.531 0.79 PBERT-Base 0.531 0.79 PBERT-Base 0.531 0.79 PBERT-Base 0.531 0.79 PBERT-Base 0.579 0.79 PBERT-Base-MRPC 0.470 0.79 PBERT-Base-MRPC 0.470 0.794 PBERT-Base-MRPC 0.470 0.794 PBERT-Base-MRPC 0.470 0.794 PBERT-Large 0.454 0.756 PBERT-Large 0.454 0.756 PBERT-Large 0.454 0.756 PBERT-Large 0.454 0.756 PBERT-Large 0.454 0.766 PBERT-Large 0.454 0.766 PRoBERTa-Large 0.176 0.766 PRoBERTa-Large 0.176 0.766			0.949*
$\begin{array}{cccc} {\rm CHRF++} & 0.702 & 0. \\ {\rm CHARACTER} & 0.800 & 0. \\ {\rm ReBERT-Base} & 0.513 & 0. \\ {\rm R_BERT-Base} & 0.531 & 0. \\ {\rm R_BERT-Base} & 0.531 & 0. \\ {\rm R_BERT-Base} & 0.531 & 0. \\ {\rm R_BERT-Base} & (idf) & 0.243 & 0. \\ {\rm R_BERT-Base} & (idf) & 0.834 & 0. \\ {\rm R_BERT-Base} & (idf) & 0.579 & 0. \\ {\rm R_BERT-Base} & (idf) & 0.579 & 0. \\ {\rm R_BERT-Base} & (idf) & 0.579 & 0. \\ {\rm R_BERT-Base-MRPC} & 0.664 & 0. \\ {\rm R_BERT-Base-MRPC} & 0.470 & 0. \\ {\rm R_BERT-Base-MRPC} & 0.454 & 0. \\ {\rm R_BERT-Large} & 0.649 & 0. \\ {\rm R_{BERT-Large} & 0.645 & 0. \\ {\rm R_{ROBERT-Base} & 0.176 & 0. \\ {\rm R_{ROBERT-Base} & 0.176 & 0. \\ {\rm R_{ROBERTa-Base} & (idf) & 0.901 & 0. \\ {\rm R_{ROBERTa-Base} & (idf) & 0.901 & 0. \\ {\rm R_{ROBERTa-Base} & (idf) & 0.901 & 0. \\ {\rm R_{ROBERTa-Large} & 0.105 & -0. \\ {\rm R_{ROBERTa-Large} & 0.105 & -0. \\ {\rm R_{ROBERTa-Large} & 0.105 & -0. \\ {\rm R_{ROBERTa-Large} & 0.176 & 0. \\ {\rm R_{ROBERTa-Large} & 0.105 & -0. \\ {\rm R_{ROBERTa-Large} & 0.116 & 0. \\ {\rm R_{R$			0.562
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.599
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CHRF++	0.702	0.729
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CHARACTER	0.800	0.801
$\begin{array}{c ccccc} R_{\rm BERT-Base} & 0.679 & 0 \\ F_{\rm BERT-Base} & 0.531 & 0 \\ R_{\rm BERT-Base} & 0.131 & 0 \\ R_{\rm BERT-Base} & 0.243 & 0 \\ R_{\rm BERT-Base} & 0.243 & 0 \\ F_{\rm BERT-Base} & 0.757 & 0 \\ \hline \\ P_{\rm BERT-Base} & 0.757 & 0 \\ \hline \\ P_{\rm BERT-Base-MRPC} & 0.252 & 0 \\ R_{\rm BERT-Base-MRPC} & 0.644 & 0 \\ \hline \\ F_{\rm BERT-Base-MRPC} & 0.470 & 0 \\ \hline \\ P_{\rm BERT-Base-MRPC} & 0.470 & 0 \\ \hline \\ P_{\rm BERT-Base-MRPC} & 0.470 & 0 \\ \hline \\ R_{\rm BERT-Base-MRPC} & 0.470 & 0 \\ \hline \\ R_{\rm BERT-Base-MRPC} & 0.470 & 0 \\ \hline \\ R_{\rm BERT-Base-MRPC} & 0.470 & 0 \\ \hline \\ R_{\rm BERT-Base-MRPC} & 0.470 & 0 \\ \hline \\ R_{\rm BERT-Base-MRPC} & 0.470 & 0 \\ \hline \\ R_{\rm BERT-Large} & 0.454 & 0 \\ \hline \\ R_{\rm BERT-Large} & 0.454 & 0 \\ \hline \\ R_{\rm BERT-Large} & 0.454 & 0 \\ \hline \\ R_{\rm BERT-Large} & 0.454 & 0 \\ \hline \\ R_{\rm ROBERTa-Base} & 0.273 & 0 \\ \hline \\ R_{\rm ROBERTa-Base} & 0.176 & 0 \\ \hline \\ R_{\rm ROBERTa-Base} & 0.176 & 0 \\ \hline \\ R_{\rm ROBERTa-Base} & 0.176 & 0 \\ \hline \\ R_{\rm ROBERTa-Base} & 0.176 & 0 \\ \hline \\ R_{\rm ROBERTa-Base} & 0.176 & 0 \\ \hline \\ R_{\rm ROBERTa-Base} & 0.176 & 0 \\ \hline \\ R_{\rm ROBERTa-Base} & 0.176 & 0 \\ \hline \\ R_{\rm ROBERTa-Base} & 0.176 & 0 \\ \hline \\ R_{\rm ROBERTa-Large} & 0.188 & 0 \\ \hline \\ \hline \\ R_{\rm ROBERTa-Large} & 0.188 & 0 \\ \hline \\ R_{\rm ROBERTa-Large} & 0.188 & 0 \\ \hline \\ R_{\rm ROBERTa-Large} & (idf) & 0.063 & -0 \\ \hline \\ R_{\rm ROBERTa-Large} & (idf) & 0.129 & 0 \\ \hline \\ R_{\rm ROBERTa-Large} & 0.116 & 0 \\ \hline \\ R_{\rm ROBERTa-Large} & 0.116 & 0 \\ \hline \\ R_{\rm ROBERTa-Large} & 0.116 & 0 \\ \hline \\ R_{\rm ROBERTa-Large} & 0.116 & 0 \\ \hline \\ R_{\rm ROBERTa-Large} & 0.116 & 0 \\ \hline \\ R_{\rm ROBERTa-Large} & 0.116 & 0 \\ \hline \\ R_{\rm ROBERTa-Large} & 0.116 & 0 \\ \hline \\ \\ R_{\rm ROBERTa-Large} & 0.116 & 0 \\ \hline \\ \\ R_{\rm ROBERTa-Large} & 0.116 & 0 \\ \hline \\ \\ R_{\rm RUMet-Base} & 0.409 & 0 \\ \hline \\ \\ \\ \\ R_{\rm LNet-Base} & 0.0146 & 0 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	P _{BERT-Base}	0.313	0.344
$F_{\rm BERT-Base}$ 0.531 0 $P_{\rm BERT-Base}$ (idf) 0.243 0 $R_{\rm BERT-Base}$ (idf) 0.834 0 $R_{\rm BERT-Base}$ (idf) 0.834 0 $R_{\rm BERT-Base}$ 0.252 0 $R_{\rm BERT-Base-MRPC}$ 0.644 0 $R_{\rm BERT-Base-MRPC}$ 0.470 0 $P_{\rm BERT-Base-MRPC}$ 0.470 0 $R_{\rm BERT-Base-MRPC}$ 0.470 0 $R_{\rm BERT-Base-MRPC}$ 0.470 0 $R_{\rm BERT-Base-MRPC}$ 0.470 0 $R_{\rm BERT-Large}$ 0.454 0 $R_{\rm BERT-Large}$ 0.454 0 $R_{\rm BERT-Large}$ 0.649 0 $P_{\rm BERT-Large}$ 0.649 0 $R_{\rm BERT-Large}$ 0.645 0 $R_{\rm BERT-Large}$ 0.649 0 $P_{\rm RoBERTa-Large}$ 0.823 0 $R_{\rm RoBERTa-Large}$ 0.827 0 $R_{\rm RoBERTa-Large}$ 0.176 0 <t< td=""><td>RBERT_Base</td><td>0.679</td><td>0.622</td></t<>	RBERT_Base	0.679	0.622
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.519
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PREPT Page (idf)		0.286
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.783
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r _{BERT-Base} (Iui)		0.581
$\begin{array}{ccccc} F_{\rm BERT-Base-MRPC} & 0.470 & 0.070 \\ F_{\rm BERT-Base-MRPC} & (idf) & 0.264 & 0.0794 & 0.0756 & 0.0784 & 0.0794 & 0.0794 & 0.0794 & 0.0794 & 0.0764 & 0.0794 & 0.0764 & 0.0774 & 0.0764 & 0.07744 & 0.0774 & 0.07744 & 0.0774 & 0.07744 & 0.0774 & 0$	PBERT-Base-MRPC		0.331
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _{BERT-Base-MRPC}		0.641
$\begin{array}{c ccccc} P_{\rm BERT-Base-MRPC} ({\rm idf}) & 0.264 & 0.\\ R_{\rm BERT-Base-MRPC} ({\rm idf}) & 0.794 & 0.\\ F_{\rm BERT-Base-MRPC} ({\rm idf}) & 0.575 & 0.\\ \hline P_{\rm BERT-Large} & 0.454 & 0.\\ R_{\rm BERT-Large} & 0.756 & 0.\\ \hline R_{\rm BERT-Large} & 0.649 & 0.\\ \hline R_{\rm BERT-Large} ({\rm idf}) & 0.327 & 0.\\ \hline R_{\rm BERT-Large} ({\rm idf}) & 0.327 & 0.\\ \hline R_{\rm BERT-Large} ({\rm idf}) & 0.873 & 0.\\ \hline R_{\rm BERT-Large} ({\rm idf}) & 0.645 & 0.\\ \hline R_{\rm ROBERTa-Base} & 0.223 & -0.\\ \hline R_{\rm ROBERTa-Base} & 0.176 & 0.\\ \hline R_{\rm ROBERTa-Base} & 0.176 & 0.\\ \hline R_{\rm ROBERTa-Base} ({\rm idf}) & -0.256 & -0.\\ \hline R_{\rm ROBERTa-Base} ({\rm idf}) & 0.901 & 0.\\ \hline R_{\rm ROBERTa-Base} ({\rm idf}) & 0.188 & 0.\\ \hline R_{\rm ROBERTa-Large} & 0.105 & -0.\\ \hline R_{\rm ROBERTa-Large} ({\rm idf}) & 0.188 & 0.\\ \hline R_{\rm ROBERTa-Large} ({\rm idf}) & 0.063 & -0.\\ \hline R_{\rm ROBERTa-Large} ({\rm idf}) & 0.645 & 0.\\ \hline R_{\rm ROBERTa-Large} ({\rm idf}) & 0.632 & 0.\\ \hline R_{\rm ROBERTa-Large} ({\rm idf}) & 0.917 & 0.\\ \hline R_{\rm ROBERTa-Large} ({\rm idf}) & 0.519 & 0.\\ \hline R_{\rm ROBERTa-Large-MNLI} & 0.129 & 0.\\ \hline R_{\rm ROBERTa-Large-MNLI} & 0.130 & 0.\\ \hline R_{\rm ROBERTa-Large-MNLI} & 0$		0.470	0.512
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BERT-Base-MRPC (idf)		0.300
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.767
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.583
$\begin{array}{c ccccc} R_{\rm ReBERT-Large} & 0.756 & 0.\\ F_{\rm BERT-Large} & 0.649 & 0.\\ P_{\rm BERT-Large} & 0.649 & 0.\\ P_{\rm BERT-Large} & 0.756 & 0.\\ P_{\rm BERT-Large} & 0.756 & 0.\\ P_{\rm ReBERT-Large} & 0.757 & 0.\\ P_{\rm ReBERT-Large} & 0.757 & 0.\\ P_{\rm RoBERT-Large} & 0.756 & 0.\\ P_{\rm RoBERTa-Base} & 0.223 & -0.\\ P_{\rm RoBERTa-Base} & 0.827 & 0.\\ P_{\rm RoBERTa-Base} & 0.827 & 0.\\ P_{\rm RoBERTa-Base} & 0.176 & 0.\\ P_{\rm RoBERTa-Base} & 0.105 & -0.\\ R_{\rm RoBERTa-Large} & 0.322 & 0.\\ P_{\rm RoBERTa-Large} & 0.105 & -0.\\ P_{\rm RoBERTa-Large} & 0.105 & -0.\\ P_{\rm RoBERTa-Large} & 0.163 & -0.\\ P_{\rm RoBERTa-Large} & 0.163 & -0.\\ P_{\rm RoBERTa-Large} & 0.164 & 0.\\ P_{\rm RoBERTa-Large-MNLI} & 0.129 & 0.\\ P_{\rm RoBERTa-Large-MNLI} & 0.129 & 0.\\ P_{\rm RoBERTa-Large-MNLI} & 0.546 & 0.\\ P_{\rm RoBERTa-Large-MNLI} & 0.129 & 0.\\ P_{\rm RoBERTa-Large-MNLI} & 0.546 & 0.\\ P_{\rm RoBERTa-Large-MNLI} & 0.546 & 0.\\ P_{\rm ROBERTa-Large-MNLI} & 0.081 & 0.\\ P_{\rm ROBERTa-Large-MNLI} & 0.129 & 0.\\ P_{\rm RUNet-Base} & 0.0466 & 0.\\ P_{\rm RUNet-Base} & 0.146 & 0.\\ P_{\rm XLNet-Base} & 0.146 & 0.\\ P_{\rm XLNet-Base} & 0.176 & 0.\\ P_{\rm XLNet-Base} & 0.178 & 0.\\ P_{\rm XLNet-Base} & 0.178 & 0.\\ P_{\rm XLNet-Large} & 0.133 & 0.\\ P_{\rm XLM-En} & 0.230 & 0.\\ P_{\rm XLM-En} & 0.297 & 0.\\ \end{array}$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PBERT-Large		0.486
$\begin{array}{c ccccc} P_{\rm BERT-Large} ({\rm idf}) & 0.327 & 0.328 & 0.327 & 0.328 & 0.328 & 0.328 & 0.328 & 0.328 & 0.322 & 0.323 & 0.323 & 0.323 & 0.323 & 0.323 & 0.323 & 0.323 & 0.323 & 0.323 & 0.323 & 0.323 & 0.323 & 0.323 & 0.324 & 0.3274 & 0.333 & 0.324 & 0.3274 & 0.333 & 0.324 & 0.3274 & 0.333 & 0.324 & 0.3274 & 0.333 & $			0.697
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PBERT-Large		0.634
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.372
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$R_{\text{BERT-Large}}$ (idf)		0.821
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$F_{\text{BERT-Large}}$ (idf)	0.645	0.647
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PROPERTS Race	-0.223	-0.179
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.800
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.191
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Property profile		-0.267
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.869
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.157
$\begin{array}{cccccccc} R_{\rm RoBERTa-Large} & 0.888 & 0 \\ F_{\rm RoBERTa-Large} & 0.322 & 0 \\ R_{\rm RoBERTa-Large} (idf) & 0.063 & -C \\ R_{\rm RoBERTa-Large} (idf) & 0.917 & 0 \\ F_{\rm RoBERTa-Large} (idf) & 0.519 & 0 \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} & 0.129 & 0 \\ R_{\rm RoBERTa-Large-MNLI} & 0.820 & 0 \\ F_{\rm RoBERTa-Large-MNLI} & 0.820 & 0 \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} & 0.820 & 0 \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} & 0.546 & 0 \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} & 0.081 & 0 \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} & 0.081 & 0 \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} & 0.0605 & 0 \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} & 0.0605 & 0 \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} & 0.0605 & 0 \\ \hline \\ R_{\rm XLNet-Base} & 0.406 & 0 \\ \hline \\ R_{\rm XLNet-Base} & 0.146 & 0 \\ \hline \\ R_{\rm XLNet-Base} & 0.146 & 0 \\ \hline \\ R_{\rm XLNet-Base} & 0.178 & 0 \\ \hline \\ R_{\rm XLNet-Large} & -0.188 & -C \\ \hline \\ R_{\rm XLNet-Large} & 0.178 & 0 \\ \hline \\ R_{\rm XLNet-Large} & (idf) & 0.554 & 0 \\ \hline \\ R_{\rm XLNet-Large} & (idf) & 0.554 & 0 \\ \hline \\ R_{\rm XLNet-Large} & (idf) & 0.554 & 0 \\ \hline \\ R_{\rm XLNet-Large} & 0.333 & 0 \\ \hline \\ R_{\rm XLM-En} & 0.333 & 0 \\ \hline \\ \end{array}$			
$\begin{array}{cccc} F_{\rm RoBERTa-Large} & 0.322 & 0.\\ F_{\rm RoBERTa-Large} & (idf) & 0.063 & -6.\\ R_{\rm RoBERTa-Large} & (idf) & 0.917 & 0.\\ F_{\rm RoBERTa-Large} & (idf) & 0.519 & 0.\\ \hline F_{\rm RoBERTa-Large-MNLI} & 0.129 & 0.\\ F_{\rm RoBERTa-Large-MNLI} & 0.820 & 0.\\ F_{\rm RoBERTa-Large-MNLI} & 0.820 & 0.\\ F_{\rm RoBERTa-Large-MNLI} & 0.546 & 0.\\ F_{\rm RoBERTa-Large-MNLI} & 0.546 & 0.\\ \hline F_{\rm RoBERTa-Large-MNLI} & 0.605 & 0.\\ \hline F_{\rm RoBERTa-Large-MNLI} & 0.605 & 0.\\ \hline F_{\rm ROBERTa-Large-MNLI} & 0.605 & 0.\\ \hline F_{\rm XLNet-Base} & -0.046 & 0.\\ \hline F_{\rm XLNet-Base} & 0.409 & 0.\\ \hline F_{\rm XLNet-Base} & 0.146 & 0.\\ \hline F_{\rm XLNet-Base} & 0.146 & 0.\\ \hline F_{\rm XLNet-Base} & 0.178 & 0.\\ \hline F_{\rm XLNet-Large} & 0.151 & 0.\\ \hline F_{\rm XLNet-Large} & 0.333 & 0.\\ \hline F_{\rm XLM-En} & 0.333 & 0.\\ \hline F_{\rm XLM-En} & 0.297 & 0.\\ \hline \end{array}$	P _{RoBERTa-Large}		-0.041
$\begin{array}{c ccccc} P_{\rm RoBERTa-Large} ({\rm idf}) & 0.063 & -0.083 & -0.014 & -0.083 & -0.014 & -0.083 & -0.014 & -0.083 & -0.014 & -0.083 & -0.014 & -0.083 & -0.014 & -0.014 & -0.083 & -0.014 & -0.014 & -0.014 & -0.083 & -0.014 & -0.014 & -0.014 & -0.014 & -0.014 & -0.186 & -0.078 & -0.014 & -0.0$			0.863
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F _{RoBERTa-Large}		0.350
$\begin{array}{c c} \hline \\ R_{\rm RoBERTa-Large} ({\rm idf}) & 0.519 & 0 \\ \hline \\ \hline \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} & 0.129 & 0 \\ \hline \\ \hline \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} & 0.820 & 0 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} ({\rm idf}) & 0.841 & 0 \\ \hline \\ \hline \\ \hline \\ \hline \\ R_{\rm RoBERTa-Large-MNLI} ({\rm idf}) & 0.906 & 0 \\ \hline \\$			-0.011
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Roberta-Large (idf)		0.889
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F _{RoBERTa-Large} (idf)	0.519	0.453
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RoBERTa-Large-MNLI	0.129	0.208
$\begin{array}{c c} \hline R_{\rm RoBERTa-Large-MNLI} & 0.546 & 0.\\ \hline R_{\rm RoBERTa-Large-MNLI} & 0.546 & 0.081 & 0.\\ \hline R_{\rm RoBERTa-Large-MNLI} & (idf) & 0.906 & 0.\\ \hline R_{\rm RoBERTa-Large-MNLI} & (idf) & 0.906 & 0.\\ \hline R_{\rm RoBERTa-Large-MNLI} & (idf) & 0.605 & 0.\\ \hline R_{\rm XLNet-Base} & -0.046 & 0.\\ \hline R_{\rm XLNet-Base} & 0.409 & 0.\\ \hline R_{\rm XLNet-Base} & 0.409 & 0.\\ \hline R_{\rm XLNet-Base} & 0.146 & 0.\\ \hline R_{\rm XLNet-Base} & (idf) & 0.006 & 0.\\ \hline R_{\rm XLNet-Base} & (idf) & 0.655 & 0.\\ \hline R_{\rm XLNet-Base} & (idf) & 0.655 & 0.\\ \hline R_{\rm XLNet-Base} & (idf) & 0.655 & 0.\\ \hline R_{\rm XLNet-Base} & (idf) & 0.770 & 0.\\ \hline R_{\rm XLNet-Large} & -0.188 & -0.\\ \hline R_{\rm XLNet-Large} & 0.178 & 0.\\ \hline R_{\rm XLNet-Large} & (idf) & -0.186 & -0.\\ \hline R_{\rm XLNet-Large} & (idf) & 0.554 & 0.\\ \hline R_{\rm XLNet-Large} & (idf) & 0.511 & 0.\\ \hline R_{\rm XLNet-Large} & (idf) & 0.151 & 0.\\ \hline R_{\rm XLMe-En} & 0.230 & 0.\\ \hline R_{\rm XLM-En} & 0.237 & 0.\\ \hline \end{array}$		0.820	0.823
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RoBERTa-Large-MNI I		0.592
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.099
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	REPTA Large MALL (idf)		0.875
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BERT2_Large_MNII (idf)		0.596
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c} F_{\rm XLNet-Base} & 0.146 & 0 \\ P_{\rm XLNet-Base} & idf & 0.006 & 0 \\ P_{\rm XLNet-Base} & idf & 0.655 & 0 \\ F_{\rm XLNet-Base} & idf & 0.270 & 0 \\ \hline P_{\rm XLNet-Large} & -0.188 & -0 \\ R_{\rm XLNet-Large} & 0.178 & 0 \\ P_{\rm XLNet-Large} & 0.178 & 0 \\ P_{\rm XLNet-Large} & 0.178 & 0 \\ P_{\rm XLNet-Large} & 0.178 & 0 \\ \hline P_{\rm XLNet-Large} & 0.186 & -0 \\ \hline P_{\rm XLNet-Large} & 0.151 & 0 \\ \hline P_{\rm XLM-En} & 0.230 & 0 \\ \hline F_{\rm XLM-En} & 0.297 & 0 \\ \hline \end{array}$			0.080
$\begin{array}{c cccc} P_{\rm XLNet-Base} \ ({\rm idf}) & 0.006 & 0 \\ R_{\rm XLNet-Base} \ ({\rm idf}) & 0.655 & 0 \\ F_{\rm XLNet-Base} \ ({\rm idf}) & 0.270 & 0 \\ \hline \\ P_{\rm XLNet-Large} \ & 0.178 & 0 \\ R_{\rm XLNet-Large} \ & 0.178 & 0 \\ R_{\rm XLNet-Large} \ & 0.178 & 0 \\ F_{\rm XLNet-Large} \ & ({\rm idf}) & 0.176 & 0 \\ \hline \\ P_{\rm XLNet-Large} \ ({\rm idf}) & 0.554 & 0 \\ F_{\rm XLNet-Large} \ & ({\rm idf}) & 0.151 & 0 \\ \hline \\ \hline \\ P_{\rm XLMet-Large} \ & 0.333 & 0 \\ F_{\rm XLM-En} \ & 0.297 & 0 \\ \hline \end{array}$	KXLNet-Base		0.506
$\begin{array}{c cccc} P_{\rm XLNet-Base} \ ({\rm idf}) & 0.006 & 0 \\ R_{\rm XLNet-Base} \ ({\rm idf}) & 0.655 & 0 \\ F_{\rm XLNet-Base} \ ({\rm idf}) & 0.270 & 0 \\ \hline \\ P_{\rm XLNet-Large} \ & 0.178 & 0 \\ R_{\rm XLNet-Large} \ & 0.178 & 0 \\ R_{\rm XLNet-Large} \ & 0.178 & 0 \\ F_{\rm XLNet-Large} \ & ({\rm idf}) & 0.176 & 0 \\ \hline \\ P_{\rm XLNet-Large} \ ({\rm idf}) & 0.554 & 0 \\ F_{\rm XLNet-Large} \ & ({\rm idf}) & 0.151 & 0 \\ \hline \\ \hline \\ P_{\rm XLMet-Large} \ & 0.333 & 0 \\ F_{\rm XLM-En} \ & 0.297 & 0 \\ \hline \end{array}$	F _{XLNet-Base}		0.265
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$P_{\text{XLNet-Base}}$ (1df)		0.145
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.720
$\begin{array}{c cccc} R_{\rm XLNet-Large} & 0.178 & 0 \\ F_{\rm XLNet-Large} & -0.014 & 0 \\ P_{\rm XLNet-Large} & ({\rm idf}) & -0.186 & -0 \\ R_{\rm XLNet-Large} & ({\rm idf}) & 0.554 & 0 \\ F_{\rm XLNet-Large} & ({\rm idf}) & 0.151 & 0 \\ \hline \\ P_{\rm XLM-En} & 0.230 & 0 \\ R_{\rm XLM-En} & 0.333 & 0 \\ F_{\rm XLM-En} & 0.297 & 0 \\ \end{array}$	F _{XLNet-Base} (idf)	0.270	0.391
$\begin{array}{c cccc} R_{\rm XLNet-Large} & 0.178 & 0 \\ F_{\rm XLNet-Large} & -0.014 & 0 \\ P_{\rm XLNet-Large} & ({\rm idf}) & -0.186 & -0 \\ R_{\rm XLNet-Large} & ({\rm idf}) & 0.554 & 0 \\ F_{\rm XLNet-Large} & ({\rm idf}) & 0.151 & 0 \\ \hline \\ P_{\rm XLM-En} & 0.230 & 0 \\ R_{\rm XLM-En} & 0.333 & 0 \\ F_{\rm XLM-En} & 0.297 & 0 \\ \end{array}$	Pvi Nat Lorga	-0.188	-0.115
$\begin{array}{c c} F_{\rm XLNet-Large} & -0.014 & 0 \\ P_{\rm XLNet-Large} & ({\rm idf}) & -0.186 & -0.014 \\ R_{\rm XLNet-Large} & ({\rm idf}) & 0.554 & 0 \\ F_{\rm XLNet-Large} & ({\rm idf}) & 0.151 & 0 \\ \hline P_{\rm XLM-En} & 0.230 & 0 \\ R_{\rm XLM-En} & 0.333 & 0 \\ F_{\rm XLM-En} & 0.297 & 0 \\ \hline \end{array}$	- ALINCI-Large		0.195
$\begin{array}{c c} P_{\rm XLNet-Large} \left({\rm idf} \right) & -0.186 & -0.186 \\ R_{\rm XLNet-Large} \left({\rm idf} \right) & 0.554 & 0.051 \\ F_{\rm XLNet-Large} \left({\rm idf} \right) & 0.151 & 0.051 \\ \hline P_{\rm XLM-En} & 0.230 & 0.0 \\ R_{\rm XLM-En} & 0.333 & 0.051 \\ F_{\rm XLM-En} & 0.297 & 0.051 \\ \hline \end{array}$	FVI Nat Lorge		0.036
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- ALINEI-Large		-0.072
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.555
$\begin{array}{c c} P_{\rm XLM-En} & 0.230 & 0 \\ R_{\rm XLM-En} & 0.333 & 0 \\ F_{\rm XLM-En} & 0.297 & 0 \end{array}$			
$\begin{array}{c c} R_{\rm XLM-En} & 0.333 & 0 \\ F_{\rm XLM-En} & 0.297 & 0 \end{array}$			0.234
$\begin{array}{c c} R_{\rm XLM-En} & 0.333 & 0 \\ F_{\rm XLM-En} & 0.297 & 0 \end{array}$			0.220
F _{XLM-En} 0.297 0	R _{XLM-En}		0.263
	F _{XLM-En}	0.297	0.243
$P_{\text{XLM-En}}$ (idf) 0.266 0	P _{XLM-En} (idf)	0.266	0.275
		0.700	0.640
			0.470

Table 28: Pearson correlation on the 2015 COCO Captioning Challenge. See text for the details about M1 and M2. We bold the best correlating task-specific and task-agnostic metrics in each setting [†]: LEIC uses images as additional inputs. ^{*}: Cited from Cui et al. (2018).

Туре	Method	QQP	PAWS _{QQP}
Trained on QQP	DecAtt	0.939*	0.263
(supervised)	DIIN	0.952*	0.324
(o-F)	BERT	0.963*	0.351
Trained on QQP	DecAtt	-	0.511
+ PAWS _{QQP}	DIIN BERT	-	0.778 0.831
(supervised)		-	
	BLEU-1 BLEU-2	0.737 0.720	0.402 0.548
	BLEU-2 BLEU-3	0.720	0.527
	BLEU-4	0.707	0.527
	METEOR DOLLAR	0.755	0.532
	Rouge-L ChrF++	0.740 0.577	0.536 0.608
	BEER	0.741	0.564
	EED	0.743	0.611
	CHARACTER	0.698	0.650
	$P_{\text{BERT-Base}}$	0.750	0.654
	$R_{\text{BERT-Base}}$	0.739	0.655
	$F_{\text{BERT-Base}}$ $P_{\text{BERT-Base}}$ (idf)	0.755 0.766	0.654 0.665
	$R_{\text{BERT-Base}}$ (idf)	0.752	0.665
	$F_{\text{BERT-Base}}$ (idf)	0.770	0.664
	PBERT-Base-MRPC	0.742	0.615
	$R_{\text{BERT-Base-MRPC}}$	0.729	0.617
	F _{BERT-Base-MRPC}	0.746	0.614
	$P_{\text{BERT-Base-MRPC}}$ (idf) $R_{\text{BERT-Base-MRPC}}$ (idf)	0.752 0.737	0.618 0.619
	$F_{\text{BERT-Base-MRPC}}$ (idf)	0.756	0.617
	P _{BERT-Large}	0.752	0.706
	R _{BERT-Large}	0.740	0.710
	$F_{\text{BERT-Large}}$	0.756	0.707
	P _{BERT-Large} (idf)	0.766	0.713
	$R_{\text{BERT-Large}}$ (idf) $F_{\text{BERT-Large}}$ (idf)	0.751 0.769	0.718 0.714
Martin			
Metric (Not trained	$P_{ m RoBERTa-Base}$ $R_{ m RoBERTa-Base}$	0.746 0.736	0.657 0.656
on QQP or	$F_{\text{RoBERTa-Base}}$	0.751	0.654
PAWS _{QQP})	P _{RoBERTa-Base} (idf)	0.760	0.666
	$R_{\text{RoBERTa-Base}}$ (idf)	0.745	0.666
	F _{RoBERTa-Base} (idf)	0.765	0.664
	$P_{\text{RoBERTa-Large}}$	0.757	0.687
	$R_{ m RoBERTa-Large}$ $F_{ m RoBERTa-Large}$	0.744 0.761	0.685 0.685
	$P_{\text{RoBERTa-Large}}$ (idf)	0.773	0.691
	$R_{\text{RoBERTa-Large}}$ (idf)	0.757	0.697
	$F_{\text{RoBERTa-Large}}$ (idf)	0.777	0.693
	PRoBERTa-Large-MNLI	0.763	0.767
	R _{RoBERTa-Large-MNLI}	0.750	0.772
	$F_{\text{RoBERTa-Large-MNLI}}$ $P_{\text{RoBERTa-Large-MNLI}}$ (idf)	0.766 0.783	0.770 0.756
	$R_{\text{RoBERTa-Large-MNLI}}$ (idf)	0.767	0.764
	F _{RoBERTa-Large-MNLI} (idf)	0.784	0.759
	P _{XLNet-Base}	0.737	0.603
	R _{XLNet-Base}	0.731	0.607
	$F_{\text{XLNet-Base}}$ $P_{\text{XLNet-Base}}$ (idf)	0.739 0.751	0.605 0.625
	$R_{\text{XLNet-Base}}$ (idf)	0.743	0.630
	$F_{\text{XLNet-Base}}$ (idf)	0.751	0.626
	$P_{\rm XLNet-Large}$	0.742	0.593
	$R_{XLNet-Large}$	0.734	0.598
	F _{XLNet-Large}	0.744	0.596
	$P_{\text{XLNet-Large}}$ (idf) $R_{\text{XLNet-Large}}$ (idf)	0.759 0.749	0.604 0.610
	$F_{\text{XLNet-Large}}$ (idf)	0.749	0.606
	P _{XLM-En}	0.734	0.600
	R _{XLM-En}	0.725	0.604
	$F_{\rm XLM-En}$	0.737	0.602
	$P_{\rm XLM-En}$ (idf)	0.757	0.596
	$R_{\rm XLM-En}$ (idf)	0.745	0.603

Table 29: Area under ROC curve (AUC) on QQP and $PAWS_{QQP}$ datasets. The scores of trained DecATT (Parikh et al., 2016), DIIN (Gong et al., 2018), and fine-tuned BERT are reported by Zhang et al. (2019). We bold the best task-specific and task-agnostic metrics *: score on the held-out test set of QQP.