
Under review as a conference paper at ICLR 2020

COLLABORATIVE TRAINING OF BALANCED RANDOM
FORESTS FOR OPEN SET DOMAIN ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we introduce a collaborative training algorithm of balanced random
forests for domain adaptation tasks which can avoid the overfitting problem. In real
scenarios, most domain adaptation algorithms face the challenges from noisy, insuf-
ficient training data. Moreover in open set categorization, unknown or misaligned
source and target categories adds difficulty. In such cases, conventional methods
suffer from overfitting and fail to successfully transfer the knowledge of the source
to the target domain. To address these issues, the following two techniques are
proposed. First, we introduce the optimized decision tree construction method,
in which the data at each node are split into equal sizes while maximizing the
information gain. Compared to the conventional random forests, it generates larger
and more balanced decision trees due to the even-split constraint, which contributes
to enhanced discrimination power and reduced overfitting. Second, to tackle the
domain misalignment problem, we propose the domain alignment loss which pe-
nalizes uneven splits of the source and target domain data. By collaboratively
optimizing the information gain of the labeled source data as well as the entropy
of unlabeled target data distributions, the proposed CoBRF algorithm achieves
significantly better performance than the state-of-the-art methods. The proposed
algorithm is extensively evaluated in various experimental setups in challenging do-
main adaptation tasks with noisy and small training data as well as open set domain
adaptation problems, for two backbone networks of AlexNet and ResNet-50.

1 INTRODUCTION

In recent years, domain adaptation has been researched as it can help to solve major difficulties in the
real world. Due to the huge overhead in labeling large-scale training data, it is desirable if an existing
network can be adapted to different target domains. More importantly, it is common that the training
dataset for adaptation is noisy and small, or the labels in the target domain do not match with the
source or even unknown. These are inherent challenges in the domain adaptation problem as in real
world it is common for the data to contain such class bias, noise and unlabeled data.

However, in practice, since the adapted networks are often overfitted to the provided source data or
the data distribution of the target domain is frequently quite different from the source, they do not
perform well to the target domain. To properly deal with these real-world conditions with insufficient
information, it is critical to learn the shared data distribution that is effective both in the source and
target domain. To this end, we propose the collaborative training algorithm of balanced random
forest (CoBRF) to mitigate the challenging problems such as noisy labels, lack of training data, and
misaligned or unknown categories (open set categorization).

In random forests, multiple decision trees are learned by optimizing the information gain for the
randomly selected subset features at each node split. Since random forests ensemble the internal
decision trees, they are more robust to noise and overfitting problem than single decision trees. To
improve the robustness of the random forests, we take one step further by balancing the decision trees,
i.e., maximizing the number of leaf nodes for the same tree depth. Our method builds more balanced
decision trees by enforcing the sizes of the data in the left and right child nodes to be equal. While
this split strategy is not locally optimal in terms of information gain, the resulting decision trees have
far more leaf nodes, and it endows more expressive power which can be helpful in dealing with noise
and unseen data or classes. It also helps to avoid overfitting as it prevents a node committing too early
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for a specific pattern, or in other words, it postpones the decision as late as possible so that various
discriminant information in the training data can be fully considered.

To enforce even splits while maintaining the discriminability, the CoBRF uses the hyperplanes
estimated by the linear support vector machine (SVM). First, it randomly assigns the classes in the
nodes to binary pseudo labels and equalizes the sizes of two pseudo classes by randomly removing
data in the larger class. Then a linear classifier is found by SVM, and its hyperplane is translated
until the data sizes on both sides are equal. In a sense, it finds the even split of the data projected
onto the normal direction of the hyperplane and places the hyperplane there. The node split by the
translated hyperplane is simple yet effective. The ablation study in Sec. 4.2 confirms that the CoBRF
boosts the performance compared to the baseline random forests.

Since the above training process only considers maximizing the information gain of labeled data
in the source domain, which is referred to ‘class information gain’, it does not resolve the domain
misalignment problem between the source and target domain. Because the target labels are not
available during training, we try to keep the overall distribution of the target data as close to that
of the source data as possible. Since the source data are evenly split, we guide the algorithm to
minimize the information gain between the source and target domain, which encourages even split
of the target data also. The CoBRF combines the ideas, minimizing the ‘domain information
gain’ between source and target data for the domain alignment while keeping the class information
gain to be maximized. Note that the domain alignment term is the same as the negative information
gain of the binary domain labels (source/target). Thus, the CoBRF can be seen as an example of
adversarial learning, as it considers the domain information gain in an adversarial manner compared
to the conventional objective function of the random forest.

We summarize the main contributions as three-fold.

• We introduce the collaborative training algorithm based balanced random forest (CoBRF) using
the discriminative and even node split function. Linear SVM with binary pseudo labeling is used
to find the discriminative hyperplane and the even split ensures the decision tree to be balanced.

• We also adopt the adversarial learning of domain information gain to align the source and target
data distribution. To align two domains, the information gain between the source and target data is
minimized, which learns the common data distribution of both the (unlabeled) target domain and
the source domain data.

• We perform an extensive evaluation of the domain adaptation to show the performance of the
proposed method according to various challenging evaluation protocols. Specifically, it is compared
to the baseline and state-of-the-art methods using noisy and small training data, and with open-set
domain adaptation protocols. In both cases we observe significant performance improvements.

2 RELATED WORK

2.1 DOMAIN ADAPTATION

Recently adversarial learning has been one of the dominant approaches in domain adaptation with
deep neural networks. The gradient reversal layer Ganin & Lempitsky (2015) is introduced to train
the networks so that the discrimination of source and target domains is penalized. It improves the
classification performance compared to the networks learned only with the source data. Tzeng et al.
(2017) suggest the domain adaptation framework based on the discriminative network learning, which
assigns individual weights to the source and target domains. In training the networks, they also
consider the adversarial weight update to align the domains. Several other domain adaptation papers
in adversarial learning using conditional learning Long et al. (2018), domain-symmetric Zhang et al.
(2019), and collaborative Zhang et al. (2018b) methods have been introduced. Also, in Tzeng et al.
(2014); Long et al. (2015; 2016), maximum mean discrepancy (MMD)-based methods have been
studied. Tzeng et al. (2014) propose the domain confusion loss to improve domain distribution
alignment. Long et al. (2015) introduce the task-specific embedding and multiple kernel approach
along with MMD to decrease the domain discrepancy. The residual transfer module presented in Long
et al. (2016) associates the classification ability of the source and target domain. MMD is further
extended to multiple domain alignment in the joint adaptation networks (JAN) Long et al. (2017)
using adversarial learning. The generative adversarial networks Radford et al. (2015) are adopted in
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many domain adaptation methods Liu & Tuzel (2016); Sankaranarayanan et al. (2018); Volpi et al.
(2018). CoGAN proposed by Liu & Tuzel (2016) learns the joint distribution of multiple domains
without corresponding image pairs. Sankaranarayanan et al. (2018) propose the combined adversarial
and discriminative learning method using the generator and discriminator of GAN.

2.2 EVALUATION PROTOCOLS IN DOMAIN ADAPTATION

Recently, many challenging protocols are introduced to evaluate the domain adaptation in realistic
settings. Regarding domain generalization on deep neural networks Li et al. (2018); Balaji et al.
(2018), they divide multiple domain data into training and test set, then use the leave-one-domain-out
scheme for evaluation. The domain adaptation on the partially overlapping source and target domains
is presented in Zhang et al. (2018a); Cao et al. (2018). Multiple sources and target domains are mixed
into the source or target domains in Zhao et al. (2018); Mancini et al. (2018); Hoffman et al. (2018).
The adaptable model is aimed to be learned using the distribution to the multiple domains of the
mixed set. Recently, several works Saito et al. (2018); Panareda Busto & Gall (2017); Tan et al.
(2019) address the open set domain adaptation. They assume that there exist unknown and partially
overlapped known classes between domains. On the other hand, the domain adaptation methods
under small training data Hong et al. (2017) and the noisy data Shu et al. (2019) are studied to address
the real-world condition. Hong et al. (2017) use single training data per person, and Shu et al. (2019)
artificially corrupt the class labels or features of the source domain for the robustness evaluation.
These protocols are challenging as they pose difficult problems of overfitting, class misalignment,
noisy, lack of training data, and little overlap.

2.3 RANDOM FOREST AS AN ENSEMBLE LEARNING METHOD

The ensemble of multiple learners has widely been used to avoid the overfitting problem Singh et al.
(2016); Han et al. (2017; 2016); Pi et al. (2016). Singh et al. (2016) introduce the regularization
method for network learning, which works with a variety set of network architectures and performs
better than the existing regularization methods (i.e.dropout). Branchout Han et al. (2017) is devised
for layer-level regularization in visual tracking, where multiple branches of fully connected layers are
randomly selected in training.

Random forest Breiman (2001) combines multiple random decision trees to build robust classifier or
regressor. Random forests have been applied to many applications such as object tracking Zhang et al.
(2017), feature point detection Lindner et al. (2014), and speech recognition Black & Muthukumar
(2015), to name a few. However, it should be emphasized that the most important benefit is the
mitigation of overfitting by ensembling multiple decision trees. As noticed in the literature Wyner
et al. (2017); Gomes et al. (2017), the random forests tend not to propagate severe overfitting error
even with a large number of trees.

There have been many recent works to improve the performance of random forests: Dheenadayalan
et al. (2016) proposes pruning nodes for efficient learning, Ristin et al. (2015a) presents incremental
modeling for large scale recognition, and Probst & Boulesteix (2017) investigates how to tune the
number of trees. SVM Yao et al. (2011); Ristin et al. (2015b) or random projection Bosch et al.
(2007); Bossard et al. (2014) is often used as the binary classifier for better node split. Training
balanced decision trees has been also an important topic Bosch et al. (2007); Bossard et al. (2014);
Yao et al. (2011); Lei et al. (2014); Ristin et al. (2015b). They split a node into child nodes by the
binary classifier, which is trained by evenly-divided training data in the node. We argue that training
balanced random forests helps to alleviate the overfitting problem since balancing random decision
trees avoids the biased distribution in the specific domain but prefers the common representation to
any domains. Hence, we introduce the learning algorithm that enforces the even-split constraint by
shifting the hyperplane(Sec. 3.1) for balanced random forests. Although there have been studies of
the balanced training of random forests, we provide elaborate training process of balanced random
forests to learn common representations for the domain adaptation task. The effectiveness of the
balanced random forests is shown by extensive domain adaptation experiments.
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(a) (b)

Figure 1: Split examples in decision tree according to the split functions: (a) the conventional
method chooses the split that maximizes the information gain. (b) In contrast, the proposed method
additionally enforces the size of child nodes to be equal, resulting in a random balanced tree. Note
that CoBRF has far mode nodes which improves the generalization ability for domain adaptation.

(a) (b) (c)

Figure 2: Hyperplanes by the proposed methods. (a,b) The hyperplanes estimated by binary pseudo
labels followed by translation for even split. Dotted line is the hyperplane estimated using linear
SVM. The data are evenly split by the hyperplane shift (solid lines). Among these hyperplanes, the
one with maximum information gain is chosen: yellow hyperplane in (a). (c) In CoBRF, both the
source information gain and target entropy is considered. The yellow is better in source information
gain, the target data split is biased, while the blue splits the source and target evenly well.

3 PROPOSED METHOD

In this section, we first explain the limitation of the conventional random forests for the domain
adaptation task, and then we introduce the even node split function in Sec.3.1 and the domain
information gain for selecting the domain-aligned split function in Sec. 3.2.

3.1 EVEN CONSTRAINED RANDOM FOREST LEARNING

A random forest consists of multiple random decision trees, whose nodes learn a binary classifier for
the randomly-selected subset of features to maximize the information gain (IG). We abuse the term
node for the training data in the node interchangeably. The entropy of a node n is defined as

EC(n) = −
∑

c∈C(n)

pc(n) · log (pc(n)) , (1)

where C(n) represents the set of classes of the data in n, and pc(n) is the probability of class c in n
(i.e., the data count of class c divided by |n|). Then the information gain for a node n with the left
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and right child nodes is defined as

IGC(n) = EC(n)−
∑

l∈{left,right}

|nl|
|n|

EC(nl). (2)

Conventionally, the simple split functions that compares only a couple of feature values are used, but
recently more elaborate split functions using the linear classifiers are used Yao et al. (2011); Ristin
et al. (2015b). The hyperplane split function for a node n is written as

νn(x) =

{
go left, if wn · ψn(x) < kn
go right, otherwise,

(3)

where ψn(·) is the sub-feature selection function and wn and kn are the hyperplane parameters either
randomly set or learned by a linear support vector machine Cortes & Vapnik (1995). The hyperplane
with the largest information gain is the most discriminative classifier at the given node, but for the
entire decision tree and the random forest it may not be the best option, because it causes the learned
trees to be skewed and not well balanced (Fig. 1a).

We propose to add a hard constraint of equal-size in splitting the node to get more balanced trees.
The detailed learning process is as follows. For the SVM to build a binary classifier, the classes
in the node are randomly assigned to binary pseudo labels, and the training data for each class are
assigned to the corresponding pseudo label. As the data sizes of the pseudo labels will be different,
we randomly erase the data in the larger pseudo class to match the sizes. Then the base hyperplane
(wn and kn) is computed to classify the binary pseudo labels.

Still, the split of the training data by the hyperplane is not equal-sized; thus we update the bias kn of the
hyperplane so that the data size on each side is equal or differs at most by one (||nleft|−|nright|| ≤ 1).
Geometrically this process is moving the hyperplane along the normal vector wn, so that it is placed
at the even split of the data projected onto the normal direction (Fig. 2a,2b). Among the estimated
hyperplanes from randomly selected sub-features, the one that maximizes the information gain
IGC(n) is chosen as the node split function. To build a decision tree, like the conventional random
forest, the node split is repeatedly applied until the maximum depth is reached or too few data are left
in the node (Fig. 1b).

Inherently the proposed split method creates balanced trees, and for the same depth, the number of
nodes is much larger than that of the conventional random forest. We argue that having more (leaf)
nodes in the decision tree has advantages in domain adaptation tasks. The conventional split function
is locally optimal, but because of that, it is more susceptible to overfitting by committing too early,
and eventually, it decreases the discriminative power of the entire random forest. In the balanced
trees, the data sizes in the leaf nodes are almost the same; thus, they represent local data distribution
more faithfully. The even-size constraint can be thought of as a regularization in learning decision
trees. The experimental results of the ablation study in Sec. 4.2 supports this argument.

3.2 COLLABORIVE LEARNING OF RANDOM FORESTS

Balanced data distribution is a big advantage in domain adaptation. However, as it does not use the
unlabeled target data for learning, it still does not correctly align the data distribution of the source
and target domain. In other words, the distribution of the target data also needs to be considered in
building a random forest. We propose a new collaborative measure for selecting the split function that
considers both the conventional IG and the domain distribution of the source and target data together.
The collaborative information gain (co-IG) is defined as

co-IG(n) = (1− λ) IGC(ns)− λ IGD(n), (4)

where λ is a user parameter, ns is the labeled training data (in the source domain), and D is the binary
domain label {source, target} representing the domain that the data belongs to. More specifically,
IGD(n) is the information gain on the domain distribution, when the data labels are either source
or target, disregarding the classes in the source domain. The CoBRF chooses the hyperplane that
maximizes co-IG when splitting the nodes.

Note that the IG on the domain distribution, IGD(n), is subtracted in Eq. 4, to ensure that we prefer
even distribution of the source and target data in the child nodes. IGD(n) is minimized when both
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(a) Without domain alignment (b) With domain alignment

Figure 3: Visualization of trees learned by the proposed methods. The white and gray circles at the
leaf nodes represent the source and target data fallen into the node, respectively. As a tree without
domain alignment only considers the labeled source data, the target data distributions in leaf nodes
are not even, whereas that with domain alignment generates more uniform splits. Refer to Sec. 3.2
and Fig. 2c.

Table 1: Ablation study of components for the split function of random forests without the domain
alignment. The experiment is performed on Amazon (A), Webcam (W) and DSLR (D) domains of
Office-31 with ResNet-50.

Hyperplane estimation pseudo mid_pseudo pseudo mid_pseudo
h_shift X X O O

Accuracy 70.6 72.1 74.3 74.6

source and target data are evenly split into the children, as it maximizes the entropy of the children
(Eq. 2). Thus IGD(n) in CoBRF collaboratively enforce the even split of target data also.

Fig. 2c illustrates the effect of co-IG compared to conventional IG in split function selection. The
yellow line has higher IG as it segments the source data (colored) better, but co-IG also considers the
split of target data (gray). Although the blue line has lower IG than the blue, it separates the target
data more evenly; thus, the blue line is chosen as the split function. The resulting decision trees by
CoBRF are shown in Fig. 3.

The co-IG is closely related to the adversarial learning of the network backpropagation Long et al.
(2015); Ganin et al. (2016). In this framework, IGC and IGD can be thought of as the classification
and adversarial domain alignment, respectively. Thanks to the domain alignment term (co-IG), the
CoBRF learns the robust models even with very noisy or small training data without overfitting. We
validate the proposed methods from the moderate challenging condition such as 40% noise data to
the very severe condition such as 80% noise or merely 10% training data. Further, we evaluate the
open set domain adaptation, which has received attention in recent years, in the following section.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTING

We use three domain adaptation datasets such as Office-31 Saenko et al. (2010), ImageCLEF-DA1

and Office-Home Venkateswara et al. (2017). We evaluate algorithms using three challenging
protocols: noisy, small training data, and weakly supervised open set domain adaptation. Due to
the space limitation, only representative results are shown in this section. Refer to the appendix for
detailed information of the datasets, metric, and full experimental results.

1https://www.imageclef.org/2014/adaptation
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Table 2: The effect of λ for domain alignment in the CoBRF. The experiment is performed on
Office-31 with ResNet-50.

λ 0 0.001 0.01 0.1 0.5 1.0

Accuracy 70.3 71.4 72.3 74.0 74.6 74.5

Table 3: Performance comparison of the 60 and 80% Noisy and 10% Small training data protocol on
Office-31, ImageCLEF-DA and Office-Home dataset with ResNet-50.

Method
Office-31 ImageCLEF-DA Office-Home

Noisy Small Noisy Small Noisy Small60% 80% 60% 80% 60% 80%

DAN 37.6 19.8 66.8 36.3 19.2 74.4 32.1 18.4 43.8
JAN 48.7 24.6 69.7 42.4 19.7 76.6 35.6 21.6 45.3

CDAN+E 49.8 22.0 67.5 54.5 25.0 79.6 34.0 15.1 44.2

CoBRF 65.6 44.3 74.6 67.8 32.6 79.8 56.8 46.5 51.8

Table 4: Performance comparison of the 40% Noisy protocol on Office-31 with ResNet-50.

Method Domain adaptation

A→D A→W D→A D→W W→A W→D Average

RTN Long et al. (2016) 76.1 64.6 49.0 71.7 56.2 82.7 66.7
ADDA Tzeng et al. (2017) 61.2 61.5 45.5 65.1 49.2 74.7 59.5
MentorNet Jiang et al. (2018) 75.0 74.4 43.2 70.6 54.2 85.9 67.2
TCL Shu et al. (2019) 83.3 82.0 60.5 77.2 65.7 90.8 76.6

CoBRF 81.9 82.1 65.4 81.1 68.0 92.8 78.5

4.2 ABLATION STUDY

We evaluate the effect of components in the CoBRF proposed in this paper. The CoBRF uses the
balanced pseudo labeling (mid_pseudo), and the hyperplane shift (h_shift) for even data split. As
binary labeling is necessary for hyperplane computation, the pseudo method uses randomly-assigned
binary pseudo labels without removing the data to make label sizes equal. Therefore the four
combinations of (pseudo, mid_pseudo)×h_shift are tested with Office-31. The baseline is (pseudo +
no_h_shift). As shown in Table 1 and 7 of appendix, both balancing the pseudo labels and enforcing
even splits by translating hyperplanes improve the performance.

Table 2 shows the effect of the parameter λ in co-IG formulation (Eq. 4). It confirms that optimizing
for the cobalanced distribution helps the alignment of domain distributions.

4.3 NOISY DATA

In this experiment, the labels of the specified portion of the training data are randomly changed for
the noise condition, which is also referred to as the label corruption in Shu et al. (2019). Corruption
levels are set to 40, 60 and 80% of the training data (refer to the supplementary material for full
experimental results).

We conduct noisy conditions for the Office-31, ImageCLEF-DA and Office-Home datasets in Table 3
and 4. We test DAN Long et al. (2015), JAN Long et al. (2017), and CDAN+E Long et al. (2018)
algorithms2 on the same noisy condition for comparison. Table 4 shows the result of 40% noisy
training data for Office-31 with ResNet-50. The proposed CoBRF outperforms all other algorithms
in average accuracy. The result confirms that the CoBRF improves the performance in most settings,

2DAN, JAN: https://github.com/thuml/Xlearn , CDAN+E: https://github.com/thuml/CDAN
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Table 5: Performance comparison of the OpenSet1 protocol on the Office-31 dataset with AlexNet.

Method A→D A→W D→A D→W W→A W→D Average

OSVM 59.6 57.1 14.3 44.1 13.0 62.5 40.6
ATI-λ + OSVM 72.0 65.3 66.4 82.2 71.6 92.7 75.0
Saito et al. (2018) 76.6 74.9 62.5 94.4 81.4 96.8 81.1

CoBRF 86.0 80.5 73.0 94.5 69.4 94.6 83.0

Table 6: Performance comparison of the OpenSet2 protocol on the Office-31 dataset with ResNet-50.
Results of CoBRF* are from a more challenging setup. Refer to Sec. 4.5.

Method A↔ D A↔W D↔W Average

JAN Long et al. (2017) 65.5 63.8 74.7 68.0
ATI-semi Panareda Busto & Gall (2017) 72.0 73.4 77.8 74.7
CDA Tan et al. (2019) 75.2 77.1 88.1 80.1

CoBRF 82.3 83.1 92.9 86.1
CoBRF* 82.0 81.2 89.7 84.3

and interestingly, Table 3 shows the more severe the noise is, the larger the performance improvement
gets.

4.4 SMALL TRAINING DATA

In this experiment, we use only 10% of training samples to evaluate the performance against overfit-
ting. We perform the experiments on Office-31, Office-Home, and ImageCLEF-DA datasets with
ResNet-50. The result of Table 3 shows the CoBRF achieves favorable performance compared to the
other algorithms. Full experimental results are presented in the appendix.

4.5 OPEN SET EXPERIMENTS

We perform two open set evaluation protocols proposed in Saito et al. (2018); Tan et al. (2019).

OpenSet1: The first open set protocol Saito et al. (2018) uses 11 classes (10 known and 1 unknown)
of the Office-31 dataset. The labels from 1 to 10 of both source and target domains are marked
as the known class, and all data with label 11∼20 in the source domain and label 21∼31 in the
target domain are used as one unknown class. According to Saito et al. (2018) the target data of
the unknown class is not used in training, and the unknown class is classified by thresholding the
class probability. Table 5 shows the result of CoBRF as well as the state-of-the-art methods. The
CoBRF achieves the best performance among all algorithms on Office-31. It also demonstrates the
effectiveness of the proposed method under the challenging adaptation condition.

OpenSet2: Recently, another open set protocol is proposed in Tan et al. (2019), which uses partially
overlapping known classes between the source and target domain. Each domain has 5 known-and-
common classes, 5 known-but-different classes, and 1 unknown class for all other training data, thus
in total there are 15 known and 1 unknown classes. First, according to Tan et al. (2019), 3 samples
per class per domain and 9 samples in the unknown class per domain are used in training. Hence the
total number of training samples is (3 samples × 10 classes/domain + 9 samples_in_unknown) × 2
domains = 78. All other algorithms and CoBRF results in Table 6 are using this protocol.
Additionally, we evaluate more challenging setup, where the training data are sampled regardless of
the domain, i.e., the data in common classes (including unknown) are merged before being sampled.
In this case, 3 samples × 15 classes + 9 samples_in_unknown = 54 in total are used. The results
in CoBRF* rows are acquired in this setup. We confirm that CoBRF works well compared to
state-of-the-art methods under the OpenSet2 and more challenging condition.
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5 CONCLUSION

We propose a novel cobalanced random forest (CoBRF) algorithm for challenging conditions and
open set protocols. The CoBRF enhances the discriminative ability of the random forest by building
balanced decision trees by the even split. The proposed CoBRF algorithm also employs the
adversarial learning for domain alignment and benefits the effectiveness against the overfitting to the
labeled source data. We extensively evaluate the proposed algorithms using challenging experimental
protocols and demonstrate its superior performance over the baseline and state-of-the-art methods.
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Appendix

A DATASET AND METRIC

We use three domain adaptation datasets for the experiments.

Office-31 is the domain adaptation dataset, which consists of three domains, Amazon (A), Webcam
(W) and DSLR (D). The dataset has 4,652 images with 31 categories, and we evaluate all combinations
of the domains transfer following the previous work.

ImageCLEF-DA includes 12 classes in each domain with 50 images per category per domain. The
three domains of Caltech-256 (C), ImageNet ILSVRC 2012(I) and Pascal VOC 2012 (P) are used for
evaluation.

Office-Home with 15,500 images and 65 categories is a larger dataset than office-31. We use four
domains of Artistic (A), Clip Art (C), Product (P) and Real-World (R) for evaluation.

We follows the standard metric for the experiments. The averaged accuracy over the classes Saito
et al. (2018); Tan et al. (2019) is used to OpenSet1 and OpenSet2, and for other experiments the
classification accuracy is used as the metric.

B ABLATION STUDY

The full tables of ablation study in the manuscript are presented.

Table 7: Ablation study of components in CoBRF.

Hyperplane
estimation h_shift Domain adaptation

A→D A→W D→A D→W W→A W→D Average

pseudo X 73.3 73.6 57.3 81.4 53.7 84.4 70.6
mid_pseudo X 74.4 75.0 58.3 81.2 57.2 86.8 72.1
pseudo O 76.4 78.1 58.1 82.8 61.0 89.4 74.3
mid_pseudo O 76.1 77.3 59.0 83.4 62.0 89.6 74.6

Table 8: The effect of λ in CoBRF. The experiment is performed on Office-31 with ResNet-50.

λ
Domain adaptation

A→D A→W D→A D→W W→A W→D Average

0 76.8 75.3 51.7 75.2 55.1 87.7 70.3
0.001 76.2 76.3 51.7 78.3 57.3 88.4 71.4
0.01 75.9 76.5 52.9 80.8 58.7 88.9 72.3
0.1 77.4 76.9 57.6 81.7 61.0 89.2 74.0
0.5 76.1 77.3 59.0 83.4 62.0 89.6 74.6
1.0 76.0 77.3 59.9 83.6 60.9 89.2 74.5

12



Under review as a conference paper at ICLR 2020

C NOISY DATA

The full tables of noisy protocol in the manuscript are presented.

Table 9: Performance comparison of the 60 and 80% Noisy protocol on Office-31 with ResNet-50.

Method
A→D A→W D→A D→W W→A W→D Average

60 80 60 80 60 80 60 80 60 80 60 80 60 80

DAN 44.8 23.2 39.5 22.1 17.5 12.0 49.4 22.8 20.4 13.5 53.9 25.2 37.6 19.8
JAN 62.2 29.7 61.6 32.6 28.4 17.4 56.3 26.1 28.0 14.1 55.4 27.8 48.7 24.6

CDAN+E 56.7 24.4 59.0 26.0 34.4 13.3 55.1 24.0 35.8 17.4 57.6 27.3 49.8 22.0

CoBRF 78.0 68.6 79.5 68.5 49.7 28.4 58.4 29.3 58.2 35.7 69.8 35.5 65.6 44.3

Table 10: Performance comparison of the 60 and 80% Noisy protocol on ImageCLEF-DA with
ResNet-50.

Method
C→I C→P I→C I→P P→C P→I Average

60 80 60 80 60 80 60 80 60 80 60 80 60 80

DAN 33.3 19.2 25.8 15.6 42.9 29.1 35.1 17.3 40.2 16.3 40.8 17.9 36.3 19.2
JAN 39.6 18.9 33.6 15.3 49.2 28.9 38.6 17.3 50.8 19.7 42.5 18.1 42.4 19.7

CDAN+E 57.2 24.2 41.8 19.0 68.1 34.0 52.3 23.1 52.9 26.3 55.0 23.7 54.5 25.0

CoBRF 72.4 34.4 60.1 30.2 73.8 39.8 61.3 31.7 71.4 31.0 67.8 28.7 67.8 32.6

Table 11: Performance comparison of the 60 and 80% Noisy protocol on Office-Home with ResNet-
50.

Method
Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Average

60 80 60 80 60 80 60 80 60 80 60 80 60 80 60 80 60 80 60 80 60 80 60 80 60 80

DAN 11.0 5.2 36.2 18.6 43.3 22.8 28.4 18.2 42.9 22.9 41.5 23.5 29.8 15.9 21.3 13.6 23.6 13.1 38.4 23.6 15.2 9.6 54.3 33.1 32.1 18.4

JAN 21.9 10.6 40.6 21.2 44.5 22.3 31.6 18.1 43.1 24.7 43.2 25.4 31.0 17.4 23.3 14.8 49.3 29.7 16.8 24.4 26.1 16.0 56.1 34.2 35.6 21.6

CDAN+E 22.2 9.8 41.7 20.7 49.4 13.9 24.9 11.4 38.5 17.1 37.9 16.6 23.9 10.8 18.6 8.8 40.5 17.4 33.3 16.2 23.8 10.3 52.6 27.6 34.0 15.1

CoBRF 38.1 26.2 56.3 38.9 64.6 44.9 51.5 41.2 59.1 47.2 61.0 50.2 53.1 46.9 43.1 36.8 71.3 63.2 62.7 57.0 46.7 40.5 73.7 65.2 56.8 46.5

D SMALL TRAINING DATA

The full tables of small training data protocol in the manuscript are presented.

Table 12: Performance comparison of the 10% Small training sample protocol on Office-31 with
ResNet-50.

Method A→D A→W D→A D→W W→A W→D Average

DAN 69.7 69.8 48.7 74.2 53.7 83.9 66.8
JAN 74.7 76.7 49.8 76.6 55.4 85.2 69.7

CDAN+E 77.8 76.6 42.3 75.0 49.5 83.6 67.5

CoBRF 76.1 77.3 59.0 83.4 62.0 89.6 74.6
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Table 13: Performance comparison of the 10% Small training sample protocol on ImageCLEF-DA
with ResNet-50.

Method C→I C→P I→C I→P P→C P→I Average

DAN 79.4 65.9 86.0 67.5 74.3 73.2 74.4
JAN 81.3 71.0 89.5 69.0 73.8 75.3 76.6

CDAN+E 87.8 70.8 91.3 71.3 79.8 76.9 79.6

CoBRF 83.2 72.2 90.1 74.1 80.7 78.6 79.8

Table 14: Performance comparison of the 10% Small training sample protocol on Office-Home with
ResNet-50.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Average

DAN 22.3 38.5 47.9 35.3 44.9 46.4 44.3 32.5 62.8 54.1 33.9 63.2 43.8
JAN 22.3 38.2 49.3 38.4 48.3 49.0 46.0 32.3 65.1 55.4 32.1 66.8 45.3

CDAN+E 21.5 35.1 46.2 36.0 45.3 46.2 45.0 33.4 63.0 56.6 33.2 69.7 44.2

CoBRF 32.2 49.3 55.3 45.0 53.5 55.3 52.4 39.8 67.9 59.0 42.6 69.8 51.8
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