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ABSTRACT

The recent success of neural networks for solving difficult decision tasks has
incentivized incorporating smart decision making “at the edge.” However, this
work has traditionally focused on neural network inference, rather than training, due
to memory and compute limitations, especially in emerging non-volatile memory
systems, where writes are energetically costly and reduce lifespan. Yet, the ability
to train at the edge is becoming increasingly important as it enables applications
such as real-time adaptability to device drift and environmental variation, user
customization, and federated learning across devices. In this work, we address four
key challenges for training on edge devices with non-volatile memory: low weight
update density, weight quantization, low auxiliary memory, and online learning.
We present a low-rank training scheme that addresses these four challenges while
maintaining computational efficiency. We then demonstrate the technique on a
representative convolutional neural network across several adaptation problems,
where it out-performs standard SGD both in accuracy and in number of weight
updates.

1 INTRODUCTION

Deep neural networks have shown remarkable performance on a variety of challenging inference
tasks. As the energy efficiency of deep-learning inference accelerators improves, some models are
now being deployed directly to edge devices to take advantage of increased privacy of user data,
reduced network bandwidth, and lower inference latency. Despite edge deployment, training happens
predominately in the cloud. This limits some of the privacy advantages of running models on-device
and results in static models that do not adapt to evolving data distributions in the field.

Efforts aimed at on-device training are solving some of these challenges. Federated learning aims to
keep data on-device by training models in a distributed fashion (Konecný et al., 2016). On-device
model customization has been achieved by techniques such as weight-imprinting (Qi et al., 2018), or
by retraining limited sets of layers. And on-chip training has also been demonstrated for handling
analog hardware imperfections in 6-transistor SRAM cells (Zhang et al., 2017; Gonugondla et al.,
2018). Despite this progress with small models, on-chip training of larger models is bottlenecked by
limited memory size and compute horsepower available in processors designed for edge use.

Emerging non-volatile (NVM) memories such as resistive random access memory (RRAM) have
shown great promise as energy and area-efficient inference engines (Yu, 2018). However, on-chip
training requires a large number of writes to the memory, and RRAM writes are significantly more
energy intensive compared to reads. Additionally, RRAM endurance is on the order of 106 writes
(Grossi et al., 2019), shortening the lifetime of a device as the memory undergoes writes for on-chip
training.

In this paper, we present an online training scheme amenable to NVM memories to enable next
generation smart edge devices. Our contributions are (1) an algorithm called Streaming Kronecker
Sum Approximation (SKS) which addresses the four key challenges of low weight update density,
weight quantization, low auxiliary memory, and online learning; (2) two techniques “gradient max-
norm” and “streaming batch norm” to help training specifically in the online setting; (3) a suite of
adaptation experiments to demonstrate the advantages of our approach.
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2 RELATED WORK

Resistive hardware arrays for NN acceleration. There is currently great interest in accelerating
machine-learning with resistive arrays due to prospects of fundamentally higher density and energy
efficiency over digital architectures. Small arrays of analog-programmable purely resistive (1R)
crossbars (Prezioso et al., 2015), and 1-transistor 1-resistor (1T-1R) cells (Yao et al., 2017; Li et al.,
2018) have been demonstrated for single and dual-layer perceptron algorithms. In these works, high
cell-to-cell and chip-to-chip variation is overcome by including the chip inside the training loop.
Though most work incorporates off-chip hardware and software for chip-in-the-loop training, a 54 x
108 resistive crossbar array was recently combined with on-chip ADCs and DACs and an OpenRISC
processor (Cai et al., 2019), marking a move towards completely on-chip training. The largest of the
analog arrays is 128 x 64, however much larger resistive arrays with quantized 2-level weight storage
have demonstrated increasingly complex tasks, including a 16 Mb array for an MNIST task (Yu et al.,
2016), and a 1 Mb array for a CIFAR-10 task (Xue et al., 2019).

Efficient training for resistive arrays. Several works have aimed at improving the efficiency of
training algorithms on resistive arrays. Weight updates are the most challenging to accelerate, as
forward and backward propagation can be run fully-in-parallel on the array. Stochastic weight update
schemes (Gokmen & Vlasov, 2016) allow programming of all cells in a crossbar at once, as opposed
to row-wise or column-wise updating. Online Manhattan rule updating (Zamanidoost et al., 2015)
can be similarly used to update all of the weights at once. Several works have proposed new memory
structures to improve the efficiency of training (Soudry et al., 2015; Ambrogio et al., 2018). The
number of writes has also been quantified in the context of chip-in-the-loop training of a binary
network for MNIST (Yu et al., 2016).

Distributed gradient descent. Distributed training in the data center is another problem that suffers
from expensive weight updates. In this scenario, the model is replicated onto many compute nodes
and in each training iteration, the mini-batch is split across the nodes to compute gradients. The
distributed gradients are then accumulated on a central node which computes the updated weights
and broadcasts them to all devices. These systems can be limited by communication bandwidth,
and compressed gradient techniques (Aji & Heafield, 2017) have been developed to address this. In
Lin et al. (2017), the gradients are accumulated over multiple training iterations on each compute
node and only gradients which exceed a threshold are communicated back to the central node. In the
context of on-chip training with weights in NVM, this method helps to reduce the number of weight
updates. However, the gradient accumulator requires as much memory as the weights themselves
which negates the density benefits of NVM.

3 CHALLENGES ADDRESSED

Neural networks are typically trained using a variant of stochastic gradient descent (SGD) on large
hardware such as a GPUs or FPGAs. When trying to adapt these training techniques for smaller
devices with NVM memory, we run into a number of challenges which are described below.

Low weight update density. In NVM, updating weights at every sample is extremely costly in energy
and endurance. For example, the 18 KB RRAM macro described in (Wu et al., 2019) consumes
10.9 pJ/b for writes versus only 1.76 pJ/b for reads. Additionally, as previously described, some
technologies suffer from poor endurance, limiting the number of writes to less than 106. For both
reasons, we want to minimize the number of writes to NVM.

Weight quantization. To leverage emerging NVM for on-chip weight storage, quantization of
weights is necessary. Low bitwidths may be important for mixed-signal applications, while digital
realizations of NVM may allow for higher bitwidths.

Low auxiliary memory. NVM is the most dense form of memory storage. For example, in 40nm
technology, RRAM 1T-1R bitcells @ 0.085 um2 (Chou et al., 2018) are 2.8x smaller than standard
6-transistor SRAM bitcells @ 0.242 um2 (TSMC, 2019). Therefore, NVM should be used to store
the memory-intensive weights. A corollary of this is that no other on-chip memory should come close
to the size of the on-chip NVM. More explicitly, if our b−bit NVM stores a weight matrix of size
n×m, then we would like to use at most r(n+m)b auxiliary non-NVM memory where r is a small
constant.
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Online learning. Devices should process data in real time, making small- or single-size batches
important (Mahdavinejad et al., 2018). Single size batches also decrease the memory requirements.
It is unclear whether SGD with batch size of 1 is compatible with efficient learning (Sahoo et al.,
2017), and especially when considering quantization (Li et al., 2017). SGD minibatches typically
have batch sizes in excess of 32, which results in at least 32× higher activation storage costs.

In the next section, we address these four challenges in separate steps, leading to the SKS algorithm.

4 OPTIMAL KRONECKER SUM APPROXIMATION

4.1 MOTIVATION

Consider a linear regression task of finding a matrix W opt ∈ Rn×m that minimizes the L2 loss
L = 1

2 ||z − t||
2
2 = 1

2 ||W
opta − t||22, where a, z, t are input features, predicted outputs, and true

outputs, respectively. W opt can be found from some initial W (0) through gradient descent with
gradients∇WL = (Wa− t) · a>. For convenience and to tie it to the notation for the full neural
network case, we will represent the errors as dz = Wa− t. Then, minibatch SGD with learning
rate α and batch size B gives us:

W (j) = W (j−1) − α
(j+1)B∑
i=jB+1

(dz(i) ⊗ a(i)) (1)

where dz(i) ⊗ a(i) represents an outer product dz(i) · a(i)>, dz(i) = W (bi/Bc)a(i) − t(i) and the
optimalW opt = lim

j→∞
W (j).

This formulation requires large amounts of auxiliary memory. Either B(n + m)b bits of memory
are required to store dz(i) and a(i) or partial sums can be taken that require a scratch space of nmb
bits of memory. What we need is a potentially lossy way to capture the important information in B
samples using only r(n+m)b bits of auxiliary memory where r � B.

In Sections 4.2, 4.3, 4.4, we build up to a method that allows for this computation. In Section 4.5
we analyze how it solves all of the challenges from Section 3. Finally, in Section 4.6 we present an
efficient algorithm for implementing the technique on-chip.

4.2 TOWARDS A LOW-MEMORY KRONECKER SUM APPROXIMATION

The critical term we need to compute is the Kronecker sum from (1):

(j+1)B∑
i=jB+1

(dz(i) ⊗ a(i)) (2)

One way to approximate this computation with r(n + m)b bits, where r � B, is to maintain
approximate prefix sums of the computation in a rank-r representation L ·R> where L ∈ Rn×r and
R ∈ Rm×r. Explicitly, we iteratively update L,R as:

L̃, R̃ := optLR(L ·R> + dz(i) ⊗ a(i)) (3)

for i = jB to (j + 1)B where optLR minimizes reconstruction error between L̃ · R̃> and L ·R> +

dz(i) ⊗ a(i) while maintaining the rank-r constraint. This can be accomplished by selecting the top
r components of a singular value decomposition (SVD) of L ·R> + dz(i) ⊗ a(i).

Unfortunately, this solution introduces new roadblocks. First, it requires computingL ·R>+dz(i)⊗
a(i) explicitly, which already uses nmb bits of memory. Second, an SVD on an n ×m matrix is
computationally expensive, taking O(n m ·min(n,m)) time. A more subtle issue is that selecting
the top-r components of an SVD produces a biased estimate of the actual matrix of interest.
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4.3 UNBIASED ONLINE RECURRENT OPTIMIZATION (UORO)

One potential solution is to use the UORO technique (Tallec & Ollivier, 2017). From Proposition 1,
they find a rank-1 approximation Ã of a matrixA =

∑k
i=1 vi ⊗wi as:

Ã =

(
k∑

i=1

ρiνivi

)
⊗

(
k∑

i=1

νiwi

ρi

)
(4)

where ν is a vector of independent random signs and ρ is a vector of scales that can be used to
reduce the variance of Ã. From (4), it is clear that we can get by with (n + m)b bits of memory
by maintaining two matrices L ∈ Rn×1,R ∈ Rm×1 which we update with ρiνivi or νiwi/ρi,
respectively, for each sample vi ⊗wi that comes in. This solution solves all of the roadblocks from
Section 4.2, however it now suffers from high variance and limited rank, r = 1.

4.4 OPTIMAL KRONECKER SUM APPROXIMATION (OK)

To solve the problems introduced by UORO, we instead employ the “OK” algorithm (Benzing et al.,
2019), which is shown to produce the minimum variance rank-r unbiased estimate for a Kronecker
sum of q terms. We specifically focus on the case where q = r + 1 since repeated application of this
method allows us to maintain a rank-r approximation regardless of how many training samples we
see.

The OK algorithm can be understood in two key steps: first, an efficient method of computing the
SVD of a Kronecker sum; second, a method of splitting the singular value matrix Σ into two rank-r
matrices whose outer product is a minimum-variance, unbiased estimate of Σ. Rigorous details can
be found in their paper, however we include a high-level explanation in Sections 4.4.1 and 4.4.2 to aid
discussions in following sections. Note that our variable notation differs from Benzing et al. (2019).

4.4.1 EFFICIENT SVD OF KRONECKER SUMS

Consider a Kronecker sum of q = r + 1 terms, which we can rewrite as:

q∑
i=1

(dz(i) ⊗ a(i)) = LR> (5)

where the ith column ofL ∈ Rn×q is dz(i) and the ith column ofR ∈ Rm×q is a(i). InO((n+m)q2)
time, we can QR-factorize L = QLRL and R = QRRR where QL ∈ Rn×q,QR ∈ Rm×q are
orthogonal so thatLR> = QL(RLR

>
R)Q>R (Björck, 1967). LetC = RLR

>
R ∈ Rq×q . Then we can

find the SVD of C = UCΣV >C in O(q3) time (Cline & Dhillon, 2006), making it computationally
feasible on small devices. Now we have:

LR> = QL(UCΣV >C )Q>R = (QLUC)Σ(QRVC)> (6)

which gives us the SVD of LR> sinceQLUC andQRVC are orthogonal and Σ is diagonal. Overall,
this SVD computation has a time complexity of O((n + m + q)q2) and a space complexity of
O((n+m)q).

4.4.2 MINIMUM VARIANCE, UNBIASED ESTIMATE OF Σ

In Benzing et al. (2019), it is shown that the problem of finding a rank-r minimum variance unbiased
estimator of LR> can be reduced to the problem of finding a rank-r minimum variance unbiased
estimator of Σ and plugging it in to (6).

Further, it is shown that such an optimal approximator for Σ = diag(σ1, σ2, . . . , σq), where σ1 ≥
σ2 ≥ · · · ≥ σq will involve keeping the largest singular values and mixing the smaller singular values
σm, . . . , σq using a technique inspired by the random signs of UORO. Let:
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m = min i s.t. (q − i)σi ≤
q∑

j=i

σj s1 =

q∑
i=m

σi k = q −m

x0 =

(√
1− σmk

s1
, . . . ,

√
1− σqk

s1

)>
s ∈ {−1, 1}(k+1)×1

where s are uniform random signs. Note that ||x0||2 = 1. LetX ∈ R(k+1)×(k) be orthogonal such
that its left nullspace is the span of x0. ThenX ·X> = I − x0 · x>0 . Now, let:

Xs = (s�X:,1, . . . , s�X:,k) Z =

√
s1
k
·Xs

Σ̃L = Σ̃R = diag
(√
σ1, . . . ,

√
σm−1,Z

)
(7)

where � is an element-wise product. Then Σ̃L · Σ̃>R = Σ̃ is a minimum variance, unbiased rank-r
approximation of Σ. Plugging Σ̃ into (6),

LR> = (QLUC)Σ(QRVC)> ≈ (QLUC)Σ̃(QRVC)> = (QLUCΣ̃L)(QRVCΣ̃R)> (8)

Thus, L̃ = QLUCΣ̃L ∈ Rn×r and R̃ = QRVCΣ̃R ∈ Rm×r gives us a minimum variance,
unbiased, rank-r approximation L̃ · R̃>.

4.5 BENEFITS OF METHOD

The key benefit of the OK algorithm is that it is decouples the quantization bitwidth, low auxiliary
memory, and sparse update requirements.

Previously, a small batch size could be employed to satisfy the low auxiliary memory constraint at
the expense of having dense, low-magnitude weight updates. Large bitwidth weights would also
be required, since weight updates must be proportionally smaller leading to a larger dynamic range
(Goyal et al., 2017). On the other hand, a large effective batch size could be employed to reduce the
density of updates per training sample and the weight bitwidths at the expense of requiring more
expensive high-endurance memory for storing the a(i),dz(i).

With the OK algorithm, the batch size (B), can be made arbitrarily large without a increasing memory
requirements. It is also inherently online, since each incoming sample is incorporated into a rank-r
running approximation of the batch. Therefore, it addresses the challenges discussed in Section 3.

There are two new costs introduced by increasing the effective batch size, however. First, the network
will be slower to respond to changes in the training data distribution. One way to address this is
to update a small subset of the learnable parameters — the 1-dimensional tensor weights such as
biases — at each training sample, since they can be made high bitwidth and high-endurance without
incurring a heavy memory penalty. Second, the variance of our batch approximation grows with the
number of samples. We address this issue by showing empirically in Section 6 that relatively large B
of hundreds, or even thousands for convolutions, still permit training.

4.6 STREAMING KRONECKER SUM APPROXIMATION (SKS)

Although the standalone OK algorithm presented by Benzing et al. (2019) has good asymptotic com-
putational complexity, there are some useful optimizations that can improve performance even further.
In this section we present these optimizations, and we refer readers to the explicit implementation
called Streaming Kronecker Sum Approximation (SKS) in Algorithm 1 of Appendix A.

4.6.1 MAINTAIN ORTHOGONAL QL,QR

The main optimization is a method of avoiding recomputing the QR factorization of L and R at
every step. Instead, we keep track of orthogonal matrices QL,QR, and weightings cx such that
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L̃ = QL · diag(
√
cx)[:r] and R̃ = QR · diag(

√
cx)[:r]. Upon receiving a new sample, a single inner

loop of the numerically-stable modified Gram-Schmidt (MGS) algorithm (Björck, 1967) can be used
to update QL and QR. The orthogonal basis coefficients cL = Q>L · dz

(i) and cR = Q>R · a(i)

computed during MGS can be used to find the new value of C = cL · c>R + diag(cx).

After computing Σ̃L = Σ̃R in (7), we can orthogonalize these matrices into Σ̃L = Σ̃R = QxRx.
Then from (8), we have L̃R̃> = (QLUCQx)(RxR

>
x )(QRVCQx)>. With this formulation, we can

maintain orthogonality inQL,QR by setting:

QL ← QLUCQx QR ← QRVCQx cx ← diag(RxR
>
x )

These matrix multiplies requireO((n+m)q2) multiplications, so this optimization does not improve
asymptotic complexity bounds. This optimization may nonetheless be practically significant since
matrix multiplies are easy to parallelize and would typically not be the bottleneck of the computation
compared to Gram-Schmidt.

In the next section we discuss how to orthogonalize Σ̃L efficiently and why (RxR
>
x ) is diagonal.

4.6.2 ORTHOGONALIZATION OF Σ̃L

Orthogonalization of Σ̃L is relatively straightforward. From (7), the columns of Σ̃L are orthogonal
since Z is orthogonal. However, they do not have unit norm. We can therefore pull out the norm into
a separate diagonal matrixRx with diagonal elements

√
cx:

Qx =

[
Im−1 0

0 Xs

]
√
cx = (

√
σ1, . . . ,

√
σm−1,

√
s1/k︸ ︷︷ ︸

q−m+1 times

)

4.6.3 FINDING ORTHONORMAL BASIS X

We generatedX by finding an orthonormal basis that was orthogonal to a vector x0 so that we could
haveX ·X> = I − x0 · x>0 . An efficient method of producing this basis is through Householder
matrices (x0,X) = I − 2 v ·v>/||v||2 where v = x0−e(1) and (x0,X) is a k+ 1× k+ 1 matrix
with first column x0 and remaining columnsX (Householder, 1958; user1551, 2013).

4.6.4 EFFICIENCY COMPARISONS TO STANDARD APPROACH

The OK/SKS methods require O((n + m + q)q2) operations per sample and O(nmq) operations
after collecting B samples, giving an amortized cost of O((n+m+ q)q2 + nmq/B) operations per
sample. Meanwhile, a standard approach expands the Kronecker sum at each sample, costing O(nm)
operations per sample. If q � B,n,m then the low rank method is both memory and computationally
simpler than standard minibatch SGD.

On generic computational hardware with heavy parallelization, the asymptotic benefits of SKS are
obscured by the speed of GEMM methods. However, on smaller edge devices where absolute number
of FLOPs is important for energy, the computational benefits may be more apparent. It is worth
noting, however, that computational efficiency of SKS is secondary to the goal of memory efficiency.

5 IMPLEMENTATION DETAILS

Here, we briefly summarize the remaining pieces necessary to train a neural network using SKS.

Applicability to Neural Networks. In Section 4.1, we motivated SKS with a linear regression
example. However, the technique can be generalized to gradients of weight matrices in most neural
networks. For example, Benzing et al. (2019) applies the technique to RNNs. In CNNs, there are
two important layer types: fully-connected layers and convolutional layers. Application of SKS to
fully-connected layers is straightforward, since it is nearly identical to the motivating linear regression
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example. For convolution layers, convolutions can be converted into matrix multiplies through the
im2col operation, reducing the problem to just another linear regression, in this case on a per-pixel
rather than per-sample basis. See Appendices B.1 and B.2 for further elaboration.

Quantization. The network is quantized in both the forward and backward directions with uniform
power-of-2 quantization, where the clipping ranges are fixed at the start of training1. Weights are
quantized to 8 bits between -1 and 1, biases to 16 bits between -8 and 8, activations to 8 bits between
0 and 2, and gradients to 8 bits between -1 and 1. Both weightsW and the weight updates ∆W are
quantized so that weights cannot be used for accumulation beyond the fixed quantization dynamic
range. This is in contrast to the much simpler problem of standard quantization-in-the-loop training,
where weights accumulate in floating point, but are quantized during forward inference. See Appendix
C for more explicit details on quantization.

Gradient Max-Norming. State-of-the-art methods in training, such as Adam (Kingma & Ba, 2014),
often utilize auxiliary memory per parameter to normalize the gradients. Unfortunately, we lack
the memory budget to support this many additional variables, especially if they must be updated
every sample. SKS could potentially approximate Adam. SKS on a2, dz2 allows for a low-rank
approximation of the variance of the gradients assuming a, dz are zero-mean. This is unlikely to work
well in practice because of numerical stability where, e.g., estimated variances might be negative.
Instead, we propose dividing each gradient tensor by the max absolute-value of elements in the
gradient tensor. This stabilizes the dynamic range of gradients across samples. See Appendix D for
more details on gradient max-norming. In the experiments, we refer to this method as “max-norm”
and lack of this method as “no-norm.”

Streaming Batch Normalization. Batch normalization (Ioffe & Szegedy, 2015) is a powerful
technique for improving training performance which has been suggested to work by smoothing
the loss landscape (Santurkar et al., 2018). We hypothesize that this may be especially helpful
when parameters are quantized as in our case. However, in the online setting, we receive samples
one-at-a-time rather than in batches. We therefore propose a streaming batch norm that uses moving
average statistics rather than batch statistics as described in detail in Appendix E.

6 EXPERIMENTS

To test the effectiveness of SKS, experiments are performed on a representative CNN comprising four
3× 3 convolution layers and two fully-connected layers. We generate “offline” and “online” datasets
based on MNIST as described in Appendix F, including one in which the statistical distribution shifts
every 10k images. We then optimize an online SGD and SKS model for fair comparison, as described
in Appendix G. To see the importance of different training techniques, we run several ablations in
Appendix H. Finally, we compare these different training schemes in different environments, meant
to model real life. In these hypothetical scenarios, a model is first trained on the offline training set,
then is deployed to a number of devices at the edge, where they must make supervised predictions —
they make a prediction, then are told what the correct prediction would have been.

We present results on four hypothetical scenarios. First, a control case where both exter-
nal/environment and internal/NVM drift statistics are exactly the same as during offline training.
Second, a case where the input image statistical distribution shifts every 10k samples, selecting
from augmentations such as spatial transforms and background gradients, as described in Section
F. Third and fourth are cases where the internal NVM drifts from the programmed values, roughly
modeling NVM memory degredation. In the third case, Gaussian noise is applied to the weights
as if each weight was a single multi-level memory cell whose analog value drifted in a Brownian
way. In the fourth case, random bit flips are applied as if each weight was represented by b memory
cells, which through random drift may flip from a 0 to 1 or vice versa (see Appendix F for additional
details). For each hypothetical scenario, we plot five different training schemes: pure quantized
inference (no training), bias-only training, standard SGD training, SKS training, and SKS training
with max-normed gradients. In SGD training and for training biases, parameters are updated at every
step in an online fashion. These are seen as different colored curves in Figure 1.

1Interesting future work might look into how to change these clipping ranges, but that is beyond the scope of
our research.
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Figure 1: Adaptation of various training schemes over four different training environments (a) to
(d). In each training environment, the top plot shows the exponential moving averages (0.999) of the
per-sample online accuracy of the five training schemes, while the bottom plot shows the maximum
number of updates applied to any given convolution or fully-connected kernel memory cell. For the
distribution shifts in (b), the enabled augmentations at each contiguous 10k samples is shown (CD =
class distribution, ST = spatial transforms, BG = background gradients, WN = white noise).

Inference does best in the control case, but does poorly in adaptation experiments. SGD does not
improve significantly on bias-only training, possibly because SGD can not accumulate gradients
less than a weight LSB. SKS, on the other hand, shows significant improvement, especially after
several thousand samples in the weight drift cases. Additionally, SKS shows an approximately
three-order-of-magnitude improvement compared to SGD in the worst case maximum number of
weight updates. Much of this reduction is due to the convolutions, where weight updates are applied
at each pixel. However, reduction in fully-connected writes is still important because of the potential
energy savings. SKS/max-norm performs best in terms of accuracy across all environments and has
similar weight update cost to SKS/no-norm. Finally, we note that weights can adapt rapidly as shown
in the distribution shifts experiment.

7 CONCLUSION

In this work, we have demonstrated the potential for SKS to solve the major challenges facing
online training on NVM-based edge devices: low weight update density, weight quantization,
low auxiliary memory, and online learning. SKS is a computationally-efficient, memory-light
algorithm capable of significantly reducing write operations to memory during training. Additionally,
it may allow for training under severe weight quantization constraints as rudimentary gradient
accumulations are handled by the L,R matrices, which can have high bitwidths, rather than the
weight tensors themselves. Across a variety of online adaptation problems, SKS is shown to
have performance matching or exceeding SGD or inference-only while using a small fraction of
the number of updates of SGD. Finally, we suspect that these techniques could be applied to a
broader range of problems. Auxiliary memory minimization for our application may be analogous
to communication minimization in training strategies such as federated learning, where gradient
compression is important. Our methods may also offer another advantage here - security from the
compression of hundreds of samples into a low-rank update. There are many promising avenues for
future research in this area.
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A SKS ALGORITHM

Algorithm 1 Streaming Kronecker Sum Approximation

State: QL ∈ Rn×q;QR ∈ Rm×q; cx ∈ Rq×1

Input: dz(i) ∈ Rn×1; a(i) ∈ Rm×1 for i ∈ [1, B]
for i = 1 . . . B do
{Modified Gram-Schmidt.}
cL, cR ← 0q×1

for j = 1 . . . r do
cL,j ← QL,j · dz(i); dz(i) ← dz(i) − cL,j ·QL,j

cR,j ← QR,j · a(i); a(i) ← a(i) − cL,j ·QL,j

end for
cL,q ← ||dz(i)||; QL,q ← dz(i)/cL,q

cR,q ← ||a(i)||; QR,q ← a(i)/cR,q

{Generate C and find its SVD.}
C ← cL · c>R + diag(cx)
UC · diag(σ) · V >C ← SVD(C)
{Minimum-variance unbiased estimator for Σ.}
m← min j s.t. (q − j)σj ≤

∑q
`=j σ`

s1 ←
q∑

i=m

σi, k ← q −m

v ←
√

1− k/s1 · σ[m:] − e(1)

s← {−1, 1}(k+1)×1 {Ind. uniform random signs.}
Xs ←

(
I + (s� v) · (v/v1)>

)
[2:]
{Householder.}

{QR-factorization of Σ̃L.}

Qx ←
[
I 0
0 Xs

]
∈ Rq×r

cx ← (σ1, . . . , σm−1, s1/k, . . . , s1/k︸ ︷︷ ︸
q−m+1 times

)

{Update the first r columns ofQL,QR.}
QL[:r] ← QL ·UC ·Qx

QR[:r] ← QR · VC ·Qx

end for
{Compute final L̃, R̃ where∇WL ≈ L̃ · R̃>.}
L̃←

(
QL · diag(

√
cx)
)
[:r]

R̃←
(
QR · diag(

√
cx)
)
[:r]

B KRONECKER SUMS IN NEURAL NETWORK LAYERS

B.1 DENSE LAYER

A dense or fully-connected layer transforms an input a ∈ Rm×1 to an intermediate z = W · a+ b
to an output y = σ(z) ∈ Rn×1 where σ is a non-linear activation function. Gradients of the loss
function with respect to the weight parameters can be found as:

∇WL = (∇zL)︸ ︷︷ ︸
dz

� (∇W z)︸ ︷︷ ︸
a>

= dz ⊗ a (9)

which is exactly the per-sample Kronecker sum update we saw in linear regression. Thus, at every
training sample, we can add (dz(i) ⊗ a(i)) to our low rank estimate with SKS.

12



Under review as a conference paper at ICLR 2020

B.2 CONVOLUTIONAL LAYER

A convolutional layer transforms an input feature map A ∈ Rhin×win×cin to an intermediate feature
map Z = Wkern ∗ A + b ∈ Rhout×wout×cout through a 2D convolution ∗ with weight kernel
Wkern ∈ Rcout×kh×kw×cin . Then it computes an output feature map y = σ(z) where σ is a
non-linear activation function.

Convolutions can be interpreted as matrix multiplications through the im2col operation which
converts the input feature map A into a matrixAcol ∈ R(houtwout)×(khkwcin) where the ith row is a
flattened version of the sub-tensor of a which is dotted with Wkern to produce the ith pixel of the
output feature map (Ren & Xu, 2015). We can multiply Acol by a flattened version of the kernel,
W ∈ Rcout×(khhwcin) to perform the Wkern ∗ A convolution operation with a matrix multiplication.
Under the matrix multiplication interpretation, weight gradients can be represented as:

∇WL = (∇Zcol
L)︸ ︷︷ ︸

dZ>
col

� (∇WZ)︸ ︷︷ ︸
Acol

=

houtwout∑
i=1

dZ>col,i ⊗A>col,i (10)

which is the same as houtwout Kronecker sum updates. Thus, at every output pixel j of every training
sample i, we can add (dZ

(i)>
col,j ⊗A

(i)>
col,j) to our low rank estimate with SKS.

Note that while we already save an impressive factor of B/q in memory when computing gradients
for the dense layer, we save a much larger factor of Bhoutwout/q in memory when computing
gradients for the convolution layers, making the low rank training technique even more crucial here.

However, some care must be taken when considering activation memory for convolutions. For
compute-constrained edge devices, image dimensions may be small and result in minimal intermediate
feature map memory requirements. However, if image dimensions grow substantially, activation
memory could dominate compared to weight storage. Clever dataflow strategies may provide a way
to reduce intermediate activation storage even when performing backpropagation2.

C HARDWARE QUANTIZATION MODEL

In a real device, operations are expected to be performed in fixed point arithmetic. Therefore, all of
our training experiments are conducted with quantization in the loop. Our model for quantization is
shown in Figure 2. The green arrows describe the forward computation. Ignoring quantization for a
moment, we would have a` = ReLU

(
α`W ` ∗ a`−1 + b`

)
, where ∗ can represent either a convolution

or a matrix multiply depending on the layer type and α` is the closest power-of-2 to He initialization
(He et al., 2015). For quantization, we rely on four basic quantizers: Qw,Qb,Qa,Qg, which describe
weight quantization, bias and intermediate accumulator quantization, activation quantization, and
gradient quantization, respectively. All quantizers use fixed clipping ranges as depicted and quantize
uniformly within those ranges to the specified bitwidths.

In the backward pass, follow the orange arrows from δ`. Backpropagation follows standard back-
propagation rules including using the straight-through estimator (Bengio et al., 2013) for quantizer
gradients. However, because we want to perform training on edge devices, these gradients must
themselves be quantized. The first place this happens is after passing backward through the ReLU
derivitive. The other two places are before feeding back into the network parameters W `, b`, so that
W `, b` cannot be used to accumulate values smaller than their LSB. Finally, instead of deriving ∆W `

from a backward pass through the ∗ operator, the SKS method is used.

SKS collects a`−1, dz` for many samples before computing the approximate ∆W̃ `. It accumulates
information in two low rank matrices L,R which are themselves quantized to 16 bits with clipping
ranges determined dynamically by the max absolute value of elements in each matrix. While SKS

2For example, one could compute just a sliding window of rows of every feature map, discarding earlier
rows as later rows are computed, resulting in a square-root reduction of activation memory. To incorporate
backpropagation, compute the forward pass once fully, then compute the forward pass again, as well as the
backward pass using the sliding window approach in both directions.
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accumulates for B samples, leading to a factor of B reduction in the rate of updates to W `, b` is
updated at every sample. This is feasible in hardware because b` is small enough to be stored in more
expensive forms of memory that have superior endurance and write power performance.

Because of the coarse weight LSB size, weight gradients may be consistently quantized to 0, prevent-
ing them from accumulating. To combat this, we only apply an update if a minimum update density
ρmin = 0.01 would be achieved, otherwise we continue accumulating samples in L and R, which
have much higher bitwidths. When an update does finally happen, the “effective batch size” will be a
multiple of B and we increase the learning rate correspondingly. In the literature, a linear scaling
rule is suggested (see Goyal et al. (2017)), however we empirically find square-root scaling works
better (see Appendix G).

𝑊ℓ

𝑏ℓ

𝛼ℓ

𝑎ℓ−1 𝑎ℓ

𝛿ℓ𝛿ℓ−1

SKS

×

×

lr

𝑄𝑤8𝑏
−1 𝑡𝑜 1

𝑄𝑏16𝑏
−8 𝑡𝑜 8

𝑄𝑎8𝑏
0 𝑡𝑜 2

∗ × 𝑄𝑏16𝑏
−8 𝑡𝑜 8 + 𝑄𝑏16𝑏

−8 𝑡𝑜 8

ReLU

𝑄𝑔8𝑏
−1 𝑡𝑜 1

𝑄𝑤8𝑏
−1 𝑡𝑜 1

𝑄𝑏16𝑏
−8 𝑡𝑜 8

Figure 2: Signal flow graph for a forward and backward quantized convolutional or dense layer.

D GRADIENT MAX-NORMING

Figure 3: Maximum magnitude of weight gradients versus training step for standard SGD on a CNN
trained on MNIST.

Figure 3 plots the magnitude of gradients seen in a weight tensor over training steps. One apparent
property of these gradients is that they have a large dynamic range, making them difficult to quantize.
Even when looking at just the spikes, they assume a wide range of magnitudes. One potential
method of dealing with this dynamic range is to scale tensors so that their max absolute element
is 1. Optimizers such as Adam, which normalize by gradient variance, provide a justification for
why this sort of scaling might work well, although they work at a per-element rather than per-tensor
level. We choose max-norming rather than variance-based norming because the former is easier
computational and potentially more ammenable to quantization. However, a problem with the
approach of normalizing tensors independently at each sample is that noise might be magnified during
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regions of quiet as seen in the Figure. What we therefore propose is normalization by the maximum
of both the current max element and a moving average of the max element.

Explicitly, max-norm takes two parameters - a decay factor β = 0.999 and a gradient floor ε = 10−4

and keeps two state variables - the number of evaluations k := 0 and the current maximum moving
average xmv := ε. Then for a given input x, max-norm modifies its internal state and returns xnorm:

k := k + 1

xmax := max(|x|) + ε

xmv := β · xmv + (1− β) · xmax

x̃mv :=
xmv

1− βk

xnorm :=
x

max(xmax, x̃mv)

E STREAMING BATCH NORMALIZATION

Standard batch normalization (Ioffe & Szegedy, 2015) normalizes a tensor x along some axes, then
applies a trainable affine transformation:

y = γ · x− µb√
σ2
b + ε

+ β

where µb, σb are mean and standard deviation statistics of a minibatch and γ, β are trainable affine
transformation parameters.

In our case, we do not have the memory to hold a batch of samples at a time and must compute µb, σb
in an online fashion. To see how this works, suppose we knew the statistics of each sample µi, σi
for i = 1 . . . B in a batch of B samples. For simplicity, assume the ith sample is a vector xi ∈ Rn

containing elements xij . Then:

µb =
1

B

B∑
i=1

µi (11)

σ2
b =

1

B

B∑
i=1

1

n

n∑
j=1

x2ij − µ2
b =

1

B

B∑
i=1

(
σ2
i + µ2

i

)
− µ2

b 6=
1

B

B∑
i=1

σ2
i (12)

In other words, the batch variance is not equal to the average of the sample variances. However, if we
keep track of the sum-of-square values of samples σ2

i + µ2
i , then we can compute σ2

b as in (12). We
keep track of two state variables: µs, sqs which we update as µs := µs+µi and sqs := sqs+σ2

i +µ2
i

for each sample i. After B samples, we divide both state variables by B and apply (11, 12) to get the
desired batch statistics. Unfortunately, in an online setting, all samples prior to the last one in a given
batch will only see statistics generated from a portion of the batch, resulting in noisier estimates of
µb, σb.

In streaming batch norm, we alter the above formula slightly. Notice that in online training, only the
most recently viewed sample is used for training, so there is no reason to weight different samples of
a given batch equally. Therefore we can use an exponential moving average instead of a true average
to track µs, sqs. Specifically, let:

µs := η · µs + (1− η) · µi

sqs := η · sqs + (1− η) · (σ2
i + µ2

i )
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If we set η = 1− 1/B, a weighting of 1/B is seen on the current sample, just as in standard averages
with a batch of size B, but now all samples receive similarly clean batch statistic estimates, not just
the last few samples in a batch.

F ONLINE DATASET

For our experiments, we construct a dataset comprising an offline training, validation, and test set, as
well as an online training set. Specifically, we start with the standard MNIST dataset of LeCun et al.
(1998) and split the 60k training images into partitions of size 9k, 1k, and 50k. Elastic transforms
(Simard et al., 2003; Ernestus, 2016) are used to augment each of these partitions to 50k offline
training samples, 10k offline validation samples, and 100k online training samples, respectively.
Elastic transforms are also applied to the 10k MNIST test images to generate the offline test samples.

From the online training set, we also generate a “distribution shift” dataset by applying unique
additional augmentations to every contiguous 10k samples of the 100k online training samples. Four
types of augmentations are explored. Class distribution clustering biases training samples belonging
to similar classes to have similar indices. For example, the first thousand images may be primarily
“0”s and “3”s, whereas the next thousand might have many “5”s. Spatial transforms rotate, scale, and
shift images by random amounts. Background gradients both scale the contrast of the images and
apply black-white gradients across the image. Finally, white noise is random Gaussian noise added to
each pixel. Figure 4 shows some representative examples of what these augmentations look like. The
augmentations are meant to mimic different external environments an edge devices might need to
adapt to.

(a) Spatial Transforms (b) Background Grads (c) White Noise

Figure 4: Samples of different types of distribution shift augmentations.

In addition to distribution shift for testing adaptation, we also look at internal statistical shift of
weights in two ways - analog and digital. For analog weight drift, we apply independent additive
Gaussian noise to each weight every d = 10 steps with σ = σ0/

√
1M/d where σ0 = 10 and re-clip

the weights between -1 and 1. This can be interpreted as each cell having a Gaussian cumulative error
with σ = σ0 after 1M steps. For digital weight drift, we apply independent binary random flips to
the weight matrix bits every d steps with probability p = p0/(1M/d) where p0 = 10. This can be
interpreted as each cell flipping an average of p0 times over 1M steps. Note that in real life, σ0, p0
depend on a host of issues such as the environmental conditions of the device (temperature, humidity,
etc), as well as the rate of seeing training samples.

G HYPERPARAMETER SELECTION

In order to compare standard SGD with the SKS approach, we sweep the learning rates of both to
optimize accuracy. In Figure 5, we compare accuracies across a range of learning rates for four
different cases: SGD or SKS with or without max-norming gradients. Optimal accuracies are found
when learning rate is around 0.01 for all cases. For most experiments, 8b weights, activations, and
gradients, and 16b biases are used. Experiments similar to those in Section H are used to select some
of the hyperparameters related to the SKS method in particular. In most experiments, rank-4 SKS
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with batch sizes of 10 (for convolution layers) or 100 (for fully-connected layers) are used. Additional
details can be found in the supplemental code.
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Figure 5: The left two heat maps are used to select the base / standard SGD learning rate. The right
two heat maps are used to select the SKS learning rate using the optimal SGD learning rate for bias
training from the previous sweeps. For the SKS sweeps, the learning rate is scaled proportional to
the square-root of the batch size B. This results in an approximately constant optimal learning rate
across batch size, especially for the max-norm case. Accuracy is reported averaged over the last 500
samples from a 10k portion of the online training set, trained from scratch.

H ADDITIONAL STUDIES

In Figure 6, rank and weight bitwidth is swept for SKS with gradient max-norming. As expected,
training accuracy improves with both higher SKS rank and bitwidth. In dense NVM applications,
higher bitwidths may be achievable, allowing for corresponding reductions in the SKS rank and
therefore, reductions in the auxiliary memory requirements.
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Figure 6: Accuracy across a variety of SKS ranks and weight bitwidths, showing the expected trends
of increasing accuracy with rank and bitwidth. Accuracy is calculated by averaging the accuracy
on the last 500 samples from a 2k portion of the training data. For bitwidths of 1 and 2, mid-rise
quantization is used (e.g., 1 bit quantizes values to -0.5 and 0.5 instead of -1 and 0).

In Table 1, biased (zero-variance) and unbiased (low-variance) versions of SKS are compared.
Accuracy improvements are generally seen moving from biased to unbiased SKS although the pattern
differs between the no-norm and max-norm cases. In the no-norm case, a significant improvement is
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seen favoring unbiased SKS for fully-connected layers. In the max-norm case, the choice of biased
or unbiased SKS has only a minor impact on accuracy. It might be expected that as the number
of accumulated samples for a given pseduobatch increases, lower variance would be increasingly
important at the expense of bias. For our network, this implies convolutions, which receive updates at
every pixel of an output feature map, would preferentially have biased SKS, while the fully-connected
layer would preferentially be unbiased. This hypothesis is supported by the no-norm experiments,
but not by the max-norm experiments.

Table 1: Importance of unbiased SVD. Accuracy is calculated from the last 500 samples of 10k
samples trained from scratch. Mean and unbiased standard deviation are calculated from five runs of
different random seeds.

Conv SKS FC SKS Accuracy (no-norm) Accuracy (max-norm)
Biased Biased 79.7%± 1.1% 82.7%± 1.3%
Biased Unbiased 83.0%± 0.9% 82.4%± 1.2%
Unbiased Biased 77.7%± 1.5% 84.6%± 2.0%
Unbiased Unbiased 81.0%± 0.9% 83.6%± 2.5%

In Table 2, several ablations are performed on SKS with max-norm. Most notably, weight training is
found to be extremely important for accuracy as bias-only training shows a ≈ 15− 30% accuracy hit
depending on whether max-norming is used. Streaming batch norm is also found to be quite helpful,
especially in the no-norm case.

Now, we explain the κth ablation. In Section 4.4.1, we found the SVD of a small matrix C
and its singular values σ1, . . . , σq. This allows us to easily find the condition number of C as
κ(C) = σ1/σq. We suspect high condition numbers provide relatively useless update information
akin to noise, especially in the presence of L,R quantization. Therefore, we prefer not to update
L,R on samples whose condition number exceeds threshold κth. We can avoid performing an actual
SVD (saving computation) by noting that C is often nearly diagonal, leading to the approximation
κ(C) ≈ C1,1/Cq,q. Empirically, this rough heuristic works well to reduce computation load while
having minor impact on accuracy. In Table 2, κth = 108 does not appear to ubiquitously improve on
the default κth = 100, despite being ≈ 2× slower to compute.

Table 2: Miscellaneous selected ablations. Accuracy is calculated from the last 500 samples of 10k
samples trained from scratch. Mean and unbiased standard deviation are calculated from five runs of
different random seeds.

Modified Condition Accuracy (no-norm) Accuracy (max-norm)
baseline (no modifications) 80.2%± 1.0% 83.0%± 1.1%
bias-only training 51.8%± 3.2% 68.6%± 1.4%
no streaming batch norm 68.2%± 1.9% 81.8%± 1.3%
no bias training 81.3%± 1.0% 83.0%± 1.4%
κth = 108 instead of 100 79.8%± 1.4% 84.2%± 1.4%
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