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ABSTRACT

Simultaneous speech to speech translation aims to interpret concurrently with the
speech in source language, which is of great importance to the real-time under-
standing of spoken lectures or conversations. Previous methods usually divide
this problem into three stages: simultaneous automatic speech recognition (ASR),
simultaneous neural machine translation (NMT), and simultaneous text to speech
(TTS), which is not end-to-end and suffers from translation delay and error prop-
agation. In this work, we propose SimulS2S, an end-to-end simultaneous speech
to speech translation system that directly translates from source-language speech
into target-language speech concurrently, which jointly optimizes speech recog-
nition, text translation and speech synthesis in one sequence to sequence model.
SimulS2S consists of a speech encoder and a speech decoder both with a speech
segmenter and a wait-k strategy for simultaneous translation. Since simultaneous
speech to speech translation is challenging, we propose several key techniques to
help the training of SimulS2S: 1) a curriculum learning mechanism to train the
model gradually from full-sentence translation to simultaneous translation; 2) two
auxiliary tasks: ASR and S2T (speech to text translation) that share the same en-
coder with SimulS2S model to help the training of the encoder; 3) knowledge
distillation to transfer the knowledge from the cascaded NMT and TTS models to
the SimulS2S model. Experiments on Fisher Spanish-English conversation trans-
lation datasets demonstrate that SimulS2S 1) achieves low translation delay and
reasonable translation quality compared with full-sentence speech to speech trans-
lation (without simultaneous translation), and 2) although performs worse than but
close to the accuracy of simultaneous translation with three-stage cascaded mod-
els, demonstrating the potential of end-to-end approach for this challenging task.

1 INTRODUCTION

Simultaneous speech to speech translation (Fügen et al., 2007; Bangalore et al., 2012; Oda et al.,
2014; Sarkar, 2016) translates source-language speech into target-language speech concurrently,
which plays an important role to narrow the language barrier and ensure real-time understanding
of spoken lectures or conversations, and is now widely used in many scenarios such as interna-
tional conferences in multilateral organizations (UN/EU). The two key requirements for simulta-
neous speech translation are translation accuracy and translation delay (Mieno et al., 2015), which
make it extremely challenging compared with full-sentence translation.

Previous works on simultaneous speech to speech translation (Bangalore et al., 2012; Sarkar,
2016) employ a cascaded approach with three stages: simultaneous automatic speech recognition
(ASR) (Rao et al., 2017) that transcribes the source speech into source text in real time, simulta-
neous neural machine translation (NMT) (Gu et al., 2016) that translates the source text into target
text concurrently, and simultaneous text to speech (TTS) that synthesizes target speech given target
text in real time. However, the cascaded approach suffers from two problems: 1) Simultaneous
ASR, NMT and TTS models may perform well when trained separately, but cannot ensure good
performance when cascaded together during inference, since the transcribed text by simultaneous
ASR could be erroneous and will affect the accuracy of downstream models (Zhang et al., 2019); 2)
Three-stage cascaded models cause more translation delay (the total delay is the sum of the delay of
ASR, NMT and TTS), which is critical for simultaneous speech to speech translation.
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Inspired by the recently proposed end-to-end full-sentence speech to speech translation (Jia et al.,
2019), in this paper, we propose end-to-end simultaneous speech to speech translation called
SimulS2S, which directly translates speech from source language into target language concurrently.
SimulS2S adopts an encoder-decoder framework, which leverages the wait-k strategy (Ma et al.,
2018) to schedule the listen (hear more source speech) and interpret (translate into target speech)
decisions on the source and target speech respectively. Considering that the wait-k strategy requires
both source and target speech sequence to be discrete segments, we further design a speech seg-
menter for speech segmentation. As a proof of concept, SimulS2S is supposed to alleviate the error
propagation problem and reduce the delay of simultaneous translation, compared with the cascaded
pipeline that trains simultaneous ASR, NMT and TTS models separately.

However, training an end-to-end simultaneous speech translation system is challenging, consider-
ing that simultaneous ASR, NMT and TTS are challenging tasks by themselves. Therefore, we
introduce several techniques to assist the training of SimulS2S: 1) We utilize a curriculum learning
mechanism to train the model gradually from full-sentence translation to simultaneous translation,
with decreasing k in the wait-k strategy. 2) We introduce two auxiliary tasks including simultaneous
ASR, S2T (speech to text translation) which share the same encoder with SimulS2S model to help
the training of the encoder; 3) We leverage knowledge distillation to transfer the knowledge from
the cascaded NMT and TTS models to SimulS2S model.

Experiments on Fisher Spanish-English conversation translation datasets demonstrate that
SimulS2S: 1) achieves low translation delay and reasonable translation quality compared with full-
sentence end-to-end speech to speech translation (without simultaneous translation), and 2) slightly
underperforms the simultaneous translation with three-stage models in terms of both translation ac-
curacy and delay. Considering the difficulty of the end-to-end simultaneous translation itself, there
is big potential for future research.

The contributions of this work are summarized as follows:

• To the best of our knowledge, we are the first to propose an end-to-end simultaneous speech
to speech translation system, and design a way to train it efficiently.

• We devise a curriculum learning mechanism to train the model gradually from full-sentence
translation to simultaneous translation, by adjusting different k in wait-k strategy.

• We introduce two auxiliary tasks including simultaneous ASR and S2T, as well as a
novel knowledge distillation from cascaded NMT and TTS models to help the training
of SimulS2S model.

• Experiments on Fisher Spanish-English translation datasets demonstrate the effectiveness
of SimulS2S as a proof of concept.

2 SIMULS2S

In this section, we first describe the design of the proposed SimulS2S framework, and then introduce
the key model of SimulS2S. We further introduce the curriculum learning mechanism and describe
the auxiliary tasks and knowledge distillation to help the training of SimulS2S model.

The overview of SimulS2S framework is shown in Figure 1. The main task of SimulS2S leverages
a source speech encoder and a target speech decoder both with a speech segmenter and a wait-k
strategy, which are not shown in the figure and will be described in next subsection. The auxiliary
simultaneous ASR and S2T task share the same encoder with SimulS2S model. The distillation task
leverages a cascaded NMT and TTS (both are not simultaneous) as the teacher model, which is used
to transfer the knowledge to SimulS2S model.

In the following, we describe the key model of SimulS2S in Section 2.1, and the curriculum learning
mechanism in Section 2.2, and the auxiliary tasks and distillation task in Section 2.3.

2.1 THE MODEL OF SIMULS2S

In this section, we introduce the key model of SimulS2S, including the problem formulation for
simultaneous speech translation, the speech segmenter and the details of the model structure.
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Figure 1: Overview of the SimulS2S framework. “Simul” and “Non-Simul” in the figure repre-
sent simultaneous translation and full-sentence translation respectively. The curriculum learning
mechanism is not shown in the figure.

Problem Formulation Given a set of speech translation pairs D = {(x, y) ∈ (X × Y)},
the full-sentence translation model learns the parameter θ by minimizing the MSE loss Lfull =∑

(x,y)∈D(y − f(x; θ))2, where f(·; ·) represents the prediction of mel-spectrogram if using mel-
spectrogram as the acoustic feature. The loss Lfull is usually calculated based on the autoregressive
manner:

Lfull =
∑

(x,y)∈D

Ty∑
t=1

(yt − f(y<t, x; θ))2, (1)

where y<t represents the frame of mel-spectrogram preceding position t and Ty is the number of
frames in target speech y. In the full-sentence translation, the whole source speech sentence x can
be seen for prediction. For simultaneous translation, we adapt the wait-k strategy (Ma et al., 2018)
that is originally designed for simultaneous text to text translation into speech to speech translation.
The loss function Lsimul is

Lsimul =
∑

(x,y)∈D

Ty∑
t=1

(yt − f(y<t, x<δ(t,k); θ))2, (2)

where k corresponds to the wait-k strategy, x<δ(t,k) represents the source speech preceding position
δ(t, k). We describe how to design δ(t, k) in speech sequence. Instead of modeling the granularity
of k in the frame level that does not contain enough semantic meaning, we model it in the segment
level where a segment of speech represents a word or phrase, which is more suitable for translation.
Denote s(t) as the index of the speech segment which the t-th frame belongs to. In this way, δ(t, k)
represents the start position of the (s(t) + k)-th source segment.

According to the formualtion in Equation 2, the model will wait for the first k source speech seg-
ments and then start to translate a target segment. After that, once receiving a new source segment,
the decoder generates a new target segment until there is no more source segment, and then the
translation degrades to the full-sentence translation.

Speech Segmenter However, Equation 2 assumes both the source and target speech sequence can
be split into discrete segments, which is a non-trivial problem for speech sequence. In this paper, we
propose a simple yet efficient method to split the speech mel-spectrogram into segments, where each
segment is regarded as discrete tokens and represents a word or short phrase. Our method consists
of the following steps: 1) We first extract the F0 and voice intensity from the audio sequence using
Parselmouth (Jadoul et al., 2018). 2) We label a frame as unvoiced if its corresponding F0 can not
be extracted and the voice intensity is below a threshold. 3) If the number of successive unvoiced
frames exceeds a certain threshold, the unvoiced frames are used to split the audio into segments.

Model Structure The encoder of SimulS2S model follows the basic structure of Transformer
based text to speech model (Li et al., 2019; Ren et al., 2019) but differs from the following modules:
1) In order to support the speech input in the encoder side, we use a pre-net which consists of
multiple convolutional layers to extract features from mel-spectrograms; 2) We use a self-attention
mechanism in the encoder with wait-k strategy; 3) Similarly, we use a decoder-to-encoder attention
mechanism in the decoder with wait-k strategy. The attention masks of the two attention mechanism
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with wait-k strategy are designed according to Equation 2, which ensures that the source frames can
only attend to the frames available at that time in the self-attention of the encoder, while the target
frames can only attend to the source frames following the wait-k strategy.

2.2 CURRICULUM LEARNING FOR SIMULS2S

In speech to speech translation, simultaneous translation is harder than full-sentence translation,
while simultaneous translation with smaller k in the wait-k strategy is further harder than that with
bigger k. Therefore, we design a curriculum learning mechanism (Bengio et al., 2009) by decreas-
ing k in wait-k strategy (full-sentence translation can be regarded as k = +∞), which gradually
increases the difficulty of the training task.

Formally, the curriculum learning mechanism optimizes the simultaneous translation loss Lsimul

(defined in Equation 2) by gradually switching k from +∞ to a desired K. We design several
curriculum mechanisms to switch k, as shown in Figure 2. We put the detail descriptions of these
mechanisms in Appendix.

Figure 2: Different curriculum mechanisms to switch k from Kmax to a desired K (e.g., 3). Ideally
Kmax should be +∞. We just consider Kmax = 30 in this work, which can cover the length of most
speech sequence in terms of segments.

2.3 AUXILIARY TASKS AND KNOWLEDGE DISTILLATION

Considering the difficulty of simultaneous speech to speech translation, in this section, we propose
several techniques to boost the accuracy of SimulS2S, including auxiliary simultaneous ASR and
S2T tasks, data-level knowledge distillation from cascaded NMT and TTS models.

Auxiliary Simultaneous ASR and TTS Multitask training is critical to improve the model per-
formance of the speech to speech translation model (Jia et al., 2019). We add the auxiliary ASR and
S2T tasks which leverage a simialr wait-k strategy and share the same encoder with the SimulS2S
model, as shown in Figure 1. The decoders for both ASR and S2T follows the decoder in Vaswani
et al. (2017b). ASR and S2T can help the shared speech encoder to extract more meaningful rep-
resentations that is closer to the representation of source text, which will help speech to speech
translation.

Knowledge Distillation from Cascaded NMT and TTS Model To further boost the accuracy
of SimulS2S, we leverage data-level knowledge distillation to transfer the knowledge from a TTS
model cascaded on an NMT model to the SimulS2S model, where both the NMT and TTS models
are full-sentence but not simultaneous, as shown in Figure 1. Following Kim & Rush (2016); Tan
et al. (2019), we use NMT teacher model to generate target text given source text that is paired with
source speech, and further uses TTS model to synthesize targeted speech given translated target text,
and then pair the synthesized target speech with source speech to train the SimulS2S model.
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2.4 THE METRIC FOR SIMULS2S

In this section, we describe the metrics to measure the translation delay and accuracy for simultane-
ous speech to speech translation.

Translation Delay Translation delay is an important metric for simultaneous translation. We use
average proportion (AP) (Cho & Esipova, 2016) and average latency (AL) (Ma et al., 2018) to
measure the delay. AP measures the averaged absolute delay incurred by each target token and AL
measures the degree that the user is out of sync with the speaker. For simultaneous speech to speech
translation task, we extend the AP and AL metric that is originally calculated on word sequence to
speech sequence. Our extended AP is defined as

AP (x, y) =
1

|x||y|

|y|∑
t=1

g(t), (3)

where x and y are the source and target speech, |x| and |y| are the total time duration (in frames)
of source and target speech, g(t) is real-time delay (in frames) in terms of source speech when
generating the t-th target speech frame. Our extended AL is defined as:

AL(x, y) =
1

τ(|x|)|y|

τ(|x|)∑
t=1

max(g(t)− t− 1

r
, 0), (4)

where τ(|x|) denotes the earliest timestep (in frames) where our model has consumed the entire
source speech sequence:

τ(|x|) = argmin
t
(g(t) = |x|), (5)

and r = |y|/|x| is the duration ratio between target and source speech sequence.

Translation Accuracy To evaluate the accuracy of simultaneous speech to speech translation,
we use a pre-trained ASR model to transcribe the generated target speech into text, and calculate
the BLEU score (Papineni et al., 2002b) according to the ground-truth reference text translation
following Jia et al. (2019). Due to potential recognition errors by ASR, this can be thought of as a
lower bound of the underlying translation quality.

3 EXPERIMENTS AND RESULTS

We first describe experimental settings, and then report the experiment results, and conduct some
analyses on SimulS2S.

3.1 EXPERIMENTAL SETTINGS

Datasets We conduct experiments on the Fisher Spanish-English corpus, which consists of Span-
ish telephone conversations and the corresponding English translations (Post et al., 2013). Fisher
Spanish-English corpus contains 130k audio clips in source language and the corresponding tran-
scripts in source and target language. We synthesize target speech from the target transcript using
an English TTS system with a single (female) speaker. We use the official splits for train/dev/test
set. For the speech data, we convert the raw waveform into mel-spectrograms following Shen et al.
(2018) with 50 ms frame size and 12.5 ms frame hop. For the text data, we convert the transcriptions
into characters.

Model Configuration We use Transformer (Vaswani et al., 2017b) as the basic SimulS2S model
structure. We set the model hidden size, feed-forward hidden size, number of encoder and decoder-
layers to 512, 2048, 6 and 6 respectively. Different from the 2-layer dense network in Transformer,
we use a 2-layer 1D convolutional network (Gehring et al., 2017) with ReLU activation and left
padding in the speech side (Ren et al., 2019). The motivation is that the adjacent hidden states are
more closely related in the character and mel-spectrogram sequence in speech tasks. The filter size
and kernel size of 1D convolution are 2048 and 9. The pre-net is a 3-layer left-padding convolutional
network for both the encoder and decoder, and the output dimension equals to the hidden size of the
encoder. In the speech segmenter, the thresholds of voice intensity and the number of successive
unvoiced frames are 15db and 12.
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Training and Inference We train the models with 4 NVIDIA Tesla V100 GPUs, each with batch
size of roughly 8 sentences. We follow the default parameters of Adam optimizer (Kingma & Ba,
2014) and learning rate schedule in Vaswani et al. (2017a). We evaluate the translation quality by
tokenized case sensitive BLEU (Papineni et al., 2002a) with multi-bleu.pl1 after recognizing the
translated speech in text using the Transformer based ASR model (Mohamed et al., 2019), which is
trained on the 960 hours LibriSpeech corpus and Fisher corpus. We will release the code in Github
when the paper is open to the public.

3.2 EXPERIMENT RESULTS

Translation Accuracy We first evaluate the accuracy of SimulS2S model with different k in wait-
k strategy. Besides regular evaluation with the same k both in training and inference, we also report
the results of the model trained with k and test with different k’ to observe the accuracy changes.
The results are shown in Table 1. It can be seen that compared with the full-sentence translation
(both k and k’ is∞), simultaneous translation does not drop much accuracy. We can also observe
from this table that for a certain k′ in inference, a smaller k in training usually results in better
accuracy, mainly due to two reasons: 1) Training on more difficult task (small k) will make the
model robust during inference; 2) Our curriculum mechanism ensures the model has already been
trained on bigger k, which is consistent with bigger k during inference.

Test
Train

k=1 k=3 k=5 k=7 k=9 k=∞

k′=1 17.33 12.04 9.09 6.82 6.11 4.68
k′=3 25.05 25.13 23.70 21.60 18.85 19.33
k′=5 27.46 27.59 27.52 26.26 24.66 23.83
k′=7 27.58 29.19 28.09 26.73 26.11 23.60
k′=9 26.86 28.62 28.01 28.79 27.88 24.69
k′=∞ 24.56 25.04 25.17 24.85 25.30 30.31

Table 1: The BLEU scores of SimulS2S on the test set. The model is trained with wait-k but test
with another wait-k′. The bold numbers are the best score in a row.

Translation Delay We plot the translation quality vs. translation delay of the wait-k model and
test-time wait-k model in Figure 3a and 3b. The translation quality is measured by BLEU score
while translation delay is measured by AP and AL, as denoted in Section 2.4. The wait-k model
represents our SimulS2S with the same k both in training and inference, while the test-time wait-
k model represents the model is trained with full-sentence translation but only test with wait-k
strategy, which can be regarded as a naive baseline for simultaneous translation. We can see that the
translation accuracy increases as k increases, with the sacrifice of translation delay. The accuracy of
wait-k model is always better than the test-time wait-k, which demonstrates the effectiveness of the
wait-k strategy during training.

Comparison with Cascaded Models We further compare SimulS2S with the three-stage method
by cascading simultaneous ASR, NMT and TTS model together. We show the BLEU scores of
the two methods under different k (both methods use the same k during training and inference) in
Table 2. It can be seen that while SimulS2S performs slightly worse than cascaded method, the
gap is close. Considering the difficulty of the end-to-end simultaneous translation itself, there is big
potential for future research.

Model k=1 k=3 k=5

Cascaded (ASR+NMT+TTS) 20.42 28.01 30.82
SimulS2S 17.33 25.13 27.52

Table 2: BLEU score comparison between three-stage cascaded method and SimulS2S.

1https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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(a) The translation quality against the latency in terms
of AP.

(b) The translation quality against the latency in
terms of AL.

Figure 3: The translation quality against the latency metrics (AP and AL).

3.3 METHOD ANALYSES

Curriculum Learning Strategy We conduct experiments to evaluate the effectiveness of differ-
ent curriculum learning strategies under different k in wait-k strategy. The results are shown in
Table 3. It can be seen that the models with curriculum learning strategies (Direct, Ladder-like and
Logarithmic) achieve better accuracy than that without curriculum learning, which demonstrates
the effectiveness of our proposed curriculum learning mechanism. Among the different curriculum
strategies, the logarithmic strategy performs the best in most cases. Therefore, we use Logarithmic
as the default curriculum strategy in the experimental study of this work, unless otherwise stated.

Model k=1 k=3 k=5 k=7 k=9

Without CL 3.46 6.18 11.01 14.65 14.45
Direct 15.24 23.89 26.06 27.51 26.96
Ladder-like 15.60 23.25 26.46 27.40 27.12
Logarithmic 17.33 25.13 27.52 26.73 27.88

Table 3: Comparison of different curriculum learning strategies.

Auxiliary Tasks We evaluate the effectiveness of the ASR and S2T auxiliary tasks. As shown in
Table 4, starting from the naive simultaneous speech to text translation model without any auxiliary
task (denoted as S2S), we add the auxiliary tasks of simultaneous ASR (Row 3) and S2T (Row
4). Without any auxiliary tasks, the naive S2S model cannot achieve reasonable accuracy, which
demonstrates the difficulty of simultaneous speech to speech translation. The translation accuracy
can be boosted by adding ASR auxiliary task, and the gains become larger if further adding S2T at
the same time.

Model k=1 k=5 k=9

S2S 0.06 0.08 0.09

+ASR 3.87 11.23 12.21
+ASR+S2T 17.33 27.52 27.88

Table 4: Ablation study on auxiliary tasks.

Speech Segmentation We evaluate the precision of our segmentation method using average abso-
lute error (ASE) (Mesaros & Virtanen, 2008) on the test set, which measures the alignment errors
between the segmentation of our method and the ground-truth in terms of time (ms). We use forced
alignment tool2 to obtain the ground-truth word boundaries on the test set. The predicted word

2https://github.com/lowerquality/gentle
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boundary by our segmentation method is matched to the nearest ground-truth boundary to calculate
the ASE. Considering the number of predicted word boundaries by our method is usually fewer than
the ground-truth boundaries, due to that our method prefers not to segment two words that with no
silence frame in between, we further count the metric of missing rate, which denotes the ratio of the
number of boundaries that are not detected by our method. Our segmentation method achieve 110ms
ASE and 23.4% missing rate, which demonstrates the effectiveness of our segmentation method. A
high missing rate means a speech segment will cover more words, which influences the delay of
simultaneous translation. However, we can adjust k in wait-k strategy to compensate the delay.

4 RELATED WORK

In this section, we introduce the related works for simultaneous speech to speech translation, includ-
ing full-sentence speech translation, simultaneous translation and curriculum learning.

Full-sentence Speech Translation Speech translation has been a hot research topic in the field of
artificial intelligence (Lavie et al., 1997; Nakamura et al., 2006; Hori et al., 2009; Wahlster, 2013;
Weiss et al., 2017; Bansal et al., 2018; Sperber et al., 2019; Zhang et al., 2019; Jia et al., 2019). Early
works on speech to speech translation rely on a three-stage method by cascading ASR, NMT and
TTS models (Lavie et al., 1997; Nakamura et al., 2006; Hori et al., 2009; Wahlster, 2013) or focus
on end-to-end speech to text translation (Weiss et al., 2017; Bansal et al., 2018; Liu et al., 2019;
Zhang et al., 2019). Recently, Jia et al. (2019) propose a fully end-to-end speech translation model
that translate from source speech into target speech directly. However, previous works on speech
to speech translation, with either cascaded models or end-to-end models, focus on full-sentence
translation, which introduced too much delay when used in spoken lectures or conversations. In this
work, we study end-to-end speech to speech translation in the simultaneous scenario to reduce the
delay in translation without loss much of translation accuracy.

Simultaneous Translation Simultaneous translation (Bérard et al., 2016; Weiss et al., 2017; Liu
et al., 2019) is widely considered as one of the challenging tasks for spoken language transla-
tion Fügen et al. (2007); Oda et al. (2014); Dalvi et al. (2018). Previous works on simultaneous
speech to speech translation leverage a three-stage cascaded models: simultaneous ASR, NMT and
TTS, and most research works focus on simultaneous NMT (Gu et al., 2016; Ma et al., 2018; Zheng
et al., 2019). Most works on simultaneous NMT leverage a schedule to balance the translation delay
against translation quality by deciding whether to read source tokens (see more source words) or
write target tokens (translate into target words). Ma et al. (2018) introduced a very simple but ef-
fective wait-k strategy. In this paper, we also leverage wait-k strategy for simultaneous translation,
but with adaptation into speech sequence. Different from the previous works that leverage three-
stage cascaded models, we tackle it in an end-to-end way, which has the potential to eliminate error
propagation and reduce translation delay in cascaded models.

Curriculum Learning Humans usually learn better when the curriculums are organized from easy
to hard. Inspired by that, Bengio et al. (2009) proposed curriculum learning, a machine learning
training strategy that feeds training instances to the model from easy to hard. Most of the works
on curriculum learning focus on the determining the orders of data (Lee & Grauman, 2011; Sachan
& Xing, 2016) or task (Pentina et al., 2015; Sarafianos et al., 2017). In our setting, we design
curriculums for neither data samples nor tasks, but the training mechanisms by adjusting different k
in the wait-k strategy.

5 CONCLUSION

In this work, we have proposed SimulS2S, an end-to-end simultaneous speech to speech translation
system, which consists of a speech encoder, a speech decoder both with a speech segmenter and
wait-k strategy. We further introduce a curriculum mechanism, two auxiliary tasks and knowledge
distillation to boost the accuracy of SimulS2S. Experiments on Fisher Spanish to English corpus
demonstrate that SimulS2S achieves low translation delay and reasonable translation quality com-
pared with the full-sentence end-to-end speech to speech translation (without simultaneous transla-
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tion). As a proof of concept, our work shows that there is big potential for future research, consid-
ering the difficulty of the end-to-end simultaneous translation itself.

For future work, we will further improve the accuracy of simultaneous speech translation to approx-
imate the accuracy of cascaded method and full-sentence translation.
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Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar. Exploring architectures, data and units for
streaming end-to-end speech recognition with rnn-transducer. In ASRU, pp. 193–199. IEEE, 2017.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech:
Fast, robust and controllable text to speech. arXiv preprint arXiv:1905.09263, 2019.

Mrinmaya Sachan and Eric Xing. Easy questions first? a case study on curriculum learning for ques-
tion answering. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pp. 453–463, 2016.

Nikolaos Sarafianos, Theodore Giannakopoulos, Christophoros Nikou, and Ioannis A Kakadiaris.
Curriculum learning for multi-task classification of visual attributes. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2608–2615, 2017.

Anoop Sarkar. The challenge of simultaneous speech translation. In PACLIC, 2016.

10

http://www.aclweb.org/anthology/P02-1040.pdf
http://www.aclweb.org/anthology/P02-1040.pdf


Under review as a conference paper at ICLR 2020

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang,
Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al. Natural tts synthesis by con-
ditioning wavenet on mel spectrogram predictions. In ICASSP, pp. 4779–4783. IEEE, 2018.

Matthias Sperber, Graham Neubig, Jan Niehues, and Alex Waibel. Attention-passing models for
robust and data-efficient end-to-end speech translation. TACL, 7:313–325, 2019.

Xu Tan, Yi Ren, Di He, Tao Qin, Zhou Zhao, and Tie-Yan Liu. Multilingual neural machine trans-
lation with knowledge distillation. arXiv preprint arXiv:1902.10461, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS 2017, pp. 6000–6010,
2017a.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017b.

Wolfgang Wahlster. Verbmobil: foundations of speech-to-speech translation. Springer Science &
Business Media, 2013.

Ron J Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui Wu, and Zhifeng Chen. Sequence-to-
sequence models can directly translate foreign speech. arXiv preprint arXiv:1703.08581, 2017.

Pei Zhang, Boxing Chen, Niyu Ge, and Kai Fan. Lattice transformer for speech translation. arXiv
preprint arXiv:1906.05551, 2019.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang Huang. Simultaneous translation with flexi-
ble policy via restricted imitation learning. arXiv preprint arXiv:1906.01135, 2019.

11



Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 ATTENTION MASK IN SIMULTANEOUS TRANSLATION

According to the wait-k strategy described above, we design the wait-k encoder self-attention and
wait-k encoder-decoder attention mask as follows:

M enc(i, j) =

{
0, i < j ∨ j < k

−∞, otherwise
, (6)

M enc-dec(i, j) =

{
0, j ≤ i+ k

−∞, otherwise
, (7)

When M(i, j) equals to −∞, the corresponding position in softmax output will approach zero,
which prevents position i from attending to position j.

A.2 THE CURRICULUM MECHANISM FOR TRAINING SIMULS2S

Pacing Functions Description

Ladder-like kladder(i) =

 kmax, i < S

max(kmax −
i− S
3500

,K), i ≥ S

Logarithmic klog(i) =

 kmax, i < S

max(kmax − 8 ∗ log2
i− S
10000

+ 1,K), i ≥ S

Direct kdirect(i) =

{
kmax, i < S

K, otherwise

Table 5: The proposed different curriculum mechanisms and their definitions.

A.3 MODEL STRUCTURE FOR SIMULS2S

Wait-k Encoder 

Attention

Add & Norm

Feed Forward

Add & Norm

Casual 

Self-Attention

Feed Forward

Add & Norm

Wait-K Decoder 

Attention

Pre-Net

Add & Norm

Add & Norm

Pre-Net

Dense

Figure 4: The encoder and decoder of the SimulS2T model.
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