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ABSTRACT

In this work, we present WaveFlow, a small-footprint generative flow for raw audio,
which is trained with maximum likelihood without complicated density distillation
and auxiliary losses as used in Parallel WaveNet. It provides a unified view of
flow-based models for raw audio, including autoregressive flow (e.g., WaveNet)
and bipartite flow (e.g., WaveGlow) as special cases. We systematically study these
likelihood-based generative models for raw waveforms in terms of test likelihood
and speech fidelity. We demonstrate that WaveFlow can synthesize high-fidelity
speech and obtain comparable likelihood as WaveNet, while only requiring a few
sequential steps to generate very long waveforms. In particular, our small-footprint
WaveFlow has only 5.91M parameters and can generate 22.05kHz speech 15.39×
faster than real-time on a GPU without customized inference kernels. 1

1 INTRODUCTION

Deep generative models have obtained noticeable successes for modeling raw audio in high-fidelity
speech synthesis and music generation (e.g., van den Oord et al., 2016; Dieleman et al., 2018).
Autoregressive models are among the best performing generative models for raw audio waveforms,
providing the highest likelihood scores and generating high quality samples (e.g., van den Oord
et al., 2016; Kalchbrenner et al., 2018). One of the most successful examples is WaveNet (van den
Oord et al., 2016), an autoregressive model for waveform synthesis. It operates at the high temporal
resolution of raw audio (e.g., 24kHz) and sequentially generates waveform samples at inference. As
a result, WaveNet is prohibitively slow for speech synthesis and one has to develop highly engineered
kernels for real-time inference (Arık et al., 2017a; Pharris, 2018). 2

Flow-based models (Dinh et al., 2014; Rezende and Mohamed, 2015) are a family of generative
models, in which a simple initial density is transformed into a complex one by applying a series
of invertible transformations. One group of models are based on autoregressive transformation,
including autoregressive flow (AF) and inverse autoregressive flow (IAF) as the “dual” of each
other (Kingma et al., 2016; Papamakarios et al., 2017; Huang et al., 2018). AF is analogous to
autoregressive models, which performs parallel density evaluation and sequential synthesis. In
contrast, IAF performs parallel synthesis but sequential density evaluation, making likelihood-based
training very slow. Parallel WaveNet (van den Oord et al., 2018) and ClariNet (Ping et al., 2019)
distill an IAF from a pretrained autoregressive WaveNet, which gets the best of both worlds. The
resulting IAF vocoders have a small footprint and have been deployed in real-world products like
Google Assistant. However, they require density distillation with a set of auxiliary losses for good
performance, which complicates the training pipeline and increases the cost of development.

Another group of flow-based models are based on bipartite transformation (Dinh et al., 2017;
Kingma and Dhariwal, 2018), which provide parallel density evaluation and parallel synthesis. Most
recently, WaveGlow (Prenger et al., 2019) and FloWaveNet (Kim et al., 2019) successfully applies
Glow (Kingma and Dhariwal, 2018) and RealNVP (Dinh et al., 2017) for waveform synthesis,
respectively. However, the bipartite transformations are less expressive than the autoregressive
transformations (see Section 3.3 for detailed discussion). In general, these bipartite flows require

1Audio samples are located at: https://waveflow-demo.github.io/.
2Note that, real-time inference is a requirement for most production text-to-speech systems. For example, if

the system can synthesize 1 second of speech in 0.5 seconds, it is 2× faster than real-time.
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deeper layers, larger hidden size, and huge number of parameters to reach comparable capacities
as autoregressive models. For example, WaveGlow and FloWaveNet have 87.88M and 182.64M
parameters with 96 layers and 256 residual channels, respectively. In contrast, a 30-layer WaveNet
has only 4.57M parameters with 128 residual channels.

In this work, we present WaveFlow, a compact flow-based model for raw audio. Specifically, we
make the following contributions:

1. WaveFlow is trained with maximum likelihood without density distillation and auxiliary
losses used in Parallel WaveNet (van den Oord et al., 2018) and ClariNet (Ping et al., 2019),
which simplifies the training pipeline and reduces the cost of development.

2. WaveFlow squeezes the 1-D raw waveforms into a 2-D matrix and produces the whole audio
within a fixed sequential steps. It also provides a unified view of flow-based models for
raw audio and allows us to explicitly trade inference efficiency for model capacity. As we
implement WaveFlow with a dilated 2-D convolutional architecture, it includes both Gaussian
WaveNet (Ping et al., 2019) and WaveGlow (Prenger et al., 2019) as special cases.

3. We systematically study the likelihood-based generative models for raw audios in terms of
test likelihood and speech quality. We demonstrate that WaveFlow can obtain comparable
likelihood and synthesize high-fidelity speech as WaveNet (van den Oord et al., 2016), while
only requiring a few sequential steps to generate very long waveforms.

4. Our small-footprint WaveFlow has only 5.91M parameters and synthesizes 22.05 kHz speech
15.39× faster than real-time on a Nvidia V100 GPU. The small memory footprint is preferred
in production TTS systems, especially for on-device deployment.

We orgnize the rest of the paper as follows. Section 2 discusses related work. Section 3 reviews
the flow-based models with autoregressive and bipartite transformations. We present WaveFlow in
Section 4 and report experimental results in Section 5. We conclude the paper in Section 6.

2 RELATED WORK

Deep neural networks for speech synthesis (a.k.a. text-to-speech) have received a lot of attention.
Over the past few years, several neural text-to-speech (TTS) systems have been introduced, including
WaveNet (van den Oord et al., 2016), Deep Voice (Arık et al., 2017a), Deep Voice 2 (Arık et al.,
2017b), Deep Voice 3 (Ping et al., 2018), Tacotron (Wang et al., 2017), Tacotron 2 (Shen et al.,
2018), Char2Wav (Sotelo et al., 2017), VoiceLoop (Taigman et al., 2018), WaveRNN (Kalchbrenner
et al., 2018), ClariNet (Ping et al., 2019), Transformer TTS (Li et al., 2019) and ParaNet (Peng et al.,
2019). In a neural TTS system, a neural vocoder synthesizes the time-domain waveforms. It can be
conditioned on linguistic features (van den Oord et al., 2016; Arık et al., 2017a), or the predicted
mel-spectrograms from a text-to-spectrogram model (Ping et al., 2018; Shen et al., 2018). In this
work, we test the proposed WaveFlow by conditioning it on ground truth mel-spectrograms as in
previous work (Prenger et al., 2019; Kim et al., 2019).

Neural vocoders, such as WaveNet, play the most important role in recent advances of speech
synthesis. In previous work, the state-of-the-art neural vocoders are autoregressive models (van den
Oord et al., 2016; Mehri et al., 2017; Kalchbrenner et al., 2018). Several techniques and engineering
endeavors have been advocated for speeding up their sequential generation process (Paine et al.,
2016; Arık et al., 2017a; Kalchbrenner et al., 2018). In particular, Subscale WaveRNN (Kalchbrenner
et al., 2018) folds a long waveform sequence x1:n into a batch of shorter sequences and can produces
up to 16 samples per step, thus it requires at least n

16 steps to generate the whole audio. Note
that, this is different from the proposed WaveFlow, which can generate x1:n within a fixed number
of steps (e.g., 16). Most recently, flow-based models have been successfully applied for parallel
waveform synthesis with comparable fidelity as autoregressive models (van den Oord et al., 2018;
Ping et al., 2019; Prenger et al., 2019; Kim et al., 2019; Yamamoto et al., 2019) . Among these models,
WaveGlow (Prenger et al., 2019) and FloWaveNet (Kim et al., 2019) have a simple training pipeline
as they solely use the maximum likelihood objective. However, both of them are less expressive than
autoregressive models as indicated by their lower likelihood scores.

Flow-based models can either represent the approximate posteriors for variational inference (Rezende
and Mohamed, 2015; Kingma et al., 2016; Berg et al., 2018), or can be trained directly on data using
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the change of variables formula (Dinh et al., 2014; 2017; Kingma and Dhariwal, 2018; Grathwohl
et al., 2018). In previous work, Glow (Kingma and Dhariwal, 2018) extends RealNVP (Dinh et al.,
2017) with invertible 1× 1 convolution, and can generate high quality images. Later on, Hoogeboom
et al. (2019) generalizes the 1× 1 convolution to invertible d× d convolutions which operate both
channel and spatial axes.

3 FLOW-BASED GENERATIVE MODELS

Flow-based models (Dinh et al., 2014; 2017; Rezende and Mohamed, 2015) transform a simple
density of latent variables p(z) (e.g., isotropic Gaussian) into a complex data distribution p(x) by
applying a bijection x = f(z), where x and z are both n-dimensional. The probability density of x
can be obtained through the change of variables formula:

p(x) = p(z)

∣∣∣∣det

(
∂f−1(x)

∂x

)∣∣∣∣ , (1)

where z = f−1(x) is the inverse transformation, and det
(∂f−1(x)

∂x

)
is the determinant of its Jacobian.

In general, it takes O(n3) to compute the determinant, which is not scalable to high-dimensional
data. There are two notable groups of flow-based models with triangular Jacobians and tractable
determinants. They are based on autoregressive and bipartite transformations, respectively.

3.1 AUTOREGRESSIVE TRANSFORMATION

The autoregressive flow (AF) and inverse autoregressive flow (IAF) (Kingma et al., 2016; Papamakar-
ios et al., 2017) use autoregressive transformations. Specifically, AF defines the inverse transformation
z = f−1(x;ϑ) as:

zt = xt · σt(x<t;ϑ) + µt(x<t;ϑ), (2)

where the shifting variables µt(x<t;ϑ) and scaling variables σt(x<t;ϑ) are modeled by an autore-
gressive model parameterized by ϑ (e.g., WaveNet). Note that, the t-th variable zt only depends on
x≤t, thus the Jacobian is a triangular matrix as illustrated in Figure 1(a) and its determinant is the

product of the diagonal entries: det
(
∂f−1(x)
∂x

)
=
∏
t σt(x<t;ϑ). The density p(x) can be easily

evaluated by change of variables formula, because z = f−1(x) can be computed in parallel from
Eq. (2). However, AF has to do sequential synthesis, because the forward transformation x = f(z)

is autoregressive: xt = zt−µt(x<t;ϑ)
σt(x<t;ϑ) . In contrast, IAF uses an autoregressive transformation for

z = f−1(x):

zt =
xt − µt(z<t;ϑ)

σt(z<t;ϑ)
, (3)

making density evaluation impractically slow for training, but it can do parallel synthesis by xt =
zt · σt(z<t;ϑ) + µt(z<t;ϑ). Parallel WaveNet (van den Oord et al., 2018) and ClariNet (Ping et al.,
2019) are based on IAF, which lacks efficient density evaluation and relies on distillation from a
pretrained autoregressive WaveNet.

3.2 BIPARTITE TRANSFORMATION

RealNVP (Dinh et al., 2017) and Glow (Kingma and Dhariwal, 2018) use bipartite transformation by
partitioning the data x into two groups xa and xb, where the indices sets a ∪ b = {1, · · · , n} and
a ∩ b = φ. Then, the inverse transformation z = f−1(x,θ) is defined as:

za = xa, zb = xb · σb(xa;θ) + µb(xa;θ). (4)

where the shifting variables µb(xa;θ) and scaling variables σb(xa;θ) are modeled by a feed-forward
neural network. The Jacobian ∂f−1(x)

∂x is a special triangular matrix as illustrated in Figure 1 (b). By
definition, the forward transformation x = f(z,θ) is,

xa = za, xb =
zb − µb(xa;θ)

σb(xa;θ)
, (5)
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Figure 1: The Jacobian ∂f−1(x)
∂x of (a) an autoregressive transformation, and (b) a bipartite trans-

formation. The blank cells are 0s and represent the independent relations between zi and xj . The
light-blue cells are scaling variables and represent the linear dependencies between zi and xi. The
dark-blue cells represent complex non-linear dependencies defined by neural networks.

and can also be done in parallel. As a result, the bipartite transformation provides both parallel
density evaluation and parallel synthesis. In previous work, WaveGlow (Prenger et al., 2019) and
FloWaveNet (Kim et al., 2019) both squeeze the adjacent audio samples on the channel dimension,
and apply the bipartite transformation on the partitioned channel dimension.

3.3 CONNECTIONS

It is worthwhile to mention that the autoregressive transformation is more expressive than bipartite
transformation in general. As illustrated in Figure 1(a) and (b), the autoregressive transformation
introduces n×(n−1)

2 complex non-linear dependencies (dark-blue cells) and n linear dependencies
between data x and latents z. In contrast, bipartite transformation introduces only n2

4 non-linear
dependencies and n

2 linear dependencies. Indeed, one can reduce an autoregressive transformation
z = f−1(x;ϑ) to a bipartite transformation z = f−1(x;θ) by: (i) picking an autoregressive order o
such that all of the indices in set a rank early than the indices in b, and (ii) setting the shifting and
scaling variables as,

µt(x<t;ϑ) =

{
0 for t ∈ a
µt(xa;θ) for t ∈ b , σt(x<t;ϑ) =

{
1 for t ∈ a
σt(xa;θ) for t ∈ b .

Given the less expressive building block, the bipartite transformation-based flows generally re-
quire many more layers and larger hidden size to match the capacity of a compact autoregressive
models (e.g., as measured by test likelihood) (Kingma and Dhariwal, 2018; Prenger et al., 2019).

4 WAVEFLOW

In this section, we present WaveFlow and its implementation with dilated 2-D convolutions.

4.1 DEFINITION

We denote the high dimensional 1-D waveform as x = {x1, · · · , xn}. We first squeeze x into a
h-row 2-D matrix X ∈ Rh×w by column-major order, where w = n

h and adjacent samples are in the
same column. We assume Z ∈ Rh×w are sampled from an isotropic Gaussian, and define the inverse
transformation Z = f−1(X; Θ) as,

Zi,j = σi,j(X<i,•; Θ) ·Xi,j + µi,j(X<i,•; Θ), (6)

where X<i,• represents all elements above i-th row (see Figure 2 for an illustration). Note that,
i) the receptive fields over the squeezed inputs X for computing Zi,j in WaveFlow is strictly larger
than that of WaveGlow when h > 2. ii) WaveNet is equivalent to an autoregressive flow with
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Figure 2: The receptive fields over the squeezed inputs X for computing Zi,j in (a) WaveFlow,
(b) WaveGlow, (c) autoregressive flow with column-major order (e.g., WaveNet), and (d) autoregres-
sive flow with row-major order.

column-major order on the squeezed inputs X . iii) Both WaveFlow and WaveGlow look at future
waveform samples in original x for computing Zi,j , whereas WaveNet can not. iv) The autoregressive
flow with row-major order has larger receptive fields than WaveFlow and WaveGlow.

The shifting variables µi,j(X<i,•; Θ) and scaling variables σi,j(X<i,•; Θ) in Eq. (6) are modeled
by a 2-D convolutional neural network detailed in Section 4.2. By definition, the variable Zi,j only
depends on the current Xi,j and previous X<i,• in raw-major order, thus the Jacobian is a triangular
matrix and its determinant is:

det

(
∂f−1(X)

∂X

)
=

h∏
i=1

w∏
j=1

σi,j(X<i,•; Θ). (7)

As a result, the log-likelihood can be calculated in parallel by change of variable formula in Eq. (1),

log p(X) = −
h∑
i=1

w∑
j=1

(
Z2
i,j +

1

2
log(2π)

)
+

h∑
i=1

w∑
j=1

log σi,j(X<i,•; Θ), (8)

and one can do maximum likelihood training efficiently. At synthesis, one may first sample Z from
the isotropic Gaussian and apply the forward transformation X = f(Z; Θ):

Xi,j =
Zi,j − µi,j(X<i,•; Θ)

σi,j(X<i,•; Θ)
, (9)

which is only autoregressive on height dimension. Thus, it requires h sequential steps to generate the
whole waveform X . In practice, a small h (e.g., 8 or 16) works well, thus we can generate very long
waveforms within a few sequential steps.

4.2 IMPLEMENTATION WITH DILATED 2-D CONVOLUTIONS

In this work, we implement WaveFlow with a dilated 2-D convolutional architecture. Specifically, we
use a stack of 2-D convolution layers (e.g., 8 layers in all experiments) to model the shifting variables
µi,j(X<i,•; Θ) and scaling variables σi,j(X<i,•; Θ) in Eq. (6). We use the similar architecture as
WaveNet (van den Oord et al., 2016) by replacing the dilated 1-D convolution to 2-D convolution,
while still keeping the gated-tanh nonlinearities, residual connections and skip connections.

We set the filter sizes as 3 for both height and width dimensions. We use non-causal convolutions on
width dimension and set the dilation cycle as [1, 2, 4, · · · , 27]. The convolutions on height dimension
are causal with an autoregressive constraint, and their dilation cycle needs to be designed carefully.
In practice, we found the following rules of thumb are important to obtain good results:

• As motivated by the dilation cycle of WaveNet (van den Oord et al., 2016), the dilations of 8
layers should be set as d = [1, 2, · · · , 2s, 1, 2, · · · , 2s, · · · ], where s ≤ 7. 3

• The receptive field r over the height dimension should be larger than the squeezed height h.
Otherwise, it explicitly introduces unnecessary conditional independence and leads to lower
likelihood (see Table 1 for an example). Note that, the receptive field of a stack of dilated
convolutional layers is: r = (k−1)×

∑
i di+1, where k is the filter size and di is the dilation

at i-th layer. Thus, the sum of dilations should satisfy:
∑
i di ≥

h−1
k−1 . However, when h is

larger than or equal to 28 = 512, we simply set the dilation cycle as [1, 2, 4, · · · , 27].

3We did try different setups, but they all lead to worse likelihood scores.
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Table 1: The test log-likelihoods (LLs) of WaveFlow with different dilation cycles on the height
dimension. Both models are stacked with 8 flows and each flow has 8 convolutional layers.

Model res. channels dilations d receptive field r test LLs
WaveFlow (h = 32) 128 1, 1, 1, 1, 1, 1, 1, 1 17 4.960
WaveFlow (h = 32) 128 1, 2, 4, 1, 2, 4, 1, 2 35 5.055

Table 2: The heights and corresponding dilations used in our experiments. Note that, the receptive
fields are only slightly larger than height h.

Height h filter size k dilations d receptive field r
8 3 1, 1, 1, 1, 1, 1, 1, 1 17
16 3 1, 1, 1, 1, 1, 1, 1, 1 17
32 3 1, 2, 4, 1, 2, 4, 1, 2 35
64 3 1, 2, 4, 8, 16, 1, 2, 4 77

Table 3: The test LLs of WaveFlow with and without reverse operations. Both models consist of 8
flows and each flow has 8 convolutional layers with filter size 3.

Model res. channels reverse ops test LLs
WaveFlow (h = 16) 64 No 4.551
WaveFlow (h = 16) 64 Yes 4.954

• When the receptive field r has already been larger than h, we found that convolutions with
smaller dilation and fewer holes provide larger likelihood.

We summarize the heights and preferred dilations in our experiments in Table 2. Note that, WaveFlow
becomes fully autoregressive when we squeeze x by its length (i.e. h = n) and set its filter size as 1
over the width dimension, which is equivalent to a Gaussian WaveNet learned by MLE (Ping et al.,
2019). If we squeeze x by h = 2 and set the filter size as 1 on the height dimension, WaveFlow
becomes a bipartite flow and is equivalent to WaveGlow with squeezed channels 2.

Conditional information (e.g., mel-spectrogram) is upsampled to the same resolution as waveform
samples by transposed 2-D convolutions (Ping et al., 2019). To aligned with the squeezed waveform,
they are squeezed to the shape c × h × w, where c is the feature dimension (e.g, bands of the
spectrogram). After a 1× 1 convolution mapping the features to residual channels, they are added as
the bias term at each layer (van den Oord et al., 2016).

4.3 STACKING MULTIPLE FLOWS WITH REVERSE OPERATIONS

Flow-based models require a series of transformations until the distribution p(X) reaches a desired
level of complexity. We first draw a white noise sample Z(0) from the isotropic Gaussian distribution.
Then, we repeatedly apply the transformation Z(i) = f(Z(i−1); Θ(i)) defined in Eq. (9) from
Z(0) → . . . Z(i) → . . . Z(n) and we let X = Z(n). The likelihood p(X) can be evaluated by
iteratively applying the chain rule:

p(X) = p(Z(0))

n∏
i=1

∣∣∣∣det

(
∂f−1(Z(i); Θ(i))

∂Z(i)

)∣∣∣∣ .
We found that reversing each Z(i) on the height dimension after each transformation can significantly
improve the likelihood scores (see Table 3 for an example). Note that, one also needs to reverse the
conditioner on the height dimension, which is aligned with Z(i). Other permutation strategies and the
invertible 1× 1 convolution (Kingma and Dhariwal, 2018) are also promising.

5 EXPERIMENT

In this section, we compare likelihood-based generative models for raw audio in term of test likelihood
and speech quality.

Data: We use the LJ speech dataset (Ito, 2017) containing about 24 hours of audio with a sampling
rate of 22.05kHz recorded on a MacBook Pro in a home enviroment. It consists of 13, 100 audio
clips of a single female speaker reading passages from 7 non-fiction books.
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Table 4: The test log-likelihoods (LLs) of all models conditioned on mel-spectrograms. For a× b = c
in the flows×layers column, a is number of flows, b is number of layers in each flow, and c is the
total number of layers. In WaveFlow, h is the squeezed height. Models with bolded test LLs are
mentioned in the text.

Model flows×layers res. channels # param test LLs
(a) WaveNet 1×30 = 30 128 4.57 M 5.059
(b) Autoregressive flow 3×10 = 30 128 4.54 M 5.161
(c) WaveGlow 12×8 = 96 64 17.59 M 4.804
(d) WaveGlow 12×8 = 96 128 34.83 M 4.927
(e) WaveGlow 6×8 = 48 256 47.22 M 4.922
(f ) WaveGlow 12×8 = 96 256 87.88 M 5.018
(g) WaveGlow 12×8 = 96 512 268.29 M 5.026
(h) WaveFlow (h = 8) 8×8 = 64 64 5.91 M 4.935
(i) WaveFlow (h = 16) 8×8 = 64 64 5.91 M 4.954
(j) WaveFlow (h = 32) 8×8 = 64 64 5.91 M 5.002
(k) WaveFlow (h = 64) 8×8 = 64 64 5.91 M 5.023
(l) WaveFlow (h = 8) 6×8 = 48 96 9.58 M 4.946
(m) WaveFlow (h = 8) 8×8 = 64 96 12.78 M 4.977
(n) WaveFlow (h = 16) 8×8 = 64 96 12.78 M 5.007
(o) WaveFlow (h = 16) 6×8 = 48 128 16.69 M 4.990
(p) WaveFlow (h = 8) 8×8 = 64 128 22.25 M 5.009
(q) WaveFlow (h = 16) 8×8 = 64 128 22.25 M 5.028
(r) WaveFlow (h = 32) 8×8 = 64 128 22.25 M 5.055
(s) WaveFlow (h = 16) 6×8 = 48 256 64.64 M 5.064
(t) WaveFlow (h = 16) 8×8 = 64 256 86.18 M 5.101

Models: We evaluate several likelihood-based generative models, including Gaussian WaveNet,
WaveGlow, WaveFlow and autoregressive flow (AF). As in Section 4.2, we implement autoregressive
flow from WaveFlow by squeezing the waveforms by its length and setting the filter size as 1 for
width dimension. Both WaveNet and AF have 30 layers with dilation cycle [1, 2, · · · , 512] and filter
size 3. For WaveGlow and WaveFlow, we investigate different setups, including the number of flows,
size of residual channels, and squeezed height h.

Conditioner: We use the 80-band mel-spectrogram of the original audio as the conditioner for
WaveNet, WaveGlow, and WaveFlow. We use FFT size 1024, hop size 256, and window size 1024.
For WaveNet and WaveFlow, we upsample the mel conditioner 256 times by applying two layers of
transposed 2-D convolution (in time and frequency) interleaved with leaky ReLU (α = 0.4). The
upsampling strides in time are 16 and the 2-D convolution filter sizes are [32, 3] for both layers. For
WaveGlow, we directly use the open source implementation. 4

Training: We train all models on 8 Nvidia 1080Ti GPUs using randomly chosen short clips of 16, 000
samples from each utterance. For WaveFlow and WaveNet, we use the Adam optimizer (Kingma
and Ba, 2015) with a batch size of 8 and a constant learning rate of 2× 10−4. For WaveGlow, we
use the Adam optimizer with a batch size of 16 and a learning rate of 1× 10−4. We applied weight
normalization (Salimans and Kingma, 2016) whenever possible.

5.1 LIKELIHOOD

The test log-likelihoods (LLs) of all models are evaluate at 1M training steps. Note that, i) all of the
LLs decrease slowly after 1M steps and ii) it took one month to train the largest WaveGlow (residual
channels = 512) for 1M steps. Thus, we chose 1M as the cut-off to compare these models. We
summarize the results in Table 4 with models from (a) to (t). We draw the following observations:

• Stacking a large number of flows improves LLs for all models. The (b) autoregressive flow
obtains the highest likelihood and even outperforms (a) WaveNet with the same amount of
parameters. Indeed, AF is bidirectional by stacking 3 flows interleaved with reverse operations.

4https://github.com/NVIDIA/waveglow
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Table 5: The synthesis speed over real-time and the 5-scale Mean Opinion Score (MOS) ratings with
95% confidence intervals. We use 30-layer WaveNet, 96-layer WaveGlow, and 64-layer WaveFlow.

Model flows×layers res. channels # param syn. speed MOS
WaveNet 1×30 = 30 128 4.57 M 0.002× 4.43± 0.14
WaveGlow 12×8 = 96 64 17.59 M 93.53× 2.17± 0.13
WaveGlow 12×8 = 96 128 34.83 M 69.88× 2.97± 0.15
WaveGlow 12×8 = 96 256 87.88 M 34.69× 4.34± 0.11
WaveGlow 12×8 = 96 512 268.29 M 8.08× 4.32± 0.12
WaveFlow (h=8) 8×8 = 64 64 5.91 M 15.39× 4.22± 0.12
WaveFlow (h=16) 8×8 = 64 64 5.91 M 7.28× 4.29± 0.09
WaveFlow (h=8) 8×8 = 64 96 12.78 M 8.89× 4.32± 0.14
WaveFlow (h=8) 8×8 = 64 128 22.25 M 7.15× 4.35± 0.12
WaveFlow (h=8) 8×8 = 64 256 86.18 M 2.58× 4.42± 0.12
Ground-truth — — — — 4.56± 0.09

• WaveFlow has much larger likelihood than WaveGlow with comparable number of parameters.
In particular, a small-footprint (k) WaveFlow has only 5.91M parameters but can provide
comparable likelihood (5.023 vs. 5.026) as the largest (g) WaveGlow with 268.29M parameters.

• As we increase h, the likelihood of WaveFlow steadily increases (can be seen from (h)-(k)),
and its inference is getting slower with more sequential steps. In the limit, it is equivalent to an
autoregressive flow. It illustrates the trade-off between model capacity and inference efficiency.

• (r) WaveFlow with 128 residual channels can obtain comparable likelihood (5.055 vs 5.059) as
(a) WaveNet with 128 residual channels. A larger (t) WaveFlow with 256 residual channels
can obtain even larger likelihood than WaveNet (5.101 vs 5.059).

5.2 SPEECH FIDELITY AND SYNTHESIS SPEED

We train WaveNet for 1M steps. We train WaveGlow and WaveFlow for 2M steps with small residual
channels (64, 96, and 128). We train larger models (res. channels 256 and 512) for 1M steps due to
the practical time constraint. At synthesis, we sampled Z from an isotropic Gaussian with standard
deviation 0.6 (default) and 1.0 for WaveGlow and WaveFlow, respectively. For WaveFlow and
WaveGlow, we run synthesis under NVIDIA Apex with 16-bit floating point (FP16) arithmetic, which
does not introduce any degradation of audio fidelity. We use the crowdMOS tookit (Ribeiro et al.,
2011) for naturalness evaluation, where test utterances from these models were presented to workers
on Mechanical Turk.

We report the 5-scale Mean Opinion Score (MOS) in Table 5. We also test the synthesis speed
on a Nvidia V100 GPU without using any customized inference kernels. Our largest WaveFlow
obtains comparable MOS score as WaveNet and outperforms WaveFlow, while it only requires 64
sequential steps (number of flows× height h) to synthesize very long waveforms. Our small footprint
WaveFlow (res. channels 64) has 5.91M parameters and can synthesize 22.05 kHz speech 15.39×
faster than real-time with reasonably good quality (MOS: 4.22 ± 0.12). Note that, convolution
queues (Paine et al., 2016) will further speed-up WaveFlow at synthesis, and we leave this for future
work. In contrast, WaveGlows with relatively small footprint (res. channel 64 and 128) generate
speech of much worse quality. We also note a positive correlation between the test likelihoods and
MOS scores for these likelihood-based generative models on raw audio.

6 CONCLUSION

We propose WaveFlow, a compact flow-based model for raw audio, which can be directly trained with
maximum likelihood estimation. It provides a unified view of flow-based models for time-domain
waveforms, and includes Gaussian WaveNet and WaveGlow as special cases. WaveFlow requires a
small number of sequential steps to generate high-fidelity speech and obtains likelihood comparable
to WaveNet. In the end, our small-footprint WaveFlow can generate 22.05kHz speech 15.39× faster
than real-time on a GPU without customized inference kernels.
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