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ABSTRACT

Most modern learning problems are highly overparameterized, meaning that the
model has many more parameters than the number of training data points, and as
a result, the training loss may have infinitely many global minima (in fact, a man-
ifold of parameter vectors that perfectly interpolates the training data). Therefore,
it is important to understand which interpolating solutions we converge to, how
they depend on the initialization point and the learning algorithm, and whether
they lead to different generalization performances. In this paper, we study these
questions for the family of stochastic mirror descent (SMD) algorithms, of which
the popular stochastic gradient descent (SGD) is a special case. Recently it has
been shown that, for overparameterized linear models, SMD converges to the
global minimum that is “closest” (in terms of the Bregman divergence of the mir-
ror used) to the initialization point, a phenomenon referred to as implicit regular-
ization. Our contributions in this paper are both theoretical and experimental. On
the theory side, we show that in the overparameterized nonlinear setting, if the
initialization is close enough to the manifold of global optima, SMD with suffi-
ciently small step size converges to a global minimum that is approximately the
closest global minimum in Bregman divergence, thus attaining approximate im-
plicit regularization. For highly overparametrized models, this closeness comes
for free: the manifold of global optima is so high dimensional that with high
probability an arbitrarily chosen initialization will be close to the manifold. On
the experimental side, our extensive experiments on the MNIST and CIFAR-10
datasets, using various initializations, various mirror descents, and various Breg-
man divergences, consistently confirms that this phenomenon indeed happens in
deep learning: SMD converges to the closest global optimum to the initializa-
tion point in the Bregman divergence of the mirror used. Our experiments further
indicate that there is a clear difference in the generalization performance of the
solutions obtained from different SMD algorithms. Experimenting on the CIFAR-
10 dataset with different regularizers, ¢1 to encourage sparsity, 5 (yielding SGD)
to encourage small Euclidean norm, and ¢;¢ to discourage large components in
the parameter vector, consistently and definitively shows that, for small initial-
ization vectors, ¢19-SMD has better generalization performance than SGD, which
in turn has better generalization performance than ¢;-SMD. This surprising, and
perhaps counter-intuitive, result strongly suggests the importance of a comprehen-
sive study of the role of regularization, and the choice of the best regularizer, to
improve the generalization performance of deep networks.

1 INTRODUCTION

Deep learning has demonstrably enjoyed a great deal of success in a wide variety of tasks (Amode1
et al., 2016; [Graves et al., 2013} |[Krizhevsky et al., 2012; Mnih et al., 2015; [Silver et al., [2016; Wu
et al., 2016} LeCun et al.|2015). Despite its tremendous success, the reasons behind the good perfor-
mance of these methods on unseen data is not fully understood (and, arguably, remains somewhat of
amystery). While the special deep architecture of these models seems to be important to the success
of deep learning, the architecture is only part of the story, and it has been now widely recognized that
the optimization algorithms used to train these models, typically stochastic gradient descent (SGD)
and its variants, play a key role in learning parameters that generalize well.
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Since these deep models are highly overparameterized, they have a lot of capacity, and can fit to
virtually any (even random) set of data points (Zhang et al., 2016). In other words, these highly
overparameterized models can “interpolate” the training data, so much so that this regime has been
called the “interpolating regime” (Ma et al.l |2018b). In fact, on a given dataset, the loss function
typically has (infinitely) many global minima, which however can have drastically different general-
ization properties (many of them perform very poorly on the test set). Which minimum among all the
possible minima we converge to in practice is determined by the initialization and the optimization
algorithm that we use for training the model.

Since the loss functions of deep neural networks are non-convex—sometimes even non-smooth—in
theory, one may expect the optimization algorithms to get stuck in local minima or saddle points.
In practice, however, such simple stochastic descent algorithms almost always reach zero training
error, i.e., a global minimum of the training loss (Zhang et al., 2016} Lee et al., 2016). More
remarkably, even in the absence of any explicit regularization, dropout, or early stopping (Zhang
et al.,2016), the global minima obtained by these algorithms seem to generalize quite well (contrary
to some other global minima). It has been also observed that even among different optimization
algorithms, i.e., SGD and its variants, there is a discrepancy in the solutions achieved by different
algorithms and how they generalize (Wilson et al.,[2017)). Therefore, it is important to ask

Which global minima do these algorithms converge to? And what properties do they have?

In this paper, we answer this question for the SGD algorithm, and more generally, for the family of
stochastic mirror descent (SMD) algorithms, which includes SGD as a special case. For any choice
of potential function, there is a corresponding mirror descent algorithm. We show that, for overpa-
rameterized nonlinear models, if one initializes close enough to the manifold of parameter vectors
that interpolates the data, then the SMD algorithm for any particular potential converges to a global
minimum that is approximately the closest one to the initialization, in Bregman divergence corre-
sponding to the potential. In highly overparameterized models, this closeness of the initialization
comes for free, something that is occasionally referred to as “the blessing of dimensionality.” For
the special case of SGD, this means that it converges to a global minimum which is approximately
the closest one to the initialization in the usual Euclidean sense.

We perform extensive systematic experiments with various initial points and various mirror descent
algorithms for the MNIST and CIFAR-10 datasets using standard off-the-shelf deep neural network
architectures for these datasets with standard random initialization, and we measure all the resulting
pairwise Bregman divergences. We found that every single result is exactly consistent with the above
theory. Indeed, in all our experiments, the global minimum achieved by any particular mirror
descent algorithm is the closest, among all other global minima obtained by other mirrors and
other initializations, to its initialization in the corresponding Bregman divergence. In particular,
the global minimum obtained by SGD from any particular initialization is closest to the initialization
in Euclidean sense, both among the global minima obtained by different mirrors and among the
global minima obtained by different initializations.

This result, proven theoretically and backed up by extensive experiments, further implies that, even
in the absence of any explicit regularization, these algorithms perform an implicit regularization. In
particular, it implies that, when initialized around zero, SGD acts as an /5 regularizer. Similarly,
by choosing other mirrors, one obtains different forms of implicit regularization (such as ¢; or /),
which may have different performances on test data. This raises the question

How well do different mirrors perform in practice?

Perhaps, one might expect an ¢; regularizer to perform better, due to the fact that it promotes sparsity,
and “pruning” in neural networks is believed to be helpful for generalization. On the other hand, one
may expect SGD (45 regularizer) to work best among different mirrors, because typical architectures
have been tuned for and tailored to SGD. We run experiments with four different mirror descents,
i.e., /1 (sparse), > (SGD), {3, and /1o (as a surrogate for /..), on a standard off-the-shelf deep
neural network architecture for CIFAR-10, namely ResNet-18. Somewhat counter-intuitively, our
results for test errors of different mirrors consistently and definitively show that the (1, regularizer
performs better than the other mirrors including SGD, while (1 consistently performs worse.
This flies in the face of the conventional wisdom that sparser weights (which are obtained by an
¢y regularizer) generalize better, and suggests that ¢.,, which roughly speaking penalizes all the
weights uniformly, may be a better regularizer for deep neural networks.
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1.1 RELATED WORK

There have been many efforts in the past few years to study deep learning from an optimization
perspective, e.g., (Achille & Soattol 2017; (Chaudhari & Soatto, [2018}; [Shwartz-Ziv & Tishby, 2017;
Allen-Zhu et al} 2019; Oymak & Soltanolkotabi| 2019; |Azizan & Hassibi, [2019; Ma et al., [2018bj
Du et al) 2018} [Li & Liang| [2018; |Cao & Gu, [2019). While it is not possible to review all the
contributions here, we comment on the ones that are most closely related to ours and highlight the
distinctions between our results and those.

Many recent papers have studied the convergence of the (S)GD algorithm in the so-called “over-
parameterized” setting (or “interpolating” regime), which is common in deep learning (Oymak &
Soltanolkotabi, [2019;|Allen-Zhu et al.,|2019; |Soltanolkotabi et al.,[2017; Ma et al.,[2018b)). All these
works, similar to ours, assume that the initialization is close to the solution space (of global minima),
which is a reasonable assumption in highly overparameterized models, as we argue in Section[A.4]
of the supplementary material. However, our results are more general because they extend to SMD.

Furthermore, even for the case of SGD, our results are stronger than those in the literature, in the
sense that not only do we show convergence to a global minimum, but we also show that the weight
vector we converge to, Weo, $ay, is close to the interpolating weight vector closest to the initialization,
w*, say. Denoting the initialization by wy, Oymak & Soltanolkotabi (2019) showed that for SGD,
[[weo —wo | is bounded by a constant factor of [|w* —wp||. Our Theoremd]shows the much stronger
statement that ||ws, — wol| = ||w* — wo|| + o(||w* — wg||). We further show that w., and w* are
very close to one another, viz. ||ws, —w*||? = o(||w* — wo]|)), something that could not be inferred
from the previous work.

There exist a number of results that characterize the implicit regularization properties of different
algorithms in different contexts (Neyshabur et al., 2017; [Ma et al., 2018a; |Gunasekar et al., 2017}
2018a; [Soudry et al., 2017; |Gunasekar et al., [2018bj; |Azizan & Hassibi, 2019; Mianjy et al., [2018]).
The closest ones to our results, since they concern mirror descent, are the works of (Gunasekar et al.,
2018a}; |Azizan & Hassibi, [2019). The authors in (Gunasekar et al.,|2018a) consider linear overpa-
rameterized models, and show that if SMD happens to converge to a global minimum, then that
global minimum will be the one that is closest in Bregman divergence to the initialization, a result
they obtain by examining the KKT conditions. However, they do not provide any conditions for con-
vergence and whether SMD converges with a fixed step size or not. |Azizan & Hassibi| (2019)) also
study linear models, but derive conditions on the step size for which SMD converges to the afore-
mentioned global minimum. Our results extend the aforementioned to nonlinear overparametrized
models, and show that, for small enough fixed step size, and for initializations close enough to the
space of interpolating solutions, SMD converges to a global minimum, something which had not
been shown in any of the previous work. Assuming every data point is revisited often enough, the
convergence we establish is deterministic. Finally, we show that the solution we converge to exhibits
approximate implicit regularization, something that was not not known for nonlinear models.

The remander of the paper is organized as follows. In Section [2} we review the family of mirror
descent algorithms and briefly revisit the linear overparameterized case. Section [3] provides our
main theoretical results, which are (1) convergence of SMD to a global minimum, and (2) proximity
of the obtained global minimum to the closest one from the initialization in Bregman divergence.
Our proofs are remarkably simple and are based on a powerful fundamental identity that holds for
all SMD algorithms in a general setting. In Section[d] we provide our experimental results, which
consists of two parts, (1) testing the theoretical claims about the distances for different mirrors and
different initializations, and (2) assessing the generalization properties of different mirrors. The
proofs of the theoretical results and more details on the experiments are relegated to the supplemen-
tary material.

2 BACKGROUND AND WARM-UP

Let us denote the training dataset by {(x;,9;) : i = 1,...,n}, where ; € R? are the inputs, and
y; € R are the labels. The model (which can be, e.g., linear, a deep neural network, etc.) is defined
by the general function f(z;,w) = f;(w) with some parameter vector w € RP. Since typical deep
models have a lot of capacity and are highly overparameterized, we are particularly interested in the
overparameterized (or so-called interpolating) regime, where p > n (often p > n). In this case,
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there are many parameter vectors w that are consistent with the training data points. We denote the
set of these parameter vectors by

W = {weR” | f(z;,w) =yi,i=1,...,n} (1)

This a high-dimensional set (e.g. a (p — n)-dimensional manifold) in R? and depends only on the
training data {(z;,y;) : ¢ = 1,...,n} and the model f(-,").

The total loss on the training set (empirical risk) can be expressed as L(w) = >.. ; L;(w),
where L;(-) = £(y;, f(x;,w)) is the loss on the individual data point i, and £(-,-) is a differen-
tiable non-negative function, with the property that ¢(y;, f(z;,w)) = 0iff y; = f(x;, w). Often
yi, f(z;,w)) = L(y; — f(x;,w)), with £(-) convex and having a global minimum at zero (such as
square loss, Huber loss, etc.). In this case, L(w) = > i {(y; — f(z;, w)).

W is the set of global minima, and every parameter vector w in Y renders the loss on each data
point zero, i.e., L;(w) = 0 Vi. The loss function is often attempted to be minimized by stochastic
gradient descent (SGD):

W; = Wi—1 — UVLi(’LUj,_l), ) Z 1 (2)
assuming the data is indexed randomly. We use one index ¢ for both the loss and the parameter
vector at step ¢ (for ¢ > n, one can cycle through the data, or select them at random, etc.).

2.1 STOCHASTIC MIRROR DESCENT

Mirror descent, first introduced by [Nemirovski & Yudin| (1983), is one of the most widely used
families of algorithms for optimization (Beck & Teboulle, 2003; (Cesa-Bianchi et al.| 2012} [Zhou
et al., |2017), which includes the popular gradient descent as a special case. Consider a strictly
convex differentiable function v(+), called the potential function. Then updates for stochastic mirror
descent (SMD) are defined as

Vip(w;) = Vip(wi—1) — NV L;(w;—1). 3)
Note that, due to the strict convexity of v (-), the gradient V¢(-) defines an invertible map, so
the recursion in (3) yields a unique w; at each iteration, and thus is a well-defined update, i.e.,
w; = V! (Vip(wi—1) =V L;(w;—1)) . Compared to classical SGD, rather than update the
weight vector along the direction of the negative gradient, the update is done in the “mirrored”

domain determined by the invertible transformation V(-). Mirror descent was originally conceived

to exploit the geometrical structure of the problem by choosing an appropriate potential. Note that

SMD reduces to SGD when ¢(w) = £ ||w||?, since the gradient V4/(-) is simply the identity map.

Alternatively, the update rule (3) can be expressed as
w; = argmin nw’ VL;(wi_1) + Dy (w, w;_1), “)

where

Dy (w,wi—1) = h(w) — (w;—1) — Vo(w;1)" (w — w; 1) ®)
is the Bregman divergence with respect to the potential function ¢ (-). Note that D,(-,-) is non-
negative, convex in its first argument, and that, due to strict convexity, Dy (w,w’) = 0 iff w = w’.

Different choices of the potential function ¢(-) yield different optimization algorithms, which will
potentially have different implicit biases. A few examples follow.

Gradient Descent. For the potential function ¢(w) = 1i|w||?, the Bregman divergence is

Dy(w,w’) = %||w — w'[|%, and the update rule reduces to that of SGD.

Exponentiated Gradient Descent. For ¢)(w) = >_; w; logw;, the Bregman divergence becomes
the unnormalized relative entropy (Kullback-Leibler divergence) Dy (w,w') = >, w;log Z—f —
> jwj + Zj w;, which corresponds to the exponentiated gradient descent (aka the exponential
weights) algorithm (Kivinen & Warmuth||1997).

1

p-norms Algorithm. For any g-norm squared potential function ¢)(w) = 3||w]|2, with % + % =1,

the algorithm will reduce to the so-called p-norms algorithm (Grove et al., [2001} |Gentile, [2003)).

Sparse Mirror Descent. For ¢)(w) = [wl[|;T¢, the algorithm reduces to sparse mirror descent,

which is used in compressed sensing (Azizan & Hassibi, |[2019).
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2.2 OVERPARAMETERIZED LINEAR MODELS

Overparameterized (or underdetermined) linear models have been recently studied in many pa-
pers due to their simplicity, and the fact that there are interesting insights than one can obtain
from them. In this case, the model is f(z;,w) = xiTw, the set of global minima is W =
{wl|y; =zfw,i=1,...,n}, and the loss is L;(w) = £(y; — =] w). The following result charac-
terizes the solution that SMD converges to (Azizan & Hassibil 2019; (Gunasekar et al., 2018a).

Proposition 1. Consider a linear overparameterized model. For sufficiently small step size, i.e.,
Sfor any p > 0 for which ¥(-) — nL;(-) is convex, and for any initialization w, the SMD iterates
converge to
Woo = argmin Dy, (w, wy).
weWw

Note that the step size condition, i.e., the convexity of ¥ (-) — nL;(-), depends on both the loss and

the potential function. For the case of SGD, v(w) = 3|lw||?, and £(y; — 2T w) = 3 (y; — a7 w)?, so

the condition reduces to the well-known 7 < W In this case, Dy, (w, wp) is simply 2 [|lw — wo 2.
Corollary 2. In particular, for the initialization wo = argmin ,cp, ¥ (w), under the conditions of
Proposition|I] the SMD iterates converge to

Weo = argmin 1 (w). (6)
weW

This means that running SMD for a linear model with the aforementioned wg, without any explicit
regularization, results in a solution that has the smallest potential ¢ (-) among all solutions, i.e., SMD
implicitly regularizes the solution with ¢(-). In particular, this means that SGD initialized around
zero acts an an ¢o-norm regularizer. In this paper, we show that these results continue to hold for
highly overparameterized nonlinear models in an approximate sense.

3 THEORETICAL RESULTS

In this section, we provide our main theoretical results. In particular, we show that for highly over-
parameterized models (1) SMD converges to a global minimum, (2) the global minimum obtained
by SMD is approximately the closest one to the initialization in Bregman divergence corresponding
to the potential.

Figure 1: An illustration of the parameter space. VV represents the set of global minima, wy is the
initialization, B is the local neighborhood, w* and the closest global minimum to wq (in Bregman
divergence), and wy is the minimum that SMD converges to.

3.1 CONVERGENCE OF STOCHASTIC MIRROR DESCENT

Let us define

Dy, (w,w') := Li(w) — Li(w') = VL;(w')" (w — w'), @)
which is defined in a similar way to a Bregman divergence for the loss function. The difference
though is that, unlike the potential function of the Bregman divergence, the loss function L;(-) =
L(y; — f(x;,-)) need not be convex (even when £(-) is) due to the nonlinearity of f(-,-).
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It has been argued in several recent papers that in highly overparameterized neural networks, any ran-
dom initialization wy is close to VW, with high probability (L1 & Liang},|2018};Du et al.|[2018};|Azizan
& Hassibil [2019; |Allen-Zhu et al., [2019; (Cao & Gu, 2019) (see also the discussion in Section [A.4]
of the supplementary material). Therefore, it is reasonable to make the following assumption about
the initialization.

Assumption 1. Denote the initial point by wg. There exists w € W and a region B = {w' €
R? | Dy (w,w") < €} containing wy, such that Dy, (w,w’') > 0,i=1,...,n, forallw’ € B.

It is important to understand what this assumption means. Since L;(-) is not necessarily convex, it
is certainly not the case that Dy, (w,w’) > 0 for all w’. However, since w is a minimizer of L;(+),
there will be a neighborhood around it such that for all w’ in this neighborhood Dy, (w, w’) > 0 (see
Fig.[2)for an illustration). What we are requiring is that the initialization wy be inside the intersection
of all such neighborhoods for ¢ = 1,2, ..., n. In other words, we require a wq close enough to V.

Figure 2: An illustration of Dy, (w,w’) > 0 in a local region in Assumption|]

Our second assumption states that in this local region, the first and second derivatives of the model
are bounded.

Assumption 2. Consider the region B in Assumption|l| f;(-) have bounded gradient and Hessian
on the convex hull of B, i.e., ||V fi(w")|| <7, and o < Apin(Hy, (W) < Amax(Hp, (W) < B,i =
1,...,n, forall w' € conv B.

This is again a mild assumption, which is assumed in other related work such as (Oymak &
Soltanolkotabil, 2019) as well. Note that we do not require « to be positive (just its boundedness).
The following theorem states that under Assumption[I} SMD converges to a global minimum.

Theorem 3. Consider the set of interpolating parameters W = {w € R? | f(z;,w) = y;,1 =
1,...,n}, and the SMD iterates given in (3)), where every data point is revisited after some steps.
Under Assumption|l| for sufficiently small step size, i.e., for any ) > 0 for which () — nL;(-) is
strictly convex on B for all i, the following holds.

1. All the iterates {w;} remain in B.
2. The iterates converge (10 Wxo).

3. we € W.

Note that, while convergence (to some point) with decaying step size is almost trivial, this result
establishes convergence to the solution set with a fixed step size. Furthermore, the convergence is
deterministic, and is not in expectation or with high probability. For example, this result also applies
to the case where we cycle through the data deterministically.

We should also remark that the choice of distance in the definition of the “ball” B was important
to be the Bregman divergence with respect to (+) and in that particular order. In fact, one cannot
guarantee that the SMD iterates get closer to an interpolating w at every step in the usual Euclidean
sense. However, once can establish that it gets closer in D, (w, -). Finally, it is important to note
that we need the step size to be small enough to guarantee the strict convexity of ¢(-) —nL;(-) in B,
not globally.

Denote the global minimum that is closest to the initialization in Bregman divergence by w*, i.e.,

w* = argmin Dy, (w, wo). (8)
wew
Recall that in the linear case, this was what SMD converges to. We show that in the nonlinear case,
under Assumptions |l{and[2} SMD converges to a point w, which is “very close” to w*.
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Theorem 4. Define w* = argmin,, ¢y Dy (w, wo). Under the conditions of Theorem (3| and As-
sumption[2} the following holds

1. Dy (Weo,wo) = Dy (w*, wp) + o(e€)
2. Dy(w*, weo) = 0(€)

In other words, if we start with an initialization that is O(¢) away from W (in Bregman divergence),
we converge to a point ws, € W that is o(e) away from w*. The Bregman divergence of this point
is o(¢) from the minimum value it can take.

Corollary 5. For the initialization wy = argmin,, cp» (w), under the conditions of Theorem
w* = argmin,, ¢y ¥ (w) and the following holds.

1. p(weo) = P(w*) 4 o(e)
2. Dy(w*, weo) = 0(€)

3.2 PROOF TECHNIQUE: FUNDAMENTAL IDENTITY OF SMD

The main tool used for the proofs is a fundamental identity that holds for SMD.

Lemma 6. For any model f(-,-), any differentiable loss {(-), any parameter w € W, and any step
size ) > 0, the following relation holds for the SMD iterates {w;}

Dy(w,w;—1) = Dy(w,w;) + Dy_yr, (i, wi—1) +nLi(w;) +nDr, (w, w;_1), )
foralli > 1.

This identity allows one to prove the results in a remarkably simple and direct way. Due to space
limitations, the proofs are relegated to the supplementary material.

The ideas behind this identity are related to H,, estimation theory (Hassibi et al. [1999} |Simon,
2006)), which was originally developed in the 1990’s in the context of robust control theory. In fact,
it has connections to the minimax optimality of SGD, which was shown by (Hassibi et al., 1994) for
linear models, and recently extended to nonlinear models and general mirrors by (Azizan & Hassibi,
2019).

4 EXPERIMENTAL RESULTS

In this section, we provide our experimental results, which consist of two main parts. In the first part,
we evaluate the theoretical claims by running systematic experiments for different initializations
and different mirrors, and evaluating the distances between the global minima achieved and the
initializations, in different Bregman divergences. In the second part, we assess the generalization
error of different mirrors, which correspond to different regularizers, in order to understand which
regularizer performs better.

Yoo
,SMD—!
Woo 1

Figure 3: An illustration of the experiments in Table/[T]
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SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm

1-norm BD 141 9.19 x 103 4.1 x 10% 2.34 x 10°
2-norm BD  3.15 x 103 562 1.24 x 103 6.89 x 103
3-norm BD 4.31 x 10* 107 53.5 1.85 x 102
10-norm BD  6.83 x 10'3 972 791 x107° | 2.72x 108

Table 1: Fixed Initialization. Distances from final points (global minima) obtained by different algo-
rithms (columns) from the same initialization (Fig. , measured in different Bregman divergences
(rows). First Row: The closest point to wy in ¢; Bregman divergence, among the four final points,
is exactly the one obtained by SMD with 1-norm potential. Second Row: The closest point to wg
in {5 Bregman divergence (Euclidean distance), among the four final points, is exactly the one ob-
tained by SGD. Third Row: The closest point to wy in ¢35 Bregman divergence, among the four final
points, is exactly the one obtained by SMD with 3-norm potential. Fourth Row: The closest point
to wy in {19 Bregman divergence, among the four final points, is exactly the one obtained by SMD
with 10-norm potential.

4.1 Do SMDS CONVERGE TO THE CLOSEST POINT IN BREGMAN DIVERGENCE?

While accessing all the points on W and finding the closest one is impossible, we design system-
atic experiments to test this claim. We run experiments on some standard deep learning problems,
namely, a standard CNN on MNIST (LeCun et al., [1998) and the ResNet-18 (He et al.l 2016) on
CIFAR-10 (Krizhevsky & Hinton, 2009). We train the models from different initializations, and with
different mirror descents from each particular initialization, until we reach 100% training accuracy,
i.e., a point on YW. We randomly initialize the parameters of the networks around zero. We choose 6
independent initializations for the CNN, and 8 for ResNet-18, and for each initialization, we run dif-
ferent SMD algorithms with the following four potential functions: (a) #; norm, (b) 5 norm (which
is SGD), (¢) ¢3 norm, (d) {10 norm (as a surrogate for ). See Supplementary Material [B] for more
details on the experiments.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial I | 6 x 102 2.9 x 10° 28 x 10° 28x10° 28x10° 2.8x10° 2.8x10° 2.8x10°
Initial 2 2.8 x 10° | 6.1 x 10> 2.8 x10® 2.8x10% 28x10> 28x10® 2.8x10% 2.8x 103
Initial 3 2.8 x 10° 2.9 x10° | 5.6 x 102 28 x 103 28x10% 2.8x10° 28x10° 2.8x103
Initial 4 2.8 x 10> 29 x10° 2.8x10° = 59x 102 28x10> 2.8x10® 2.8x10® 2.8x10°%
Initial 5 2.8 x 10° 2.9 x10° 28x10° 28x10° & 57x10> 2.8x10° 28x10° 2.8x10%
Initial 6 2.8 x 10> 2.9 x 10> 2.8x10% 28x10° 28x10° @ 5.6x 102 2.8x10% 2.8x 103
Initial 7 2.8 x 10° 2.9 x10®° 28x10° 28x10% 28x10% 28x10° 6x102 28x103
Initial 8 2.8 x 10> 2.9x10° 28x10° 28x10> 28x10° 28x10° 28x10° | 5.8 x 102

Table 2: Fixed Mirror: SGD. Pairwise distances between different initial points and the final points
obtained from them by SGD (Fig. ). Row i: The closest final point to the initial point i, among all
the eight final points, is exactly the one obtained by the algorithm from initialization <.

5 O] W)
wl)  Woe ’

Initializations:

wd

Figure 4: An illustration of the experiments in Table

We measure the distances between the initializations and the global minima obtained from different
mirrors and different initializations, in different Bregman divergences. Table[I]} and Table [2] show
some examples among different mirrors and different initializations, respectively. Fig. [5] shows the
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distances between a particular initial point and all the final points obtained from different initializa-
tions and different mirrors (the distances are often orders of magnitude different, so we show them
in logarithmic scale). The global minimum achieved by any mirror from any initialization is the
closest in the correct Bregman divergence, among all mirrors, among all initializations, and among
both. This trend is very consistent among all our experiments, which can be found in Supplementary
Material [Bl
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MNIST. SGD Starting from Initial 4 CIFAR-10. SGD Starting from Initial 2
Figure 5: Distances between a particular initial point and all the final points obtained by both dif-
ferent initializations and different mirrors. The smallest distance, among all initializations and all
mirrors, corresponds exactly to the final point obtained from that initial point by SGD. This trend is
observed consistently for all other mirror descents and all initializations (see the results in Tables §]
and [9]in the appendix).

4.2 DISTRIBUTION OF THE WEIGHTS OF THE NETWORK

One may be curious to see how the final weights obtained by these different mirrors look like,
and whether, for example, mirror descent corresponding to the ¢;-norm potential induces sparsity.
Fig. [6]shows the histogram of the absolute value of the weights for different SMDs, when initialized
by the same set of close to zero weights. The histograms of the final weights look substantially
different and, since they all started from the same initial weights, this difference is fully attributable
to the different mirrors used. The histogram of the £;-SMD has more weights at and close to zero,
which confirms that it induces sparsity. The histogram of the £3-SMD (SGD) looks almost perfectly
Gaussian, whereas the /3 and ¢1¢ histograms are shifted to the right, so much so that almost all
weights in the 1 solution are non-zero. See Appendix [B]for more details.

4.3 GENERALIZATION ERRORS OF DIFFERENT MIRRORS

We compare the performance of the SMD algorithms discussed before on the test set. For MNIST,
perhaps not surprisingly, all the four SMD algorithms achieve around 99% or higher accuracy.
For CIFAR-10, however, there is a significant difference between the test errors of different mir-
rors/regularizers on the same ResNet-18 architecture. Fig. [7] shows the test accuracies of different
algorithms with eight random initializations around zero, as discussed before. Counter-intuitively,
£10 performs consistently best, while ¢; performs consistently worse. This result suggests the impor-
tance of a comprehensive study of the role of regularization, and the choice of the best regularizer,
to improve the generalization performance of deep neural networks.
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Figure 6: Histogram of the absolute value of the final weights in the network for different SMD
algorithm with different potentials. Note that each of the four histograms corresponds to an 11 x 10°-
dimensional weight vector that perfectly interpolates the data. Even though the weights remain quite
small, the histograms are drastically different. ¢1-SMD induces sparsity on the weights, as expected.
SGD appears to be produce a Gaussian distribution on the weights. ¢3-SMD starts to reduce the
sparsity, and ¢1¢ shifts the distribution of the weights significantly, so much so that almost all the
weights are non-zero.
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Figure 7: Generalization performance of different SMD algorithms on the CIFAR-10 dataset using
ResNet-18. ¢4 performs consistently better, while ¢, performs consistently worse.
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Supplementary Material

A PROOFS OF THE THEORETICAL RESULTS

In this section, we prove the main theoretical results. The proofs are based on a fundamental identity
about the iterates of SMD, which holds for all mirrors and all overparametereized (even nonlinear)
models (Lemmal6). We first prove this identity, and then use it to prove the convergence and implicit
regularization results.

A.1 FUNDAMENTAL IDENTITY OF SMD

Let us prove the fundamental identity.

Lemmal6l For any model f(-,-), any differentiable loss ((-), any parameter w € W, and any step
size n > 0, the following relation holds for the SMD iterates {w; }

Dy(w, wi—1) = Dy(w,w;) + Dy, (Wi, wi—1) +nLi(w;) + Dy, (w, wi—1), ©
foralli > 1.

Proof of Lemmal6] Let us start by expanding the Bregman divergence D, (w, w;) based on its defi-
nition
Dy(w,w;) = P(w) = (w;) = Vip(w) " (w — w;).

By plugging the SMD update rule Vo) (w;) = Vip(w;—1) — nV L;(w;—1) into this, we can write it
as

Dy (w, w;) = (w) — (w;) — Vib(wi—1)" (w —w;) + nVLi(wi—1)" (w—w;).  (10)
Using the definition of Bregman divergence for (w,w;_1) and (w;, w;—1), i.e., Dy (w,w;—1) =
Y(w) — Plwi—1) — Vo(wim)T(w — wi—1) and Dy(wi,wim1) = ¢(w;) — plwi—1) —
Vo (w;_1)T (w; — w;_1), we can express this as
Dy (w,w;) = Dy (w, wi—1) + (wi—1) + Vep(wi1)" (w — wi—1) — ¢ (w;)
— Vw(wi_l)T(w — wi) + nVLi(wi_l)T(w — wz) (11D
= Dy (w,wi—1) + P(wi—1) — p(w;) + Vo(wi—1)" (w; — wi—1)
+ 1V Li(wi—1)" (w —w;) (12)
= Dw(w,wi,l) — Dw(wi,wifl) + nVLi(wi,l)T(w — wi). (13)
Expanding the last term using w — w; = (w — w;—1) — (w; — w;—1), and following the definition
of Dy, (.,.) from (7) for (w,w;_1) and (w;, w;_1), we have
Dw(’w, wz) = Dw(’w, wi_l) — Dw (U)i7 wi_l) -+ nVLl(wz_l)T(w — wi—l)
— VL (wi—1)" (wi —wi—1) (14)
= Dy(w,wi—1) = Dy(wi, wi—1) + 1 (Li(w) = Li(wi—1) = D, (w, w;1))
—n (Li(w;) — Li(wi—1) — Dp, (wi, wi—1)) (15)
= Dy(w,wij—1) — Dy(wi, wi—1) +n (Li(w) — D, (w, wi—1))
—n(Li(w;) — D, (wi,wi—1))  (16)
Note that for all w € W, we have L;(w) = 0. Therefore, for all w € W
Dy(w,w;) = Dy (w, wi—1) =Dy (wi, wi—1)=nDr, (w, wi—1) =nLi(w;)+n Dy, (wi, wi—1). (17)
Combining the second and the last terms in the right-hand side leads to
Dy (w,w;) = Dy(w,wi—1) — Dy, (wi,wi—1) = nDr, (w,wi—1) —nLi(w;),  (18)
for all w € W, which concludes the proof. O

14
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A.2 CONVERGENCE OF SMD TO THE INTERPOLATING SET
Now that we have proved Lemmalf] we can use it to prove our main results, in a remarkably simple
fashion. Let us first prove the convergence of SMD to the set of solutions.

Assumption [1L Denote the initial point by wq. There exists w € W and a region B = {w' €
R? | Dy (w,w") < €} containing wy, such that Dy, (w,w’') > 0,i=1,...,n, forallw’ € B.

Theorem |3} Consider the set of interpolating parameters W = {w € RP | f(z;,w) = y;,5 =
1,...,n}, and the SMD iterates given in (3), where every data point is revisited after some steps.
Under Assumption Sor sufficiently small step size, i.e., for any ) > 0 for which ¥ (-) — nL;(-) is
strictly convex for all i, the following holds.

1. All the iterates {w; } remain in B.
2. The iterates converge (10 Weo).

3. we € W.

Proof of Theorem 3] First we show that all the iterates wil remain in 3. Recall the identity of SMD
from Lemma

Dy (w,wi—1) = Dy(w,w;) + Dy, (Wi, wi—1) + nLi(w;) + nDr, (w, w;—1) ©

which holds for all w € W. If w;_1 is in the region B, we know that the last term Dy, (w, w;_1)
is non-negative. Furthermore, if the step size is small enough that ¢)(-) — nL;(-) is strictly convex,
the second term Dy, _, 1, (w;, w;—1) is a Bregman divergence and is non-negative. Since the loss is
non-negative, nL;(w;) is always non-negative. As a result, we have

Dd)(w/wifl) > Dw(w7w1)7 (19)

This implies that D, (w,w;) < €, which means wj; is in B too. Since wy is in B, wy will be in 5,
and therefore, wo will be in 3, and similarly all the iterates will remain in 5.

Next, we prove that the iterates converge and ws, € W. If we sum up identity (O) for all i =

1,...,T, the first terms on the right- and left-hand side cancel each other telescopically, and we
have
T
Dy (w,wo) = Dy(w,wr) + Y [Dy—nr, (wi, wi1) +nLi(w;) + nDp, (w,wi1)] . (20)
i=1

Since Dy (w,wr) > 0, we have Y. [Dy_nr, (wi,wi_1) + nLi(w;) + 1Dy, (w,w;_1)] <
Dy (w,wp). If we take T' — oo, the sum still has to remain bounded, i.e.,

Z [Dy—nr, (Wi, wi—1) + nLi(w;) + nDr, (w, w;—1)] < Dy (w,wp). 21
i=1

Since the step size is small enough that ¢ (-) — nL;(+) is strictly convex for all ¢, the first term
Dy—yr, (w;, w;—1) is non-negative. The second term 1L, (w;) is non-negative because of the non-
negativity of the loss. Finally, the last term Dy, (w, w;—1) is non-negative because w;_; € B for
all . Hence, all the three terms in the summand are non-negative, and because the sum is bounded,
they should go to zero as ¢ — oo. In particular,

Dil)—TILi ('LUZ',’LUi_l) — 0 (22)

implies w; — w;_1, i.e., convergence (w; — W) (Note that the functions ¢ — nL; do not go to
zero, as there is a fixed number, i.e., n, of them). Further,

nLi(w;) — 0. (23)
This implies that all the individual losses are going to zero, and since every data point is being

revisited after some steps, all the data points are being fit. Therefore, w., € W. O
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A.3 CLOSENESS OF THE FINAL POINT TO THE REGULARIZED SOLUTION

In this section, we show that with the additional Assumption (which is equivalent to f;(-) having
bounded Hessian in B), not only do the iterates remain in B and converge to the set JV, but also they
converge to a point which is very close to w* (the closest solution to the initial point, in Bregman
divergence). The proof is again based on our fundamental identity for SMD.

Assumption |2} Consider the region BB in Assumption|l| f;(-) have bounded gradient and Hessian
on the convex hull of B, i.e., ||V f;(w")|| <7, and o < Amin(Hy, (W) < Amax(Hp, (W) < B,i =
1,...,n, forall w' € conv B.

Theorem @ Define w* = argmin,,cyy Dy (w, wo). Under the assumptions of Theorem 3| and
Assumption |2} the following holds.

1. Dy (Woo, wg) = Dy (w*, wp) + o(e€)
2. Dy(w*, weo) = 0(€)

Proof of Theorem[] Recall the identity of SMD from Lemma 6}
Dy (w,wi—1) = Dy(w,w;) + Dy—pr, (Wi, wi—1) +nLi(w;) + nDr, (w, wi—1) ©
which holds for all w € W. Summing the identity for all ¢ > 1, we have

Dy (w,wo) = Dy(w, wee) + Y [Dy—yr, (wi, wi—1) + nLi(w;) +nDr, (w,wi1)].  (24)
i=1
for all w € W. Note that the only terms in the right-hand side which depend on w are the first one
Dy (w,we) and the last one Y .o | Dy, (w, w;—1). In what follows, We will argue that, within 5,
the dependence on w in the last term is weak and therefore w,, is close to w*.

To further spell out the dependence on w in the last term, let us expand D, (w, w;_1)
Dy, (w,wi—1) =0 — Li(wi—1) — VLi(wi—1)" (w — w;_y) (25)
= —Li(wi—1) + ¢ (yi — filwi—1))V fi(wi—1))" (w — w;_1) (26)

for all w € W, where the first equality comes from the definition of Dy, (-,-) and the fact that
L;(w) = 0 forw € W. The second equality is from taking the derivative of L;(-) = (y; — fi(*))
and evaluating it at w;_1.

By Taylor expansion of f;(w) around w;_; and using Taylor’s theorem (Lagrange’s mean-value
form), we have

fiw) = fi(wi—1) + V fi(wi—1)" (w — wi—1) + %(w —w;—1)" Hy, () (w —wi—1),  (27)

for some 1; in the convex hull of w and w;_1. Since f;(w) = y; for all w € W, it follows that

Vfi(wi—1) (w—wi—1) = y; — filwi—1) — %(w —wi—1) T Hy, (i) (w —wi—1),  (28)

for all w € W. Plugging this into (26), we have

1 .
Dp,(w,w;—1) = _Li(wifl)'i‘(/(yi_fi(wifl))(yi_fi(wifl)_§(w_wi71)THfi (wi)(W—wiﬂ))
(29)
for all w € W. Finally, by plugging this back into the identity (24), we have

Dy (w,wo) = Dy (w, wee) + Y [Dd)fnLi (wi, wi—1) + nLi(wi) = nLi(wi-1)
i=1
1 N
+ 0l (yi — filwi—1)) (i — fi(wi—1) — §(w —wi—1) " Hy, () (w — wi—l))} (30)
for all w € W. Note that this can be expressed as

=1
Dy (w,wo) = Dy (w,wee) +C = 51 (i — filwi 1)) (w—w; 1) T Hy, (4g) (w —wi 1), (31)
i=1
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for all w € W, where C' does not depend on w:

C = [Dyyr.(wi,wi1) +nLi(w;) = nLi(wi—1) + 0 (yi = fi(wi—1)) (i — fi(wi-1))].

i=1

From Theorem [3] we know that wo, € W. Therefore, by plugging it into equation (31)), and using
the fact that D, (Woo, Woo) = 0, we have

Dy (oo, wo) = C — Z 00— i) (s — wi)THp () (woe i), (32)

where w/ is a point in the convex hull of ws, and w;_; (and therefore also in conv B), for all i.
Similarly, by plugging w*, which is also in W, into (31)), we have

* * - 1 * *
Dy (w*,wp) = Dy (w*,wee) +C = > 21 (yi = fi(wi1))(w” = wi—1)" Hy, (w])(w* —w;—1),
i=1
(33)
where w] is a point in the convex hull of w* and w;_; (and therefore also in conv B), for all i.
Subtracting the last two equations from each other yields

Dw(woo,wo)—Dw(w*,wo)*—Dw(w Woo +Z 775/ fz(wz 1))
=1

[(w* —wi—1)" Hy, (] ) (w* = wi—1) = (oo — wi—1)T Hy, (W) (wee —wi-1)] . (34)
Note that since all w] and w{’ are in conv B, by Assumption[2] we have
aflwos = wi—1|* < (woo — wim1)" Hy, (w]) (oo — wi—1) < Bllwes —wis|?, (35
and
aflw* —wi|* < (w* —wi)" Hy, (0] ) (w* —wi—1) < Bllw* —w;i > (36)
Further, again since all the iterates {w;} are in B, it follows that ||we — w;_1]|> = O(e) and

[w* —w;_1]|* = O(€). As aresult the difference of the two terms, i.e., [(w* —w;—1)" Hy, (w})(w*—
wi—1) — (Woo — wi—1)T Hy, (w])(wos — wi—1)], is also O(e), and we have

D¢(woo, wo) — Dw(w*, wo) = —Dw(w*, ’U)OO) + Z ﬁfl(yi — fl(wl_l))O(e) 37

i=1

Now note that £/ (y; — fi(wi—1)) = € (fi(w) — fi(wi—1)) = £ (Vfi(w;)" (w — w;_1)) for some
w; € conv B. Since ||w — w;—1||* = O(e) for all 4, and since £(-) is differentiable and f;(-) have
bounded derivatives, it follows that ¢'(y; — f;(w;—1)) = o(e). Furthermore, the sum is bounded.
This implies that Dy, (wee, wo) — Dy (w*, wo) = —Dy(w*, wee ) + 0(€), or equivalently

(Dy(woo, wo) — Dy (w*, wp)) + Dy (w*, wee) = 0(e). (38)

The term in parentheses Dy (woo, wo) — Dy (w*, wp) is non-negative by definition of w*. The
second term D, (w*, wo, ) is non-negative by convexity of . Since both terms are non-negative and
their sum is o(¢), each one of them is at most o(¢), i.e.

{Dw(woo,wo) — Dy (w*, wg) = o(e)
Dy (w*, weo) = 0(€)

which concludes the proof. O

(39)

Corollary |5l For the initialization wy = arg min,, cp, ¥ (w), under the conditions of Theorem
w* = arg min,, ¢y ¥ (w) and the following holds.

1. (wos) = tp(w*) + o(e)
2. Dy(w*, weo) = 0(€)
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Proof of Corollary[3] The proof is a straightforward application of Theorem 4] Note that we have

Dy (w, wo) = 1h(w) — ¢(wo) — Vip(wo) " (w — wp) (40)
for all w. When wo = arg min,, g, ¢(w), it follows that Vi) (wg) = 0, and
Dy(w, wo) = h(w) — th(wo). 41)

In particular, by plugging in ws and w*, we have Dy (woo,wy) = ¥(wWeo) — ¥(wp) and
Dy (w*, wo) = ¢(w*) — ¢ (wp). Subtracting the two equations from each other yields

le(womwo) _Dw(w*vwo) :w(wOO) —w(UJ*)’ (42)
which along with the application of Theorem [ concludes the proof. O

A.4 CLOSENESS TO THE INTERPOLATING SET IN HIGHLY OVERPARAMETERIZED MODELS

As we mentioned earlier, it has been argued in a number of recent papers that for highly overparam-
eterized models, any random initial point is, whp, close to the solution set VW (Azizan & Hassibi,
2019; [Li & Liang| [2018; |Du et al., 2018} |Allen-Zhu et al., 2019} |Cao & Guj 2019)). In the highly
overparameterized regime, p > n, and so the dimension of the manifold W, which is p — n, is very
large. For simplicity, we outline an argument for the case of Euclidean distance, bearing in mind
that a similar argument can be used for general Bregman divergence. Note that the distance of an
arbitrarily chosen wq to W is given by

min  |Jw — wo)?
w
st y= f(z,w)

where y = vec(y;,t = 1,...,n) and f(x,w) = vec(f(x;,w),i = 1,...,n). This can be approxi-
mated by
min  |jw — wpl|?
w

st y= f(z,w) + Vf(z,wo)T(w — wp)

where V f(z,wo)T = vec(Vf(z;,w)T,i = 1,...,n) is the n x p Jacobian matrix. The latter
optimization can be solved to yield
~1
[we —woll® & (y — f(z,w0))" (Vf(w,wo)"V f(z,w0))  (y— f(x,wo)) (43)

Note that V f (z, wo) TV f (2, wg) is an n x n matrix consisting of the sum of p outer products. When
the x; are sufficiently random, and p > n, it is not unreasonable to assume that whp

Ami]ﬂ <Vf($,w0)TVf<$,U)0)) = Q(p),
from which we conclude
1 n
[[w, —woll* = Hy—f(x,wo)l\QO(];) =0(§), (44)

since y — f(x,wp) is n-dimensional. The above implies that wy is close to w, and hence W.
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B MORE DETAILS ON THE EXPERIMENTAL RESULTS

In order to evaluate the claim, we run systematic experiments on some standard deep learning prob-
lems.

Datasets. We use the standard MNIST (LeCun et al., |1998)) and CIFAR-10 (Krizhevsky & Hinton)
2009) datasets.

Architectures. For MNIST, we use a 4-layer convolutional neural network (CNN) with 2 convo-
lution layers and 2 fully connected layers. The convolutional layers and the fully connected layers
are picked wide enough to obtain 2 x 10° trainable parameters. Since MNIST dataset has 60,000
training samples, the number of parameters is significantly larger than the number of training data
points, and the problem is highly overparameterized. For the CIFAR-10 dataset, we use the standard
ResNet-18 (He et al., 2016) architecture without any modifications. CIFAR-10 has 50,000 training
samples and with the total number of 11 x 10 parameters in ResNet-18, the problem is again highly
overparameterized.

Loss Function. We use the cross-entropy loss as the loss function in our training. We train the
models from different initializations, and with different mirror descents from each particular initial-
ization, until we reach 100% training accuracy, i.e., until we hit W.

Initialization. We randomly initialize the parameters of the networks around zero (N (0,0.0001)).
We choose 6 independent initializations for the CNN, and 8 for ResNet-18, and for each initializa-
tion, we run the following 4 different SMD algorithms.

Algorithms. We use the mirror descent algorithms defined by the norm potential ¢ (w) = %||w||g
for the following four different norms: (a) #; norm, i.e., ¢ = 1+ ¢, (b) {5 norm, i.e., ¢ = 2 (which is
SGD), (¢) ¢35 norm, i.e., ¢ = 3, (d) {1p norm, i.e., ¢ = 10 (as a surrogate for ¢, norm). The update
rule can be expressed as follows.

wij = [[wi—1,4|" " sign(wi_1;) — nVLi(wi—1);|"

sign (|wi_17j|q_1 sign(wi_w) — nVLi(wi_l)j), 45)
where w;_1 ; denotes the j-th element of the w;_; vector.

We use a fixed step size 7). The step size is chosen to obtain convergence to global minima.

B.1 MNIST EXPERIMENTS

B.1.1 CLOSEST MINIMUM FOR DIFFERENT MIRROR DESCENTS WITH FIXED
INITIALIZATION

We provide the distances from final points (global minima) obtained by different algorithms from the
same initialization, measured in different Bregman divergences for MNIST classification task using
a standard CNN. Note that in all tables the smallest element in each row is on the diagonal, which
means the point achieved by each mirror has the smallest Bregman divergence to the initialization
corresponding to that mirror, among all mirrors. Tables [3| [ 5] [6] [7] [8] depict these results for 6
different initializations. The rows are the distance metrics used as the Bregman Divergences with
specified potentials. The columns are the global minima obtained using specified SMD algorithms.

Table 3: MNIST Initial Point 1
SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm

I-norm BD 2.767 937.8 1.05 x 10% 1.882 x 10°
2-norm BD 301.6 58.61 261.3 2.118 x 10*
3-norm BD 1720 37.45 7.143 2518
10-norm BD  7.453 x 108 773.4 0.2939 0.003545
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Table 4: MNIST Initial Point 2
SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm

1-norm BD 2.78 945 1.37 x 10% 2.01 x 10°
2-norm BD 292 59.3 374 2.29 x 10*
3-norm BD 1.51 x 10° 38.6 11.6 2.71 x 10°
10-norm BD  1.06 x 108 831 0.86 0.00321

Table 5: MNIST Initial Point 3
SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm

1-norm BD 3.02 968 1.06 x 10% 1.9 x 10°
2-norm BD 291 60.9 272 2.12 x 10%
3-norm BD  1.49 x 103 39.1 7.82 2.49 x 103
10-norm BD 1.1 x 108 900 0.411 0.00318

Table 6: MNIST Initial Point 4
SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm

1-norm BD 2.78 1.21 x 10° 1.08 x 10% 1.92 x 10°
2-norm BD 291 77.3 271 2.15 x 10*
3-norm BD 1.48 x 103 49.7 7.56 2.52 x 103
10-norm BD 9.9 x 107 1.72 x 103 0.352 0.00296

Table 7: MNIST Initial Point 5
SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm

1-norm BD 2.79 958 1.08 x 107 2 x 10°
2-norm BD 292 60.4 271 2.28 x 104
3-norm BD 1.49 x 103 39 7.52 2.69 x 10°
10-norm BD  9.09 x 107 846 0.342 0.00309

Table 8: MNIST Initial Point 6
SMD I-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm

1-norm BD 2.96 930 1.08 x 107 1.9 x 10°
2-norm BD 308 59 271 2.12 x 10*
3-norm BD 1.63 x 10° 38.6 7.46 2.47 x 103
10-norm BD  1.65 x 108 864 0.334 0.00295

B.1.2 CLOSEST MINIMUM FOR DIFFERENT INITILIZATIONS WITH FIXED MIRROR

We provide the pairwise distances between different initial points and the final points (global min-
ima) obtained by using fixed SMD algorithms in MNIST dataset using a standard CNN. Note that
the smallest element in each row is on the diagonal, which means the closest final point to each
initialization, among all the final points, is the one corresponding to that point. Tables [9]
and 12| depict these results for 4 different SMD algorithms. The rows are the initial points and the
columns are the final points corresponding to each initialization.

B.1.3 CLOSEST MINIMUM FOR DIFFERENT INITILIZATIONS AND DIFFERENT MIRRORS

Now we assess the pairwise distances between different initial points and final points (global min-
ima) obtained by all different initilizations and all different mirrors (Table[§)). The smallest element
in each row is exactly the final point obtained by that mirror from that initialization, among all the
mirrors and all the initial points.

20



Under review as a conference paper at ICLR 2020

Table 9: MNIST 1-norm Bregman Divergence Between the Initial Points and the Final Points ob-
tained by SMD 1-norm

Final1 Final2 Final3 Final4 Final5 Final 6
Initial Point 1 =~ 2.7671 20311 20266 20331 20340 20282
Initial Point 2 20332  2.7774 20281 20299 20312 20323
Initial Point 3 20319 20312 = 3.018 20344 20309 20322
Initial Point4 20339 20279 20310 @ 2.781 20321 20297
Initial Point 5 20347 20317 20273 20316 @ 2.7902 20311
Initial Point 6 20344 20323 20340 20318 20321 2.964

Table 10: MNIST 2-norm Bregman Divergence Between the Initial Points and the Final Points
obtained by SMD 2-norm (SGD)
Final 1 Final2 Final3 Final4 Final5 Final 6

Initial Point 1 = 58.608 670.75 667.03 684.18 671.36 667.84

Initial Point2  669.84 = 59.315 669.16 682.04 669.45 669.98

Initial Point 3 666.35 670.22 = 60.858 683.44 667.57 669.99

Initial Point4 669.71 668.86 671.19 ' 77.275 67033  669.7

Initial Point 5 671.1  669.12 668.45 683.61 6039 666.04

Initial Point6 669.46 670.92 671.59 684.32 667.37 59.043

Table 11: MNIST 3-norm Bregman Divergence Between the Initial Points and the Final Points
obtained by SMD 3-norm

Final1 Final2 Final3 Final4 Final5 Final 6
Initial Point 1 =~ 7.143  35.302 32.077 32.659 32.648 32.309
Initial Point 2 32.507 11.578 32.256 32.325 32.225 32.46
Initial Point 3 31.594 34.643 7.8239 32521 31.58 32.519
Initial Point 4 32.303 34.811 32937 7.5589 32.617 32.284
Initial Point 5 32.673 34.678 32.071 32738 7.5188 31.558
Initial Point 6 32.116 34.731 32.376 32431 31.699 @ 7.4593

Table 12: MNIST 10-norm Bregman Divergence Between the Initial Points and the Final Points
obtained by SMD 10-norm
Finall Final2 Final3 Final4 Final 5 Final 6

Initial Point 1 = 0.00354 0.37 0.403 0.286 0.421 0.408

Initial Point 2 0.33 0.00321  0.369 0.383 0.415 0.422

Initial Point3  0.347 0.318 | 0.00318  0.401 0.312 0.406

Initial Point4  0.282 0.38 0.458  0.00296  0.491 0.376

Initial Point 5  0.405 0.418 0.354 0.484 | 0.00309 0.48

Initial Point 6  0.403 0.353 0.422 0.331 0.503 = 0.00295
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B.2 CIFAR-10 EXPERIMENTS

B.2.1 CLOSEST MINIMUM FOR DIFFERENT MIRROR DESCENTS WITH FIXED

INITIALIZATION

We provide the distances from final points (global minima) obtained by different algorithms from
the same initialization, measured in different Bregman divergences for CIFAR-10 classification task
using ResNet-18. Note that in all tables the smallest element in each row is on the diagonal, which
means the point achieved by each mirror has the smallest Bregman divergence to the initialization
corresponding to that mirror, among all mirrors. Tables [I3] [I4} [I5] [T6] [T7] [18] [I9] 20] depict these
results for 8 different initializations. The rows are the distance metrics used as the Bregman Diver-
gences with specified potentials. The columns are the global minima obtained using specified SMD

algorithms.
Table 13: CIFAR-10 Initial Point 1
SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm
I-norm BD 189 9.58 x 10° 4.19 x 10* 2.34 x 10°
2-norm BD  3.12 x 10° 597 1.28 x 103 6.92 x 103
3-norm BD  4.31 x 10% 119 55.8 1.87 x 102
10-norm BD  1.35 x 104 869 6.34 x 10~° 2.64 x 10~8
Table 14: CIFAR-10 Initial Point 2
SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm
1-norm BD 275 9.86 x 103 4.09 x 10% 2.38 x 10°
2-normBD  4.89 x 10° 607 1.23 x 103 7.03 x 103
3-norm BD  9.21 x 10% 104 53.5 1.88 x 102
10-norm BD  1.17 x 10'° 225 0.000102 2.65 x 1078
Table 15: CIFAR-10 Initial Point 3
SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm
1-norm BD 141 9.19 x 103 4.1 x 104 2.34 x 10°
2-norm BD 3.15 x 10° 562 1.24 x 103 6.89 x 103
3-norm BD  4.31 x 10% 107 53.5 1.85 x 102
10-norm BD  6.83 x 1013 972 791 x 1075 | 2.72x 1078
Table 16: CIFAR-10 Initial Point 4
SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm
1-norm BD 255 9.77 x 103 4.18 x 107 2.36 x 10°
2-norm BD 3.64 x 10° 594 1.26 x 103 6.96 x 103
3-norm BD 5.5 x 10% 116 54 1.87 x 102
10-norm BD  3.74 x 1014 640 5.33 x 107° | 2.67 x 10~
Table 17: CIFAR-10 Initial Point 5
SMD I-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm
1-norm BD 113 9.48 x 103 4.15 x 107 2.32 x 10°
2-norm BD 2.95 x 103 572 1.27 x 103 6.85 x 103
3-norm BD  3.68 x 10* 109 56.2 1.84 x 102
10-norm BD ~ 2.97 x 1013 151 5.74 x 107° | 2.61 x 108
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Table 18: CIFAR-10 Initial Point 6
SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm

1-norm BD 128 9.25 x 10° 4.25 x 10% 2.34 x 10°
2-norm BD 2.71 x 10° 558 1.29 x 103 6.89 x 10°
3-norm BD  3.34 x 10* 104 55.3 1.85 x 102
10-norm BD  2.61 x 10'3 612 4.74 x 10~° 2.62 x 10~8

Table 19: CIFAR-10 Initial Point 7
SMD 1-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm

1-norm BD 223 9.76 x 103 4.38 x 101 2.27 x 105
2-norm BD  2.41 x 103 599 1.37 x 103 6.65 x 103
3-norm BD 2.3 x 10* 116 61 1.78 x 102
10-norm BD  4.22 x 1012 679 6.42 x 10~° 2.55 x 1078

Table 20: CIFAR-10 Initial Point 8
SMD I-norm  SMD 2-norm (SGD) SMD 3-norm SMD 10-norm

1-norm BD 145 9.37 x 103 4.17 x 10* 2.36 x 10°
2-norm BD 2.48 x 103 576 1.26 x 103 6.99 x 103
3-norm BD 2.85 x 10% 108 54.5 1.89 x 102
10-norm BD  1.81 x 1013 1.22 x 103 5.2 x 107° 2.64 x 1078

B.2.2 CLOSEST MINIMUM FOR DIFFERENT INITILIZATIONS WITH FIXED MIRROR

We provide the pairwise distances between different initial points and the final points (global min-
ima) obtained by using fixed SMD algorithms in CIFAR-10 dataset using ResNet-18. Note that the
smallest element in each row is on the diagonal, which means the closest final point to each ini-

tialization, among all the final points, is the one corresponding to that point. Tables
depict these results for 4 different SMD algorithms. The rows are the initial points and the columns
are the final points corresponding to each initialization.

24



Under review as a conference paper at ICLR 2020

Table 21: CIFAR-10 1-norm Bregman Divergence Between the Initial Points and the Final Points
obtained by SMD 1-norm
Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8

Initial 1 | 1.9 X 102 8.1 x 10* 81 x 10T 84x10* 8x10* 82x10* 7.8x10% 7.8x10%
Initial 2 8.1 x 10* = 27 x 10> 8.1 x10* 83x10* 8x10* 82x10* 7.8x10* 7.9x10*
Initial 3 8.1 x 10* 81 x10* = 14x10®2 84x10* 8x10* 81x10* 7.8x10* 7.8x10*
Initial 4 8.1 x10* 81x10* 81x10* 25%x102 8x10* 82x10* 7.8x10*% 7.9x10*
Initial 5 8.1 x10* 81x10* 81x10* 83x10* 1.1x10> 81x10* 7.8x10* 7.8x10*
Initial 6 8.1 x10* 81 x10* 81x10* 84x10* 8x10% 1.3 %102 7.8x10* 7.8 x10%
Initial 7 8.1 x 10* 8.1 x10* 81x10* 84x10* 8x10* 81x10* | 22x102 7.8x10*
Initial 8 8.1 x10* 81x10% 81x10* 84x10* 7.9x10* 81x10* 7.8x10* | 1.5x 102

Table 22: CIFAR-10 2-norm Bregman Divergence Between the Initial Points and the Final Points
obtained by SMD 2-norm (SGD)
Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8

Initial 1 | 6 x 102 2.9 x 10° 28x10° 28x10°> 28x10° 28x10° 28x10° 28x 10°
Initial 2 2.8 x 10° | 6.1 x 102 2.8 x10® 2.8x10° 28x10> 2.8x10® 2.8x10® 2.8x10%
Initial 3 2.8 x 103 29x10° | 5.6 x 102 2.8x10° 28x10> 28x10® 28x10® 2.8x103
Initial 4 2.8 x10° 29x10° 28x10° = 59x10%2 28x10° 28x10° 28x10° 2.8x10%
Initial 5 2.8 x 10° 2.9 x10® 28x10° 28x10% & 57x102 2.8x10% 28x10% 28x10%
Initial 6 2.8 x 10> 2.9x 10> 28x10> 28x10®> 28x10° & 5.6x 102 28x10° 2.8x 10°
Initial 7 2.8 x 10> 2.9 x10° 2.8x10% 28x10° 28x10°> 28x10° = 6x10> 2.8x 103
Initial 8 2.8 x 10° 2.9x10®° 28x10° 28x10° 28x10° 28x10° 28x10% 5.8 x 102

Table 23: CIFAR-10 3-norm Bregman Divergence Between the Initial Points and the Final Points
obtained by SMD 3-norm
Final1 Final2 Final3 Final4 Final5 Final6 Final7 Final 8

Initial 1 | 55.844 10347 103.61 104.05 106.2 10532 110.88 104.56
Initial 2 105.87 | 53.455 103.68 104.04 106.31 105.34 110.93 104.58
Initial 3 105.89  103.59 = 53.527 104.09 106.29 105.35 110.99 104.55
Initial 4 105.83  103.54 103.64 = 53.978 106.23 105.3 110.87 104.54
Initial 5 105.82 103.55 103.64 104 56.161 105.34 110.88 104.55
Initial 6 10591 103.6 103.66 104.1 106.28 | 55316 110.94 104.55
Initial 7 105.87 103.51 103.67 10398 106.26 105.25 = 61.045 104.5
Initial 8 105.77 103.54 103.59 104.04 106.25 105.28 110.88 = 54.509
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Table 24: CIFAR-10 10-norm Bregman Divergence Between the Initial Points and the Final Points

obtained by SMD 10-norm
Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8

Initial 1 | 2.64 x10°° 289 x 10 ° 299x10° 281 x10°° 285x10° 282x10° 266x10° 282x10"

Initial 2 2.79 x 107% 2,65 x 1078 2.83x 1078 283 x107% 271 x107% 2.74x107% 269 x107% 2.88x 108
Initial 3 2.89 x 1078 287 x 107% = 272x 1078 294 x107% 284x107% 289x107% 278 x107% 294x 108
Initial 4 2.79 x 1078 286 x 1078 2.92x 1078 | 2.67x 1078 284 x107% 281 x107% 269 x107% 2.85x 108
Initial 5 2.76 x 1078 288 x 1078 2.95x 1078 293 x107°% | 261 x 1078 2.73x 1078 266 x 10~® 2.83x 108
Initial 6 2.80 x 1078 2,76 x 1078 293 x 1078 279 x 107® 276 x 1078 | 2.62x 1078 2.71 x107® 2.85x 1078
Initial 7 2.73 x 1078 276 x 1078  2.82x 1078 279 x 107% 271 x107% 277 x107% | 255 x 10~® 2.83 x 108
Initial 8  2.73 x 1078 279 x 1078  2.85x 1078 278 x 107% 275 x107% 274 x 107® 273 x107% | 2.64 x 10~8

B.2.3 CLOSEST MINIMUM FOR DIFFERENT INITILIZATIONS AND DIFFERENT MIRRORS

Now we assess the pairwise distances between different initial points and final points (global min-
ima) obtained by all different initilizations and all different mirrors (Table[§). The smallest element
in each row is exactly the final point obtained by that mirror from that initialization, among all the
mirrors and all the initial points.
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Figure 10: An illustration of the experimental results. For each initialization wg, we ran different
SMD algorithms until convergence to a point on the set WV (zero training error). We then measured
all the pairwise distances from different wq, to different wy, in different Bregman divergences. The
closest point (among all initializations and all mirrors) to any particular initialization wq in Bregman
divergence with potential 1(-) = || - || is exactly the point obtained by running SMD with potential

I| - ||g from wg.

B.3 DISTRIBUTION OF THE FINAL WEIGHTS OF THE NETWORK

One may be curious to see how the final weights obtained by these different mirrors look like,
and whether, for example, mirror descent corresponding to the ¢;-norm potential induces sparsity.
We examine the distribution of the weights in the network for these algorithms starting from the
same initialization. Fig. [IT]shows the histogram of the initial weights, which follows a half-normal
distribution. Figs. [12] (a), (b), (c), (d) show the histogram of the weights for ¢1-SMD, ¢5-SMD
(SGD), ¢5-SMD, and ¢17-SMD, respectively. Note that each of the four histograms corresponds to
an 11 x 10%-dimensional weight vector that perfectly interpolates the data. Even though, perhaps
as expected, the weights remain quite small, the histograms are drastically different. The histogram
of the ¢1-SMD has more weights at and close to zero, which again confirms that it induces sparsity.
However, as will be shown in the next section, this is not necessarily good for generalization (in fact,
it turns out that /1o-SMD has a much better generalization). The histogram of the ¢/5-SMD (SGD)
looks almost identical to the histogram of the initialization, whereas the /3 and ¢ histograms are
shifted to the right, so much so that almost all weights in the /1 solution are non-zero and in the
range of 0.005 to 0.04. For comparison, all the distributions are shown together in Fig.[T2]e).
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Figure 11: Histogram of the absolute value of the initial weights in the network (half-normal distri-
bution)
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Figure 12: Histogram of the absolute value of the final weights in the network for different SMD
algorithms: (a) ¢;-SMD, (b) ¢5-SMD (SGD), (¢) ¢3-SMD, (d) ¢1¢-SMD. Note that each of the four
histograms corresponds to an 11 x 105-dimensional weight vector that perfectly interpolates the
data. Even though the weights remain quite small, the histograms are drastically different. ¢;-SMD
induces sparsity on the weights, as expected. SGD does not seem to change the distribution of the
weights significantly. ¢3-SMD starts to reduce the sparsity, and ¢1¢ shifts the distribution of the
weights significantly, so much so that almost all the weights are non-zero.
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B.4 GENERALIZATION ERRORS OF DIFFERENT MIRRORS/REGULARIZERS

In this section, we compare the performance of the SMD algorithms discussed before on the test set.
This is important for understanding the effect of different regularizers on the generalization of deep
networks.

For MNIST, perhaps not surprisingly, all the four SMD algorithms achieve around 99% or higher
accuracy. For CIFAR-10, however, there is a significant difference between the test errors of dif-
ferent mirrors/regularizers on the same architecture. Fig.|13|shows the test accuracies of different
algorithms with eight random initializations around zero, as discussed before. Counter-intuitively,
{19 performs consistently best, while ¢; performs consistently worse. We should reiterate that the
loss function is exactly the same in all these experiments, and all of them have been trained to fit the
training set perfectly (zero training error). Therefore, the difference in generalization errors is purely
the effect of implicit regularization by different algorithms. This result suggests the importance of a
comprehensive study of the role of regularization, and the choice of the best regularizer, to improve
the generalization performance of deep neural networks.
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Figure 13: Generalization performance of different SMD algorithms on the CIFAR-10 dataset using
ResNet-18. /1 performs consistently better, while ¢; performs consistently worse.
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