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ABSTRACT

In the problem of unsupervised learning of disentangled representations, one of
the promising methods is to penalize the total correlation of sampled latent vari-
ables. Unfortunately, this well-motivated strategy often fails to achieve disentan-
glement due to a problematic difference between the sampled latent representation
and its corresponding mean representation. We provide a theoretical explanation
that low total correlation of sample distribution cannot guarantee low total corre-
lation of the mean representation. We prove that for the mean representation of
arbitrarily high total correlation, there exist distributions of latent variables of a
bounded total correlation. However, we still believe that total correlation could
be a key to the disentanglement of unsupervised representative learning, and we
propose a remedy, RTC-VAE, which rectifies the total correlation penalty. Ex-
periments show that our model has a more reasonable distribution of the mean
representation compared with baseline models, e.g., β-TCVAE and FactorVAE.

1 INTRODUCTION

VAEs (Variational AutoEncoders) Kingma & Welling (2013); Bengio & LeCun (2007) follow the
common assumption that the high-dimensional real world observations x can be re-generated by a
lower-dimension latent variable z which is semantically meaningful. Recent works Kim & Mnih
(2018); Chen et al. (2018); Kumar et al. (2017) suggest that decomposing the ELBO (Evidence
Lower Bound) could lead to distinguishing the factor of disentanglement. In particular, recent
works Kim & Mnih (2018); Chen et al. (2018) focused on a term called total correlation (TC).
The popular belief Chen et al. (2018) is that by adding weights to this term in objective function, a
VAE model can learn a disentangled representation. This approach appears to be promising since the
total correlation of a sampled representation should describe the level of factorising since total cor-
relation is defined to be the KL-divergence between the joint distribution z ∼ q(z) and the product
of marginal distributions

∏
j q(zj). In this case, a low value suggests a less entangled joint distribu-

tion. However, Locatello et al. (2018) pointed out that the total correlation of sampled distribution
TCsample being low does not necessarily give rise to a low total correlation of the corresponding
mean representation TCmean. Conventionally, the mean representation is used as the encoded la-
tent variables, an unnoticed high TCmean is usually the culprit behind the undesirable entanglement.
Moreover, Locatello et al. (2018) found that as regularization strength increases, the total correla-
tion of sampled representation TCsample and mean representation TCmean are actually negatively
correlated.

Locatello et al. (2018) put doubts on most methods of disentanglement including penalizing the total
correlation term Kim & Mnih (2018); Chen et al. (2018), and they concluded pessimistically that it
is fundamentally impossible to learn a disentangled representation in an unsupervised setting.

Acknowledging the difficulty in learning disentangled representation, we provide yet another (more
detailed) explanation of the seemingly contradictory behaviors of the total correlations of sampled
and mean representation in previous works on TC penalizing strategy. We find that this problem can
be remedied with an additional penalty term on the variance of a sampled representation.

Our contributions:
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• In Theorem 1, we prove that for all mean representations, there exists a sample distribution
with bounded total correlation. Particularly, a mean representation with arbitrarily large
total correlation can have a corresponding sample distribution with low total correlation.
This implies that a low total correlation of sample distribution cannot guarantee a low total
correlation of the mean representation. (Section. 2)
• Acknowledging the issue above, we further delve into total correlation, and provide a rem-

edy by adding an additional penalty term on the variance of sample distribution. The
penalty term forces a sampled representation to behave similar to the corresponding mean
representation. (Section. 4)
• We study several different methods of estimating total correlation. They are compared and

benchmarked against the ground truth value on the multivariate Gaussian distribution Lo-
catello et al. (2018). We point out that the method of (minibatch) estimators suffers from
the curse of dimensionality and other drawbacks, making their estimation accuracy decay
significantly with the increase of the dimension of the latent space, and some strong corre-
lated distributions can be falsely estimated to have low total correlation. (Section. 5)

2 THE PECULIARITY OF TOTAL CORRELATION

In information theory, total correlation is one of the generalizations of mutual information, which
measures the difference between the joint distribution of multiple random variables and the product
of their marginal distributions. A high value means the joint distribution is far from an independent
distribution, and hence it suggests high entanglement among these random variables.
Definition 1. Total correlation of random variable x,

TC(x) := KL

p(x)||∏
j

p(xj)

 = Ep(x)

[
log

p(x)∏
j p(xj)

]
.

Naturally, people seek the solution of disentanglement in the form of low total correlation of the
latent variables, e.g. Kim & Mnih (2018); Chen et al. (2018). However, there can be large differ-
ence between the total correlations of sample representation and mean representation. Forcing the
former to be small does not guarantee the latter being small. In fact, given a mean representation of
arbitrarily large total correlation, we can construct a family of distribution of sample representation
that have a bounded total correlation, where the bound does not rely on the total correlation of the
mean.
Theorem 1. Let µ ∼ N (0,Σ), and maxj σj = c0. For a fixed µ, let z ∼ N (µ,Σ′(µ)), where
Σ′(µ) is diagonal and satisfies that for some R > 0, c2 > σ′j(µ) > c1 > 0, if |µ| < R,

c3 > σ′j(µ) >
c4
|µ|l

, for some l ≥ 1, if |µ| > R.
(1)

for some constants c1, c2, c3, c4. Then TC(z) ≤ C for some C > 0.

The details of the proof are presented in Appendix. Theorem 1 provides an explanation to the
contradiction observed by Locatello et al. (2018) that TC(z) is low does not mean TC(µ) is low
(actually much higher than TC(z)).

Due to this peculiar property of total correlation, a regularizer of the difference between the distri-
bution of z and µ must be provided when penalizing TCsample. In Section. 4, we propose such a
regularizer that serves this goal.

3 RELATED WORKS

In the study of disentanglement, Higgins et al. (2017) proposed a modification of the VAE framework
and introduced an adjustable hyperparameter β that balances latent channel capacity and indepen-
dence constraints with reconstruction accuracy. One drawback of β-VAE is the trade-off between the
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reconstruction quality and disentanglement. Motivated to alleviate this trade-off of β-VAE, Kim &
Mnih (2018) proposed FactorVAE which decomposes the evidence lower bound and penalize a term
measuring the total correlation between latent variables. Around the same time, Chen et al. (2018)
proposed a similar ELBO decomposition method called β-TCVAE. The major difference between
FactorVAE and β-TCVAE lies in their different strategies of estimating total correlation. Chen et al.
(2018) used formulated estimators while Kim & Mnih (2018) utilized the density-ratio trick which
requires an auxiliary discriminator network and an inner optimization loop. We will discuss these
two strategies more in details in Section. 5.

As for the disentanglement metric, this will be discussed in Section. 6.

4 RECTIFIED-TCVAE

To simplify notation, let p(n) = p(xn), q(z|xn) = q(z|n). Recall the average evidence lower bound
(ELBO),

ELBO := Ep(n)
[
Eq(z|n)[log p(n|z)]−KL(q(z|n)‖p(z))

]
. (2)

Chen et al. (2018) and independently by Kim & Mnih (2018) introduced objective function that
penalizes total correlation, which can be formulated as

Lβ−TC := ELBO− βTC(z). (3)
This approach unfortunately has a drawback. It turns out that instead of being able to obtain disen-
tangled representation, we often find a sample representation appears to be disentangled while the
mean representation is still entangled. In fact, when we are maximizing Lβ−TC, we could totally
end up learning a distribution of z that makes TC(z) goes low, while the total correlation of its mean
µ is still high. To resolve this, we define RTC-VAE,

LRTC := Lβ−TC − η‖Ep(n)Covq(z|n)[z]‖1, (4)
where

‖Ep(n)Covq(z|n)[z]‖1 =

D∑
k

Ep(n)[σ2
k(n)].

Our penalty originates from the first term of the law of total covariance Covq(z)[z] =

Ep(n)Covq(z|n)[z] + Covp(n)(Eq(z|n)[z]). Factorized representation1 indicates a diagonal covari-
ance matrix Covq(z)[z]. Motivated by this, Kumar et al. (2017) penalizes the off-diagonal terms in
the second term, while ignores Ep(n)Covq(z|n)[z] since it is diagonal. Their penalty term leads to a
vanishing µ, which is the mean representation. The remedy to this is to add another penalty term on
the distance between µ’s and 1. DIP-VAE Kumar et al. (2017) employs this remedy, however, DIP-
VAE does not outperform other VAE’s when measured by various disentanglement metrics, e.g.,
FactorVAE score, see Fig. 3 & 14 in Locatello et al. (2018). This is actually not surprising since the
two penalty terms in DIP-VAE contribute in opposite directions, with one leading to vanishing µ’s
and another fighting against it. This formulation can easily get the model stuck in saddle points.

Our objective, on the other hand, does not penalize directly on µ. Instead, it penalizes on σ, the
standard deviation of the distribution q(z|n). This may seem little counter-intuitive at first sight,
since penalizing a diagonal component of covariance Cov[z] = Covq(z)[z] seems not helpful to
factorising. However, in the view of Theorem 1, our objective will force the distribution of z to be
similar to the distribution of µ. Hence, it pushes us away from the situation of large TC(µ) and low
TC(z). Consequently, by minimizing TC(z) we get a model that has low TC(µ), a disentangled
mean representation.

5 ESTIMATION OF TOTAL CORRELATION

The naive Monte Carlo method comes with an intrinsic issue of underestimating total correlation.
To avoid or resolve this, Kim & Mnih (2018) proposed a discriminator network with the help of
density-ratio trick (see equation (3) and Appendix D. of Kim & Mnih (2018)). In Chen et al. (2018),
two kinds of estimator of total correlation are proposed, Minibatch Weighted Sampling (MWS) and
Minibatch Stratified Sampling (MSS) (see Appendix C.1 and C.2 in Chen et al. (2018)).

1Factorized representation means each latent dimension is independent.
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5.1 METHOD OF MINIBATCH ESTIMATORS

For instance, MSS can be described as followed. For a minibatch of sample, BM+1 =
{n1, . . . , nm+1},

Eq(z,n)[log q(z)] ≈
1

M + 1

M+1∑
i=1

log f(zi, ni, BM+1 \ {ni}), (5)

where2

f(z, n∗, BM+1 \ {n∗}) =
1

N
q(z|n∗) + 1

M

M−1∑
m=1

q(z|nm) +
N −M
NM

q(z|nm). (6)

5.2 METHOD OF DENSITY-RATIO TRICK AND DISCRIMINATOR

Density-ratio trick Nguyen et al. (2010); Sugiyama et al. (2012) can be used to estimate KL-
divergence,

TC(z) = KL(q(z)‖
∏
j

q(zj)) = Eq(z)

[
log

q(z)∏
j q(zj)

]
(7)

≈ Eq(z)
[

D(z)

1−D(z)

]
, (8)

where D is discriminator that classifies z being sampled from q(z) or
∏
j q(zj). For detail imple-

mentation, please refer to section 3 in Kim & Mnih (2018).

5.3 COMPARISON OF THE TWO METHODS

For multivariate normal distribution, the total correlation can be explicitly calculated which can be
used as a ground truth for our comparison. To be specific,
Proposition 1. Let x ∼ N (0,Σ), then

TC(x) =
1

2
(log|diag(Σ)| − log|Σ|) . (9)

It’s difficult to track the exact reference of Proposition 1 since it is a fundamental property in infor-
mation theory. Locatello et al. (2018) used this proposition to approximate the total correlation of
the mean representation in latent space. In appendix, we provide a simple proof for the convenience
of the readers.

In the following, we compare the performance of each method, MWS, MSS0 and MSS1 on the
estimation of total correlation. For µ ∼ N (0, I), and z|µ ∼ N (µ,Σ) where Σ = diag(σ2) and
σ = 0.1. We choose σ small so that the distribution of z can be approximated by normal distribution.
Results are presented in Figure 1.

Figure 1: Different estimators of total correlation vs. ground truth on latent space of dimension low
to high.

2There is a small part of the implementation of MSS in Chen et al.’s code that is not quite clear to us,
specifically, the computation of log importance weight matrix in equation 6. In our experiment, we implement
MSS with our understanding and denote it as MSS1, and we denote Chen et al.’s implementation MSS0.
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From Figure. 1, we can summarize the following observations: 1. MWS tends to underestimate total
correlation in general; 2. For latent space of dimension ≤ 4, MSS0 and MSS1 are quite accurate;
3. For latent space of high dimension, both MSS0 and MSS1 tend to overestimate total correlation
when the actual value of total correlation is small; 4. Overall MSS1 estimates closer to ground truth
than MMS0 does.

To interpret the third observation, consider q(z(i)k |n(j)) where (i, j, k) are indices of a cube
(minibatch,minibatch, dimension) with size M ×M ×D and n(j) is a sample drawn in a mini-
batch and z(i) = z(n(i)). When the ground truth total correlation of z is low (the off-diagnal values
of correlation matrix is small), it means only the elements on the diagonal surface of the cube,
namely those elements of index (i, i, k), take some bounded values O(1), and all the other elements
are very small o(1) (since σ = 0.1).

Hence,

Eq(z)
[
log

q(z)∏
k q(zk)

]
= Eq(z,n)[log q(z)]− Eq(z,n)[log

∏
k

q(zk)]

≈ 1

M

∑
i

log
1

M

∑
j

∏
k

q(z
(i)
k |n

(j))− log
∏
k

1

M

∑
j

q(z
(i)
k |n

(j))


≈ 1

M

∑
i

log
1

M

∑
j=i

O(1)− log
∏
k

1

M

∑
j=i

O(1)


≈ 1

M

∑
i

(
logO(

1

M
)− logO(

1

MD
)

)
≈ O((D − 1) logM).

Assigning weights to elements q(z(i)k |n(j)) such as MSS does not make essential change to the
analysis above.

In addition, β-TCVAE (trained with MSS in our experiments and with MWS in Locatello et al.
(2018)) seems to have an increasing total correlation of mean representation as regularization
strength increases (higher β’s), as observed by Locatello et al. (2018). Here, we provide an ex-
planation to the cause of this problem:

First, MSS and MWS prefer to shut down latent dimensions, meaning that distributions with fewer
active dimensions can score lower estimated total correlation. Consider that z0 ∼ N (0, 0.01), and
z0− ∼ N (0, 1). Then all elements of index (i, j, 0), i.e., q(z(i)0 |n(j)) are not small, say O(1). Thus,
1
M

∑
j q(z

(i)
0 |n(j)) ≈ 1

M

∑
j O(1) ≈ O(1), and

Eq(z)
[
log

q(z)∏
k q(zk)

]
≈ 1

M

∑
i

log
1
M

∑
j

∏
k q(z

(i)
k |n(j))∏

k
1
M

∑
j q(z

(i)
k |n(j))

≈ 1

M

∑
i

log
1
M

∑
j(q(z

(i)
0 |n(j)) ·

∏
k>0 q(z

(i)
k |n(j)))∏

k>0
1
M

∑
j q(z

(i)
k |n(j))

≈ 1

M

∑
i

log
1
M ·O(1)∏
k>0

1
M ·O(1)

≈ logO(MD−2)

≈ O((D − 2) logM),

compared to O((D − 1) logM) when z ∼ N (0, I).

Now, consider any strongly correlated z’s (e.g., (z1, z2) ∼ N (0,Σ), where Σ =

(
0.01 0.1
0.1 1

)
.

Then the Gaussian (ground truth) total correlation is arbitrarily large (TC(z1, z2) = ∞). This kind
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(a) (b)

Figure 2: The shaded region indicates 90% confidence interval. (a) The total correlation of sample
and mean representation of FactorVAE on dSprite with β = 2, 6, 10. There is a large difference in
scales of TCsample and TCmean. (b) The total correlation of sample and mean representation of
RTCVAE on dSprite with β = 2, 6, 10 and η = 10. There is almost no difference between TCsample
and TCmean due to the variance penalty term in equation 3.

of distribution can score a relatively low TC value (for instance lower than z) with estimators such
as MSS and MWS by the analysis above. Hence, as β increases, VAE trained with these estimators
will be encouraged to obtain some dimensions of very low variance, and these dimensions are easily
trapped in a strong correlation with other dimensions (like z1 and z2).

Based on the reasons above, we opt for the method of discriminators (density-ratio trick) in our
implementation.

6 EXPERIMENTS

The datasets we use include dSprites Matthey et al. (2017), Shapes3D Burgess & Kim (2018) and
3D faces Paysan et al. (2009). At the time of writing, the scale of our experiments is limited, but
there are already some evidence to deliver our arguments. We have scheduled further experiments
and tests on larger scale in future works.

For every model, we trained with 10 different initialization. Every training takes 10 epochs. From
experiments, we observe that RTC-VAE has much lower TCmean with different regularization
strength that FactorVAE does (Figure 3). And on different datasets, this is also the case (see Ap-
pendix). The TCmean behaves almost identically as TCsample in RTC-VAE (see Figure 2 (b)). The
problem of contradictory behaviors of TCmean and TCsample is evidently remedied by RTC-VAE.
In addition, the ELBO of RTC-VAE seems to converge faster than FactorVAE as a byproduct (see
Figure 4 and Figure 5). Examining the distributions of latent dimensions (mean representation),
FactorVAE tends to have some strongly correlated latent dimensions (see Figure 7), and RTC-VAE
shows well factorized latent distributions. (see Figure 6)

6.1 METRICS OF DISENTANGLEMENT

It is still an open question that what kind of metric can measure disentanglement. So far, various
attempts have been made, but Locatello et al. (2018) challenged most of them, indicating that the
score under any metric varies due to different initialization and data sets. Here, we analyse several
important metrics and attempt to point out some blind spots that have not being considered by these
metrics.

Higgins et al. (2017) proposed using a classifier to measure each dimension of latent space and each
ground truth factor, e.g. x and y coordinates, scale, rotation, etc. Kim & Mnih (2018) revised this
approach yet kept the idea. Chen et al. (2018) introduced mutual information gap (MIG), which
estimates the mutual information between each latent dimension and each ground truth factor. Note
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Figure 3: Direct comparison between the TCmean of FactorVAE and RTCVAE.

that this is a classifier-free metric. Eastwood & Williams (2018) proposed a framework of disentan-
glement metric that considers modularity, compactness and explicitness. Then Ridgeway & Mozer
(2018) made analysis on compactness, and compactness mean that each ground truth factor asso-
ciates with only one or a few latent dimensions. They pointed out that in some situation a perfectly
disentangled representation may not be compact (see Section. 3 in Ridgeway & Mozer (2018)).

Here we argue that modularity also should be reconsidered. A modular representation means that
each dimension of latent space conveys information of at most one ground truth factor. This is
exactly the goal attempted by Higgins et al. (2017); Kim & Mnih (2018); Chen et al. (2018), etc.
However, multiple latent dimensions can work together to represent multiple ground truth factors
meanwhile these latent dimensions are disentangled. For instance, x and y coordinates can be
represented by r and θ in polar coordinate system (or any coordinate system under rotation, i.e.,
(x′, y′)T = A(x, y)T where A is any orthogonal matrix). These coordinate systems are perfectly
disentangled but r (or x′) conveys information of both x and y.

7 CONCLUSION

In this work, we demonstrated that our RTC-VAE, which rectifies the total correlation penalty can
remedy its peculiar properties (disparity between total correlation of the samples and the mean rep-
resentations). Our experiments show that our model has a more reasonable distribution of the mean
representation compared with baseline models including β-TCVAE and FactorVAE. We also pro-
vide several theoretical proofs which could help diagnose several specific symptoms of entangle-
ment. Hopefully, our contributions could add to the explainability of the unsupervised learning of
disentangled representations.

(a) (b) (c)

Figure 4: Training ELBO of RTCVAE and FactorVAE.
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(a) (b) (c)

Figure 5: Training ELBO of RTCVAE and FactorVAE on Shapes3D.

Figure 6: The pairplot of 10 latent dimensions of RTCVAE on Shapes3D. No dimensions show
strong correlation.
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A APPENDIX

You may include other additional sections here.

A.1 PROOF OF THEOREM 1

Theorem (Theorem 1 restated). Let µ ∼ N (0,Σ), and maxj σj = c0. For a fixed µ, let z ∼
N (µ,Σ′(µ)), where Σ′(µ) is diagonal and satisfies that for some R > 0, c2 > σ′j(µ) > c1 > 0, if |µ| < R,

c3 > σ′j(µ) >
c4
|µ|l

, for some l ≥ 1, if |µ| > R.
(10)

for some constants c1, c2, c3, c4. Then TC(z) ≤ C for some C > 0.

Proof. Let

S+ = {z ∈ RD|p(z) ≥
∏
j

p(zj)}, S− = {z ∈ RD|p(z) <
∏
j

p(zj)},

then

TC(z) =

∫
S+

+

∫
S−

= TC(z)+ +TC(z)−.

Since KL-divergence is non-negative, if TC(z)+ is bounded, then TC(z) must be bounded. In the
following, we work on S+, i.e., we assume p(z) ≥

∏
j p(zj).

For |z| < R,

p(z) = Ep(µ)[p(z|µ)]

=

∫
p(µ)

1√
(2π)D|Σ′|

e−
1
2 (z−µ)(Σ

′)−1(z−µ)T dµ

≤ 1√
(2π)Dc2D1

∫
p(µ)dµ

≤ C

cD1
,
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and ∏
j

p(zj) ≥
∏
j

∫
BR(0)

p(µj)
1√

(2π)Dc22
e
−

(zj−µj)
2

2c21 dµj

≥ C

cD2
e
− 2R2

c21 .

For |z| > 2R,

p(z) =

∫
BR(0)

+

∫
B |z|

2

(0)\BR(0)

+

∫
Bc|z|

2

(0)

≤ C

cD1
e
− ||z|−R|

2

2c22 + C
|z|Dl

cD4
e
− |z|

2

8c22 +

∫
Bc|z|

2

(0)

p(µ)
e−

1
2 (µ−z)(Σ

′)−1(µ−z)T√
(2π)d|Σ′|

dµ

≤ C

cD1
e
− ||z|−R|

2

2c22 + C
|z|Dl

cD4
e
− |z|

2

8c22 +

∫
Bc|z|

2

(0)

p(µ)
|µ|Dl√
(2π)DcD4

dµ

≤ C

cD1
e
− ||z|−R|

2

2c22 +
C

cD4
|z|dle

− |z|
2

8c22 +
C

cD4
|z|Dl+D−2e

− |z|
2

8c20

≤ C

rD1
|z|Dl+D−2e

− |z|
2

8r20 ,

where r0 = max(c0, c2) and r1 = min(c1, c4), and since l ≥ 1 and D ≥ 1, Dl +D − 2 ≥ 0. For
|z| ∈ (R1, 2R1), it is easy to see that p(z) < C. And for |z| > R,∏

j

p(zj) ≥
∏
j

(∫
Bc0 (0)

p(µj)
1√

(2π)Dc22
e
−

(zj−µj)
2

2c21 Dµj

)

≥ C

cD2
e
− 2|z|2

c21 .

Hence,

TC(z) = Ep(z)

[
log

p(z)∏
j p(zj)

]

≤
∫
BR(0)

p(z) logC
cD2
cd1
e

2R2

c21 dz +

∫
Bc2R(0)

p(z) log(C
cD2
rD1
|z|Dl+D−2e

2|z|2

c21
− |z|

2

2r20 )dz + C

≤ D log
c2
c1

+
2R2

c21
+

∫
Bc2R(0)

e
− |z|

2

8r20 [C + (Dl +D − 2) log |z|+ 2|z|2

c21
− |z|

2

2r20
]dz + C

≤ D log
c2
c1

+
2R2

c21
+ C.

�

A.2 PROOF OF PROPOSITION 1

Proposition (Proposition 1 restated). Let x ∼ N (0,Σ), then

TC(x) =
1

2
(log|diag(Σ)| − log|Σ|) . (11)

Proof. First, recall that the KL-divergence between two distributions P and Q is defined as

KL(P||Q) = EP[log
P
Q
]

11
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Also, the density function for a multivariate Gaussian distribution N (µ,Σ) is

p(x) =
1

(2π)n/2det(Σ)1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)).

Now, for two multivariate Gaussian P1 and P2, we have

KL(P1||P2) = EP1 [logP1 − logP2]

=
1

2
log

detΣ2

detΣ1
+

1

2
Ep1(x)[−(x− µ1)

TΣ−11 (x− µ1) + (x− µ2)
TΣ−12 (x− µ2)]

=
1

2
log

detΣ2

detΣ1
+

1

2
Ep1(x)[−tr(Σ

−1
1 (x− µ1)(x− µ1)

T ) + tr(Σ−12 (x− µ2)(x− µ2)
T )]

=
1

2
log

detΣ2

detΣ1
− 1

2
tr(Σ−11 Σ1) +

1

2
Ep1(x)[tr(Σ

−1
2 ((xxT − 2xµT2 + µ2µ

T
2 ))]

=
1

2
log

detΣ2

detΣ1
− n

2
+

1

2
Ep1(x)[tr(Σ

−1
2 ((x− µ1 + µ1)(x− µ1 + µ1)

T − 2xµT2 + µ2µ
T
2 ))]

=
1

2
log

detΣ2

detΣ1
− n

2
+

1

2
Ep1(x)[tr(Σ

−1
2 ((x− µ1)(x− µ1)

T + 2(x− µ1)µ1︸ ︷︷ ︸
Ep1(x)(x)=µ1

+µ1µ
T
1 − 2xµT2 + µ2µ

T
2 ))]

=
1

2
log

detΣ2

detΣ1
− 1

2
n+

1

2
tr(Σ−12 (Σ1 + (µ2 − µ1)(µ2 − µ1)

T ))

=
1

2
(log

detΣ2

detΣ1
− n+ tr(Σ−12 Σ1) + (µ2 − µ1)

TΣ−12 (µ2 − µ1))

Let P be a multivariate Gaussian N (µ,Σ1), and then the product of the marginal distribution∏
i pi(x) is also Gaussian N (µ,Σ2), where Σ2 = diag(Σ1). Thus, the total correlation of multi-

variate Gaussian distribution is

TC(x) = DKL(p(x)||
∏
i

pi(x))

=
1

2
(log

detΣ2

detΣ1
− n+ tr(Σ−12 Σ1) + (µ− µ)TΣ−12 (µ− µ))

=
1

2
(log

detΣ2

detΣ1
− n+ n)

=
1

2
(log|diag(Σ1)| − log|Σ1|)

�

A.3 EXPERIMENTS
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(a) (b)

Figure 8: The shaded region indicates 90% confidence interval. (a) The total correlation of sample
and mean representation of FactorVAE on Shapes3D with β = 2, 6, 10. There is a large difference
in scales of TCsample and TCmean. (b) The total correlation of sample and mean representation
of RTCVAE on Shapes3D with β = 2, 6, 10 and η = 10. There is almost no difference between
TCsample and TCmean due to the variance penalty term in equation 3.

Figure 9: Direct comparison between the TCmean of FactorVAE and RTCVAE.
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