
Under review as a conference paper at ICLR 2020

LEARNING SPARSITY AND QUANTIZATION JOINTLY
AND AUTOMATICALLY FOR NEURAL NETWORK COM-
PRESSION VIA CONSTRAINED OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Neural Networks (DNNs) are widely applied in a wide range of usecases.
There is an increased demand for deploying DNNs on devices that do not have
abundant resources such as memory and computation units. Recently, network
compression through a variety of techniques such as pruning and quantization
have been proposed to reduce the resource requirement. A key parameter that
all existing compression techniques are sensitive to is the compression ratio (e.g.,
pruning sparsity, quantization bitwidth) of each layer. Traditional solutions treat
the compression ratios of each layer as hyper-parameters, and tune them using
human heuristic. Recent researchers start using black-box hyper-parameter opti-
mizations, but they will introduce new hyper-parameters and have efficiency issue.
In this paper, we propose a framework to jointly prune and quantize the DNNs
automatically according to a target model size without using any hyper-parameters
to manually set the compression ratio for each layer. In the experiments, we show
that our framework can compress the weights data of ResNet-50 to be 836× smaller
without accuracy loss on CIFAR-10, and compress AlexNet to be 205× smaller
without accuracy loss on ImageNet classification.

1 INTRODUCTION

Nowadays, Deep Neural Networks (DNNs) are being applied everywhere around us. Besides running
inference tasks on cloud servers, DNNs are also increasingly deployed in resource-constrained
environments today, ranging from embedded systems in micro aerial vehicle and autonomous cars
to mobile devices such as smartphones and Augmented Reality headsets. In these environments,
DNNs often operate under a specific resource constraint such as the model size, execution latency,
and energy consumption. Therefore, it is critical to compress DNNs to run inference under given
resource constraints while maximizing the accuracy.

In the past few years, various techniques have been proposed to compress the DNN models. Pruning
and quantization are two of which most widely used in practice. Pruning demands the weights
tensor to be sparse, and quantization enforces each DNN weight has a low-bits representation. These
methods will compress the DNN weights in each layer and result in a compressed DNN having lower
resource consumption. It has been shown that by appropriately setting the compression ratio (i.e.,
sparsity or quantization bitwidth) for each layer, the compression could bring negligible accuracy
drop (Han et al., 2015a).

A fundamental question for these compression techniques is: how to find the optimal compression
ratio, e.g., sparsity and/or bitwidth, for each layer in a way that meets a given resource constraint.
Traditional DNN compression methods (Han et al., 2015a; Ye et al., 2018b; He et al., 2019) determine
the compression ratio of each layer based on human heuristics. Since the compression ratios can
be seen as hyper-parameters, the idea in recent research of using black-box optimization for hyper-
parameter search can be directly adopted (Tung & Mori, 2018). He et al. (2018) apply reinforcement
learning (RL) in DNN pruning by formulating the pruning ratio as a continuous action and the
accuracy as the reward. Wang et al. (2019) apply the similar formulation but uses it for searching the
quantization bitwidth of each layer. CLIP-Q (Tung & Mori, 2018) propose a compression method
which requires the sparsity and quantization bitwidth to be set as hyper-parameters, and they use
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Table 1: Comparison across different automated model compression methods.

Methods \ Features Support pruning Support quantization End-to-end optimization
AMC (He et al., 2018) X

HAQ (Wang et al., 2019) X
CLIP-Q (Tung & Mori, 2018) X X

Ours X X X

Bayesian optimization libraries to search them. Evolutionary search (ES) is also being used in this
scenario, for example, Guo et al. (2019) propose an ES-based network architecture search (NAS)
method and use it for searching compression ratios. Liu et al. (2019) use meta-learning and ES to find
the pruning ratios of channel pruning. The basic idea of these methods is formulating the compression
ratio search as a black-box optimization problem, but it introduces new hyper-parameters in the RL
or ES algorithm. However, tuning black-box optimization algorithms could be very tricky (Islam
et al., 2017) and usually inefficient (Irpan, 2018). Moreover, it introduces new hyper-parameters. For
example, the RL algorithm DDPG (Lillicrap et al., 2015) has dozens of hyper-parameters including
batch size, actor / critic network architecture, actor /critic optimizer and learning rate, reward scale,
discounting factor, reply buffer size, target network updating factor, exploration noise variance, and
so on. Therefore, it is highly desirable to have an automated approach avoiding as much as possible
the human heuristics.

Meanwhile, to maximize the compression performance pruning and quantization could be used
together (Han et al., 2015a). Under this circumstance, a compression algorithm must tune both
sparsity and quantization bitwidth for each layer. These two parameters will influence each other. For
example, if layer i has higher bitwidth than another layer j, then pruning layer i (i.e., reducing the
number of nonzero elements) will contribute more to model compression than pruning layer j. So
jointly pruning and quantization increases the difficulty of manually choosing the compression ratios
or hyper-parameter tuning.

In this paper, we present an end-to-end framework for automated DNN compression. Our method
can jointly quantize and prune the DNN weights, and simultaneously learn the compression ratios
(i.e. layer-wise sparsity and bitwidth) and compressed model weights. Instead of treating the
compression ratios as hyper-parameters and using the black-box optimization, our method is based on
a constrained optimization where an overall model size is set as the constraint to restrict the structure
of the compressed model weights. Table 1 shows a comparison of our method with recently proposed
automated model compression works.

Because our compression constraint considers both the bitwidth and sparsity of each layer, it is hard
to be solved directly. In this work, we show that this constraint can be decoupled and the resultant
formulation can be solved with the Alternating Direction Method of Multipliers (ADMM), which is
widely used in constrained optimization (Boyd et al., 2011). Using ADMM to solve the proposed
problem involves two projection operations, one is induced by pruning and another by quantization.
We show that these two projection operators can be casted to integer linear programming (ILP)
problems, and derive efficient algorithms to solve them. Figure 1 is an overview of the proposed
framework, the main procedure consists of gradient descent / ascent and projection operations. For
more details, refer to Section 3.

In summary, we make the following contributions:

• We propose an end-to-end framework to automatically compress DNNs without manually
setting the compression ratio of each layer. It simultaneously utilizes pruning and quantiza-
tion and directly learns the compressed DNN weights which can have different sparsity and
bitwidth for each layer.

• We mathematically formulate the automated compression problem to a constrained optimiza-
tion problem. The problem has a “sparse + quantized” constraint and it is further decoupled
so that we can solve it using ADMM.

• The main challenge in using ADMM for the automated compression problem is solving the
projection operators for pruning and quantization. We introduce the algorithms for getting
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Figure 1: Illustration of the proposed DNN compression framework. DNN weightW is sparse and V
is quantized. V is a “soft duplicate” ofW and they are converged to be equal.

the projection of the sparse constraint and quantization constraint. In the experiment, we
validate our automated compression framework to show its superiority over the handcrafted
and black-box hyper-parameter search methods.

2 RELATED WORK

2.1 MODEL COMPRESSION TECHNIQUES

Due to the enormous impactions of mobile computing, more and more complicated DNN models
are required to fit into those low-power consumption devices for real application. To solve the
computation consumption issue onto the mobile systems, pruning and quantization are proposed as
two practical approaches nowadays.

Pruning Pruning refers to decrease the amount of non-zero parameters in DNN models. Han et al.
(2015b) proposed a simple approach by zeroing out the weights whose magnitudes are smaller than
a threshold. By performing fine-tuning after removing the smaller weights, the accuracy drop is
usually negligible even with a considerable compression ratio (Han et al., 2015a). Besides using
weights pruning for model compression, channel (filter / neuron) pruning (Li et al., 2016b; Zhou
et al., 2016; Molchanov et al., 2016; He et al., 2017; Luo et al., 2017; Zhuang et al., 2018; Liu et al.,
2017; Ye et al., 2018a) is proposed to remove the entire filter of the CNN weights, thus also achieve
inference acceleration. Wen et al. (2016) introduced more sparsity structures into CNN pruning, such
as shape-wise and depth-wise sparsity.

Quantization Besides decreasing the number of parameters with pruning, quantization is considered
as another direction to compress DNNs. To relieve the cost of memory storage or computation,
quantization focuses on converting the floating-point number elements to low-bits representations.
For example, we can quantize all the parameters’ precision from 32 bits to 8 bits or lower (Han et al.,
2015a) to down-scale the model size. Extremely, the model weights can be binary (Courbariaux
et al., 2015; Rastegari et al., 2016; Courbariaux et al., 2016; Hubara et al., 2017), or ternary (Li
et al., 2016a; Zhu et al., 2016). The quantization interval can be either uniform (Jacob et al., 2018)
or nonuniform (Han et al., 2015a; Miyashita et al., 2016; Tang et al., 2017; Zhang et al., 2018).
Typically, nonuniform quantization can achieve higher compression rate, while uniform quantization
can provide acceleration. Besides the scalar quantization, vector quantization was also applied in
DNN model compression (Gong et al., 2014; Wu et al., 2018).

There are some methods which perform training together with pruning and quantization, including
Ye et al. (2018b) and CLIP-Q (Tung & Mori, 2018). These methods rely on setting hyper-parameters
to compress the layers with desired compression ratios, although the black-box hyper-parameter
optimization method can be used (Tung & Mori, 2018).
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2.2 AUTOMATED MODEL COMPRESSION

Prior efforts on setting for the compression ratio of each layer mostly use either rule-based ap-
proaches (Han et al., 2015a; Howard et al., 2017; Ye et al., 2018b; He et al., 2019) or black-box
hyper-parameter search. Rule-based approaches rely on heuristics, and thus are not optimal and un-
scalable as network architectures become more complex. Search-based approaches treat this problem
as hyper-parameter search to eliminate the need for human labor. For pruning, NetAdapt (Yang et al.,
2018) uses a greedy search strategy to find the sparsity ratio of each layer by gradually decreasing the
resource budget and performing fine-tuning and evaluation iteratively. In each iteration, NetAdapt
tries to reduce the number of nonzero channels of each layer, and pick the layer which results in
smallest accuracy drop. Recent search-based approaches also employ reinforcement learning (RL),
which use the accuracy and resource consumption to define the reward and guide the search to find
pruning ratio (He et al., 2018) and quantization bitwidth (Yazdanbakhsh et al., 2018; Wang et al.,
2019). Guo et al. (2019) uses evolutionary search (ES) for network architecture search (NAS) and
show that it can be used for searching compression ratios. Liu et al. (2019) use a hyper-network in
the ES algorithm to find the layer-wise sparsity for channel pruning. Besides the above, there are
some methods on searching efficient neural architectures (Cai et al., 2018; Tan et al., 2019), while
our work mainly concentrates on compressing a given architecture.

3 END-TO-END AUTOMATED DNN COMPRESSION

In this section, we firstly introduce a general formulation of DNN compression, which is constrained
by the total size of the compressed DNN weights. Secondly, we reformulate the original constraint
to decouple the pruning and quantization and show the algorithm outline which uses ADMM to
solve the constrained optimization. Lastly, as the proposed algorithm requires two crucial projection
operators, we show that they can be formed as special integer linear programming (ILP) problems
and introduce efficient algorithms to solve them.

3.1 PROBLEM FORMULATION

Let W := {W (i)}Li=1 be the set of weight tensors of a DNN which has L layers. To learn a
compressed DNN having a target size of Sbudget, we have the constrained problem

min
W

`(W), s. t.
L∑
i=1

b(W (i))‖W (i)‖0 ≤ Sbudget. (1)

Where b(W ) is the minimum bitwidth to encode all the nonzero elements of tensor W , i.e., b(W ) =
dlog2 |{nonzero elements of W}|e. L0-norm ‖W‖0 is the number of nonzero elements of W . The
loss function ` is task-driven, for example, using the cross entropy loss as ` for classification, or mean
squared error for regression.

Problem (1) is a general form of DNN compression. When assuming the bitwidth is fixed and same
for all the layers, problem (1) reduces to the case of weights pruning (Han et al., 2015b). When
assuming the weight tensors are always dense, it is reduced to mixed-bitwidth quantization (Wang
et al., 2019).

Compared with the ordinary training of deep learning, the compressed DNN learning problem (1)
introduces a constraint, i.e.

∑L
i=1 b(W

(i))‖W (i)‖0 ≤ Sbudget. It is defined by two non-differentiable
functions b(·) and ‖ · ‖0, which obstruct solving it via normal training algorithm. Although there is
projection-based algorithm which can handle the L0-norm constraint, it can not be applied to our
case because our constraint sums the products of ‖ · ‖0 and b(·), which is more complicated.

3.2 CONSTRAINT DECOUPLING VIA ALTERNATING DIRECTION METHOD OF MULTIPLIERS

We deal with the constraint in (1) by decoupling its L0-norm and bitwidth parts. Specifically, we
reformulate the problem (1) to an equivalent form

min
W,V

`(W), s. t. V =W, g(V,W) ≤ Sbudget. (2)
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Where V := {V (i)}Li=1 is a duplicate of the DNN weights W , and g(V,W) :=∑L
i=1 b(V

(i))‖W (i)‖0.

In this paper, we apply the idea from ADMM to solve the above problem. We introduce the dual
variable Y := {Y (i)}Li=1 and absorb the equality constraint into the augmented Lagrangian, i.e.,

min
W,V

max
Y
Lρ(W,V,Y) := `(W) +

L∑
i=1

〈Y (i),W (i) − V (i)〉+ (ρ/2)

L∑
i=1

‖W (i) − V (i)‖2, (3a)

s. t. g(V,W) ≤ Sbudget, (3b)
where ρ > 0 is a hyper-parameter. Based on ADMM, we can solve this problem by updatingW,V
and Y iteratively. In each iteration t, we have three steps corresponding to the variableW,V and Y
respectively.

Fix V,Y , updateW . In this step, we treat V,Y as constants and updateW to minimize Lρ, i.e.,

Wt+1 = arg min
W:g(Vt,W)≤Sbudget

`(W) +

L∑
i=1

〈Y t(i),W (i) − V t(i)〉+ (ρ/2)

L∑
i=1

‖W (i) − V t(i)‖2

= arg min
W:g(Vt,W)≤Sbudget

`(W) + (ρ/2)

L∑
i=1

‖W (i) − V t(i) +
1

ρ
Y t

(i)‖2. (4)

Because of the complexity of the DNN model and the large amount of the training data, `(·) is usually
complex and the gradient based algorithms are often used to iteratively solve it. Here we apply a
proximal method to simplify the objective (4). Firstly, use a quadratic proxy to approximate `(W),
the problem (4) becomes

argmin
W:g(Vt,W)≤Sbudget

`(Wt) + 〈∇`(Wt),W −Wt〉+ 1

2α
‖W −Wt‖2 + ρ

2

L∑
i=1

‖W (i) − V t(i) +
1

ρ
Y t(i)‖2

= argmin
W:g(Vt,W)≤Sbudget

∥∥∥∥W − 1

1 + αρ

(
Wt − α∇`(Wt) + αρ(Vt − 1

ρ
Yt)

)∥∥∥∥2 . (5)

Where∇`(Wt) is the (stochastic) gradient of ` at pointWt, and α is the learning rate. Problem (5) is
the projection of (Wt−α∇`(Wt)+αρ(Vt− 1

ρY
t))/(1+αρ) onto the set {W : g(Vt,W) ≤ Sbudget}.

We call it the compression projection with fixed bitwidth, and show how to solve it in Section 3.3.

FixW,Y , update V . Here we use the updatedWt+1 and minimize Lρ in terms of V .

Vt+1 = arg min
V

‖Wt+1 − V +
1

ρ
Yt‖2, s. t. g(V,Wt+1) ≤ Sbudget. (6)

Since Wt+1 and Yt are fixed in this step, they can be seen as constants here. Problem (6) is the
projection ofWt+1+ 1

ρY
t onto {V : g(V,Wt+1) ≤ Sbudget}. We call this projection the compression

projection with fixed sparsity and leave the detail of solving it in Section 3.4.

FixW,V , update Y . To update the dual variable Y , we perform a gradient ascent step with learning
rate as ρ:

Yt+1 = Yt + ρ(Wt+1 − Vt+1). (7)

The above updating rules follow the standard ADMM. Although ADMM relies on several assumptions
(e.g., the objective function should be convex), we apply it in non-convex loss function and non-
differentiable constraint functions to solve the minimax problem (3). In Section 4, we will demonstrate
these updating rules work well in our problem.

3.3 COMPRESSION PROJECTION WITH FIXED BITWIDTH

Problem (5) can be seen as a weighted L0-norm projection PW:g(Vt,W)≤Sbudget(W̄) with W̄ = (Wt −
α∇`(Wt) + αρ(Vt − 1

ρY
t))/(1 + αρ):

PW:g(Vt,W)≤Sbudget(W̄) := arg min
W

‖W − W̄‖2, s. t.
L∑
i=1

b(V t
(i)

)‖W (i)‖0 ≤ Sbudget. (8)
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We will show that this is actually a 0-1 Knapsack problem.
Proposition 1. The projection problem in (8) is equivalent to the following 0-1 Knapsack problem:

max
X is binary

〈W̄2,X〉, s. t. 〈A,X〉 ≤ Sbudget, (9)

where A and X are of the same shape as W̄ , and the elements of A(i) is defined as
A

(i)
j = b(V t

(i)
), ∀j. W̄2 takes element-wise square of W̄ . The optimal solution of (8) is

PW:g(Vt,W)≤Sbudget(W̄) = X ∗ � W̄ , where X ∗ is the optimal solution to the knapsack problem (9)
and � is the element-wise multiplication.

In this 0-1 Knapsack problem, W̄2 is called the “profit”, and A is the “weight”. The 0-1 Knapsack is
basically selecting a subset of items (corresponding to the DNN weights in our case) to maximize the
sum of the profit and the total weight does not exceed the budget Sbudget. The 0-1 Knapsack problem
is NP hard, while there exists an efficient greedy algorithm to approximately solve it (Kellerer et al.,
2004). The idea is based on the profit to weight ratio (W̄

(i)
j )2/A

(i)
j . We sort all items based on this

ratio and iteratively select the largest ones until the constraint boundary is reached. The theoretical
complexity of this algorithm is O(n log(n)), where n is the number of total items. Because the
sorting and cumulative sum operations are supported on GPU, we can efficiently implement this
greedy algorithm on GPU and use it in our DNN compression framework.

3.4 COMPRESSION PROJECTION WITH FIXED SPARSITY

The solution of problem (6) is the projection PV:g(V,Wt+1)≤Sbudget(Wt+1 + 1
ρY

t), where the projection
operator PV:g(V,Wt+1)≤Sbudget(·) is defined as

PV:g(V,Wt+1)≤Sbudget(V̄) = arg min
V

‖V − V̄‖2, s. t.
L∑
i=1

b(V (i))‖W t+1(i)‖0 ≤ Sbudget. (10)

The above problem can be also reformulate as an integer linear programming. In the following, we
will introduce a special variant of Knapsack problem called Multiple-Choice Knapsack Problem
(MCKP) (Kellerer et al., 2004) and show that the problem (10) can be written as an MCKP.
Definition 1. Multiple-Choice Knapsack Problem (MCKP) (Kellerer et al., 2004). Consider there are
L mutually disjoint groups G1, ..., GL which contain n1, ..., nL items respectively. The j-th item from
the i-th group has a “profit” ρij , and “weight” ωij , ∀i = 1, ..., L, j ∈ 1, ..., ni. MCKP formulates
how to select exactly one item from each group to maximize the sum of profits and keep the sum of
weights under a given budge β, i.e.,

max
x is binary

L∑
i=1

ni∑
j=1

ρijxij , (11a)

ni∑
j=1

xij = 1,∀i = 1, ..., L;

L∑
i=1

ni∑
j=1

ωijxij ≤ β. (11b)

Define B as the set of bitwidth candidates. In this paper, we use B = {1, 2, 3, ..., 8}. Let Ej(V̄ ) be the
error to quantize V̄ with bitwidth j, i.e., Ej(V̄ ) = minV :b(V )=j ‖V − V̄ ‖2, which can be solved by
k-means algorithm for nonuniform quantization (Han et al., 2015a). Now we are ready to reformulate
the problem (10) as an MCKP.
Proposition 2. The compression projection problem (10) can be reformulated to an instance of
MCKP in Definition 1. Specifically, each group Gi is defined by each layer and has size ni = |B|.
Each choice of the quantization bitwidth is regraded as an MCKP item. The profit ρij is −Ej(V̄ (i)),
the weight ωij is ‖W t+1(i)‖0, the Knapsack budget β is Sbudget, and xij indicates selecting which
bitwidth.

The MCKP is also NP-hard. However, if we relax the binary constraints xij ∈ {0, 1} to xij ∈ [0, 1],
it is reduced to a Linear Programming and can be solved efficiently. Zemel (1980) transforms the
linear relaxation of MCKP to the fractional knapsack problem and use a greedy algorithm to solve it.
Here we can get a feasible MCKP solution based on the basic steps in Kellerer et al. (2004):
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1. For each group, sort the items based on their weights in ascending order, i.e., ωij′ ≥ ωij
if j′ ≥ j. According to Kellerer et al. (2004, Proposition 11.2.2), the profits of the sorted
items are nondecreasing, i.e., ρij′ ≥ ρij if ωij′ ≥ ωij . The incremental profit density
(ρij−ρi,j−1)/(ωij−ωi,j−1) has descending order, i.e., (ρij′ −ρi,j′−1)/(ωij′ −ωi,j′−1) ≤
(ρij − ρi,j−1)/(ωij − ωi,j−1) if ωij′ ≥ ωij .

2. Select the first item (having the smallest weight) of each group. It should be noted that the
budget must be large enough to contain these items, otherwise there is no feasible solution
under the constraints.

3. For other items, select the one with the largest incremental profit density. When selecting
the j-th item of the i-th group, discard the j − 1-the item. Repeat the same procedure for
the 2nd, 3rd, ... largest ones, until the total weight of selected items exceeds the budget.

The above greedy algorithm can find a feasible MCKP solution, i.e., selecting one item from
each group and guarantee their total weight is under the given budget β. Its time complexity is
O(L|B| log(L|B|)). In practice, L and |B| are much smaller than the number of DNN weights, so the
time complexity of this algorithm is negligible. Although this greedy solution is not always global
optimal, it has some nice properties and could be global optimal in some case (Kellerer et al., 2004,
Corollary 11.2.3). By using MCKP-Greedy to solve our compression projection problem (10), we
can get the projection result of PV:g(V,Wt+1)≤Sbudget(·), which essentially allocates the bitwidth across
different layers.

We summarize the training procedure of our method in Algorithm 1. We use τ to denote the number
of total SGD iterations of our algorithm. For large scale datasets, the number of SGD iterations could
be very large. So we do not make the projections and dual update every time after we perform the
proximal SGD onW , but use a hyper-parameter τ ′ to control the frequency of dual updates. τ should
be divisible by τ ′. In our experiments, τ ′ is set to be the iteration number of one epoch. Ideally, we
should getW converged to V in the end, but t is hard to getW exactly equals to V in practice. So we
perform a quantization toW to guarantee it satisfies the model size constraint.

Algorithm 1: End-to-end Automated DNN Compression Framework.
Input: Original DNN parameterizedW , compression budget Sbudget, primal learning rate α, dual

learning rate ρ, iteration number τ , and the dual updating interval τ ′.
Result: The compressed DNN weightsW∗.

1 InitializeW with pretrained dense model, initialize V by uniformly quantizingW , and initialize
Y = 0;

2 W ← PW:g(V,W)≤Sbudget)(W);
3 V ← PV:g(V,W)≤Sbudget(W + 1

ρY);
4 Y ← Y + ρ(W −V);
5 for t← 1 to τ do
6 Sample data and compute stochastic gradient∇`(W);

W ← (W − α∇`(W) + αρ(V − 1
ρY))/(1 + αρ);

7 if t (mod τ ′) = 0 then
8 W ← PW:g(V,W)≤Sbudget)(W);
9 V ← PV:g(V,W)≤Sbudget(W + 1

ρY);
10 Y ← Y + ρ(W −V);
11 end
12 end
13 for i← 1 to L do

/* In case W has not converged to V yet. */

14 Quantize W (i) with the bitwidth b(V (i));
15 end
16 W∗ =W .
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4 EXPERIMENTS

In this section, we will evaluate our automated compression framework. We start with introducing
the experiment setup such as evaluation and implementation details, then we show the compression
results of our framework and compare it with state-of-the-art methods.

4.1 EXPERIMENT SETUP

Datasets We evaluate our method on three datasets which are most commonly used in DNN
compression: MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009), and ImageNet (Deng
et al., 2009). We use the standard training / testing data split and data preprocessing on all the three
datasets. For ImageNet, we evaluate on the image classification task (1000 classes).

DNN models We evaluate on a wide range of DNN models, which are also used in current state-
of-the-art compression methods. On MNIST, we use the LeNet-51. It has two convolution layers
followed by two fully connected layers. For CIFAR-10, we evaluate on ResNet-20 and ResNet-50 (He
et al., 2016) which have 20 and 50 layers respectively. For ImageNet, we use the AlexNet (Krizhevsky
et al., 2012) and the well-known compact model MobileNet (Howard et al., 2017).

Baselines and metric We compare our method with current state-of-the-art model compression
methods related to ours. These methods include automated pruning method AMC (He et al., 2018),
automated quantization methods ReLeQ (Yazdanbakhsh et al., 2018) and HAQ (Wang et al., 2019),
and jointly pruning and quantization methods (Han et al., 2015a; Louizos et al., 2017; Tung & Mori,
2018; Ye et al., 2018b). Although there are some overhead of the sparse index, we only use the size
of the compressed weights data to compute the compression rate because it directly corresponds to
Sbudget. In addition, different indexing techniques may introduce unfairness in the comparison.

Implementation details We set the batch size as 256 for AlexNet and LeNet-5, and use 128 batch
size on ResNets and MobileNet. We use the momentum(=0.9) SGD to optimize `(W). We use
initial learning rate α is set to 0.01 on AlexNet and MobileNet, and 0.1 on LeNet-5 and ResNets.
We use the cosine annealing strategy (Loshchilov & Hutter, 2016) to decay the learning rate. We
set the hyper-parameter ρ = 0.05 for all the experiments. To make a more clear comparison, the
compression budget Sbudget is set to be not larger than the compared methods. Training is performed
for 120 epochs on LeNet-5 and ResNets and 90 epochs on AlexNet and MobileNet.

4.2 DNN COMPRESSION RESULTS

MNIST In Table 2, we show the validation accuracies of compressed LeNet-5 models of different
methods. We list the nonzero weights percentage, averaged bitwidth, and the compression rate
(original weights size / compressed weights size), and the accuracy drop. The accuracy of the
uncompressed LeNet-5 is 99.2%, and our method can achieve an impressive 2120× compression
rate without any accuracy drop. In the compared methods, the performance of Ye et al. (2018b) is the
closest to our method. Compare with the detail of its compressed model, we find that our method
tend to leave more nonzero weights but use less bits to represent each weight.

Table 2: Comparison across different compression methods on LeNet-5@MNIST.

Method Nonzero% Averaged bitwidth Compression rate Accuracy drop
Deep compression (Han et al., 2015a) 8.3% 5.3 70× 0.1%

BC-GNJ (Louizos et al., 2017) 0.9% 5 573× 0.1%
BC-GHS (Louizos et al., 2017) 0.6% 5 771× 0.1%

Ye et al. (2018b) 0.6% 2.8 1,910× 0.1%
Ours 1.0% 1.46 2,120× 0.0%

CIFAR-10 Table 3 shows the results of the compressed ResNets on CIFAR-10 dataset. The accuracy
of the original ResNet-20 is 91.29% and the accuracy of ResNet-50 is 93.55%. For ResNet-20, we
compare with the automated quantization method ReLeQ (Yazdanbakhsh et al., 2018). For fair

1https://github.com/BVLC/caffe/tree/master/examples/mnist
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comparison, we evaluate two compressed models of our method, one only uses quantization and
another use jointly pruning and quantization. For the quantization-only model, we achieve 16×
compression rate without accuracy drop, which has better accuracy and smaller size than ReLeQ.
When introducing pruning, there is a 0.14% accuracy drop but the compression rate is improved to
35.4×.

For ResNet-50, we compare with the automated pruning method AMC (He et al., 2018). Its
compressed ResNet-50 targeted on model size reduction has 60% of non-zero weights. In our
experiment, we find that ResNet-50 still has a large space to compress. The pruning-only result of our
method compress ResNet-50 with 50% weights and an 1.51% accuracy improvement. By performing
jointly pruning and quantization, our method can compress the ResNet-50 with compression rate
from 462× to 836×. The accuracy loss is only met when compress the model to 836× smaller, which
suggests the ResNet-50 is mostly redundant on CIFAR-10 classification, and compressing it could
reduce overfitting.

Table 3: Comparison across different compression methods on CIFAR-10.

Model Method Nonzero% Averaged bitwidth Compression rate Accuracy drop
ResNet-20 ReLeQ (Yazdanbakhsh et al., 2018) - 2.8 11.4× 0.12%

Ours - 2 16× 0.00%
Ours 46% 1.9 35.4× 0.14%

ResNet-50 AMC (He et al., 2018) 60% - 1.7× -0.11%
Ours 50% - 2× -1.51%
Ours 4.2% 1.7 462× -1.25%
Ours 3.1% 1.9 565× -0.90%
Ours 2.2% 1.8 836× 0.00%

ImageNet Table 4 shows the compressed results of MobileNet and AlexNet. For MobileNet, we
compare with the quantization methods of Han et al. (2015a) and HAQ (Wang et al., 2019). The
original MobileNet has 70.9% top-1 accuracy. Our quantization-only results with averaged bitwidth
2 and 3 have 7.1% and 1.19% accuracy drops respectively, which are about 2× smaller than the HAQ
counterparts (13.76% and 3.24%). The compression rate can be further improved to 16.7× when
jointly perform pruning and quantization.

For AlexNet, we compare with methods of joint pruning and quantization. Unlike our end-to-end
framework, all the compared methods set the pruning ratios and quantization bitwidth as hyper-
parameters. CLIP-Q (Tung & Mori, 2018) uses Bayesian optimization to choose these hyper-
parameters, while others manually set them. The uncompressed AlexNet is from PyTorch pretrained
models and has 56.52% top-1 accuracy. When compressing the model to be 118× smaller, our
method has an 1% accuracy improvement which is higher than the compressed CLIP-Q model with
similar compression rate. Our method can also compress AlexNet to be 205× smaller without
accuracy drop, while the compressed model of Ye et al. (2018b) has a 0.1% accuracy drop with a
slightly lower compression rate.

Table 4: Comparison across different compression methods on ImageNet.

Model Method Nonzero% Averaged bitwidth Compression rate Accuracy drop
MobileNet Han et al. (2015a) - 2 16× 33.28%

HAQ (Wang et al., 2019) - 2 16× 13.76%
Ours - 2 16× 7.10%

Han et al. (2015a) - 3 10.7× 4.97%
HAQ (Wang et al., 2019) - 3 10.7× 3.24%

Ours - 3 10.7× 1.19%
Ours 42% 2.8 26.7× 4.41%

AlexNet Han et al. (2015a) 11% 5.4 54× 0.00%
CLIP-Q (Tung & Mori, 2018) 8% 3.3 119× -0.70%

Ours 7.4% 3.7 118× -1.00%
Ye et al. (2018b) 4% 4.1 193× 0.10%

Ours 5% 3.1 205× -0.08%
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(e) AlexNet (Our 118× compressed model)
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(f) AlexNet (Our 205× compressed model)

Figure 2: Visualization of the compressed results of different layers on LeNet-5 and AlexNet. The
number of nonzero weights is shown in log10 scale.

Compressed model visualization In Figure 2, we visualize the distribution of sparsity and bitwidth
for each layer on LeNet-5 and AlexNet. The first row shows compressed models of Ye et al. (2018b)
and CLIP-Q (Tung & Mori, 2018), and the second row shows our compressed models. For LeNet-5,
we observe that our method preserves more nonzero weights in the third layer, while allocates less
bitwidth compared with Ye et al. (2018b). For AlexNet, our method has the trend of allocating larger
bitwidth to convolutional layers than fully connected layers. CLIP-Q also allocates more bits to the
convolutional layers, while Ye et al. (2018b) assigns more bits to the first and last layer. Our method
also shows a preference for allocating more bits to sparser layers. This coincides with the intuition
that the weights of sparser layers may be more informative, and increasing the bitwidth on these
layers also brings less storage growth.

5 CONCLUSION

As DNNs are increasing deployed on mobile devices, model compression is becoming more and
more important in practice. Although many model compression techniques have been proposed in
the past few years, lack of systematic approach to set the layer-wise compression ratio diminishes
their performance. Traditional methods require human labor to manually tune the compression ratios.
Recent work uses black-box optimization to search the compression ratios but introduces instability of
black-box optimization and is not efficient enough. Different from prior work, we try to start from the
root of the problem. Specifically, we propose a constrained optimization formulation which considers
both pruning and quantization and does not require compression ratio as hyper-parameter. By using
ADMM, we can build the framework of our algorithm to solve the constrained optimization problem
iteratively. Efficient algorithms for Knapsack problems are introduced to solve the sub-procedures
in ADMM. In the future, we want to investigate other scenarios where we can substitute black-box
optimization for more efficient optimization based approaches.
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