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ABSTRACT

We introduce the Convolutional Conditional Neural Process (CONVCNP), a new
member of the Neural Process family that models translation equivariance in the
data. Translation equivariance is an important inductive bias for many learning
problems including time series modelling, spatial data, and images. The model
embeds data sets into an infinite-dimensional function space, as opposed to finite-
dimensional vector spaces. To formalize this notion, we extend the theory of neural
representations of sets to include functional representations, and demonstrate that
any translation-equivariant embedding can be represented using a convolutional
deep-set. We evaluate CONVCNPs in several settings, demonstrating that they
achieve state-of-the-art performance compared to existing NPs. We demonstrate
that building in translation equivariance enables zero-shot generalization to chal-
lenging, out-of-domain tasks.

1 INTRODUCTION

Neural Processes (NPs; Garnelo et al. (2018b;a)) are a rich class of models that define a conditional
distribution over output variables y given input variables x, parameters θ, and a set of previously
observed data points in a context set Z = {xm,ym}Mm=1, that is p(y|x, Z,θ). A key component of
NPs is the embedding of context sets into a representation space with encoderE(Z), which is achieved
using a deep set function approximator (Zaheer et al., 2017). This simple model specification allows
NPs to be used for (i) meta-learning (Thrun & Pratt, 2012; Schmidhuber, 1987) since predictions
can be generated on the fly from new context-sets at test-time, and (ii) multi-task or transfer learning
(Requeima et al., 2019) since they provide a natural way of sharing information between data sets.
Moreover, conditional NPs (CNPs; (Garnelo et al., 2018a)) can be trained with maximum likelihood
learning of the parameters θ, which is simple and mimics how the system is used at test time, resulting
in strong performance (Gordon et al., 2019).

Natural application areas of NPs include time series, spatial data, and images with missing values.
Consequently, such domains have been used extensively to benchmark current NPs (Garnelo et al.,
2018a;b; Kim et al., 2019). Often, ideal solutions to prediction problems in such domains should be
translation equivariant: if the data are translated in time or space, the predictions should be translated
correspondingly (Kondor & Trivedi, 2018; Cohen & Welling, 2016). This relates to the notion of
stationarity. As such NPs would ideally have translation equivariance built directly into the modelling
assumptions as an inductive bias. However, current NP models must learn this structure from the data
set instead, which is sample and parameter inefficient as well as impacting the ability of the models
to generalize.

The goal of this paper is to build translation equivariance into NPs. Famously, convolutional neural
networks (CNNs) added translation equivariance to standard multilayer perceptrons (LeCun et al.,
1998; Cohen & Welling, 2016). However, it is not straightforward to generalize NPs in an analogous
way: (i) CNNs require data to live “on the grid” (e.g. image pixels live on a regularly spaced grid),
while many of the above domains have data that live “off the grid” (e.g. time series data may be
observed irregularly at any time t ∈ R). (ii) NPs operate on partially observed context sets whereas
CNNs typically do not. (iii) NPs rely on embedding sets into a finite-dimensional vector space for
which the notion of equivariance with respect to input translations is not well defined, as we detail in
Section 3. In this work, we introduce the CONVCNP, a new member of the NP family that accounts
for translation equivariance.1 This is achieved by extending the theory of learning on sets to include

1Code will be made available upon publication.
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functional representations, which in turn can be used to express any translation-equivariant NP model.
Our key contributions can be summarized as follows.

(i) We provide a representation theorem for translation-equivariant functions on sets, extending
a key result of Zaheer et al. (2017) to functional embeddings, including sets of varying size.

(ii) We extend the NP family of models to include translation equivariance.
(iii) We evaluate the CONVCNP and demonstrate that it exhibits excellent performance on

several synthetic and real-world benchmarks.

2 BACKGROUND AND FORMAL PROBLEM STATEMENT

Notation. In the following, let X = Rn and Y ⊆ Rd, Y compact, be the spaces of inputs and outputs
(though to ease notation, we often assume Y ⊆ R). Define ZM = (X × Y)M as the collection of M
input–output pairs, Z�M =

SM
m=1ZM as the collection of at most M pairs, and Z =

S1
m=1ZM as

the collection of finitely many pairs. Since we will consider permutation-invariant (defined later in
Property 1) functions on Z , we may refer to elements of Z as sets or data sets. Furthermore, we will
use the notation [n] = {1, . . . , n}.
Conditional Neural Processes (CNPs). CNPs model predictive distributions as p(y|x, Z) =
p(y|Φ(x, Z),θ). Φ is defined as a composition ρ ◦ E of an encoder E : Z → Rd mapping into the
embedding space Rd and a decoder ρ : Rd → Cb(X ,Y). Here E(Z) ∈ Rd is a vector representation
of the set Z, and Cb(X ,Y) is the space of continuous, bounded functions X → Y endowed with the
supremum norm. While NPs (Garnelo et al., 2018b) employ latent variables to indirectly specify
predictive distributions, in this work we focus on conditional models.

As noted by Lee et al. (2019); Bloem-Reddy & Teh (2019), the CNP form provides a tight relationship
to the growing literature on learning and representing functions on sets (Zaheer et al., 2017; Qi et al.,
2017; Wagstaff et al., 2019), as E is a function operating on sets. Central to this body of work is the
idea that any representation or function on a set must satisfy Property 1 to be considered valid.

Property 1 (Sn-invariant and S-invariant functions). Let Sn be the group of permutations of n
symbols for n ∈ N. A function Φ on Zn is called Sn-invariant if

Φ(Zn) = Φ(πZn) for all π ∈ Sn and Zn ∈ Zn,

where the application of π to Zn is defined as πZn = ((xπ(1),yπ(1)), . . . , (xπ(n),yπ(n))). A
function Φ on Z is called S-invariant if Φ|Zn is Sn-invariant for all n.

Zaheer et al. (2017) demonstrate that any continuous SM -invariant function f : ZM → R has a
sum-decomposition (Wagstaff et al., 2019), i.e. a representation of the form f(Z) = ρ(

P
z2Z φ(z))

for appropriate ρ and φ (though this could only be shown for fixed-sized sets). This is indeed the
form employed by the NP family for the encoder that embeds sets into a latent representation.

Translation equivariance. The focus of this work is on learners that are translation equivariant:
if the input locations of the data are translated by an amount τ , the predictions should be translated
correspondingly. Translation equivariance for functions operating on sets is formalized in Property 2.

Property 2 (Translation equivariant mappings on sets). LetH be an appropriate space of functions
on X , and define T and T 0 as follows:

T : X × Z → Z, T�Z = ((x1 + τ ,y1), . . . , (xm + τ ,ym)),

T 0 : X ×H → H, T 0�h(x) = h(x− τ ).

Then a mapping Φ: Z → H is called translation equivariant if

Φ(T�Z) = T 0�Φ(Z) for all τ ∈ X and Z ∈ Z.

3 CONVOLUTIONAL DEEP SETS

We are interested in translation equivariance (Property 2) with respect to translations on X . The
NP family encoder maps sets Z to an embedding in a vector space Rd, for which the notion of
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equivariance with respect to input translations in X is not well defined. For example, a function f
on X can be translated by τ ∈ X : f( · − τ ). However, for a vector x ∈ Rd, which can be seen
as a function [d] → Rd, x(i) = xi, the translation x( · − τ ) does not make sense. To overcome
this, we enrich the encoder E : Z → H to map into a function spaceH containing functions on X .
Since functions in H act on X , our notion of translation equivariance (Property 2) does now also
make sense for E. As we demonstrate below, every translation-equivariant function on sets has a
representation in terms of a specific functional embedding.

Definition 1 (Functional mappings on sets and functional representations of sets). Call a map
E : Z → H a functional mapping on sets if it maps from sets Z to an appropriate space of functions
H. Furthermore, call E(Z) the functional representation of the set Z.

Considering functional representations of sets leads to the key result of this work, which can be
summarized as follows. For Z 0 ⊆ Z appropriate, a continuous function Φ: Z 0 → Cb(X ,Y) satisfies
Properties 1 and 2 if and only if it has a representation of the form

Φ(Z) = ρ (E(Z)) , E(Z) =
P

(x,y)2Zφ(y)ψ( · − x) ∈ H, (1)

for some continuous and translation-equivariant ρ : H → Cb(X ,Y), and appropriate φ and ψ. Note
that ρ is a map between function spaces. We also remark that continuity of Φ is not in the usual sense;
we return to this below.

Equation (1) defines the encoder used by our proposed model, the CONVCNP. In Section 3.1, we
present our theoretical results in more detail. In particular, Theorem 1 establishes equivalence between
any function satisfying Properties 1 and 2 and the representational form in Equation (1). In doing so,
we provide an extension of the key result of Zaheer et al. (2017) to functional representations on sets,
and show that it can naturally be extended to handle varying-size sets. The practical implementation
of CONVCNPs – the design of ρ, φ, and ψ – is informed by our results in Section 3.1 (as well as the
proofs, provided in Appendix A), and is discussed for domains of interest in Section 4.

3.1 REPRESENTATIONS OF TRANSLATION EQUIVARIANT FUNCTIONS ON SETS

In this section we establish the theoretical foundation of the CONVCNP. We begin by stating a
definition that is used in our main result.

Definition 2 (Multiplicity). A collection Z 0 ⊆ Z is said to have multiplicity K if, for every set
Z ∈ Z 0, every x occurs at most K times:

multZ 0 := sup {sup {|{i ∈ [m] : xi = x̂}| : x̂ = x1, . . . ,xm
number of times every x occurs

} : (xi, yi)
m
i=1 ∈ Z 0} = K

where [m] = {1, . . . ,m}.

For example, in the case of real-world data like time series and images, we often observe only one
(possibly multi-dimensional) observation per input location, which corresponds to multiplicity one.
We are now ready to state our key theorem.

Theorem 1. Consider an appropriate2 collection Z 0�M ⊆ Z�M with multiplicity K. Then a
function Φ: Z 0�M → Cb(X ,Y) is continuous3, permutation invariant (Property 1), and translation
equivariant (Property 2) if and only if it has a representation of the form

Φ(Z) = ρ (E(Z)) , E((x1, y1), . . . , (xm, ym)) =
Pm
i=1 φ(yi)ψ( · − xi)

for some continuous and translation-equivariant ρ : H → Cb(X ,Y) and some continuous φ : Y →
RK+1 and ψ : X → R, whereH is an appropriate space of functions that includes the range of E.
We call a function Φ of the above form CONVDEEPSET.

The proof of Theorem 1 is provided in Appendix A. We here discuss several key points from the
proof that have practical implications and provide insights for the design of CONVCNPs: (i) For

2 For every m 2 [M ], Z 0�M \ Zm must be closed and closed under permutations and translations.
3 For every m 2 [M ], the restriction �jZ0�M

\Zm
is continuous.
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Figure 1: (a) Pseudo-code for and (b) illustration of CONVCNP forward pass.

the construction of� andE,  is set to a �exible positive-de�nite kernel associated with a Repro-
ducing Kernel Hilbert Space (RKHS; Aronszajn (1950)), which results in desirable properties for
E . (ii) Using the work by Zaheer et al. (2017), we set� (y) = ( y0; y1; � � � ; yK ) to be the powers of
y up to orderK . (iii) Theorem 1 requires� to be a powerful function approximator of continuous,
translation-equivariant maps between functions. In Section 4, we discuss how these theoretical results
inform our implementations of CONVCNPs.

Theorem 1 extends the result of Zaheer et al. (2017) discussed in Section 2 by embedding the set into
an in�nite-dimensional space—the RKHS—instead of a �nite-dimensional space. Beyond allowing
the model to exhibit translation equivariance, the RKHS formalism allows us to naturally deal with
�nite sets of varying sizes, which turns out to be challenging with �nite-dimensional embeddings.
Furthermore, our formalism requires� (y) = ( y0; y1; y2; : : : ; yK ) to expand up to order no more
than themultiplicity of the setsK ; if K is bounded, then our results hold for sets up to any arbitrarily
large �nite sizeM , while �xing � to be only(K + 1) -dimensional.

4 CONVOLUTIONAL CONDITIONAL NEURAL PROCESSES

In this section we discuss the architectures and implementation details forCONVCNPs. Similar to
NPs, CONVCNPs model the conditional distribution as

p(y jx ; Z ) = p(y j� � (Z )(x )) = N (y ; � � ; � � ) with (� � ; � � ) = � � (Z )(x );

whereZ is the observed data and� a CONVDEEPSET. The key considerations are the design of� , � ,
and for � . We provide separate models for data that lie on- and off-the-grid.

Specifying� . The applications considered in this work have a single (potentially multi-dimensional)
output per input location, so the multiplicity ofZ is one (i.e.,K = 1 ). It then suf�ces to let�
be a power series of order one, which is equivalent to appending a constant toy in all data sets,
i.e. � (y ) = [1 ; y ]> . In this design, the �rst output� 1 can be thought of as a “density channel”
providing the model with information regarding where data has been observed. Without a density
channel, the model would be unable to distinguish between no observed datapoint atx and a datapoint
at x with y = 0. Additionally, we found it helpful to divide the signal channelsy by the density
channel (Figure 1a, line 5) as this improved performance when there is large variation in the density
of input locations. In the image processing literature, this is known asnormalized convolutions
(Knutsson & Westin, 1993). The normalization operation can be reversed by� and is therefore not
restrictive.

CONVCNPs for off-the-grid data. Having speci�ed� , it remains to specify the form of and
� . Our proof of Theorem 1 suggests that should be a stationary, positive-de�nite kernel. The
exponentiated-quadratic (EQ) kernel with a learnable length scale parameter is a natural choice. This
kernel is multiplied by� to form the functional representationE(Z ) (Figure 1a, line 4; and Figure 1b,
arrow 1).
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Next, Theorem 1 suggests that� should be a continuous, translation-equivariant map between function
spaces. Kondor & Trivedi (2018) show that, in deep learning, any translation-equivariant model has a
representation as a CNN. However, CNNs operate on discrete (on-the-grid) input spaces and produce
discrete outputs. In order to approximate� with a CNN, we discretize the input of� , then apply the
CNN, and �nally transform the CNN output back to a continuous function space. To do this, for
each context and test set, we space points(t i )n

i =1 � X on a uniform grid (at a pre-speci�ed density)
over a hyper-cube that covers both the context and target inputs. We then evaluate(E(Z )( t i ))n

i =1
(Figure 1a, lines 2–3; Figure 1b, arrow 2). This discretized representation ofE(Z ) is then passed
through a CNN (Figure 1a, line 6; Figure 1b, arrow 3).

The output of the CNN must �nally be mapped back to a continuous function space. We do this
by using the CNN outputs as weights for evenly-spaced basis functions, again using the EQ kernel,
which we denote by � (Figure 1a, lines 7–8; Figure 1b, arrow 3). The resulting approximation to
� is not perfectly equivariant, but will be approximately equivariant for length scales larger than
the spacing of(E (Z )( t i ))n

i =1 . The resulting continuous functions are then used to generate the
(Gaussian) predictive mean and variance at any input. This, in turn, can be used to evaluate the
log-likelihood.

CONVCNP for on-the-grid data. While CONVCNPis readily applicable to many settings where
data live on a grid, in this work we focus on the image setting. As such, the following description
uses the image completion task as an example, which is often used to benchmark NPs (Garnelo et al.,
2018a; Kim et al., 2019). Compared to the continuous case, the implementation becomes simpler as
we can choose the discretization(t i )n

i =1 to be the pixel locations. LetI be the image, and letMc; M t
be context and target masks respectively:[Mc]i;j = 1 if pixel location(i; j ) is in the context set, else
it is 0. Hence the context set can be represented asMc � I . Then the on-the-grid algorithm can be
succinctly written as(� ; log(� )) = CNN([ CONV(M c); CONV(M c � I) =CONV(M c)]> ) whereCONV
is a convolutional layer (discrete version of Figure 1a, line 4). Although the theory suggests using a
positive-de�nite kernel forCONV, we have not found signi�cant empirical differences between an
EQ kernel and using a fully trainable kernel restricted to positive values (see Appendices D.4 and D.5
for details). Here(� ; � ) are the image mean and standard deviation, and is only evaluated at the
target locations de�ned byM t . [Mc; Mc � I]> are the discretized version of the density channel and
the signal channel, which is then normalized element-wise by the density channel.

Training. Denoting the data setD = f Zn gN
n =1 � Z and the parameters by� , maximum-likelihood

training involves (Garnelo et al., 2018a;b)

� � = argmax � 2 �
P N

n =1

P
(x ;y )2 Z n;t

logp(y j � � (Zn;c )(x )) ; (2)

where we have splitZn into context (Zn;c ) and target (Zn;t ) sets. This is standard practice in both
the NP (Garnelo et al., 2018a;b) and meta-learning settings (Finn et al., 2017; Gordon et al., 2019)
and relates to neural auto-regressive models (Requeima et al., 2019). Practically, stochastic gradient
descent methods (Bottou, 2010) can be used to perform the optimization.

5 EXPERIMENTS AND RESULTS

We evaluate the performance ofCONVCNPs in both on-the-grid and off-the-grid settings focusing
on two central questions: (i) Do translation-equivariant models improve performance in appropriate
domains? (ii) Can translation equivariance enableCONVCNPs to generalize to settings outside
of those encountered during training? We use several off-the-grid data-sets which are irregularly
sampled time series (X = R), comparing to Gaussian processes (GP; Williams & Rasmussen (2006)),
and ATTNCNP, the best performing member of the CNP family. We then evaluate on several
on-the-grid image data sets (X = Z2). In all settings we demonstrate substantial improvements
over existing neural process models. For the CNN component of our model, we propose a small
and large architecture for each experiment (in the experimental sections namedCONVCNP and
CONVCNPXL, respectively). We note that these architectures are different for off-the-grid and
on-the-grid experiments, with full details regarding the architectures given in the appendices.

5.1 SYNTHETIC 1D EXPERIMENTS

First we consider synthetic regression problems. At each iteration, a function is sampled, followed
by context and target sets. Beyond EQ-kernel GPs (as proposed in Garnelo et al. (2018a); Kim et al.
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(2019)), we consider more complex data arising from Matern–5
2 and weakly-periodic kernels, as well

as a challenging, non-Gaussian sawtooth process with random shift and frequency (see Figure 2, for
example).CONVCNPis compared to CNP (Garnelo et al., 2018a) andATTNCNP. Training and
testing procedures are �xed across all models. Full details on models, data generation, and training
procedures are provided in Appendix C.2.

Table 1: Log-likelihood from synthetic 1-dimensional experiments.

Model Params EQ Weak Periodic Matern Sawtooth

CNP 66818 0.88� 3e-3 -1.10� 2e-3 -0.78� 1e-3 -0.16� 1e-5
ATTNCNP 149250 2.58� 4e-3 -1.10� 2e-3 -0.42� 2e-3 0.33� 2e-3
CONVCNP 6537 2.06� 5e-3 -1.14� 2e-3 0.37� 4e-3 2.21� 4e-3
CONVCNPXL 50617 2.93� 4e-3 -0.41� 2e-3 0.50� 4e-3 2.66� 1e-3
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Figure 2: Example functions learned by theATTNCNP(top row), andCONVCNP(bottom row),
when trained on a Matern–5

2 kernel with length scale 0.25 (�rst and second column) and sawtooth
function (third and fourth column). Columns one and three show the predictive posterior of the
models when data is presented in same range as training, with predictive posteriors continuing beyond
that range on either side. Columns two and four show model predictive posteriors when presented
with data outside the training data range. Plots show means and two standard deviations.

Table 1 reports the log-likelihood means and standard errors of the models over 1000 tasks. The
context and target points for both training and testing lie within the interval[� 2; 2] where training
data was observed (marked “training data range” in Figure 2). Table 1 demonstrates that, even when
extrapolation is not required,CONVCNPsigni�cantly outperforms other models in all cases, despite
having fewer parameters.

Figure 2 demonstrates thatCONVCNPgenerates excellent �ts, even for challenging functions such
as Matern–52 kernels and sawtooth. Moreover, Figure 2 compares the performance ofCONVCNP
andATTNCNPwhen data is observed outside the range where the models where trained: translation
equivariance enablesCONVCNPto elegantly generalize to this setting, whereasATTNCNPis unable
to generate reasonable predictions.

5.2 PLASTICC EXPERIMENTS

The PLAsTiCC data set (Allam Jr et al., 2018) is a simulation of transients observed by the LSST
telescope under realistic observational conditions. The data set contains 3,500,734 “light curves”,
where each measurement is of an object's brightness as a function of time— taken by measuring
the photon �ux in six different astronomical �lters. The data can be treated as a six-dimensional
time-series. The data set was introduced in a Kaggle competition,4 where the task was to use
these light curves to classify the variable sources. The winning entry– Avocado (Boone, 2019)
–modeled the light curves with GPs and used these models to generate features for a gradient boosted
decision tree classi�er. We compare a multi input / outputCONVCNPwith the GP models used in
Avocado.5 CONVCNPaccepts six channels as inputs, one for each astronomical �lter, and returns 12

4https://www.kaggle.com/c/PLAsTiCC-2018
5Full code for Avocado, including GP models, is available at https://github.com/kboone/avocado.
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