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ABSTRACT

We introduce the Convolutional Conditional Neural Process (CONVCNP), a new
member of the Neural Process family that models translation equivariance in the
data. Translation equivariance is an important inductive bias for many learning
problems including time series modelling, spatial data, and images. The model
embeds data sets into an infinite-dimensional function space, as opposed to finite-
dimensional vector spaces. To formalize this notion, we extend the theory of neural
representations of sets to include functional representations, and demonstrate that
any translation-equivariant embedding can be represented using a convolutional
deep-set. We evaluate CONVCNPs in several settings, demonstrating that they
achieve state-of-the-art performance compared to existing NPs. We demonstrate
that building in translation equivariance enables zero-shot generalization to chal-
lenging, out-of-domain tasks.

1 INTRODUCTION

Neural Processes (NPs; Garnelo et al. (2018b;a)) are a rich class of models that define a conditional
distribution over output variables y given input variables x, parameters θ, and a set of previously
observed data points in a context set Z = {xm,ym}Mm=1, that is p(y|x, Z,θ). A key component of
NPs is the embedding of context sets into a representation space with encoderE(Z), which is achieved
using a deep set function approximator (Zaheer et al., 2017). This simple model specification allows
NPs to be used for (i) meta-learning (Thrun & Pratt, 2012; Schmidhuber, 1987) since predictions
can be generated on the fly from new context-sets at test-time, and (ii) multi-task or transfer learning
(Requeima et al., 2019) since they provide a natural way of sharing information between data sets.
Moreover, conditional NPs (CNPs; (Garnelo et al., 2018a)) can be trained with maximum likelihood
learning of the parameters θ, which is simple and mimics how the system is used at test time, resulting
in strong performance (Gordon et al., 2019).

Natural application areas of NPs include time series, spatial data, and images with missing values.
Consequently, such domains have been used extensively to benchmark current NPs (Garnelo et al.,
2018a;b; Kim et al., 2019). Often, ideal solutions to prediction problems in such domains should be
translation equivariant: if the data are translated in time or space, the predictions should be translated
correspondingly (Kondor & Trivedi, 2018; Cohen & Welling, 2016). This relates to the notion of
stationarity. As such NPs would ideally have translation equivariance built directly into the modelling
assumptions as an inductive bias. However, current NP models must learn this structure from the data
set instead, which is sample and parameter inefficient as well as impacting the ability of the models
to generalize.

The goal of this paper is to build translation equivariance into NPs. Famously, convolutional neural
networks (CNNs) added translation equivariance to standard multilayer perceptrons (LeCun et al.,
1998; Cohen & Welling, 2016). However, it is not straightforward to generalize NPs in an analogous
way: (i) CNNs require data to live “on the grid” (e.g. image pixels live on a regularly spaced grid),
while many of the above domains have data that live “off the grid” (e.g. time series data may be
observed irregularly at any time t ∈ R). (ii) NPs operate on partially observed context sets whereas
CNNs typically do not. (iii) NPs rely on embedding sets into a finite-dimensional vector space for
which the notion of equivariance with respect to input translations is not well defined, as we detail in
Section 3. In this work, we introduce the CONVCNP, a new member of the NP family that accounts
for translation equivariance.1 This is achieved by extending the theory of learning on sets to include

1Code will be made available upon publication.
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functional representations, which in turn can be used to express any translation-equivariant NP model.
Our key contributions can be summarized as follows.

(i) We provide a representation theorem for translation-equivariant functions on sets, extending
a key result of Zaheer et al. (2017) to functional embeddings, including sets of varying size.

(ii) We extend the NP family of models to include translation equivariance.
(iii) We evaluate the CONVCNP and demonstrate that it exhibits excellent performance on

several synthetic and real-world benchmarks.

2 BACKGROUND AND FORMAL PROBLEM STATEMENT

Notation. In the following, let X = Rn and Y ⊆ Rd, Y compact, be the spaces of inputs and outputs
(though to ease notation, we often assume Y ⊆ R). Define ZM = (X × Y)M as the collection of M
input–output pairs, Z≤M =

⋃M
m=1ZM as the collection of at most M pairs, and Z =

⋃∞
m=1ZM as

the collection of finitely many pairs. Since we will consider permutation-invariant (defined later in
Property 1) functions on Z , we may refer to elements of Z as sets or data sets. Furthermore, we will
use the notation [n] = {1, . . . , n}.
Conditional Neural Processes (CNPs). CNPs model predictive distributions as p(y|x, Z) =
p(y|Φ(x, Z),θ). Φ is defined as a composition ρ ◦ E of an encoder E : Z → Rd mapping into the
embedding space Rd and a decoder ρ : Rd → Cb(X ,Y). Here E(Z) ∈ Rd is a vector representation
of the set Z, and Cb(X ,Y) is the space of continuous, bounded functions X → Y endowed with the
supremum norm. While NPs (Garnelo et al., 2018b) employ latent variables to indirectly specify
predictive distributions, in this work we focus on conditional models.

As noted by Lee et al. (2019); Bloem-Reddy & Teh (2019), the CNP form provides a tight relationship
to the growing literature on learning and representing functions on sets (Zaheer et al., 2017; Qi et al.,
2017; Wagstaff et al., 2019), as E is a function operating on sets. Central to this body of work is the
idea that any representation or function on a set must satisfy Property 1 to be considered valid.

Property 1 (Sn-invariant and S-invariant functions). Let Sn be the group of permutations of n
symbols for n ∈ N. A function Φ on Zn is called Sn-invariant if

Φ(Zn) = Φ(πZn) for all π ∈ Sn and Zn ∈ Zn,

where the application of π to Zn is defined as πZn = ((xπ(1),yπ(1)), . . . , (xπ(n),yπ(n))). A
function Φ on Z is called S-invariant if Φ|Zn is Sn-invariant for all n.

Zaheer et al. (2017) demonstrate that any continuous SM -invariant function f : ZM → R has a
sum-decomposition (Wagstaff et al., 2019), i.e. a representation of the form f(Z) = ρ(

∑
z∈Z φ(z))

for appropriate ρ and φ (though this could only be shown for fixed-sized sets). This is indeed the
form employed by the NP family for the encoder that embeds sets into a latent representation.

Translation equivariance. The focus of this work is on learners that are translation equivariant:
if the input locations of the data are translated by an amount τ , the predictions should be translated
correspondingly. Translation equivariance for functions operating on sets is formalized in Property 2.

Property 2 (Translation equivariant mappings on sets). LetH be an appropriate space of functions
on X , and define T and T ′ as follows:

T : X × Z → Z, TτZ = ((x1 + τ ,y1), . . . , (xm + τ ,ym)),

T ′ : X ×H → H, T ′τh(x) = h(x− τ ).

Then a mapping Φ: Z → H is called translation equivariant if

Φ(TτZ) = T ′τΦ(Z) for all τ ∈ X and Z ∈ Z.

3 CONVOLUTIONAL DEEP SETS

We are interested in translation equivariance (Property 2) with respect to translations on X . The
NP family encoder maps sets Z to an embedding in a vector space Rd, for which the notion of
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equivariance with respect to input translations in X is not well defined. For example, a function f
on X can be translated by τ ∈ X : f( · − τ ). However, for a vector x ∈ Rd, which can be seen
as a function [d] → Rd, x(i) = xi, the translation x( · − τ ) does not make sense. To overcome
this, we enrich the encoder E : Z → H to map into a function spaceH containing functions on X .
Since functions in H act on X , our notion of translation equivariance (Property 2) does now also
make sense for E. As we demonstrate below, every translation-equivariant function on sets has a
representation in terms of a specific functional embedding.

Definition 1 (Functional mappings on sets and functional representations of sets). Call a map
E : Z → H a functional mapping on sets if it maps from sets Z to an appropriate space of functions
H. Furthermore, call E(Z) the functional representation of the set Z.

Considering functional representations of sets leads to the key result of this work, which can be
summarized as follows. For Z ′ ⊆ Z appropriate, a continuous function Φ: Z ′ → Cb(X ,Y) satisfies
Properties 1 and 2 if and only if it has a representation of the form

Φ(Z) = ρ (E(Z)) , E(Z) =
∑

(x,y)∈Zφ(y)ψ( · − x) ∈ H, (1)

for some continuous and translation-equivariant ρ : H → Cb(X ,Y), and appropriate φ and ψ. Note
that ρ is a map between function spaces. We also remark that continuity of Φ is not in the usual sense;
we return to this below.

Equation (1) defines the encoder used by our proposed model, the CONVCNP. In Section 3.1, we
present our theoretical results in more detail. In particular, Theorem 1 establishes equivalence between
any function satisfying Properties 1 and 2 and the representational form in Equation (1). In doing so,
we provide an extension of the key result of Zaheer et al. (2017) to functional representations on sets,
and show that it can naturally be extended to handle varying-size sets. The practical implementation
of CONVCNPs – the design of ρ, φ, and ψ – is informed by our results in Section 3.1 (as well as the
proofs, provided in Appendix A), and is discussed for domains of interest in Section 4.

3.1 REPRESENTATIONS OF TRANSLATION EQUIVARIANT FUNCTIONS ON SETS

In this section we establish the theoretical foundation of the CONVCNP. We begin by stating a
definition that is used in our main result.

Definition 2 (Multiplicity). A collection Z ′ ⊆ Z is said to have multiplicity K if, for every set
Z ∈ Z ′, every x occurs at most K times:

multZ ′ := sup {sup {|{i ∈ [m] : xi = x̂}| : x̂ = x1, . . . ,xm
number of times every x occurs

} : (xi, yi)
m
i=1 ∈ Z ′} = K

where [m] = {1, . . . ,m}.

For example, in the case of real-world data like time series and images, we often observe only one
(possibly multi-dimensional) observation per input location, which corresponds to multiplicity one.
We are now ready to state our key theorem.

Theorem 1. Consider an appropriate2 collection Z ′≤M ⊆ Z≤M with multiplicity K. Then a
function Φ: Z ′≤M → Cb(X ,Y) is continuous3, permutation invariant (Property 1), and translation
equivariant (Property 2) if and only if it has a representation of the form

Φ(Z) = ρ (E(Z)) , E((x1, y1), . . . , (xm, ym)) =
∑m
i=1 φ(yi)ψ( · − xi)

for some continuous and translation-equivariant ρ : H → Cb(X ,Y) and some continuous φ : Y →
RK+1 and ψ : X → R, whereH is an appropriate space of functions that includes the range of E.
We call a function Φ of the above form CONVDEEPSET.

The proof of Theorem 1 is provided in Appendix A. We here discuss several key points from the
proof that have practical implications and provide insights for the design of CONVCNPs: (i) For

2 For every m ∈ [M ], Z ′≤M ∩ Zm must be closed and closed under permutations and translations.
3 For every m ∈ [M ], the restriction Φ|Z′≤M

∩Zm
is continuous.
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require: ρ = (CNN, ψρ), ψ, density γ
require: context (xn, yn)Nn=1, target (x∗m)Mm=1

1 begin
2 lower, upper← range

(
(xn)Nn=1 ∪ (x∗m)Mm=1

)
3 (ti)

T
i=1 ← uniform_grid(lower, upper; γ)

4 hi ←
∑N
n=1

[
1
yn

]
ψ(ti − xn)

5 h
(1)
i ← h

(1)
i /h

(0)
i

6 (fµ(ti), fσ(ti))
T
i=1 ← CNN((ti,hi)

T
i=1)

7 µm ←
∑T
i=1 fµ(ti)ψρ(x

∗
m − ti)

8 σm ←
∑T
i=1 exp(fσ(ti))ψρ(x

∗
m − ti)

9 return (µm,σm)Mm=1

10 end
(a)
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Figure 1: (a) Pseudo-code for and (b) illustration of CONVCNP forward pass.

the construction of ρ and E, ψ is set to a flexible positive-definite kernel associated with a Repro-
ducing Kernel Hilbert Space (RKHS; Aronszajn (1950)), which results in desirable properties for
E. (ii) Using the work by Zaheer et al. (2017), we set φ(y) = (y0, y1, · · · , yK) to be the powers of
y up to order K. (iii) Theorem 1 requires ρ to be a powerful function approximator of continuous,
translation-equivariant maps between functions. In Section 4, we discuss how these theoretical results
inform our implementations of CONVCNPs.

Theorem 1 extends the result of Zaheer et al. (2017) discussed in Section 2 by embedding the set into
an infinite-dimensional space—the RKHS—instead of a finite-dimensional space. Beyond allowing
the model to exhibit translation equivariance, the RKHS formalism allows us to naturally deal with
finite sets of varying sizes, which turns out to be challenging with finite-dimensional embeddings.
Furthermore, our formalism requires φ(y) = (y0, y1, y2, . . . , yK) to expand up to order no more
than the multiplicity of the sets K; if K is bounded, then our results hold for sets up to any arbitrarily
large finite size M , while fixing φ to be only (K + 1)-dimensional.

4 CONVOLUTIONAL CONDITIONAL NEURAL PROCESSES

In this section we discuss the architectures and implementation details for CONVCNPs. Similar to
NPs, CONVCNPs model the conditional distribution as

p(y|x, Z) = p(y|Φθ(Z)(x)) = N (y; Φµ,Φσ) with (Φµ,Φσ) = Φθ(Z)(x),

where Z is the observed data and Φ a CONVDEEPSET. The key considerations are the design of ρ, φ,
and ψ for Φ. We provide separate models for data that lie on- and off-the-grid.

Specifying φ. The applications considered in this work have a single (potentially multi-dimensional)
output per input location, so the multiplicity of Z is one (i.e., K = 1). It then suffices to let φ
be a power series of order one, which is equivalent to appending a constant to y in all data sets,
i.e. φ(y) = [1,y]>. In this design, the first output φ1 can be thought of as a “density channel”
providing the model with information regarding where data has been observed. Without a density
channel, the model would be unable to distinguish between no observed datapoint at x and a datapoint
at x with y = 0. Additionally, we found it helpful to divide the signal channels y by the density
channel (Figure 1a, line 5) as this improved performance when there is large variation in the density
of input locations. In the image processing literature, this is known as normalized convolutions
(Knutsson & Westin, 1993). The normalization operation can be reversed by ρ and is therefore not
restrictive.

CONVCNPs for off-the-grid data. Having specified φ, it remains to specify the form of ψ and
ρ. Our proof of Theorem 1 suggests that ψ should be a stationary, positive-definite kernel. The
exponentiated-quadratic (EQ) kernel with a learnable length scale parameter is a natural choice. This
kernel is multiplied by φ to form the functional representation E(Z) (Figure 1a, line 4; and Figure 1b,
arrow 1).
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Next, Theorem 1 suggests that ρ should be a continuous, translation-equivariant map between function
spaces. Kondor & Trivedi (2018) show that, in deep learning, any translation-equivariant model has a
representation as a CNN. However, CNNs operate on discrete (on-the-grid) input spaces and produce
discrete outputs. In order to approximate ρ with a CNN, we discretize the input of ρ, then apply the
CNN, and finally transform the CNN output back to a continuous function space. To do this, for
each context and test set, we space points (ti)

n
i=1 ⊆ X on a uniform grid (at a pre-specified density)

over a hyper-cube that covers both the context and target inputs. We then evaluate (E(Z)(ti))
n
i=1

(Figure 1a, lines 2–3; Figure 1b, arrow 2). This discretized representation of E(Z) is then passed
through a CNN (Figure 1a, line 6; Figure 1b, arrow 3).

The output of the CNN must finally be mapped back to a continuous function space. We do this
by using the CNN outputs as weights for evenly-spaced basis functions, again using the EQ kernel,
which we denote by ψρ (Figure 1a, lines 7–8; Figure 1b, arrow 3). The resulting approximation to
ρ is not perfectly equivariant, but will be approximately equivariant for length scales larger than
the spacing of (E(Z)(ti))

n
i=1. The resulting continuous functions are then used to generate the

(Gaussian) predictive mean and variance at any input. This, in turn, can be used to evaluate the
log-likelihood.

CONVCNP for on-the-grid data. While CONVCNP is readily applicable to many settings where
data live on a grid, in this work we focus on the image setting. As such, the following description
uses the image completion task as an example, which is often used to benchmark NPs (Garnelo et al.,
2018a; Kim et al., 2019). Compared to the continuous case, the implementation becomes simpler as
we can choose the discretization (ti)

n
i=1 to be the pixel locations. Let I be the image, and let Mc,Mt

be context and target masks respectively: [Mc]i,j = 1 if pixel location (i, j) is in the context set, else
it is 0. Hence the context set can be represented as Mc � I. Then the on-the-grid algorithm can be
succinctly written as (µ, log(σ)) = CNN([CONV(Mc); CONV(Mc�I)/CONV(Mc)]

>) where CONV
is a convolutional layer (discrete version of Figure 1a, line 4). Although the theory suggests using a
positive-definite kernel for CONV, we have not found significant empirical differences between an
EQ kernel and using a fully trainable kernel restricted to positive values (see Appendices D.4 and D.5
for details). Here (µ,σ) are the image mean and standard deviation, and is only evaluated at the
target locations defined by Mt. [Mc; Mc � I]> are the discretized version of the density channel and
the signal channel, which is then normalized element-wise by the density channel.

Training. Denoting the data set D = {Zn}Nn=1 ⊆ Z and the parameters by θ, maximum-likelihood
training involves (Garnelo et al., 2018a;b)

θ∗ = argmaxθ∈Θ

∑N
n=1

∑
(x,y)∈Zn,t

log p (y |Φθ(Zn,c)(x)) , (2)

where we have split Zn into context (Zn,c) and target (Zn,t) sets. This is standard practice in both
the NP (Garnelo et al., 2018a;b) and meta-learning settings (Finn et al., 2017; Gordon et al., 2019)
and relates to neural auto-regressive models (Requeima et al., 2019). Practically, stochastic gradient
descent methods (Bottou, 2010) can be used to perform the optimization.

5 EXPERIMENTS AND RESULTS

We evaluate the performance of CONVCNPs in both on-the-grid and off-the-grid settings focusing
on two central questions: (i) Do translation-equivariant models improve performance in appropriate
domains? (ii) Can translation equivariance enable CONVCNPs to generalize to settings outside
of those encountered during training? We use several off-the-grid data-sets which are irregularly
sampled time series (X = R), comparing to Gaussian processes (GP; Williams & Rasmussen (2006)),
and ATTNCNP, the best performing member of the CNP family. We then evaluate on several
on-the-grid image data sets (X = Z2). In all settings we demonstrate substantial improvements
over existing neural process models. For the CNN component of our model, we propose a small
and large architecture for each experiment (in the experimental sections named CONVCNP and
CONVCNPXL, respectively). We note that these architectures are different for off-the-grid and
on-the-grid experiments, with full details regarding the architectures given in the appendices.

5.1 SYNTHETIC 1D EXPERIMENTS

First we consider synthetic regression problems. At each iteration, a function is sampled, followed
by context and target sets. Beyond EQ-kernel GPs (as proposed in Garnelo et al. (2018a); Kim et al.
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(2019)), we consider more complex data arising from Matern– 5
2 and weakly-periodic kernels, as well

as a challenging, non-Gaussian sawtooth process with random shift and frequency (see Figure 2, for
example). CONVCNP is compared to CNP (Garnelo et al., 2018a) and ATTNCNP. Training and
testing procedures are fixed across all models. Full details on models, data generation, and training
procedures are provided in Appendix C.2.

Table 1: Log-likelihood from synthetic 1-dimensional experiments.

Model Params EQ Weak Periodic Matern Sawtooth

CNP 66818 0.88 ± 3e-3 -1.10 ± 2e-3 -0.78 ± 1e-3 -0.16 ± 1e-5
ATTNCNP 149250 2.58 ± 4e-3 -1.10 ± 2e-3 -0.42 ± 2e-3 0.33 ± 2e-3
CONVCNP 6537 2.06 ± 5e-3 -1.14 ± 2e-3 0.37 ± 4e-3 2.21 ± 4e-3
CONVCNPXL 50617 2.93 ± 4e-3 -0.41 ± 2e-3 0.50 ± 4e-3 2.66 ± 1e-3
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Figure 2: Example functions learned by the ATTNCNP (top row), and CONVCNP (bottom row),
when trained on a Matern– 5

2 kernel with length scale 0.25 (first and second column) and sawtooth
function (third and fourth column). Columns one and three show the predictive posterior of the
models when data is presented in same range as training, with predictive posteriors continuing beyond
that range on either side. Columns two and four show model predictive posteriors when presented
with data outside the training data range. Plots show means and two standard deviations.

Table 1 reports the log-likelihood means and standard errors of the models over 1000 tasks. The
context and target points for both training and testing lie within the interval [−2, 2] where training
data was observed (marked “training data range” in Figure 2). Table 1 demonstrates that, even when
extrapolation is not required, CONVCNP significantly outperforms other models in all cases, despite
having fewer parameters.

Figure 2 demonstrates that CONVCNP generates excellent fits, even for challenging functions such
as Matern– 5

2 kernels and sawtooth. Moreover, Figure 2 compares the performance of CONVCNP
and ATTNCNP when data is observed outside the range where the models where trained: translation
equivariance enables CONVCNP to elegantly generalize to this setting, whereas ATTNCNP is unable
to generate reasonable predictions.

5.2 PLASTICC EXPERIMENTS

The PLAsTiCC data set (Allam Jr et al., 2018) is a simulation of transients observed by the LSST
telescope under realistic observational conditions. The data set contains 3,500,734 “light curves”,
where each measurement is of an object’s brightness as a function of time— taken by measuring
the photon flux in six different astronomical filters. The data can be treated as a six-dimensional
time-series. The data set was introduced in a Kaggle competition,4 where the task was to use
these light curves to classify the variable sources. The winning entry– Avocado (Boone, 2019)
–modeled the light curves with GPs and used these models to generate features for a gradient boosted
decision tree classifier. We compare a multi input / output CONVCNP with the GP models used in
Avocado.5 CONVCNP accepts six channels as inputs, one for each astronomical filter, and returns 12

4https://www.kaggle.com/c/PLAsTiCC-2018
5Full code for Avocado, including GP models, is available at https://github.com/kboone/avocado.
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outputs - the means and standard deviations of six Gaussians. Full experimental details are given in
Appendix C.3. The mean square error of both approaches is similar, but the held-out log-likelihood
from the CONVCNP is far higher (see table 2).

Table 2: Mean and standard errors of log-likelihood and root mean square error over 1000 test objects
from the PLastiCC dataset.

Model Log-likelihood MSE

Kaggle GP (Boone, 2019) -0.335 ± 0.09 0.037 ± 4e-3
ConvCP (ours) 1.31 ± 0.30 0.040 ± 5e-3

5.3 PREDATOR-PREY MODELS: SIM2REAL

The CONVCNP model is well suited for applications where simulation data is plentiful, but real
world training data is scarce (Sim2Real). The CONVCNP can be trained on a large amount of
simulation data and then be deployed with real-world training data as a context-set. We consider the
Lotka–Volterra model (Wilkinson, 2011) which is used to describe the evolution of predator-prey
populations. This model has been used in the Approximate Bayesian Computation literature where
the task is to infer the parameters from samples drawn from the Lotka–Volterra process (Papamakarios
& Murray, 2016). These methods do not simply extend to prediction problems such as interpolation
or forecasting. In contrast, we train CONVCNP on synthetic data sampled from the Lotka–Volterra
model, and condition on real-world data from the Hudson’s Bay lynx-hare data set (Leigh, 1968)
to perform interpolation (see Figure 3; full experimental details are given in Appendix C.4). The
CONVCNP performs accurate interpolation as shown in Figure 3. We were unable to successfully
train the ATTNCNP for this task. We suspect this is because the simulation data are variable length-
time series, which requires models to leverage translation equivariance at training time. As shown in
Section 5.1, the ATTNCNP struggles with this setting (see Appendix C.4 for complete details).

Figure 3: Left and centre: two samples from the Lotka–Volterra process (sim). Right: CONVCNP
trained on simulations and applied to the Hudson’s Bay lynx-hare dataset (real). Plots show means
and two standard deviations.

5.4 2D IMAGE COMPLETION EXPERIMENTS

To test CONVCNP beyond one dimensional features and in the case of on-the-grid data, we evaluate
our model and compare it to ATTNCNP on image completion tasks. Image completion can be cast as
a prediction of pixel intensities y∗i (∈ R3 for RGB, ∈ R for greyscale) given a target 2D pixel location
x∗i conditioned on an observed (context) set of pixel-values Z = (xn,yn)Nn=1. In the following
experiments, the context set can vary but the target set contains all pixels from the image. Further
experimental details are in Appendix D.1.

Table 3: Log-likelihood from image experiments (6 runs).

Model Params MNIST SVHN CelebA32 CelebA64 ZSMM

ATTNCNP 410k 1.08 ±0.04 3.94 ±0.02 3.18 ±0.02 -0.83 ±0.08
CONVCNP 181k 1.19 ±0.01 3.89 ±0.01 3.19 ±0.02 3.64 ±0.01 1.21 ±0.00
CONVCNPXL 408k 1.26 ±0.01 3.97 ±0.03 3.35 ±0.02 3.70 ±0.01 0.30 ±0.75
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Standard Benchmarks. We first evaluate the model on four common benchmarks: MNIST (LeCun
et al., 1998), SVHN (Netzer et al., 2011), as well as 32× 32 and 64× 64 CelebA (Liu et al., 2018).
Importantly, these data sets are biased towards images containing a single well centered object. As
a result, perfect translation-equivariance might hinder the performance of the model when the test
data are similarly structured. We therefore also evaluated a larger CONVCNP that can learn such
non-stationarity, while still sharing parameters across the input space (CONVCNPXL). To understand
the importance of the model size for translation-equivariance, note that a k × k kernel applied to an
image of the same size is equivalent to a feed forward layer on the flattened input. More generally, if
the receptive field of the CNN – the region of the input space that contributes to all activations of the
last CNN layer – is larger than the input image, then the model can learn position specific features.

Table 3 shows that CONVCNP significantly outperforms ATTNCNP when it has a large receptive
field size, while being at least as good with a small receptive field size. Qualitative samples for
various context sets can be seen in Figure 5. Further qualitative comparisons and ablation studies can
be found in Appendix D.3 and Appendix D.4 respectively.

Beyond the performance improvements, a key advantage of the CONVCNP is its computational
efficiency. With a batch size of 16 on 32× 32 MNIST, CONVCNPXL requires 945MB of VRAM,
while ATTNCNP requires 5839 MB. For the 56×56 ZSMM CONVCNPXL increases its requirements
to 1443 MB, while ATTNCNP could not fit onto a 32GB GPU. Ultimately, ATTNCNP had to be
trained with a batch size of 6 (using 19139 MB) and we were not able to fit it for CelebA64. Recently,
restricted attention has been proposed to overcome this computational issue (Parmar et al., 2018), but
we leave an investigation of this and its relationship to CONVCNPs to future work.

Generalizing to Natural Images. The data sets considered in the previous section were centered
and contained single objects. Here we test whether CONVCNPs trained on such data can generalise
to images containing multiple, non-centered objects.

The last column of Table 3 evaluates the models in a zero shot multi-MNIST (ZSMM) setting, where
images contain multiple digits at test time (Appendix D.2). CONVCNP significantly outperforms
ATTNCNP on such tasks. Figure 4a shows a histogram of the image log-likelihoods for CONVCNP
and ATTNCNP, as well as qualitative results at different percentiles of the CONVCNP distribution.
CONVCNP seems able to extrapolate to this out-of-distribution test set, while ATTNCNP appears to
model the bias of the training data and predict a centered “mean” digit independently of the context.

Although ZSMM is a contrived task, note that our field of view usually contains multiple independent
objects, thereby requiring translation equivariance. As a more realistic example, we took a CONVCNP
model trained on CelebA and tested it on a natural image containing multiple people (Figure 4b).
Even with 95% of the pixels removed, the CONVCNP was able to produce a qualitatively reasonable
reconstruction. A comparison with ATTNCNP can be seen in Appendix D.3.

6 DISCUSSION AND RELATED WORK

We have introduced CONVCNP, a new member of the CNP family that leverages embedding sets
into function space to achieve translation equivariance. The relationship to (i) the NP family, and
(ii) representing functions on sets each imply extensions and avenues for future work.

Two key issues in the existing theory on learning with sets (Zaheer et al., 2017; Qi et al., 2017) are
(i) the restriction to fixed-size sets, and (ii) the dimensionality of the embedding space must be no
less than the cardinality of the embedded sets. Our work implies that by considering embeddings into
a function space, both issues (under certain assumptions), are somewhat alleviated. In future work,
we aim to further this analysis and formalize it in a more general context.

In this work, we only considered Gaussian conditional distributions. However, there are several lines
of research, e.g. normalizing flows (Rezende & Mohamed, 2015), that allow models to go beyond
Gaussian distributions. Further, the link to NPs (Garnelo et al., 2018b) implies that consideration
of latent-variable extensions (which enforce consistency and add non-Gaussianity) may be useful.
Consistency is particularly important for drawing auto-regressive (AR) samples, which is currently
under-used in NP models. AR sampling provides a link between the NP family and neural AR models
(Salimans et al., 2017; Parmar et al., 2018), but loses consistency. Neural approaches based on the
ideas of exchangeability might provide a solution (Korshunova et al., 2018).
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(a) Log likelihood and qualitative results on ZSMM. The
top row shows the log-likelihood distribution for both mod-
els. The images below correspond to the context points (top),
CONVCNP target predictions (middle), and ATTNCNP target
predictions (bottom). Each column corresponds to a given
percentile of the CONVCNP distribution.

(b) Qualitative evaluation of a CON-
VCNPXL trained on the unscaled
CelebA (218 × 178) and tested on
Ellen’s Oscar unscaled (337 × 599)
selfie (DeGeneres, 2014) with 5% of
the pixels as context (top).

Figure 4: Zero shot generalization to tasks that require translation equivariance.

Figure 5: Qualitative evaluation of the CONVCNP(XL). For each dataset, an image is randomly
sampled, the first row shows the given context points while the second is the mean of the estimated
conditional distribution. From left to right the first seven columns correspond to a context set with 3,
1%, 5%, 10%, 20%, 30%, 50%, 100% randomly sampled context points. In the last 2 columns, the
context sets respectively contain all the pixels in the left and top half of the image. CONVCNPXL is
shown for all datasets besides ZSMM, for which we show the fully translation equivariant CONVCNP.

9
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A THEORETICAL RESULTS AND PROOFS

In this section, we provide the proof of Theorem 1. We begin with definitions that we will use
throughout the section and then present our results.

Let X = RN and let Y ⊆ R be compact. Let ψ be a symmetric, positive-definite kernel on X . By the
Moore–Aronszajn Theorem, there is a unique Hilbert space (H, 〈 · , · 〉H) of real-valued functions
on X for which ψ is a reproducing kernel. This means that (i) ψ( · ,x) ∈ H for all x ∈ X and
(ii) 〈f, ψ( · ,x)〉H = f(x) for all f ∈ H and x ∈ X (reproducing property).

Definition 3 (Interpolating RKHS). Call H interpolating if it interpolates any finite number of
points: for every (xi, yi)

n
i=1 ⊆ X × Y with (xi)

n
i=1 all distinct, there is an f ∈ H such that

f(x1) = y1, . . . , f(xn) = yn.

For example, the RKHS induced by any strictly positive-definite kernel, e.g. the exponentiated
quadratic (EQ) kernel ψ(x,x′) = σ2 exp(− 1

2`2 ‖x − x
′‖2), is interpolating: Let c = k(x,x)−1y

and consider f =
∑n
i=1 cik( · ,xi) ∈ H. Then f(x) = k(x,x)c = y.

A.1 THE QUOTIENT SPACE Rn/ Sn

For x ∈ Rn and y ∈ Rn, let x ∼ y if x is a permutation of y. Let Rn/Sn be the collection
of equivalence classes, where we denote the equivalence class of x by [x]. For A ⊆ Rn, denote
[A] = {[a] : a ∈ A}. Call the map x 7→ [x] : Rn → Rn/Sn the canonical map.

On Rn, since all norms on finite-dimensional vector space are equivalent, without loss of generality
consider the 2-norm, which we note is permutation invariant: ‖π · ‖2 = ‖ · ‖2 for all π ∈ Sn. On
Rn/ Sn, define

d : Rn/Sn × Rn/ Sn → [0,∞), d([x], [y]) = min
π∈Sn

‖x− πy‖2.

Call a set [A] ⊆ Rn/ Sn bounded if {d([x], [0]) : [x] ∈ [A]} is bounded.

Proposition 1. The function d is a metric.

Proof. It is clear that d([x], [y]) = d([y], [x]) and that d([x], [y]) = 0 if and only if [x] = [y]. To
show the triangle inequality, note that

‖x− π1π2y‖2 ≤ ‖x− π1z‖2 + ‖π1z − π1π2y‖2 = ‖x− π1z‖2 + ‖z − π2y‖2,

using permutation invariance of d. Hence, taking the minimum over π1,

d([x], [y]) ≤ d([x], [z]) + ‖z − π2y‖2,

so taking the minimum over π2 gives the triangle inequality for d.

Proposition 2. The canonical map Rn → Rn/ Sn is continuous.

Proof. Follows directly from d([x], [y]) ≤ ‖x− y‖2.

Proposition 3. Let A ⊆ Rn be topologically closed and closed under permutations. Then [A] is
topologically closed.

Proof. Consider a sequence ([an])∞n=1 ⊆ [A] converging to some [x]. Then there are permutations
(πn)∞n=1 ⊆ Sn such that πnan → x. Here πnan ∈ A, because A is closed under permutations. Thus
x ∈ A, as A is also topologically closed. We conclude that [x] ∈ [A].

Proposition 4. Let A′ ⊆ Rn/Sn be closed and bounded. Then A′ is compact. In other words,
Rn/ Sn has the Heine–Borel property.
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Proof. Let A ⊆ Rn be the preimage of A′ under the canonical map. By continuity of the canonical
map, A is closed. Furthermore, note that

‖πx− 0‖2 = ‖x‖2 =⇒ d([x], 0) = ‖x‖2
so boundedness of A′ implies boundedness of A. Since A is closed and bounded, by the Heine–Borel
property of Rn, A is compact, which means that A′ = [A] is compact by continuity of the canonical
map.

A.2 EMBEDDINGS OF SETS INTO AN RKHS

Lemma 3 states that it is possible to homeomorphically embed sets into an RKHS. This result is key
to proving our main result.

Lemma 1. Consider a collection Z ′M ⊆ ZM that has multiplicity K. Set

φ : Y → RK+1, φ(y) = (y0, y1, · · · , yK)

and let ψ be an interpolating, continuous positive-definite kernel. Define

HM =

{
M∑
i=1

φ(yi)ψ( · ,xi) : (xi, yi)
M
i=1 ⊆ Z ′M

}
⊆ HK+1, (3)

whereHK+1 = H× · · · ×H is the (K + 1)-dimensional-vector–valued RKHS constructed from the
RKHSH for which ψ is a reproducing kernel. Then the embedding

E : [Z ′M ]→ HM , E([(x1, y1), . . . , (xM , yM )]) =

M∑
i=1

φ(yi)ψ( · ,xi)

is continuous and injective, hence invertible.

Proof. First, we show that E is injective. Suppose that

M∑
i=1

φ(yi)ψ( · ,xi) =

M∑
i=1

φ(y′i)ψ( · ,x′i).

Denote x = (x1, . . . ,xM ) and y = (y1, . . . , yM ), and denote x′ and y′ similarly. Taking the inner
product with any f ∈ H on both sides and using the reproducing property of ψ, this implies that

M∑
i=1

φ(yi)f(xi) =

M∑
i=1

φ(y′i)f(x′i)

for all f ∈ H. In particular, since by construction φ1( · ) = 1,

M∑
i=1

f(xi) =

M∑
i=1

f(x′i)

for all f ∈ H. Using thatH is interpolating, choose a particular x̂ ∈ x ∪ x′, and let f ∈ H be such
that f(x̂) = 1 and f( · ) = 0 at all other xi and x′i. Then∑

i:xi=x̂

1 =
∑
i:x′i=x̂

1,

so the number of such x̂ in x and the number of such x̂ in x′ are the same. Since this holds for every
x̂, x is a permutation of x′: x = π(x′) for some permutation π ∈ SM . Plugging in the permutation,
we can write
M∑
i=1

φ(yi)f(xi) =

M∑
i=1

φ(y′i)ψ( · ,x′i)
(x′=π−1(x))

=

M∑
i=1

φ(y′i)f(xπ−1(i))
(i←π−1(i))

=

M∑
i=1

φ(y′π(i))f(xi).
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Then, by a similar argument, for any particular x̂,∑
i:xi=x̂

φ(yi) =
∑
i:xi=x̂

φ(y′π(i′)).

Since Z ′M has multiplicity K, the number of terms is less than or equal to K. Therefore, by Lemma
4 from Zaheer et al. (2017),

(yi)i:xi=x̂ is a permutation of (y′π(i))i:xi=x̂.

Note that xi = x̂ for all above yi. Furthermore, note that also x′π(i) = xi = x̂ for all above y′π(i). We
may therefore adjust the permutation π such that yi = y′π(i) for all i such that xi = x̂ whilst retaining
that x = π(x′). Performing this adjustment for all x̂, we find that y = π(y′) and x = π(x′).

Second, we show that E is continuous. Compute∥∥∥∥∥∥
M∑
i=1

φ(yi)ψ( · ,xi)−
M∑
j=1

φ(y′j)ψ( · ,x′j)

∥∥∥∥∥∥
2

H

=

K+1∑
i=1

(
φ>i (y)ψ(x,x)φi(y)− 2φ>i (y)ψ(x,x′)φi(y

′) + φ>i (y′)ψ(x′,x′)φi(y
′)
)
,

which goes to zero if [x′]→ [x] and [y′]→ [y] by continuity of ψ.

Lemma 2. Consider Lemma 1. Suppose that Z ′M is also topologically closed and closed under
permutations, and that ψ also satisfies (i) ψ(x,x) = σ2 > 0 and (ii) ψ(x,y) → 0 as ‖x‖ → ∞
with y fixed or ‖y‖ → ∞ with x fixed. Then E−1 is continuous.

Remark 1. Before moving on to the proof of Lemma 2, we remark that Lemma 2 would directly
follow if Z ′M were bounded: then Z ′M is compact, so E is a continuous, invertible map between
compact spaces, which means that E−1 must be continuous. The intuition that the result must hold
for unbounded Z ′M is as follows. Since φ1( · ) = 1, for every f ∈ HM , f1 is a summation of M
“bumps” (imagine the EQ kernel) of the form ψ( · ,xi) placed throughout X . If these bumps go off
to infinity, then the function cannot uniformly converge pointwise, which means that the function
cannot converge inH if ψ is sufficiently nice. Therefore, if the function does converge inH, (xi)

M
i=1

must be bounded, which brings us to the compact case. What makes this work is the density channel
φ1( · ) = 1, which forces (xi)

M
i=1 to be well behaved. The above argument is formalized in the proof

of Lemma 2.

Proof. Define
ZJ = ([−J, J ]N × Y)M ∩ Z ′M ,

which is compact as a closed subset of the compact set ([−J, J ]N × Y)M . We aim to show that E−1

is continuous. To this end, consider a convergent sequence

f (n) =

M∑
i=1

φ(y
(n)
i )ψ( · ,x(n)

i )→ f ∈ H.

Denote x(n) = (x
(n)
1 , . . . ,x

(n)
M ) and y(n) = (y

(n)
1 , . . . , y

(n)
M ). Claim: (x(n))∞n=1 is a bounded

sequence, so (x(n))∞n=1 ⊆ [−J, J ]NM for J large enough, which means that (x(n), y(n))∞n=1 ⊆ ZJ
where ZJ is compact.

Assume the claim, and note that (f (n))∞n=1 is in the range of E|[ZJ ]. By continuity of E|[ZJ ] and
compactness of [ZJ ], the range of E|[ZJ ] is compact, which means that it contains the limit f . Since
E|[ZJ ] is also invertible, its inverse (E|[ZJ ])

−1 is also continuous. Therefore,

E−1(f (n)) = (E|[ZJ ])
−1(f (n))→ (E|[ZJ ])

−1(f) = E−1(f),

so E−1 is continuous.
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It remains to show the claim. Consider

‖f (n)
1 − f (m)

1 ‖2H = 1>(ψ(x(n),x(n)) + ψ(x(m),x(m))− 2ψ(x(n),x(m))

K(n,m)

)1,

where 1 ∈ RM is the vector of all ones. Since (f
(n)
1 )∞n=1 is convergent, it is Cauchy, so ‖f (n)

1 −
f

(m)
1 ‖2H → 0 as n,m→∞. For any x and y, by Cauchy–Schwarz6 and the AM–GM Inequality, we

have
2ψ(x,y) ≤ 2

√
ψ(x,x)ψ(y,y) ≤ ψ(x,x) + ψ(y,y).

Therefore,K(n,m)
ij ≥ 0, which means that ‖f (n)

1 − f (m)
1 ‖2 → 0 implies that allK(n,m)

ij → 0.

Suppose that (x(n))∞n=1 is unbounded. Then (x
(n)
i )∞n=1 is unbounded for some i ∈ [M ]. Since, by

assumption, ψ(x,x) = σ2 > 0 and ψ(x,y) → 0 as ‖x‖ → ∞ with y fixed or ‖y‖ → ∞ with x
fixed, then

K
(n,m)
ii = ψ(x

(n)
i ,x

(n)
i ) +ψ(x

(m)
i ,x

(m)
i )− 2ψ(x

(n)
i ,x

(m)
i ) = 2σ2− 2ψ(x

(n)
i ,x

(m)
i )→ 2σ2 > 0

as n → ∞. Since this holds for every m, it cannot be that K(n,m)
ii → 0 as m,n → ∞, which is a

contradiction.

Remark 2. To define Z ′2 with multiplicity one, one might be tempted to define

Z ′2 = {((x1, y1), (x2, y2)) ∈ Z2 : x1 6= x2},
which indeed has multiplicity one. Unfortunately, Z ′2 is not closed: if [0, 1] ⊆ X and [0, 2] ⊆ Y ,
then ((0, 1), (1/n, 2))∞n=1 ⊆ Z ′2, but ((0, 1), (1/n, 2)) → ((0, 1), (0, 2)) /∈ Z ′2, because 0 then has
two observations 1 and 2. To get around this issue, one can require an arbitrarily small, but non-zero
spacing ε > 0 between input locations:

Z ′2,ε = {((x1, y1), (x2, y2)) ∈ Z2 : ‖x1 − x2‖ ≥ ε}.
This construction can be generalized to higher numbers of observations and multiplicities as follows:

Z ′M,K,ε = {(xπ(i), yπ(i))
M
i=1 ∈ ZM : ‖xi − xj‖ ≥ ε for i, j ∈ [K], π ∈ SM}.

Lemma 3. For every m ∈ [M ], consider a collection Z ′m ⊆ Zm that (i) has multiplicity K, (ii) is
topologically closed, and (iii) is closed under permutations. Set

φ : Y → RK+1, φ(y) = (y0, y1, · · · , yK)

and let ψ be an interpolating, continuous positive-definite kernel that satisfies (i) ψ(x,x) = σ2 > 0
and (ii) ψ(x,y)→ 0 as ‖x‖ → ∞ with y fixed or ‖y‖ → ∞ with x fixed. Define

Hm =

{
m∑
i=1

φ(yi)ψ( · ,xi) : (xi, yi)
m
i=1 ⊆ Z ′m

}
⊆ HK+1, (4)

whereHK+1 = H× · · · ×H is the (K + 1)-dimensional-vector–valued RKHS constructed from the
RKHSH for which ψ is a reproducing kernel. Denote

[Z ′≤M ] =

M⋃
m=1

[Z ′m] and H≤M =

M⋃
m=1

Hm,

where (Hm)Mm=1 are closed and pairwise disjoint. Then the embedding E

E : [Z ′≤M ]→ H≤M , E([(x1, y1), . . . , (xm, ym)]) =

m∑
i=1

φ(yi)ψ( · ,xi)

is injective, hence invertible. Denote this inverse by E−1. Then E and E−1 are continuous in the
sense that the restrictions E|[Z′m] and E−1|Hm

are continuous for all m ∈ [M ].
6 By the reproducing property of ψ,

ψ(x,y) = 〈ψ(x, · ), ψ(y, · )〉H ≤ ‖ψ(x, · )‖H‖ψ(y, · )‖H =
√
ψ(x,x)ψ(y,y).
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Proof. From repeated application of Lemmas 1 and 2, we find that every restriction

E|[Z′m] : [Z ′m]→ Hm

is invertible, continuous, and has a continuous inverse. The result then follows by showing that
(Hm)Mm=1 are closed and pairwise disjoint. First, [Z ′m] is closed and (E|[Z′m])

−1 is continuous, so

Hm = (E|[Z′m])
−1([Z ′m])

is closed. Second, suppose that

m∑
i=1

φ(yi)ψ( · ,xi) =

m′∑
i=1

φ(y′i)ψ( · ,x′i)

for m 6= m′. Then, by arguments like in the proof of Lemma 1,

m∑
i=1

φ(yi) =

m′∑
i=1

φ(y′i).

Since φ1( · ) = 1, this gives m = m′, which is a contradiction.

Lemma 4. Let Φ: [Z ′≤M ]→ Cb(X ,Y) be continuous in the sense that every restriction Φ|[Z′m] is
continuous, and let E be from Lemma 3. Then

Φ ◦ E−1 : H≤M → Cb(X ,Y)

is continuous.

Proof. By continuity of Φ and E−1, every restriction Φ ◦ E−1|Hm
is continuous. We show that

Φ ◦E−1 is continuous by showing that every convergent sequence inH≤M is eventually contained
in some Hm and appealing to continuity of Φ ◦ E−1|Hm

. For suppose that (f (n))∞n=1 ⊆ H≤M
converging to some f ∈ H≤M visits Hm and Hm′ with m 6= m′ infinitely often. Then we can
extract subsequences (f (nk))∞k=1 ⊆ Hm and (f (nk′ ))∞k′=1 ⊆ Hm′ , which must both be convergent to
f . SinceHm andHm′ are closed and disjoint, this is a contradiction.

From here on we let ψ be a stationary kernel, which means that it only depends on the difference of
its arguments and can be seen as a function X → R.

A.3 PROOF OF THEOREM 1

With the above results in place, we are finally ready to prove our central result, Theorem 1.

Theorem 1. Consider an appropriate7 collection Z ′≤M ⊆ Z≤M with multiplicity K. Then a
function Φ: Z ′≤M → Cb(X ,Y) is continuous8, permutation invariant (Property 1), and translation
equivariant (Property 2) if and only if it has a representation of the form

Φ(Z) = ρ (E(Z)) , E((x1, y1), . . . , (xm, ym)) =
∑m
i=1 φ(yi)ψ( · − xi)

for some continuous and translation-equivariant ρ : H → Cb(X ,Y) and some continuous φ : Y →
RK+1 and ψ : X → R, whereH is an appropriate space of functions that includes the range of E.
We call a function Φ of the above form CONVDEEPSET.

Proof of sufficiency. To begin with, note that permutation invariance (Property 1) and translation
equivariance (Property 2) for Φ are well defined, because Z ′≤M is closed under permutations and
translations by assumption. First, Φ is permutation invariant, because addition is commutative and

7 For every m ∈ [M ], Z ′≤M ∩ Zm must be closed and closed under permutations and translations.
8 For every m ∈ [M ], the restriction Φ|Z′≤M

∩Zm
is continuous.
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associative. Second, that Φ is translation equivariant (Property 2) follows from a direct verification
and that ρ is also translation equivariant:

Φ(TτZ) = ρ

(
M∑
i=1

φ(yi)ψ( · − (xi + τ ))

)

= ρ

(
M∑
i=1

φ(yi)ψ(( · − τ )− xi)

)

= ρ

(
M∑
i=1

φ(yi)ψ( · − xi)

)
(· − τ )

= Φ(Z)(· − τ )

= T ′τΦ(Z).

Proof of necessity. Our proof follows the strategy used by Zaheer et al. (2017); Wagstaff et al. (2019).
To begin with, since Φ is permutation invariant (Property 1), we may define Φ: [Z ′≤M ]→ Cb(X ,Y)

by Φ([Z]) = Φ(Z), which we verify is continuous in the sense that every restriction Φ|[Z′m] is
continuous. Furthermore, by invertibility of E from Lemma 3, [Z] = E−1(E([Z])). Therefore,

Φ(Z) = Φ([Z]) = Φ(E−1(E([Z]))) = (Φ ◦ E−1)

(
M∑
i=1

φ(yi)ψ( · − xi)

)
.

Define ρ : H≤M → Cb(X ,Y) by ρ = Φ ◦ E−1. First, ρ is continuous by Lemma 4. Second, E−1

is translation equivariant, because ψ is stationary. Also, Φ is translation equivariant (Property 2) by
assumption. Thus their composition ρ is also translation equivariant.

Remark 3. The function ρ : H≤M → Cb(X ,Y) may be continuously extended to the entirety ofH
using a generalisation of the Tietze Extension Theorem by Dugundji et al. (1951). There are variants
of Dugundji’s Theorem that also preserve translation equivariance.
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B BASELINE NEURAL PROCESS MODELS

In both our 1d and image experiments, our main comparison is to conditional neural process models.
In particular, we compare to a vanilla CNP (1d only; Garnelo et al. (2018a)) and a ATTNCNP (Kim
et al., 2019). Our architectures largely follow the details given in the relevant publications.

CNP Baseline Our baseline CNP follows the implementation provided by the authors.9 The
encoder is a 3-layer MLP with 128 hidden units in each, and RELU non-linearities. The encoder
embeds every context point into a representation, and the representations are then averaged across
each context set. Target inputs are then concatenated to the latent representations, and passed to the
decoder. The decoder follows the same architecture, outputting mean and standard deviation channels
for each input.

Attentive CNP baseline The ATTNCNP we use corresponds to the deterministic path of the model
described by Kim et al. (2019) for image experiments. Namely, an encoder first embeds each context
points c to a latent representation (x(c),y(c)) 7→ r

(c)
xy ∈ R128. For the image experiments, this is

achieved using a 2 hidden layer MLP of hidden dimensions 128. For the 1d experiments, we use the
same encoder as the CNP above. Every context points then goes through 2 stacked self-attention
layers. Each self-attention layer is implemented with a 8-headed attention, a skip connection, and two
layer normalizations (as described in Parmar et al. (2018) modulo the dropout layer). To predict values
at each target points t, we embed x(t) 7→ r

(t)
x and x(c) 7→ r

(c)
x using the same single hidden layer

MLP of dimensions 128. A target representation r
(t)
xy is then estimated by applying cross-attention

(using an 8-headed attention described above) with keys K := {r(c)
x }Cc=1, values V := {r(c)

xy }Cc=1, and
query q := r

(t)
x . Given the estimated target representation r̂

(t)
xy , the conditional predictive posterior is

given by a Gaussian PDF with diagonal covariance parametrised by (µ(t),σ
(t)
pre) = decoder(r

(t)
xy )

where µ(t),σ4p(t) ∈ R3 and decoder is a 4 hidden layer MLP with each of 64 dimensions for the
images, and the same decoder as the CNP for the 1d experiments.

Following Le et al. (2018) we use minimum standard deviation σ(t)
min = [0.1; 0.1; 0.1] to avoid

infinite log-likelihood, by using the following post-processed standard deviation :

σ
(t)
post = 0.1σ

(t)
min + (1− 0.1) log

(
1 + exp(σ(t)

pre)
)

9https://github.com/deepmind/neural-processes
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C 1-DIMENSIONAL EXPERIMENTS

In this section, we give details regarding our experiments for the 1d data. We begin with detailing
model architectures, and then provide details for data generating processes and training procedures.
The density at which we evaluate the grid differs from experiment to experiment, and so the values
are given in the relevant subsections. In all experiments, the weights are optimized using Adam
Kingma & Ba (2015) and weight decay of 1e− 5 is applied to all model parameters. The learning
rates are specified in the following subsections.

C.1 CNN ARCHITECTURES

In this appendix, we describe the architectures throughout the 1d experiments (Sections 5.1 to 5.3).
Throughout the experiments, we consider two architectures: CONVCNP (which utilizes a smaller
architecture), and CONVCNPXL (with a larger architecture). For all architectures, E used a EQ
kernel with a learnable length-scale parameter, as detailed in Section 4, as did the final output layer
for ρ. The architectures for the 1d experiments are described below.

CONVCNP For the 1d experiments, we use a simple, 4-layer convolutional architecture, with
RELU nonlinearities. The kernel size of the convolutional layers was chosen to be 5, and all
employed a stride of length 1 and zero-padding of 2 units. The number of channels per layer was
set to [16, 32, 16, 2], where the final channels where then processed by the final, EQ-based layer of
ρ as mean and standard deviation channels. We employ a SOFTPLUS nonlinearity on the standard
deviation channel to enforce positivity. This model has 6,537 parameters.

CONVCNPXL Our large architecture takes inspiration from UNets (Ronneberger et al., 2015).
We employ a 12-layer architecture with skip connections. The first 6 layers multiply the number
of channels by two every layer, and the final 6 layers reduce the number of channels by a factor of
two each. We use concatenation for the skip connections. The following describe which layers are
concatenated such that Li ← [Lj , Lk] implies that the input to layer i is the concatenation of the
activations of layers j and k:

• L8 ← [L5, L7]

• L9 ← [L4, L8]

• L10 ← [L3, L9]

• L11 ← [L2, L10]

• L12 ← [L1, L11]

As for the smaller architecture, we use RELU nonlinearities, kernels of size 5, stride 1, and zero-
padding for two units on all layers.

C.2 SYNTHETIC 1D EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

The specific kernels used for the Gaussian Processes which generate the data in this experiment are
defined as follows:

• EQ: k(x, x′) = e−
1
2 (x−x′)2 ;

• weakly periodic: k(x, x′) = e−
1
2 (f1(x)−f1(x′))2− 1

2 (f2(x)−f2(x′))2 ·e− 1
8 (x−x′)2 with f1(x) =

cos(8πx) and f2(x) = sin(8πx); and

• Matern– 5
2 : k(x, x′) = (1 + 4

√
5d+ 5

3d
2)e−

√
5d with d = 4|x− x′|.

During the training procedure, the number of context points and target points for a training batch
are each selected randomly from a uniform distribution over the integers between 3 and 50. This
number of context and target points are randomly sampled via a function sampled from the process (a
Gaussian process with one of the above kernels or the sawtooth process). The points are sampled
uniformly at x-values on the interval −2 ≤ x ≤ 2. All models in this experiment were trained on 200
epochs using 256 batches per epoch of batch size 16. We discretize E(Z) by evaluating 64 points per
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Figure 6: Example functions learned by the (top) CCP, (center) ANP, and (bottom) CNP when trained
on an EQ kernel (with lengthscale parameter 1). Left column shows the predictive posterior of the
models when data is presented in same range as training. Center column shows model predicting
outside training data range when no data is observed there, and right-most column shows model
predictive posteriors when presented with data outside the training data range.

Figure 7: Example functions learned by the (top) CCP, (center) ANP, and (bottom) CNP when
trained on a Matern 5/2 kernel (with length-scale parameter 0.25). Left column shows the predictive
posterior of the models when data is presented in same range as training. Center column shows model
predicting outside training data range when no data is observed there, and right-most column shows
model predictive posteriors when presented with data outside the training data range.

unit in this setting. We use a learning rate of 1e− 3. For the CNP and ATTNCNP, we use a latent
dimension of 128, and learning rate of 1e− 4.
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Figure 8: Example functions learned by the (top) CCP, (center) ANP, and (bottom) CNP when trained
on a random “saw-tooth function". Left column shows the predictive posterior of the models when
data is presented in same range as training. Center column shows model predicting outside training
data range when no data is observed there, and right-most column shows model predictive posteriors
when presented with data outside the training data range.

The random sawtooth process is generated from the following function:

ysawtooth(t) =
A

2
− A

π

∞∑
k=1

(−1)k
sin(2πkft)

k
, (5)

where A is the amplitude, f is the frequency, and t is “time”. Throughout training, we fix the
amplitude to be one. We truncate the series at an integer K. At every iteration, we sample a frequency
uniformly between (3, 5), and K between (10, 20), and a random shift (−5, 5). As the task is much
harder, we sample context and target sets with (3, 100). Here the CNP and ATTNCNP employ
learning rates of 1e− 3. All other hyper-parameters remain unchanged.

C.3 PLASTICC EXPERIMENTAL DETAILS

CONVCNP was trained on 200 epochs using 1024 batches per epoch of batch size 4. For training and
testing, the number of context points for a batch are each selected randomly from a uniform distribu-
tion over the integers between 1 and the number of points available in the series (usually between
10-30 per bandwidth). The remaining points in the series are used as the target set. For testing, a batch
size of one was used and statistics were computed over 1000 evaluations. We compare CONVCNP to
the GP models used in (Boone, 2019) using the implementation in https://github.com/kboone/avocado.
The data used for training and testing is normalized according to t(v) = v−m

s with values:

Variable m s
time 5.94 ×104 8.74 ×102

lsstu 1.26 1.63 ×102

lsstg -0.13 3.84 ×102

lsstr 3.73 3.41 ×102

lssti 5.53 2.85 ×102

lsstz 6.43 2.69 ×102

lssty 6.27 2.93 ×102

22



Under review as a conference paper at ICLR 2020

These values are approximately estimated from a batch sampled from the training data. To remove
outliers in the GP results, log-likelihood values less than−10 are removed from the evaluation. These
same datapoints were removed from the CONVCNP results as well.

For this dataset, we only used the CONVCNPXL, as we found the CONVCNP to underfit. Learning
rate was set to 1e− 3, and we discretize E(Z) by evaluating 256 points per unit.

C.4 PREDATOR-PREY EXPERIMENTAL DETAILS

The Lotka–Volterra model (Wilkinson, 2011) which is used to describe the evolution of predator-prey
populations. Simulated training data for the experiment in Section 5.3 was generated from the
Lotka-Volterra model in the following way.

The following description is borrowed from (Wilkinson, 2011). Let X be the number of predators and
Y the number of prey at any point in our simulation and according to the model one of the following
four events can occur:

1. A single predator is born according to rate θ1XY increasing X by one.
2. A single predator dies according to rate θ2X decreasing X by one.
3. A single prey is born according to rate θ3Y increasing Y by one.
4. A single prey dies (is eaten) according to rate θ4XY decreasing Y by one.

The parameter values θ1, θ2, θ3 and θ4, as well as the initial values of X and Y govern the behavior
of the simulation. The constants θ1 = 0.01, θ2 = 0.5, θ3 = 1 and θ4 = 0.01 used are used in
(Papamakarios & Murray, 2016) which generate reasonable time series. We also use these values in
our experiments. Note that, may not the parameter values that would be estimated from the Hudson’s
Bay lynx-hare dataset (Leigh, 1968), but obtaining oscillating time series from the Lotka-simulation
is sensitive to the choice of parameters and many parametrizations result in populations that simply
die out.

Time series are simulated using Gillespie’s algorithm (Gillespie, 1977):

1. Draw the time to the next event from an exponential distribution with rate equal to the total
rate θ1XY + θ2X + θ3Y + θ4XY .

2. Select one of the above events (i, ii, iii, iv) at random, with probability proportional to its
rate.

3. Adjust the appropriate population according to the selected event.

The simulations would reach an approximate maximum population of 300 while the context set in the
lynx-hare dataset has an approximate maximum population of about 80 so we scaled our simulation
population by a factor of 4/14. We also remove time series longer than 100 units of time, with more
than 10000 events or where one of the populations is entirely zero. The number of context n points
for a training batch are each selected randomly from a uniform distribution between 3 and 80 and
the number of target points is 150− n. These target and context points are then sampled from the
simulated series. The Hudson’s Bay lynx-hare dataset has time values that range from 1845 to 1935
however, the values supplied to the model range from 0 to 90 to remain consistent with the simulated
data.

For evaluation, and interval of 18 points is removed from the the Hudson’s Bay lynx-hare dataset to
act as a target set, while the remaining 72 points for the context set. This construction highlights the
model’s interpolation as well as its uncertainty in the presence of missing data.

Models in this setting were trained for 200 epochs, with 256 batches per epoch, with each batch
containing 50 tasks. For this dataset, we only used the CONVCNP, as we found the CONVCNPXL
to overfit. Learning rate was set to 1e− 3, and we discretize E(Z) by evaluating 100 points per unit.

We attempted to train an ATTNCNP for comparison, but due to the nature of the synthetic data
generation, many of the training series end before 90 time units, the length of the Hudson’s Bay
lynx-hare series. Effectively, this means that the ATTNCNP was asked to predict outside of it’s
training interval, a task that it struggles with as shown in Section 5.1. The plots in Figure 9 show that
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the ATTNCNP is able to learn the first part of the time series but are unable to model data outside of
the first 20 or so time units. Perhaps with more capacity and training epochs the ATTNCNP training
would be more successful. Note from Figure 3 that our model does better on the synthetic data than
on the real. This could be due to the parameters of the Lotka–Volterra model used being a poor
estimate for the real data.

Figure 9: ATTNCNP performance on two samples from the Lotka–Volterra process (sim).
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D IMAGE EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

D.1 EXPERIMENTAL DETAILS

Training Details In all our experiments we sample ncntxt ∼ U(ntotal

100 , ntotal

2 ) context points and
ntrgt = ntotal target points from each of the 16 images per batch. The weights are optimised using
Adam (Kingma & Ba, 2015) with 5e− 4 learning rate. We use a maximum of 100 epochs, with early
stopping of 15 epochs patience. All pixel values are divided by 255 to rescale them in [0, 1] range. In
the following discussion, we assume that images are in RGB but very similar models can be used for
greyscale images or other grided inputs (e.g. 1D time series sampled at uniform intervals).

Proposed Convolutional CNP Unlike ATTNCNP and off-the-grid CONVCNP, on-the-grid CON-
VCNP takes advantage of the grided structure. Namely, target and context points can be specified by
the whole image, a context mask MC , and a target mask MT instead of sets of feature-value pairs.
Although this is an equivalent formulation, it makes it more natural and simpler to implement in
standard deep learning libraries. In the following, we dissect the architecture and algorithmic steps
succinctly summarized in Section 4. Note that all the convolutional layers are actually depthwise
separabe (Chollet, 2017), this enables large kernel size (i.e. receptive fields) while being parameter
and computationally efficient.

1. Select all context points and append a density channel to them, which intuitively says that
“there is 1 point at this position”: Mc � [1; I]. Each pixel value will now have 4 channels.
Note that the mask will automatically set the density channel to 0, effectively setting the
pixel value to 0, while saying “there are 0 point (a missing value) at this position”

2. Take a normalized convolution of the previously masked signal with a learned kernel:
CONVθ(Mc�[1;I]T )

CONVθ(Mc) . The output channel size is 128 dimensional. The kernel size of CONVθ
depends on the image shape and model used (Table 4). Finally, we enforce element-wise
positivity of the trainable filter by only considering its absolute values. As discussed in
Appendix D.4 the normalization and positivity constraints are not empirically better for
on-the-grid data.

3. Apply a CNN. We stack residual blocks (He et al., 2016) each consisting of 2 convolutional
layer, ReLU activations, and no batch normalization. The output channels of each layers is
128. The kernel size is the same across the whole network, but depends on the image shape
and model used (Table 4).

4. To get a representation for every target points r
(t)
xy ∈ R128, we mask-select the previous

outputs r
(t)
xy = CNN(·)[Mt] at target positions. All subsequent steps are the same as

for ATTNCNP (4 hidden layer MLP decoder and preprocessing of the predicted standard
deviation). 10

Table 4: CNN architecture for the image experiments.

Model Input Shape CONVθ Kernel Size CNN Kernel Size CNN Num. Res. Blocks

ConvCP < 50 pixels 9 5 4
> 50 pixels 7 3 4

ConvCP XL any 11 11 6
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(a) Train (b) Test

Figure 10: Samples from our generated Zero Shot Multi MNIST (ZSMM) dataset.

D.2 ZERO SHOT MULTI MNIST (ZSMM) DATA

In the real world, it is very common to have multiple objects in our field of view which do not interact
together. Yet, many image data sets in machine learning contain a single well centered object. To
evaluate the translation equivariance and generalization capabilities of our model, we use a zero shot
multi MNIST setting.

The training set contains all 60000 training 28× 28 digits centered in a black 56× 56 background.
(Figure 10a). For the test set, we randomly sample with replacement 10000 pairs of digits from the
MNIST test set, put them in a black 56× 56 background, and translate the digits in such a way that
the digits can be arbitrarily close but never overlap (Figure 10b). Importantly, the scale of the digits
and the image size are the same during training and testing.

D.3 ATTNCNP AND CONVCNP QUALITATIVE COMPARISON

Figure 11 shows the test log-likelihood distributions of an ATTNCNP and CONVCNP model as well
as some qualitative comparisons between the two.

Although most samples of both models look relatively similar for SVHN and Celeba32, the real
advantage of CONVCNP becomes apparent when testing the generalization capacity of both models.
Figure 12 shows CONVCNP and ATTNCNP trained on CelebA32 and tested on a downscaled version
of Ellen’s famous Oscar selfie. We see that CONVCNP generalizes better in such setting. 11

D.4 ABLATION STUDY - FIRST LAYER

To understand the importance of the different components of the first layer, we performed an ablation
study by: removing the density normalization (CONVCNP no norm.), removing the density channel
(CONVCNP no dens.), removing the positivity constraints (CONVCNP no abs.), removing the
positivity constraints and the normalization (CONVCNP no abs. norm.), replacing the fully trainable
first layer by an EQ kernel similarly to the continuous case (CONVCNP EQ).

10Here we describe the last step as (i) Mask selecting target representations. (ii) Parametrizing the predictive
posterior by using the previous representations and an additional decoder. This shows how similar the compared
ATTNCNP and CONVCNP models are architecturally. An other equivalent view, which was taken in the main
text for clarity is that (i) The CNN encodes a functional representation of the predictive posterior by outputting a
parametrisation of the predictive posterior at each position. (ii) Mask selecting the targets directly gives the target
predictive posterior. These 2 views are equivalent, because the decoder in the first view is a MLP which can be
implemented by applying stacked point wise (kernel size 1) convolutional layers and non linear activations.

11The reconstruction looks worst than Figure 4b despite the larger context set, because the test image has been
downscaled and the models are trained on a low resolution Celeba32. These constraints come from ATTNCNP’s
large memory footprint.
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(a) MNIST (b) SVHN

(c) CelebA 32× 32

(d) CelebA 64× 64

Figure 11: Log Likelihood and qualitative comparisons between ATTNCNP and CONVCNP on four
standard benchmarks. The top row shows the log-likelihood distribution for both models. The images
below correspond to the context points (top), CONVCNP target predictions (middle), and ATTNCNP
target predictions (bottom). Each column corresponds to a given percentile of the CONVCNP
distribution. ATTNCNP could not be trained on Celeba64 due to its memory inefficiency.

Figure 12: Qualitative evaluation of a CONVCNP (center) and ATTNCNP (right) trained on the
CelebA32 and tested on Ellen’s Oscar downscaled (146× 259) selfie (DeGeneres, 2014) with 20%
of the pixels as context (left).

Table 5 shows that (i) Appending a density channel is usefull. (ii) Enforcing the positivity constraint
is only important when using a normalized convolution. (iii) Using a less expressive EQ filter does
not significantly decrease performance, suggesting that the model might be learning similar filters
(Appendix D.5).

D.5 QUALITATIVE ANALYSIS OF THE FIRST FILTER

As discussed in Appendix D.4, using a less expressive EQ filter does not significantly decrease per-
formance. Figure 13 shows that this happens because the fully trainable kernel learns to approximate
the EQ filter.
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Table 5: Log-likelihood from image ablation experiments (6 runs).

Model MNIST SVHN CelebA32 CelebA64 ZSMM

CONVCNP 1.19 ±0.01 3.89 ±0.01 3.19 ±0.02 3.64 ±0.01 1.21 ±0.00
... no density 1.15 ±0.01 3.88 ±0.01 3.15 ±0.02 3.62 ±0.01 1.13 ±0.08
... no norm. 1.19 ±0.01 3.86 ±0.03 3.16 ±0.03 3.62 ±0.01 1.20 ±0.01
... no abs. 1.15 ±0.02 3.83 ±0.02 3.08 ±0.03 3.56 ±0.01 1.15 ±0.01
... no abs. norm. 1.19 ±0.01 3.86 ±0.03 3.16 ±0.03 3.62 ±0.01 1.20 ±0.01
... EQ 1.18 ±0.00 3.89 ±0.01 3.18 ±0.02 3.63 ±0.01 1.21 ±0.00

Figure 13: First filter learned by CONVCNPXL, CONVCNP, and CONVCNP EQ for all our datasets.
In the case of RGB images, the plotted filters are for the first channel (red). Note that not all filters
are of the same size.
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