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ABSTRACT

We study how the topology of a data set M = Ma ∪Mb ⊆ Rd, representing
two classes of objects a and b in a binary classification problem, changes as it
passes through the layers of a well-trained neural network, i.e., one with perfect
accuracy on training set and a generalization error of less than 1%. The goal is to
shed light on two well-known mysteries in deep neural networks: (i) a nonsmooth
activation function like ReLU outperforms a smooth one like hyperbolic tangent;
(ii) successful neural network architectures rely on having many layers, despite the
fact that a shallow network is able to approximate any function arbitrary well. We
performed extensive experiments on persistent homology of point cloud data sets,
both simulated and real-world. The results consistently demonstrate the following:
(1) Neural networks operate by changing topology, transforming a topologically
complicated data set into a topologically simple one as it passes through the layers.
No matter how complicated the topology ofM we begin with, when passed through
a well-trained neural network f : Rd → Rp, the Betti numbers of both components
Ma and Mb invariably reduce to their lowest possible values: βk

(
f(Mi)

)
= 0

for k ≥ 1 and β0
(
f(Mi)

)
= 1, i = a, b. Furthermore, (2) reduction in Betti

numbers is significantly faster for ReLU activation compared to hyperbolic tangent
activation as the former defines nonhomeomorphic maps that change topology
whereas the latter defines homeomorphic maps that preserve topology. Lastly, (3)
shallow and deep networks transform the same data set differently — a shallow
network operates mainly through changing geometry and changes topology only in
its final layers, a deep one spreads topological changes evenly across all layers.

1 OVERVIEW

A key insight of topological data analysis is that “data has shape” Carlsson (2013; 2014). That data
sets often have nontrivial topologies that may be exploit in their analysis is now a widely accepted
principle with abundant examples across mutliple disciplines: dynamical systems Khasawneh et al.
(2018), medicine Li et al. (2015); Nielson et al. (2015), genomics Perea et al. (2015), neuroscience
Giusti et al. (2015), time series Perea & Harer (2015), etc. An early striking example came from
computer vision Carlsson et al. (2008), where the authors showed that naturally occurring image
patches reside on a low-dimensional manifold that has the topology of a Klein bottle.

We will study how modern deep neural networks transform topologies of data sets, with the goal of
shedding light on their breathtaking yet somewhat mysterious effectiveness. Most existing approaches
tend to focus on what a network does to a single object, e.g. an image of a cat; but we are interested in
what it does to all objects in the same class, e.g. the set of all cats. As in topological data analysis, we
employ persistent homology — a computational topology tool with proven stability, robust algorithms,
and high-quality software — to track changes in the topology of a data set as it passes through the
layers of neural network. Nevertheless we highlight a fundamental difference: topological data
analysis is about reading the shape of data, deep neural network is about writing the shape of data.

Indeed, we seek to show that neural networks operate by changing the topology (i.e., shape) of data.
The relative efficacy of ReLU activation over traditional sigmoidal activation can be explained by
the different speeds they change topology — an ReLU-activated neural network (which is not a
homeomorphism) is able to sharply reduce Betti numbers but not a sigmoidal-activated one (which is
a homeomorphism). Also, the higher the topological complexity of the data, the greater the depth of
the network required to reduce it, explaining the necessity of having sufficient number of layers.
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Figure 1 illustrates what we mean by “changing topology.” The two subfigures are caricatures of real
results (see Figures 2, 6, 7 for the true versions) obtained via actual persistent homology computations
and projections to principal components. In both subfigures, we begin with a three-dimensional

Figure 1: Progression of Betti numbers β(X) = (β0(X), β1(X), β2(X)). Left: β(red): (1, 2, 0)→
(1, 2, 0) → (2, 1, 0) → (2, 0, 0) → (1, 0, 0) → (1, 0, 0); β(green): (2, 2, 0) → (2, 2, 0) →
(2, 1, 0) → (2, 0, 0) → (2, 0, 0) → (1, 0, 0). Right: β(red): (3, 0, 0) → (2, 0, 0) → (1, 0, 0) →
(1, 0, 0); β(green): (1, 0, 3)→ (1, 0, 2)→ (1, 0, 1)→ (1, 0, 0).

manifold M = Ma ∪Mb comprising two disjoint submanifolds Ma (green) and Mb (red) entangled
in a topologically nontrivial manner, and track its progressive transformation into a topologically
simple manifold comprising a green ball and a red ball. In the left box, M is initially the union of the
two green solid tori Ma interlocked with the red solid figure-eight Mb. In the right box, M is initially
a union of Ma, the green solid ball with three voids inside, and Mb, three red balls each placed
within one of the three voids of Ma. The topological simplification in both boxes are achieved via a
reduction in the Betti numbers (see Section 4 for a definition) of both Ma and Mb so that eventually
we have βk(Mi) = 0 for k ≥ 1 and β0(Mi) = 1, i = a, b. Our main goal is to provide (what we
hope are) incontrovertible evidence that this picture captures the actual workings of a well-trained1

neural network in a binary classification problem where Ma and Mb represent the two classes.

2 KEY FINDINGS

While we will provide some qualitative results in the supplement, this work is primarily an empirical
study — we performed more than 10,000 experiments on data sets of varying topological complexities
and have made our codes available for reader’s further experimentations.2 Before describing our
methodologies and results, we summarize the most salient observations and discuss their implications:

(i) For a fixed data set and fixed network architecture, topological changes produced by a well-
trained network are robust across different training instances and follow a similar profile.

(ii) Using smooth activations like hyperbolic tangent or logistic function results in a slow down of
topological simplification compared to nonsmooth activations like ReLU or leaky ReLU.

(iii) The initial layers often effect only geometric changes, it is only in deeper layers that topological
changes take place. Moreover, as we reduce network depth, the burden of producing topological
simplification is not spread uniformly across layers but remains concentrated in the last layers.
The last layers see much greater reduction in topological complexity than the initial layers.

Observation (ii) provides a plausible answer to the widely posed question Nair & Hinton (2010);
Maas et al. (2013); Glorot et al. (2011): What makes rectified activations such as ReLU and its
variants perform better than smooth sigmoidal activations? We posit that it is not a matter of smooth
versus nonsmooth but that a neural network with sigmoid activation is a homeomorphic map that
preserves topology whereas one with ReLU activation is a nonhomeomorphic map that can change
topology. The merit of ReLU activation is often attributed to its avoidance of the vanishing gradient
problem. Our experiments indicate that this does not give the full picture: Leaky ReLU, which also
avoids vanishing gradient, has noticeably inferior results than ReLU. The topological perspective, on
the other hand, perfectly explains why.

It is much harder to change topology with homeomorphisms; in fact, mathematically it is impossible;
but maps like hyperbolic tangent achieves it in practice via rounding errors. Note that in IEEE

1One with perfect accuracy on training set and less than 1% generalization error.
2https://github.com/topnn/topnn_framework — fully anonymized for review purposes.
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finite-precision arithmetic, hyperbolic tangent is effectively a piecewise linear step function:

ϕδ(x) =


+1 if fl(tanh(x)) > 1− δ,
fl(tanh(x)) if − 1 + δ ≤ fl(tanh(x)) ≤ 1− δ,
−1 if fl(tanh(x)) < −1 + δ,

where fl(x) denotes floating point representation of x, and δ > 0 is the unit roundoff, i.e., δ = ε/2
with ε = inf{x > 0 : fl(1 + x) 6= 1} the machine epsilon Overton (2001). Applied coordinatewise to
a vector, tanh : Rn → (−1, 1)n is a homeomorphism of Rn to (−1, 1)n and necessarily preserves
topology; but ϕδ : Rn → [−1, 1]n is not a homeomorphism and thus has the ability to change
topology. We also observe that lowering the floating point precision increases the value of δ (e.g.,
for double precision δ = 2−54, for half precision3 δ = 2−9), which has the effect of coarsening ϕδ,
making it even further from a homeomorphism and thus more effective at changing topology. We
suspect that this may account for the paradoxical superior performance of lower precision arithmetic
in deep neural networks Courbariaux et al. (2014); Gupta et al. (2015); Hubara et al. (2017).

The ReLU activation, on the other hand, is far from a homeomorphism (for starters, it is not injective)
even in exact arithmetic. Indeed, if changing topology is the goal, then a composition of an affine map
with ReLU activation, ν : Rn → Rn, x 7→ max(Ax+ b, 0), is a quintessential tool for achieving it —
any topologically complicated part of M ⊆ Rn can be affinely moved outside the nonnegative orthant
and collapsed to a single point by the rectifier. We see this in action in Figure 2, which unlike Figure 1,
is a genuine example of a ReLU neural network we trained to perfect accuracy on a two-dimensional
manifold data set where Ma comprises five red disks in a square M and Mb = M \Ma is the
remaining green portion with the five disks removed. The “folding” transformations in Figure 2
clearly require many-to-one maps and can never be achieved by any homeomorphism.

Figure 2: We see how the data set is transformed after passing through layers 2, 3, . . . , 8 of a ReLU
network with three neurons in each layer, well-trained to detect five disks in a square. β(red):
(5, 0)→ (4, 0)→ (4, 0)→ (4, 0)→ (2, 0)→ (1, 0)→ (1, 0).

Observation (iii) addresses another perennial paradox Krizhevsky et al. (2012); Eigen et al. (2014);
Seide et al. (2011): Why does a neural network with more layers work better, despite the well-known
universal approximation property that any function can be approximated arbitrarily well by a two-
layer one? We posit that the traditional approximation-theoretic view of neural networks is irrelevant
here; instead the proper perspective is that of a topologically complicated input getting progressively
simplified as it passes through the layers of a neural network. Observation (iii) explains the role of
additional layers — topological changes are minor in the first few layers and occur mainly in the later
layers; moreover, a complicated data set requires many more layers to simplify.

We drew our inspiration partly from a Google Brain blog post Olah (2014) speculating how neural
networks act as homeomorphisms that distort geometry, but it stopped short of taking the leap to
topology-changing maps. The idea of changing topology of a space to facilitate a machine learning
goal is not as esoteric as one might imagine. For example, it is implicit in kernel methods Schölkopf &
Smola (2002) — a data set with two components inseparable by a hyperplane is embedded in a higher
dimensional space where the embedded images of the components are separable by a hyperplane.
Note that dimension is a topological invariant, changing dimension is changing topology.

3 PROBLEM FORMULATION

We will use binary classification, the most basic and fundamental problem in supervised learning, as
our platform for studying how neural networks change topology. More precisely, we seek to classify

3Assuming the BFloat16 floating-point format used in TensorFlow.
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two different probability distributions supported on two disjoint manifolds Ma, Mb ⊆ Rd. The
distance inf{‖x− y‖ : x ∈ Ma, y ∈ Mb} can be arbitrarily small but not zero. So there exists an
ideal classifier with zero prediction error.

Our samples form a point cloud data set, a large but finite set of points on Ma and Mb. Our training
set T ⊆Ma ∪Mb is a labeled point cloud data set, i.e., x ∈ T is labeled to indicate whether x ∈Ma

or Mb. We sample T uniformly and densely, so that Betti numbers of Ma and Mb can be faithfully
obtained from the persistent homology of T . We will use Ta := T ∩Ma and Tb := T ∩Mb, or rather,
their Vietoris–Rips complex (see Section 4), as finite proxies for Ma and Mb.

Our feedforward neural network ν : Rd → [0, 1] is given by the usual composition

ν = s ◦ fl ◦ fl−1 ◦ · · · ◦ f2 ◦ f1, (1)

where each layer of the network fj : Rnj → Rnj+1 , j = 1, . . . , l, is the composition of an affine
map αj : Rnj → Rnj+1 , x 7→ Ajx + bj , with an activation function σ : Rnj+1 → Rnj+1 ; and
s : Rnl → [0, 1] is the score function. The width nj is the number of nodes in the jth layer and we
set n1 = d and nl = p. For j = 1, . . . , l, the composition of the first through jth layers is denoted

νj := fj ◦ · · · ◦ f2 ◦ f1 and ν = s ◦ νl.

We assume that s is a linear classifier and thus the decision boundary of s is a hyperplane in Rp.

We train an l-layer neural network ν : Rd → [0, 1] on a training set T ⊆ Ma ∪Mb to classify
samples into class a or b. As usual, the network’s output for a sample x ∈ T is interpreted to be the
probability of x ∈Ma. In all our experiments, we train ν until it correctly classifies all x ∈ T — we
will call such an ν well-trained. In fact, we sampled T so densely that in reality ν also has near zero
misclassification error on any test set S ⊆ (Ma ∪Mb) \ T ; and we trained ν so thoroughly that its
output is concentrated near 0 and 1. For all intents and purposes, we may treat ν as an ideal classifier.

We deliberate choose Ma ∪Mb to have doubly complicated topologies in the following sense:

(a) For each i = a, b, the component Mi itself will have complicated topologies, with multiple
components, i.e., large β0(Mi), as well as multiple k-dimensional holes, i.e., large βk(Mi).

(b) In addition, Ma and Mb will be entangled in a topologically complicated manner. See Figures 4
and 5 for example. They not only cannot be separated by a hyperplane but any decision boundary
D ⊆ Rd that separates them will necessarily have complicated topology.

In our experiments, we analyze how the topologies of νj(Ma) and νj(Mb) evolve as j runs from 1
through l, for different manifolds Ma,Mb entangled in different ways, for different number of layers
l and choices of widths n1, . . . , nd, and different activations σ. The results show a well-trained neural
network ν : Rd → [0, 1] will reduce the topological complexity of Ma and Mb on a layer-by-layer
basis until, at the output, we see a simple disentangled arrangement where the point cloud T gets
mapped into two clusters of points ν(Ta) and ν(Tb) on opposite ends of [0, 1]. This indicates that
the initial decision boundary D ⊆ Rd of complicated topology ultimately gets transformed into a
hyperplane in Rp by the final layer. Although we could measure and track the topologies of νj(Ma)
and νj(Mb) directly, our approach only permits us to observe the topology of the decision boundary
separating them indirectly. We have more to say about this in supplementary Section G.2.

4 QUANTIFYING TOPOLOGICAL COMPLEXITY

In this article, we rely entirely on Betti numbers βk(M) to quantify topology as they are the simplest
topological invariants that capture the shape of a space M ⊆ Rd and have intuitive interpretations.
The zeroth Betti number, β0(M), counts the number of connected components in M ; the kth Betti
number, βk(M), k ≥ 1, is informally the number of k-dimensional holes in M . In particular
βk(M) = 0 when k > d as there is no (d + 1)-dimensional holes in d-dimensional space. So for
M ⊆ Rd, we write β(M) := (β0(M), β1(M), . . . , βd(M)) and define its topological complexity by

ω(M) := β0(M) + β1(M) + · · ·+ βd(M). (2)

If M has no holes and can be continuously (without tearing) deformed to a point, then β0(M) = 1
and βk(M) = 0 for all k ≥ 1; such a space is called contractible. The simplest non contractible
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space is a circle S1 ⊆ R2, which has one connected component and a single one-dimensional hole,
so β0(S1) = 1 = β1(S1) and βk(S1) = 0 for all k ≥ 2. Figure 3 gives a few more examples. For
in-depth treatments, see Zomorodian (2009); Massey (1991); Hatcher (2002).

(a) (b) (c) (d)

(e) (f) (g)

Manifold M ⊆ R3 β(M)
(a) Single contractible manifold (1, 0, 0)
(b) Five contractible manifolds (5, 0, 0)
(c) Sphere (1, 0, 1)
(d) Solid torus (filled) (1, 2, 0)
(e) Surface of torus (hollow) (1, 2, 1)
(f) Genus two surface (hollow) (1, 5, 2)
(g) Torso surface (hollow) (1, 5, 0)

Figure 3: Manifolds in R3 and their Betti numbers

The definition of topological complexity (2) as the sum of Betti numbers captures the idea that “the
more holes a space has, the more complex its topology.” It differs from the better known Euler
characteristic in that it is an unsigned sum. Nevertheless it is a natural notion that has appeared in
Milnor (1964); Basu & Rizzie (2018). In the context of neural networks, Bianchini & Scarselli (2014)
studies topological complexity of decision boundaries of neural networks with nonlinearities that are
Pfaffian functions Zell (2003); Gabrielov et al. (2004).

Given a point cloud data set T ⊆ Ma ∪Mb, i.e., a sample of finite points, we estimate the Betti
numbers of the manifolds Ma, Mb by constructing simplicial complexes from Ta = T ∩ Ma,
Tb = T ∩Mb and then computing the Betti numbers of these complexes (a matter of simple linear
algebra). There are many ways to build these complexes Otter et al. (2017), but for dense enough
point clouds and sufficiently small scales, their Betti numbers are all equal to those of the manifolds
they approximate with high probability Niyogi et al. (2008). We choose the Vietoris–Rips complex
for its simplicity: any collection of k points x1, . . . , xk ∈ Ta forms a k-simplex iff ‖xi − xj‖ ≤ ε
for all i, j. The appropriate scale ε > 0 is determined through persistent barcodes, which allow one
to see the topologies at different scales all at once Otter et al. (2017); Oudot (2015).

By far the most expensive step is the persistent barcodes needed to determine scale ε. Ideally we want
a single ε that works for all layers, but this is impossible — as we saw in Figure 2, a well-trained
neural network stretches and shrinks different regions of the space differently; as a point cloud data
set passes through the layers, its local densities vary enormously. Our side contribution is to provide
a solution to this problem: Instead of the Euclidean norm, we use the geodesic distance to define our
Vietoris–Rips complex, i.e., nearest neighboring points are distance one from each other. This metric
effectively normalizes densities across layers while preserving connectivity of nearest neighbors, i.e.,
it only affects geometry but not topology, which is what we care about. With this approach, a single
scale for construction of simplicial complexes across multiple layers can be determined by looking at
a single barcode diagram of the input. The resulting reduction is computation time allows a thorough
examination of topology changes in a neural network that we describe in the next section.

5 EXPERIMENTS

We perform our experiments on three simulated data sets and one real data set. The simulated data set
D-I, D-II, D-III are generated in a controlled manner as described in Section 3 to have complicated
but manageable topologies that we know in advance. The main issue with using real data sets is that
they have vastly more complicated topologies that are nearly impossible to determine in advance. For
example, even something as basic as the Mumford data set, a mere collection of 3-by-3-pixels of high
contrast patches of natural images, took many years to have its topology determined Carlsson et al.
(2008) and whether the conclusion (that it has the topology type of a Klein bottle) is correct is still a
matter of intense debate. Figuring out, say, the topology of the manifold of cat images with the space
of all possible images is well-beyond our capabilities for the foreseeable future. Nevertheless, we did
limited experiments on one real data set, the MNIST handwritten digits LeCun & Cortes (2010) to
show that the conclusions are consistent with those drawn from simulated data.

D-I is a two-dimensional manifold consisting of Ma, nine green disks, positioned in Mb, a larger
disk with nine holes as in Figure 4. We clearly have β(Ma) = (9, 0) and β(Mb) = (1, 9) (one
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Figure 4: D-I resembles radial
cross-section of lotus root.

Figure 5: Left: D-II comprises nine pairs of interlocking rings.
Right: D-III comprises nine units of this doubly concentric object.

connected component, nine holes). D-II is a three-dimensional manifold comprising nine disjoint
pairs of red solid torus interlocked with a green solid torus (a single pair is shown in Figure 5). Ma

(resp. Mb) is the union of all nine green (resp. red) tori. So β(Ma) = β(Mb) = (9, 9, 0). D-III is
a three-dimensional manifold comprising nine disjoint units of the following — a large red sphere
enclosing a smaller green sphere enclosing a red ball; the green sphere is trapped between the red
sphere and the red ball (see Figure 5 but note that the spheres are shown with portions omitted). Ma

is the union of all nine green spheres and Mb is the union of the nine spheres and nine balls. So
β(Ma) = (9, 0, 9) and = β(Mb) = (18, 0, 9). See Figure 10 in the supplement for more details.

To show our data sets visually, we have confined ourselves to two- and three-dimensional manifolds
and thus only the first two or three Betti numbers (higher ones are all zero). Nevertheless, with
enough computing power, the code that we provided in principle works for manifolds M of any
dimension and, with sufficiently many data points sampled from M , also computes βk(M) for any
k = 0, 1, . . . ,dimM . Also, space constraints mandates that we can only present select results (in
Section 6). We will just show the change in βi

(
νk(Ma)

)
in each of D-I, D-II, D-III for each layer

k. We observe similar behavior for Mb but will not present them here. Instead we will examine the
effects of having (i) different activations: hyperbolic tangent, leaky ReLU set to be max(x, 0.2x),
and ReLU; (ii) different depths of four to ten layers; (iii) different widths of six to 50 neurons.

For any given data set (D-I, D-II, D-III) and any given architecture (depth, width, activation), we
tracked the Betti numbers through all layers for at least4 30 well-trained neural networks. Description
of the software and hardware used in our simulations may be found in Section H.

6 RESULTS DISCUSSIONS

Computations are consistent across training instances. Figure 6 records our simplest data set D-I,
where Ma comprises nine contractible components and so higher Betti numbers are irrelevant (all
zero). Here we show every curve corresponding every neural network trained on D-I (recall that
we do at least 30 runs for each experiment to account for the inherent randomness in TensorFlow)
and they all show consistent profiles — a clear decay in β0 across the layers even though the case
of hyperbolic tangent activation (blue graph) show larger variance, a point we will elaborate in the
next paragraph. The consistency in Figure 6 is representative of other experiments on higher Betti
numbers and on other data sets. Henceforth, we will omit curves corresponding to individual runs and
just show the curve of their means and the region of half standard deviation. The bottom diagrams
show how topology changes occur from layer-to-layer using a two-dimensional projection onto the
first two principal components (note that the intervening layers are in R15).

Nonhomeomorphic activations induce rapid topology changes. As the faint blue lines in Figure 6
reveal, hyperbolic tangent activation is less effective at reducing Betti numbers, occasionally even
increasing them over layers. In all data sets across all our experiments, the nonhomeomorphic
activation ReLU exhibits more rapid reductions in all Betti numbers. The top half of Figure 7 shows
selected results. The different rates at which topological changes occur are evident from the principal
components projections in the bottom half.

Difference between topological features. Some topological features evidently require more layers
to simplify than others. The hardest one is the interlocking tori in data set D-II. The profile of
β1
(
νl(Ma)

)
in the second graph in Figure 7 shows that the “loops” survive across many layers. This

is especially so for networks with hyperbolic tangent activation (blue): both the principal components
projections and the reduction profile show that the loops persist much longer compared with any
other features in any of the three data sets.

4The repetition is necessary — given that TensorFlow involves a fair amount of randomization in initialization,
batching, optimization, etc — to ensure that what we observe is not a fluke.
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Figure 6: Top: Faint curves show individual profiles, dark curves show averaged profiles of
β0
(
νk(Ma)

)
, k = 1, . . . , 10, in data set D-I. Shaded regions show ± half standard deviations.

Networks have different activations — blue for tanh, red for leakyrelu, green for relu; but same
architecture — 10 layers, two neurons in first and last, 15 in intervening layers. Bottom: Projections
of νk(Ma), k = 1, . . . , 10, on first two principal components, color-coded according to activations.
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Figure 7: Top: Profiles of β0
(
νk(Ma)

)
and β1

(
νk(Ma)

)
for data set D-II (left), β0

(
νk(Ma)

)
and

β2
(
νk(Ma)

)
for data set D-III (right), k = 1, . . . , 10. Networks share the same architecture: three-

dimensional input, two-dimensional output, and 15 neurons in intervening layers 1 to 9, with different
activations. Bottom: Projections of νk(Ma), k = 1, . . . , 10, on first two principal components.

Effects of depth on topology change. Reducing the depth of a constant-width network beyond a
certain threshold makes it difficult to train it to high accuracy — the percentage of successfully trained
networks drops noticeably. Moreover, as the depth is reduced, the burden of topology changing does
not spread evenly across all layers but remains concentrated in the final layers — the initial layers do
not appear to play a big role in changing topology, eliminating layers simply makes the final layers
“work harder” to produce larger reductions in Betti numbers. Figure 8 shows this effect.

Effects of width on topology change. For the data set D-I, we compare three 10-layer networks: (i)
a narrow network with six neurons in each layer; (ii) a “bottleneck” network with 15, 15, 15, 15, 3,
15, 15, 15, 15 neurons respectively in layers 1 through 9 — notice 3-neuron bottleneck layer; (iii) a
wide network with 50 neurons in each layer. The left graph in Figure 9 suggests that a bottleneck
layer forces large topological changes, and a narrow network changes topology faster than a wider
one. The other two graphs compare a 15-neuron wide network with a 50-neuron wide one, both with
10 layers, on data sets D-II and D-III respectively. The difference between them is negligible, for the
same choice of activation. However, reducing the width to under 15 neurons makes training to high
accuracy much more difficult, i.e., the percentage of successfully trained networks drops noticeably.

Consistency with real world data. We train a feedforward neural network to classify a handwritten
digit x from the MNIST data set: x ∈ Ma if it is zero and x ∈ Mb otherwise. The digit zero is
arbitrary and may be replaced by any other digits without affecting the conclusions. We analyze how
Ma, the “manifold of handwritten zeros” is transformed by the network. We first project the data
set onto its leading 50 principal components, reducing input dimension from 784 to 50 — this has
negligible effect on the training and generalization errors but reduces computational costs significantly.
We used a network with 10 layers and a width of 10 neurons in each hidden layer but we vary the
choice of activation. The results for relu activation are in Table 1 and those for other activations
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Figure 8: Mean values of topological complexity ω
(
νk(Ma)

)
, k = 1, . . . , l, for 15-neuron wide

networks of varying depths. Error bars indicate ± half standard deviation about the mean.
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Figure 9: Mean values of topological complexity ω
(
νk(Ma)

)
, k = 1, . . . , l, for 10-layer deep

networks of varying widths. Error bars indicate ± half standard deviation about the mean.

in appendix Table 4. Our findings corroborate those in simulated data: topological complexity
diminishes across layers, with relu showing the most rapid reduction and tanh the slowest.

k = 0 1 2 3 4 5 6 7 8 9 10

ε = 1.5 525 199 106 27 13 6 1 1 1 1 1

2.5 6 2 6 6 2 1 1 1 1 1 1

3.5 1 1 1 1 1 1 1 1 1 1 1

Table 1: The manifold of handwritten zerosMa passing through a ReLU network with 50-dimensional
input, two-dimensional output, and 10 neurons in intervening layers. Table shows values of
β0
(
νk(Ma)

)
+ β1

(
νk(Ma)

)
+ β2

(
νk(Ma)

)
at input (k = 0) and layers k = 1, . . . , 10. Unlike

with simulated data, we cannot fix ε in advance and so need to observe multiple ε’s.

7 CONCLUSION

Our findings support the view that deep neural networks operate by transforming topology, gradually
simplifying topologically complicated data shapes and arrangements in the input until it becomes
linearly separable in the output. We proffered some new insights on the role of deep layers and of
rectified activations — they are mechanisms that aid topological changes — suggesting that it may be
fruitful to design neural networks with an eye towards effecting topological changes more efficiently.
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APPENDIX

In these pages we provide additional details on our simulations, more elaborate illustrations of our
data sets, and further discussions as to how a neural network changes topology and its limitations in
this regard. We also fill-in some relevant background material from topology and explain how we
actually computed the Betti numbers in our experiments.

In the interest of reproducibility, we have made all our data sets and codes (fully anonymized for
review purposes) available at:

https://github.com/topnn/topnn_framework.

The static images in our article do not fully convey the dramatic topological changes a data set
undergoes as it passes through the layers of a well-trained neural network. For a more complete
picture, we have posted video clips generated from the same experiments and data sets at:

https://github.com/topnn/topnn_framework/tree/master/
videos.

A LIST OF EXPERIMENTS

Table 2 summarizes all our experiments on the three simulated data sets D-I, D-II, D-III (experiments
on the MNIST data set are separately documented in Section F.1). For each data set, we state the
type of architecture it is trained on and the number of well-trained networks obtained. For each
well-trained5 network, we track the Betti numbers through their layers — those results are presented
in the main body of this article. We specify architecture with a sequence of numbers giving the widths
of the layers in the network. The first number gives the dimension of the input, which is always 2 or
3 as we have limited ourselves to two- and three-dimensional manifolds for visualization purposes.
The score function has two outputs that add up to 2 (one for category a and the other for category b)
and for this reason the last number is always 2. We use softmax as the score function in all of our
networks; recall that this is the function s : Rp → Rp whose ith coordinate is

si(x) = exi/(ex1 + · · ·+ exp), i = 1, . . . , p,

where p is the number of categories. In our case, p = 2.

B SIMULATED DATA SETS

We have used three simulated point cloud data sets D-I, D-II, D-III in our experiments. Figure 10
shows the underlying manifolds M = Ma ∪Mb (top) and the corresponding point cloud data sets
Ta = T ∩Ma and Tb = T ∩Mb (bottom) sampled from the manifolds. The point cloud data set
T = Ta ∪ Tb has each point labeled a or b to indicate its membership.

The samples for Betti numbers computations are obtained by further subsampling the training data
set — a standard practice in computational topology and topological data analysis — without this
step the Betti number computations will be prohibitively expensive. The subsampling is done by
simply picking every kth sample: For D-I, k = 3; for D-II and D-III, k = 4.

While the Betti numbers are computed from a subsample of Ta, the neural networks are trained on
the full sample Ta. Table 3 gives the number of samples used for training the neural networks and
that used to run Betti numbers computations. To set hyperparameters (see Section E) we used holdout
samples: Two for each data set, the first one is the data set itself and the other is the data set mapped
by a randomly picked well-trained network.

C TOPOLOGICAL CHANGES IN A NEURAL NETWORK

Since our goal is to show how a neural network can simplify the topology of two entangled data
sets and separate them, we first specify the most fundamental restrictions that topology places on

5Recall that this means zero training error and less than 1% generalization error.
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data set activation architecture #
D-I tanh 2-15-15-15-15-15-15-15-15-15-15-2 30
D-I leakyrelu 2-15-15-15-15-15-15-15-15-15-15-2 30
D-I leakyrelu 2-05-05-05-05-03-05-05-05-05-05-2 30
D-I leakyrelu 2-15-15-15-15-03-15-15-15-15-2 30
D-I leakyrelu 2-50-50-50-50-50-50-50-50-50-50-2 30
D-I relu 2-15-15-15-15-15-15-15-15-15-15-2 30
D-II tanh 3-15-15-15-15-15-15-15-15-15-15-2 32
D-II leakyrelu 3-15-15-15-15-15-15-15-15-15-15-2 36
D-II relu 3-15-15-15-15-15-15-15-15-15-15-2 31
D-II tanh 3-25-25-25-25-25-25-25-25-25-25-2 30
D-II leakyrelu 3-25-25-25-25-25-25-25-25-25-25-2 30
D-II relu 3-25-25-25-25-25-25-25-25-25-25-2 30
D-III tanh 3-15-15-15-15-15-15-15-15-15-15-2 30
D-III leakyrelu 3-15-15-15-15-15-15-15-15-15-15-2 46
D-III relu 3-15-15-15-15-15-15-15-15-15-15-2 30
D-III tanh 3-50-50-50-50-50-50-50-50-50-50-2 30
D-III leakyrelu 3-50-50-50-50-50-50-50-50-50-50-2 30
D-III relu 3-50-50-50-50-50-50-50-50-50-50-2 34

data set activation architecture #
D-I tanh 2-15-15-15-15-2 30
D-I tanh 2-15-15-15-15-15-15-15-15-2 30
D-I leakyrelu 2-15-15-15-15-2 30
D-I leakyrelu 2-15-15-15-15-15-15-15-15-2 30
D-I relu 2-15-15-15-15-2 30
D-I relu 2-15-15-15-15-15-15-15-15-2 30
D-II tanh 3-15-15-15-15-2 31
D-II tanh 3-15-15-15-15-15-2 31
D-II tanh 3-15-15-15-15-15-15-15-2 30
D-II leakyrelu 3-15-15-15-15-2 31
D-II leakyrelu 3-15-15-15-15-15-2 30
D-II leakyrelu 3-15-15-15-15-15-15-2 30
D-II leakyrelu 3-15-15-15-15-15-15-15-2 31
D-II leakyrelu 3-15-15-15-15-15-15-15-15-2 42
D-II relu 3-15-15-15-15-2 32
D-II relu 3-15-15-15-15-15-2 32
D-II relu 3-15-15-15-15-15-15-15-15-2 31
D-III tanh 3-15-15-15-15-15-15-2 30
D-III tanh 3-15-15-15-15-15-15-15-15-2 31
D-III leakyrelu 3-15-15-15-15-15-15-2 30
D-III leakyrelu 3-15-15-15-15-15-15-15-15-2 30
D-III relu 3-15-15-15-15-15-15-2 33
D-III relu 3-15-15-15-15-15-15-15-15-2 32

Table 2: List of experiments: Each row in the table describes one experiment. First column specifies
the data set on which we have trained the networks. The next two columns describe the architecture,
respectively the activation used and the number of neurons of each layer. The last column gives the
number of well-trained networks obtained.
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●●●

Figure 10: Top: The manifolds underlying data sets D-I, D-II, D-III. The green Ma represents
category a, red Mb represents category b. Bottom: Actual training set sampled from the manifolds.
D-I and D-III are sampled on a grid and D-II is sampled uniform randomly from the tori. The
difference in sampling schemes is inconsequential as the samples are sufficiently dense that there is
no difference in training and testing behaviors.

the ability of maps to separate two entangled sets. They allow us to identify situations when these
restrictions do not apply, and in which case we know the data sets may potentially be disentangled.
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Under review as a conference paper at ICLR 2020

Data set Training set size Subsample for Betti calculations
D-I 7,800 2,600
D-II 45,000 11,250
D-III 37,800 9,450

Table 3: Size of training set and size of the subset used to run Betti numbers calculations.

We start with an elementary (but deep) well-known fact from topology, a consequence of the Jordan–
Brouwer Separation Theorem (Guillemin & Pollack, 2010, Chapter 2), that formalizes our intuition
that there is no diffeomorphism that can pull a set in the “inside” of a surface away from the surface
itself.

Lemma C.1 Let M ⊆ Rn be a compact connected hypersurface, i.e., a codimension-one smooth
manifold6 in Rn. Let U be a set in the “inside” of M , i.e., the bounded connected set7 in the
complement of M in Rn. Then U and M are not linearly separable and for any diffeomorphism8

f : Rn → Rn, the sets f(M) and f(U) are also not linearly separable.

Lemma C.1 requires diffeomorphisms, but depending on the choice of activations, a neural network
may not necessarily be a diffeomorphism, and thus Lemma C.1 may not apply directly. Fortunately,
all of the standard activations can be slightly perturbed so that the respective neural network becomes
a diffeomorphism.

Definition C.2 (Near-diffeomorphism) A continuous map g : M → N ⊆ Rn between two
topological spaces is called a near-diffeomorphism on the compact subspace U ⊆ M if for any
ε > 0, there is a diffeomorphism fε : U → V ⊂ Rn such that for all x ∈ U , ‖g(x)− fε(x)‖2 < ε.

Definition C.2 implicitly assumes that dim(M) = dim(N) = dim(U) = n since the dimension of a
topological space is invariant under diffeomorphism. We may however extend the definition to the
case where N ⊆ Rm and m < n. To this end, notice that a constant map is a near-diffeomorphism
on any compact domain — adding a linear map with a tiny gradient to the constant map turns it into a
diffeomorphism. Therefore if g is a map to N ⊆ Rm, by augmenting it with an additional m − n
zeros, we obtain

g̃(x) := (g1(x), g2(x), . . . , gm(x), 0, . . . , 0) for any x ∈M,

and Definition C.2 now applies to g̃ as it maps to Rn.

Lemma C.1 carries over to near-diffeomorphisms. The implications of this for neural networks are
encapsulated in the following theorem.

Theorem C.3 Let Ma ⊆ Rd be a compact connected hypersurface representing category a and
Mb ⊂ Rd be a set in the inside of Ma representing category b. Consider a feedforward neural
network ν : Rd → R given by the compositions of l layers and a score function as in Section 3, with
activations tanh, relu, or leakyrelu, and whose widths satisfy

d ≥ n1 ≥ n2 ≥ · · · ≥ nl. (3)

Then for any set of parameters, i.e., the weights and biases in all layers and the score function, the
network ν is a near-diffeomorphism (in the extended sense discussed after Definition C.2) and there
exists a neighborhood U ⊆Ma or a neighborhood V ⊆Mb that is wrongly classified by ν.

The proof is elementary. Each layer in the network satisfying assumption of the theorem is
a near-diffeomorphism, so we can approximate the network uniformly and arbitrary well by a
diffeomorphism on a compact domain containing the manifold Ma. Meanwhile, by Lemma C.1, the
manifolds cannot be linearly separated by any diffeomorphism, which completes the proof.

6All topological spaces that we consider here are subspaces of Rn for some n, with topological and smooth
structures induced by the Euclidean metric.

7The existence of which follows from Jordan–Brouwer Separation Theorem Lima (1988). In addition, such a
manifold is necessarily orientable.

8It is enough to have a C1-diffeomorphism and M a C1-manifold Guillemin & Pollack (2010).

14



Under review as a conference paper at ICLR 2020

There are two ways in which the assumptions of the theorem can be violated, and each illustrates
how a neural network transforms the topology of its input. The first is when one of the activations
is not a near-diffeomorphism (e.g., absolute value | · |) and the second is when the requirement on
nonincreasing width, i.e., equation 3, is not satisfied. Note that if the entangled manifolds have
dimension less than d, then equation 3 is already violated in the first layer. Figures 11a, 11b illustrate
these two cases, showing that if the assumptions in Theorem C.3 are not satisfied, then Ma and Mb

can be separated by some neural network.

Standard activations always result in layers that are near-diffeomorphisms except if the layer maps
input to a higher dimensional output. Therefore, among those two ways to separate entangled data
sets, it is the later one that occurs in a standard feedforward network. Figure 2 shows actual topology
transformation in a neural network, a two dimension data is mapped into three dimensional space
where it undergoes topology transformations.9

x 7→ |x|, y 7→ |y|.

(a) non near-diffeomorphism

x 7→ x, y 7→ y,
x 7→ z. z 7→ max(z, 0)

+max(−x, 0).

x 7→ x, y 7→ y, x 7→ y, y 7→ y,
z 7→ z. y 7→ max(x, 0)

+max(−x, 0).

x 7→ x, z 7→ z,
y 7→ 0.5(y + z)
x 7→ 0.5(x + z)

(b) mapping to a higher dimension

x 7→ x + 1.

y 7→ max(y + 4, 0), y 7→ y.

x 7→ 10
ε

x,

y 7→ cos
(π
4

)
y.

x 7→ sin
(π
4

)
x,

y 7→ max(y − 4, 0).

x 7→ x,

y 7→ cos
(
− π

4

)
(y + 4).

x 7→ ε
10

sin
(
− π

4

)
x, Rotate by 90◦ , repeat

previous transformations twices.

(c) discrete data set

Figure 11: Examples where Theorem C.3 does not hold: (a) two neurons activated with, | · |, a
non near-diffeomorphism that directly changes topology of entangled circles making them linearly
separable (b) for each coordinate the map is a near-diffeomorphism, however overall, separation of
the entangled circles happens by mapping to a higher dimension space (c) for a finite point clouds
sampled off two entangled circles, a near-diffeomorphism network maps to linearly separable point
clouds, yet the network fails to generalize: some areas on the red circle will be wrongly classified if
new samples are observed.

Figure 11c shows another example of what is actually not a topology change but does lead to
separation of two point cloud data sampled on an entangled manifolds despite the fact that all
assumptions of the Theorem C.3 are satisfied. The figure shows samples of two categories (red and
blue) sampled off two manifolds in R2, a larger circle and a smaller circles centered at the origin.
Assume, we have a finite number of samples xi, i = 1, . . . , N (N is the size of train and test sets
combined). There exists a sequence of transformations realizable by deep enough 2-dimensional
neural network (no more than two neurons in each layer), based on near-diffeomorphisms activations,
that can make the point cloud linearly separable, regardless of how large N is. Here is how:

1. Collapse samples on the outer circle that are left of y-axis to an interval on the y-axis (by
applying relu, x 7→ relu(x))

2. Next, rescale x so that the gap between the left most sample on the right of y-axis and this
interval becomes large enough (the rescaling is of order o(1/ε) where ε, the closes distance
to the y-axis of any of the samples of xi, i = 1, . . . , N that are now to the right of y-axis)

3. Rotate the data set, so that the interval is entirely contained in the forth quadrant, where
values of coordinates x and y are negative

4. Collapse the interval into a point at the origin (again, relu activation will do the trick)
9Strikingly, a simple two steps linear interpolation makes those topological changes stand out and appear as

“foldings” of a space. A movie showing those foldings is available at (fully anonymized repository for review
purposes) https://github.com/topnn/topnn_framework/tree/master/videos
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5. Repeat similar transformations a few times over and over again, until enough of the outer
circle is changed so that the inner circle is linearly separable

As a result, for all samples xi, i = 1, . . . , N no misclassification is observed, however Theorem C.3
implies that some neighborhood on the circles is still misclassified for new samples — the network
fails to generalize properly, leading to existence of “adversarial” examples.

We finish this section by noting that in Montúfar et al. (2014) it was suggested that existence of
“foldings” allows deep network to replicated their behavior across many regions in the inputs which
might explain the efficacy of deep relu networks, our results further support this view.

Looking at a deep neural network through the lens of topology, prescribed different roles for shallow
vs deep layers. Our results in the main text provided evidence that training a neural networks yields
solutions with bottom layers changing geometry (i.e., the co-domain is merely a stretched or twisted
version of the domain) they produce little to no “foldings”, and that it is in the deeper layers that
the “foldings” start to occur, changing topology and allowing for classification of complex data.
Figure 11b illustrates such archetypal “folding”.

D BACKGROUND FROM TOPOLOGY

Here we briefly overview background material from topology, with the goal of providing a short
exposition to the parts of simplicial homology theory relevant for our purposes. Simplicial homology
studies topology of simplicial complex so our motivation for introducing it is clear: as we mentioned
in the main text, computation of Betti numbers of a point cloud data proceeds through construction of
simplicial complex on a point cloud data and then computation of Betti numbers of this complex.
Since topology is not often encountered within machine learning and neural networks, we feel
including this material might be of benefit. We start by recalling definition of simplicial complex
and proceed to recall definition of Vietoris–Rips complex that was briefly mentioned in the main text.
Vietoris–Rips complex is the simplicial complex that we use in our computations.

D.1 SIMPLICIAL COMPLEX

A k-dimensional simplex σ in Rd (or a k-simplex), is a convex hull of (k + 1), k = 0, . . . , d, affinely
independent points in Rd. Namely, a simplex is either a point (0-simplex), a line segment (1-simplex),
a triangle (2-simplex) or their higher dimensional counterparts. A single k-dimensional simplex
is represented by listing the set of its (k + 1) vertices σ = {v1, . . . , vk+1}. Facets of a k-simplex
form simplices of dimension 0 to (k − 1) (e.g. the two edges of 1-simplex are 0-simplices, the
three sides of 2-simplex are 1-simplices and its three vertices are 0-simplices). An m-dimensional
simplicial complex S in Rd, is a finite collection of simplices in Rd of dimension at most m that are
attached together in a “nice way”, so that any intersection between two simplices in S is necessary
a facet of both of them. Simplicial complex must also include all facets of all its simplices as a
separate simplices in their own right, e.g. if simplex σ1 = {v1, v2, v3} is included in S, then the
simplices {v1, v2}, {v2, v3}, {v1, v3}, {v1}, {v2}, {v3} also belong to it. A simplicial complex is
represented by listing all of the simplices that comprise it, e.g. S = {σ1, σ2, . . . , σn}. See Figure 12
for illustration of 3-dimensional simplicial complex in R3.

Next we recall definition of the simplicial complex that we use for computation of Betti numbers of
point cloud data.

Let N points X = x1, x2, . . . , xN on Rd and a distance d(·, ·) on Rd, define VRε

(
X), Vietoris–Rips

complex at scale ε ≥ 0 on X , to be the simplicial complex whose 0-simplices are points X , and
whose higher dimensional simplices are all possible simplices built on X in which the maximal
pairwise distance between any two vertices is at most 2ε:

VRε(X) :=
{

all possible simplices σk = {xi1 , . . . , xik+1
}, xij ∈ X,

such that d(xij , xil) ≤ 2ε for all xij , xil ∈ σk
}
.

It is a routine to verify that VRε(X) satisfies all the requirements of simplicial complex.

In the next section we start our exposition of homology theory, in the subsequent section we show
how one can construct homology theory for a simplicial complex.
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D.2 HOMOLOGY GROUPS AND BETTI NUMBERS

Homology theory, roughly speaking, is an abstract way to encode topology of a space by means of
chain of abelian groups and their homeomorphisms.

Let a collection of abelian groups Ci, i = 0, . . . , d and a special kind of group homeomorphisms
∂i : Ci −→ Ci−1 called boundary operators. A chain complex composed of those abelian groups is
an abstract construction where domains an codomains of boundary operators form a chain:

· · · −→ Cd
∂d−→ Cd−1

∂d−1−−−→ · · · ∂i+1−−−→ Ci
∂i−→ Ci−1

∂i−1−−−→ · · · ∂∂2−−→ C1

∂∂1−−→ C0

∂∂0−−→ 0.

Boundary operators, ∂i, are required to satisfy

∂i ◦ ∂i+1 = 0 (4)

for all i = 0, . . . , d. The elements in the image of ∂i (a subgroup of Ci−1) are called boundaries,
while elements in the kernel of ∂i−1 (also a subgroup ofCi−1) are called cycles. One of the immediate
consequences of equation 4 is that for all i = 0, . . . , d

Bi := im(∂i+1) ⊂ Zi := ker(∂i).

A subgroup of abelian group is normal, so im(∂i+1) is a normal subgroup of ker(∂i) therefore we
can take quotient

Hi := Zi/Bi = ker(∂i)/ im(∂i+1), i = 0, . . . , d.

Hi is called the ith homology group. Betti numbers are defined to be the ranks of the homology
groups i.e.,

βi := rank(Hi), i = 0, . . . , d.

Different types of chain complexes and different types of boundary operators give rise to different
homology theories. What do chain complexes and the boundary operators look like in simpilicial
homology is describe in the next section.

D.3 SIMPLICIAL HOMOLOGY

Given k simplex and its set of vertices σ = {v0, . . . , vk}, one can attach negative or positive
orientation to the representation of this simplex (according to the ordering of the vertices in the
representation. An orderings corresponds to one of the two equivalence classes, with two ordering
belonging to the same category if and only if one ordering can be obtained from the other using even
number of permutations). Orientation of a simplex induces orientation on all it facets. We call a
simplicial complex consistently oriented if all simplexes in the complex agree on the orientation on
their intersecting facets. Given, S, a consistently oriented simplicial complex, we formally define

e
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g

h

a
`

b

c

d

i

j
k

a
`

b

c

d

i

j
k

Figure 12: A 3-dimensional simplicial complex in R3 that consists of thirty two simplices
S =

{
{a, b, c, d}, {e, f, g}, . . . , {e, b}, . . . , {a}, {b}, . . . , {`}

}
. It has single 3-simplex {a, b, c, d},

five 2-simplices, e.g. {e, f, g} is 2-simplex, eighteen 1-simplices, e.g. {e, b}, {g, h}, {c, `}, {`, a}
and fourteen 0-simplices {a}, {b}, . . . , {`}. Within simplicial complex the simplices are attached
(intersect) along their facets.
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abelian groups, Ci(S), on S in the following way: let Si be the set of i dimensional simpleces in S,
then an element of Ci(S) is a formal sum (i.e., a free abelian group)∑

j

njσj
(
−1[σj ]

)
, nj ∈ F2 and σj ∈ Si,

where −1[σj ] is either 1 or −1 depending on the orientation of the simplex σj and F2 = Z/2Z (i.e.,
F2 is a field with two elements only). The boundary homeomorphisms ∂i : Ci(S)→ Ci−1(S) are
defined as the following:

∂iσi =
∑
j

(−1)j{v0, v1, . . . , v̂j , . . . , vi}

where v̂j indicates that vertex vj is deleted from the sequence. For example

∂1{a, b} = b− a and ∂2{a, b, c} = {b, c} − {a, c}+ {a, b} = {b, c}+ {c, a}+ {a, b}.
It can be verified that we have ∂i ◦ ∂i−1 ≡ 0 for all i = 0, . . . , n, therefore the requirement of
equation 4 on the boundary operators is satisfied. The abelian groups defined in this way and
boundary homeomorphism form a chain complex. Therefore in order to compute k homology of the
simplicial complex S we take quotient of a cycle group by a boundary group to obtain

Hi(S) = Zi(S)/Bi(S).

Yielding
βi(S) = rank

(
Hi(S)

)
= rank

(
Zi(S)

)
− rank

(
Bi(S)

)
.

For a given simplicial complex, an element of abelian group Ci(S) is vector with values in F2 and
with length of |Si| (the number of i-simplices in the complex S), the boundary operators are realized
as matrices D∂i of dimensions |Si−1| × |Si| which map each i dimensional simplex represented as
a vector of length di = |Si| to a vector of length di−1 = |Si| and so rank nullity theorem of linear
algebra prescribes:

βi(S) = rank(Hi(S))

= rank(Zi(S))− rank(Bi(S))

= di−1 − rank(D∂i)− rank(D∂i−1
).

Since, in principle, the size of the simplicial complex |S| can be very large (e.g. exponential in the
number of vertices in a complex), the naive construction of matrices D∂i is often problematic so
different approach needs to be developed to compute the rank of those matrices without ever obtaining
the complete matrix. The study of techniques that can render those computations and accelerate them
are within the scope of computational topology.

Let N points X = x1, x2, . . . , xN , we are now at the position to define homology of this point cloud
data at scale ε > 0 to be the simplicial homology of VRε(X), Vietoris–Rips complex at scale ε
constructed on X .

E COMPUTING BETTI NUMBERS FOR NEURAL NETWORKS

E.1 PERSISTENT HOMOLOGY

Topological features, the Betti numbers, are inherently non-robust to small local changes. For
example punching a small hole in a sphere has little influence on geometry of the shape but has a
large consequence from the point of view of topology. Even a very small hole “kills” β2 making a
sphere into a topological disk. The problem becomes even bigger when we are trying to estimate Betti
numbers of a manifold form point cloud data sampled of this manifold. Persistent homology blends
geometry and topology in an attempt to compute Betti number of a manifold from point cloud data
while at the same time avoiding the problem of extreme sensitivity of topology to local perturbations.
The idea of persistent homology is to introduce “geometric scale” into topology computation. At
the beginning the scale is set to zero, this is when we “over-fit” our point cloud data. Each point
contributes separate component to the overall shape. So we have a discrete topological space. Then
as the scale gradually increases we fuse together more and more distant points and topological
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space becomes richer. If we fuse all the points together, we get a single topological ball and the
space becomes simple again. The output of persistent homology is a set of intervals (barcodes), a
single interval for each topological feature. The left end of the interval records when the feature has
appeared (its “ birth”) and the right end of the interval records when it has disappeared (its “death”).
The length of the interval is called persistence of the corresponding feature. Topological features
that are nonrobust to perturbations will produce short intervals in the persistent barcodes, conversely
topological feature that persist long enough, i.e., produce long intervals are the prominent resilient
features of the underlaying manifold. This way persistent homology gives a way to identify prominent
topological features in the underlaying manifold from point cloud data (e.g. point cloud sampled of a
sphere with a small punched hole will have single β2 as its prominent topological feature).

As we already mentioned in the main text, running persistent homology is not computationally
feasible when it comes to massive number of experiments. In addition, while barcodes avoid the
problem of sensitivity to local perturbation, they complicate interpretation of the results. Automated
statistical analysis of many barcodes is still an active area of research (and often requires additional
large computation effort). For those reasons we resort to single homology computation at a given
scale, where persistent homology allows us to pick the right scale.

E.2 COMPUTATION OF HOMOLOGY

Let us now take a step back and describe a general pipeline for homology computation. Practical
homology computation involve a number of steps: the preprocessing step which consist of smoothing
out point cloud data, or throwing away outliers. This step is generally called noise reduction step.
After noise reduction the next step is to construct simplicial complex from the point cloud, a number
of complexes exists. In general, when a complex is associated to a point cloud data we are not
concerned to preserve the underlaying geometry, only the topology. While keeping the geometry
intact is not our concern, what is our concern is the size of the final simplicial complex. The size
of the simplicial complex is related to the number of points, this leads to the following trade-off:
on the one hand, as the number of points sampled increases we are better positioned to recover the
underlaying topology. On the other hand, the resulting simplicial complex might turn out to be
prohibitively large for caring out computations. So the goal is to construct optimal (small) simplicial
complex with minimal topology distortion.10

We use Vietoris–Rips complex, it comes with good theoretical guarantees Oudot (2015), is simple,
suitable for high-dimensional data and supported on many computational topology packages, in
particular the latest and arguable the most advance package, EIRENE Henselman & Ghrist (2016)
provides support for Vietoris–Rips complex.

Once the simplicial complex is constructed, to further accelerate computations the complex is usually
simplified in a way that reduces its size but does not change its topology. The different between
this step, and the previous two steps is clear: all the reductions that have effect on the topology
of the point cloud have been performed in the first two steps and the obtained simplicial complex
(before its simplification) is assumed to represent the correct topology of the underlaying domain,
the simplification is done to accelerate computations but mast not alter the topology. Over the years
many method have been proposed to simplify the simplicial complex and to accelerate computations
examining those in some details would take us to far into computational topology and is beyond the
scope of our work. Figure 13 summarizes homology computations steps. Next we examine how each
of the steps is adopted to our case and discuss how we use persistent homology.

E.3 OUR METHOD FOR HOMOLOGY COMPUTATION

Our data sets are simulated, so we have the luxury of having a clean data with no need to run
de-noising before Betti numbers computation. Nevertheless, a few simple steps to improve Betti
numbers computations are done prior to construction of the simplicial complex. For D-I and D-III

10The worst case performance of topological features extraction isO(m3) wherem is the number of simplices
in the simplicial complex (the topology is extracted by computing Smith normal form of boundary matrix of
the complex). The number of simplices, in principle, can be as large as 2N (N is the number of points in point
cloud). This is avoided in practice, but nevertheless the size of the simplicial complex is a major problem,
for larger Betti number the size of the complex increases since it now contains more simplexes of a higher
dimension.
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Figure 13: Steps towards computation of homology of point cloud data.

data sets, we sample on a grid rather than randomly sampling on the manifold (for D-I the grid is
two dimensional square and for D-III the samples are the grid is a spherical Fibonacci lattice see
Figure 10). While for D-I this choice is not very critical and data could be randomly sampled of
D-I, for D-III this is more important. D-III is the most complex data set and having evenly spread
samples on a spherical lattice makes computations more stable (we can have less samples and run
computations faster). For D-II we randomly subsample the data. D-II has easier topology than D-III
and random sampling worked well. Next, we select a unique subset of the samples, namely if a few
points overlay we throw away all but one of those points. This way we prevent degenerate simplices in
which two points happen to be at the same coordinate (this can potentially happen in the intermediate
layers if some points are mapped to the same point in the output). To construct simplicial complex
we use unweighted geodesic distance (graph distance) induced by k-nearest neighbors graph. The
distance is called unweighted since when we compute the distance we normalize each edge in the
k-nearest neighbors graph to have length one. As explained in the main text, Section 4, this is done to
address the problem of varying local densities. Exact computation of nearest neighbors graph is too
costly, we use a well known ball tree algorithm to construct approximate k-nearest neighbors graph.
Ball tree algorithm is especially suitable here, since our samples comes from a low dimensional
manifold embedded in a higher dimensional space (a wide hidden layer in neural network maps
a low dimensional data to a higher dimensional space). Once the graph is built, normalized and
geodesic distance is computed from the graph, we use Eirene package to construct Vietoris–Rips
simplicial complex at a fixed (for all subsequent calculation on the same data set) scale and to run
homology computation. Since all edges are normalized, the geodesic distance is a discrete distance
and consequently the scale is an integer number specifying the number of edges. Next we describe
how we tune the two parameters: number of neighbors used for graph construction and the scale at
which we construct Vietoris–Rips simplicial complex, this is where persistent homology is used.

To tune the parameters we run persistent homology to select the scale at which the topology of
category a (this is the category we monitor through the layers) in the input and in the output is
recovered. For this purpose we randomly and uniformly sample data from D-I D-II, D-III data sets,
this gives us samples in the input of the network. In addition we select one well trained network for
each data sets and look how its input, those are the samples at the output of the network.

Picking the number of neighbors for nearest neighbors graph construction is done as the following:
for data points p1 and p2 define dp1(p2) to be∞ if p2 is not one of the k neighbors of p1 (assume
that k is large k � 10), or set it to be q ∈ {1, . . . , k} if p2 is the qth nearest neighbor of p1. Then
define a nearest neighbors distance dk(p1, p2) to be:

dk(p1, p2) := min
{
dp1(p2), dp2(p1)

}
.

With this distance we run persistent homology. Example of the barcode diagrams obtained for
category a of D-III data set in the input of a network, are in Figure 15, in red is the selected number
of neighbors k∗ for nearest neighbor graph construction. Persistent homology allows us to see what
is the right scale at which we recover correct topology. Our next step is to use this distance and to
find the right scale (in this distance) at which we detect all topological features of this manifold. The
barcode obtained at this step are show in Figure 14. Let us note, in principle those two steps can
be combined (after all the same topological features are used to pick both of those parameters) in
which case we run a single persistent homology and only pick the number of neighbors in the nearest
neighbors graph and then recover topology directly from the resulting unweighted nearest neighbors
graph. But splitting the process into two steps is more flexible for future variations. Indeed, we think
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Figure 14: Once the k∗ is set, we compute nearest neighbors graph, and obtain distance dk∗(·, ·). Left:
barcodes diagrams for β1 for D-II category a (the input to the network). Right: barcodes diagrams
for β1 for D-III category a (the input to the network). In both cases the selected scale is set to 2.5 and
is marked in red.
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Figure 15: Here we illustrate some of the persistence barcodes obtained when tuning the number
of neighbors for D-III, category a input. The selected value of k∗ is set to 35 and is marked by red
punctured line, at this scale the topology of category a in D-III is correctly recovered. Left: The
full persistence barcodes diagram for β1. Below scale 21 (in the distance dk(·, ·) there are many
intervals (in fact so many that it is impossible to distinguish between individual intervals, they look
like as filled area), while we expect it to be a set of nine sphere β1 = 0, this means that we need to
set number of neighbors larger than 21 to have correct scale). Center: zoom in on the bottom 32
persistence barcodes in barcodes diagram of β1. Right: the full persistence barcodes diagram for β2.

of the first step as recovering geodesic distance on the underlaying manifold and think of the next
step as building simplicial complex at a given scale using this geodesic distance. The second step can
be naturally converted into persistent homology.11

The selected parameters are: for D-I the nearest neighbors graph is constructed using 14 neighbors,
and then Vietoris–Rips simplicial complex is computed at scale ε = 2.5 (since our distance is discrete
this is the same as d14(·, ·) ≤ 2). For D-II and D-III the nearest neighbors graph is constructed using
35 neighbors, and then Vietoris–Rips simplicial complex is computed at scale ε = 2.5 (same scale as
before). For MNIST experiments we’ve adopted same distance as for D-I data set, i.e., we are using
d14(·, ·) ≤ 2) distance.

F ADDITIONAL PLOTS AND EXPERIMENTS

Here we show some additional plots not presented in the main part. Figure 16 shows individual Betti
numbers for shallow networks rather than the total complexity ω(Ma) (the two extreme cases: one is
homeomorphism and the other is non-homeomorphism).

In Figure 17, PCA projection shown for first few layers in a shallow network with tanh activation,
the data set D-II (category b), is bent but no topology changes are observed.

Finally Figure 18 shows, comparison of deep and shallow networks. In Figure 18, the left plot shows
the average change in topology for shallow network (averaged over all simulation D-I, D-II, D-III,
taking most shallow network), and the average change in topology for deep networks (averaged over

11If persistent homology is used in the second step then we need not to be very precise at the first step, e.g.
all we might want to recover is the number of connected components, then in the second step we investigate
topology of each component by running persistent homology.
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all simulation D-I, D-II, D-III, taking 10 layers deep network). The difference is zero for the output
of first layer it increases for the second layer, and is largest for the forth layer. In other words, first
layer in short and deep networks produce (on average) similar changes in topology, and the change
increases in the subsequent layers, deep layers now “work harder” than before. The right plot in
In Figure 18, compares average change in topology for relu networks and for tanh networks, the
difference is heavily skewed to the left, showing that relu reduces topology much faster compared
with tanh .

Figure 16: Shallow networks with relu and tanh activation, changes of individual Betti numbers.
For D-II data set the network has architecture (3-15-15-15-15-2), for D-III data set the network has
architecture (3-15-15-15-15-15-15-2)
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Figure 17: From left to right: Initial data sets, output of the first and second layers. PCA projections
of the first 3 layers in a shallow smooth network (tanh activation, 2-15-15-15-15-2).
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Figure 18: Summary of the effects of depth and smoothness of activation function on topology
changes within a neural network. The “Strain” is the relative reduction of the topological complexity
at a given layer compared with the previous layer ω
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F.1 EXPERIMENTS ON MNIST HANDWRITTEN DIGITS

We complete our analysis of change of topology by neural networks by examining how the topology
of real world data is changing within a well trained neural network. Given current technological
limitations on the computation of Betti numbers for complex data, we carry out this analysis on
a simplified version of MNIST hand written data set: We project the data set (70k samples) into
first 50 principle component, reducing the dimension of each sample form 748 to 50. The reduced
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dimension of the data enable us to run homology computations while at the same time we still retain a
relatively high quality images, so can still to train a neural network to high accuracy. A few examples
of original digits and their projections on the first 50 dimensions are shown in Figure 19

Figure 19: left: original MNIST handwritten digits, right: MNIST handwritten digits projected on
the fifty principal components.

We use feedforward neural network with 10 layers, the network has 50 dimensional input and 10
neurons in the interleaving layers. The network is trained to classify digits into two categories:
category a if a digit is zero or category b if it is not zero (zero digit was arbitrary picked to have
binary classification rather than multi-categorical classification). We then analyze how the manifold
of zeros is transformed within the network (for faster computation, we subsample 1/6 of all zero
digits to further reduce the size of the point cloud that we analyze). We compare different activation
types: tanh, leakyrelu and relu. Unlike experiments with simulated data where the topology is
known, here we have no way to set the proper scale, and have to observe multiple scales. The results
of those computations are given in Table 4. The results verify what we’ve seen in our simulated
experiments: we observe topology reduction through the layers, with relu activation the topology
is reduces most rapidly compared with leakyrelu and tanh activations. For tanh we clearly see
much slower reduction in topological complexity, in fact we see that in this case the network has not
reduced the topological complexity all the way down to topological disk (this might be due to a small
samples size that we use in our Betti numbers estimate for MNIST data set).

activation scale k=0 1 2 3 4 5 6 7 8 9 10

ta
n
h

ε = 1.5 525 408 356 266 233 145 156 88 30 20 9

2.5 6 5 2 1 3 14 12 8 1 4 4

3.5 1 1 1 1 1 1 1 1 1 1 3

le
ak

y
re
lu

ε = 1.5 525 340 182 108 38 16 10 8 1 1 1

2.5 6 6 6 5 1 1 2 1 1 1 1

3.5 1 1 1 1 1 1 1 1 1 1 1

re
lu

ε = 1.5 525 199 106 27 13 6 1 1 1 1 1

2.5 6 2 6 6 2 1 1 1 1 1 1

3.5 1 1 1 1 1 1 1 1 1 1 1

Table 4: Profile of β0
(
νk(Ma)

)
+ β1

(
νk(Ma)

)
+ β2

(
νk(Ma)

)
), at input (k = 0) and layers

k = 1, . . . , 10 with Ma the manifold of handwritten zeros. Network has fifty dimensional input,
two dimensional output, and 10 neurons in intervening layers. The table is split into three parts
corresponding to three activation type. For each activation 3 scales (using geodesic on a graph
distance metric) are examined ε = 1.5, 2.5, 3.5.

G ADDITIONAL TOPICS

G.1 VISUALIZATION OF TOPOLOGICAL CHANGES IN 3 DIMENSIONAL NETWORKS.

In 3-dimensional setting an easy data interpolation makes those transformations standout. Let T ⊂ R3,
a cube with category domains Ma,Mb where Ma = T \Mb. First run the affine transformation on T :

(1− t1)ν(l−1)(T ) + t1
(
Wν(l−1)(T ) + b

)
, (5)
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for t1 going from 0 to 1, where b ∈ Rnl and W ∈ Rnl−1×nl are the bias and weight matrix of layer l,
then run transformations that bend the space

(1− t2)(Wν(l−1)(T ) + b) + t2ν
(l)(T ) (6)

for t2 going from 0 to 1. For a well trained network, running this interpolation for each layer shows
consecutive “foldings“ of the space that lead to topology simplification. Figure 2 illustrates such
foldings. A movie showing similar foldings is available at https://github.com/topnn/
topnn_framework/tree/master/videos.

G.2 COMPLEXITY OF ARRANGEMENT

As was mentioned in the main text, observing Betti numbers for each category separately is not the
whole story of what happens when data is simplified by a neural network, since this only monitors
the change in complexity of each set, and does not directly measure how the complexity of their
arrangement is changing. Here we introduce an additional measure of arrangement complexity, one
that also takes the geometry into account and is able to detect when two sets are linearly separable.

At this point, this definition serves us primarily as a reference for what we kind of measure we would,
ideally, like to compute, and it remains a (hard) future question of how to compute it.

Definition G.1 (complexity of arrangement of sets) Let two sets M,W ⊂ Rn such that there
exists compact connected hypersurface D ⊂ Rn, such that Ma is in the inside of D, and MB is in
the outside of D and D does not intersect with either. Let D be the family of all such hypersurfaces.
Topological complexity of arrangement of sets MA and MB , AC(M,W ), is defined to be

AC(M,W ) = min
D∈D

{ n∑
i=1

βi (D ∩ Conv(M)) ,

n∑
i=1

βi (D ∩ Conv(W ))

}
(7)

Where Conv(X) is convex hull of the set X . In other words, the complexity is given by “the best cut”
D between M and W . Where a good cut is such that βi (D ∩ Conv(M)) and βi (D ∩ Conv(W ))
are small.

Observation: AC(M,W ) = 0 if and only if M and W are linearly separable.

In a situation where Mb is roughly the complement of Ma in a hypercube T ⊂ Rn so that the
boundary of the cube T belongs to Mb. Then the boundary of Ma is the only separating manifold
between Ma and Mb in T , and so it is the decision boundary between Ma and Mb. If we follow the
prescription of equation 7 and take intersection between the decision boundary and T , the convex
hull of Mb, this yields the boundary of ∂Ma:

∂Ma = D ∩ Conv(Mb) = ∂Ma ∩ T.
A reasonable assumption is that

∑
i βi(∂Ma ∪ Conv(Ma)) ≤ ∑i βi(∂Ma). And so under those

assumptions AC(Ma,Mb) is exactly equals to the topological complexity of ∂Ma

AC(Ma,Mb) = ω(∂Ma).

Therefore, in this scenario, knowing the topology of Ma gives information about topological
complexity of arrangement of Ma and Mb.

H HARDWARE AND SOFTWARE SPECIFICATIONS

The framework is coded in TensorFlow version 1.12.0 on Ubuntu 16.04.1. Training is done on cross
entropy categorical loss with standard Adam Kingma & Ba (2015) optimizer of TensorFlow, for up to
18000 training epochs. Learning rate set to 0.02−0.04 with and exponential learning rate decay: ηt/d
where t is the training epoch normalized by d = 2500 (for training bottleneck architecture the decay
was change to 4000) and η = 0.5. Topology computation were done using EIRENE package in Julia
0.6.4 Henselman & Ghrist (2016), the time required for a single computation of Betti numbers (i.e.,
construction of Vietoris–Rips complex on point cloud at the output of a single layer) was between a
few tens of seconds (for 5 neurons wide networks of D-I) to about half an hour (50 neurons wide
networks of D-III). The calculations were run in parallel over 12 cores, Intel i7-8750H@2.20GHz,
Cache 9216kb, sharing 32Gb DDR4-2666MHz RAM. The jobs were fed in queue, with a single core
limited to use up to 9Gb memory. For MNIST data set the computation were run using 32GB, the
longest run took about 6 hours with this hardware setup.
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