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ABSTRACT

Learning-based approaches for semantic segmentation have two inherent chal-
lenges. First, acquiring pixel-wise labels is expensive and time-consuming. Second,
realistic segmentation datasets are highly unbalanced: some categories are much
more abundant than others, biasing the performance to the most represented ones.
In this paper, we are interested in focusing human labelling effort on a small subset
of a larger pool of data, minimizing this effort while maximizing performance of a
segmentation model on a hold-out set. We present a new active learning strategy
for semantic segmentation based on deep reinforcement learning (RL). An agent
learns a policy to select a subset of small informative image regions – opposed to
entire images – to be labeled, from a pool of unlabeled data. The region selection
decision is made based on predictions and uncertainties of the segmentation model
being trained. Our method proposes a new modification of the deep Q-network
(DQN) formulation for active learning, adapting it to the large-scale nature of
semantic segmentation problems. We test the proof of concept in CamVid and
provide results in the large-scale dataset Cityscapes. On Cityscapes, our deep RL
region-based DQN approach requires roughly 30% less additional labeled data
than our most competitive baseline to reach the same performance. Moreover, we
find that our method asks for more labels of under-represented categories com-
pared to the baselines, improving their performance and helping to mitigate class
imbalance.1

1 INTRODUCTION

Semantic segmentation, the task of labelling an image pixel-by-pixel with the category it belongs to,
is critical for a variety of applications such as autonomous driving (Müller et al., 2018; Wang & Pan,
2018), robot manipulation (Schwarz et al., 2018), embodied question answering (Yu et al., 2019) and
biomedical image analysis (Ronneberger et al., 2015). Convolutional neural networks (Lecun et al.,
1998)-based methods have achieved excellent results on large-scale supervised semantic segmentation,
in which we assume pixel-level annotations are available (Farabet et al., 2013; Pinheiro & Collobert,
2014; Long et al., 2015). For such models to work, however, they need a large amount of pixel-level
annotations that may require costly human labor (Cordts et al., 2016; Bearman et al., 2016).

Current semantic segmentation datasets have pixel-wise annotations for each image. This standard
approach has two important issues: (i) pixel-level labelling is extremely time consuming. For example,
annotation and quality control required more than 1.5h per image (on average) on Cityscapes (Cordts
et al., 2016), a popular dataset used for benchmarking semantic segmentation methods. (ii) Class
imbalance in the data is typically extreme. Certain categories (such as ‘building’ or ‘sky’) can appear
with two orders of magnitude more frequently than others (e.g. ‘pedestrian’ or ‘bicycle’). This can
lead to undesired biases and performance properties for learned models.
This is specially relevant when we want to collect annotated data with a human in the loop to create
a new dataset or to add more labeled data to an existing one. We can tackle the aforementioned
problems by selecting, in an efficient and effective way, which regions of the images should be
labeled next. Active learning (AL) is a well-established field that studies precisely this: selecting
the most informative samples to label so that a learning algorithm will perform better with less
data than a non-selective approach, such as labelling the entire collection of data. Active learning

1Code will be available upon acceptance.
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Figure 1: (Left) Input image from Cityscapes dataset (Cordts et al., 2016), with selected regions by our method
to be labeled. (Right) Retrieved ground truth annotation for the selected regions. Our method focuses on small
objects and under-represented classes, such as bicycles, pedestrians and poles. Best viewed in color.

methods can be roughly divided in two groups: (i) methods that combine different manually-designed
AL strategies (Roy & McCallum, 2001; Osugi et al., 2005; Gal et al., 2017; Baram et al., 2004;
Chu & Lin, 2016; Hsu & Lin, 2015; Ebert et al., 2012; Long & Hua, 2015) and (ii) data-driven
AL approaches (Bachman et al., 2017; Fang et al., 2017; Konyushkova et al., 2017; Woodward &
Finn, 2016; Ravi & Larochelle, 2018; Konyushkova et al., 2018), that learn which samples are most
informative to train a model using information of the model itself. Although label acquisition for
semantic segmentation is more costly and time consuming than image classification, there has been
considerably less work in active learning for semantic segmentation (Dutt Jain & Grauman, 2016;
Mackowiak et al., 2018; Vezhnevets et al., 2012; Konyushkova et al., 2015; Gorriz et al., 2017; Yang
et al., 2017), and they focus on hand-crafted strategies.

Current AL techniques that use reinforcement learning (Konyushkova et al., 2018; Fang et al., 2017;
Woodward & Finn, 2016; Pang et al., 2018; Padmakumar et al., 2018; Bachman et al., 2017) focus
on labelling one sample per step until a budget of labels is met. In semantic segmentation, this
would translate into labelling a single region per step. This is highly inefficient, since each step
involves updating the segmentation network and computing the rewards. In this work, we propose an
end-to-end method to learn an active learning strategy for semantic segmentation with reinforcement
learning by directly maximizing the performance metric we care about, Intersection over Union
(IoU). We aim at learning a policy from the data that finds the most informative regions on a set of
unlabeled images and asks for its labels, such that a segmentation network can achieve high-quality
performance with a minimum number of labeled pixels. Selecting regions, instead of entire images,
allows the algorithm to focus on the most relevant parts of the images, as shown in Figure 1. Although
class imbalance in segmentation datasets has been previously addressed in (Badrinarayanan et al.,
2017; Chan et al., 2019; Sudre et al., 2017), among others, they try to solve a problem that arises
from the data collection process. We show that our proposed method can help mitigate the problem at
its source, i.e. in the data annotation itself. Because our method maximizes the mean IoU per class, it
indirectly learns to ask for more labels of regions with under-represented classes, compared to the
baselines. Moreover, we propose and explore a batch-mode active learning approach that uses an
adapted DQN to efficiently chose batches of regions for labelling at each step.

To the best of our knowledge, all current approaches for active learning in semantic segmentation
rely on hand-crafted active learning heuristics. However, learning a labelling policy from the data
could allow the query agent to ask for labeled data as a function of the data characteristics and class
imbalances, that may vary between datasets. Our main contributions can be summarized as follows:
(i) we learn a RL-based acquisition function for region-based active learning for segmentation, (ii)
we formulate our active learning framework with a batch-mode DQN, which labels multiple regions
in parallel at each active learning iteration (a more efficient strategy for large-scale datasets that
is compatible with standard mini-batch gradient descent), and (iii) we test the proof of concept
in CamVid (Brostow et al., 2008) dataset and provide results in Cityscapes (Cordts et al., 2016)
dataset, beating a recent state-of-the-art technique known as BALD (Gal et al., 2017), a widely used
entropy-based selection criterion and uniform sampling baselines.

2 RELATED WORK

Active learning. Traditional active learning techniques focus on estimating the sample informa-
tiveness using hand-crafted heuristics derived from sample uncertainty: employing entropy (Shannon,
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1948), query-by-committee (Dagan & Engelson, 1995; Shannon, 1948; Freund et al., 1993), max-
imizing the error reduction (Roy & McCallum, 2001), disagreement between experts (Dagan &
Engelson, 1995; Freund et al., 1993) or Bayesian methods that need to estimate the posterior distri-
bution (Houlsby et al., 2011a; Gal et al., 2017). Some approaches combine different techniques to
improve AL performance. For instance, relying on exploration-exploitation trade-offs (Osugi et al.,
2005), on a bandit formulation (Baram et al., 2004; Chu & Lin, 2016; Hsu & Lin, 2015) and on
reinforcement learning (Ebert et al., 2012; Long & Hua, 2015). However, these methods are still
limited in the sense that they combine hand-crafted strategies instead of learning new ones. More
recent active learning methods rely on an acquisition function that estimates the sample informa-
tiveness with a learned metric. Konyushkova et al. (2017) estimate the error reduction of labelling a
particular sample, choosing the ones that maximize the error reduction. Wang et al. (2017) introduce
a cost-effective approach that also uses confident predictions as pseudo ground truth labels.

AL with reinforcement learning. Recently, reinforcement learning has gained attention as a method
to learn a labelling policy that directly maximizes the learning algorithm performance. For in-
stance, Liu et al. (2018); Bachman et al. (2017) leverage expert knowledge from oracle policies to
learn a labelling policy, and Pang et al. (2018); Padmakumar et al. (2018) rely on policy gradient
methods to learn the acquisition function. In a different approach, some methods gather all labeled
data in one big step. In Contardo et al. (2017), all samples are chosen in one step with a bi-directional
RNN for the task of one-shot learning. In Sener & Savarese (2018), they propose to select a batch of
representative samples that maximize the coverage of the entire unlabeled set. However, the bounded
core-set loss used tends to perform worse when the number of classes grows.

More similar to our approach, some prior works propose to learn the acquisition function with a Deep
Q-Network (DQN) (Mnih et al., 2013) formulation. These works have examined both stream-based
active learning (Fang et al., 2017; Woodward & Finn, 2016), where unlabeled samples are provided
one by one, and the decision is to label it or not, and pool-based active learning (Konyushkova et al.,
2018), where all the unlabeled data is provided beforehand, and the decision is later taken on which
samples to choose. The work of Konyushkova et al. (2018) is the closest to ours. Similar to them, our
method also leverages the benefits of Q-learning (Watkins & Dayan, 1992) to tackle pool-based AL.
Contrary to them, we deal with a much more complex problem: semantic segmentation versus simple
classification on UCI repository (Dua & Graff, 2017). The large-scale nature of the problem requires
us to use a very different definition of actions, states and rewards. Moreover, we need to adapt the
DQN formulation to allow the problem to be computationally feasible.

AL for semantic segmentation. Active learning for semantic segmentation has been relatively
less explored than other tasks, potentially due to its large-scale nature. For instance, Dutt Jain &
Grauman (2016) combine metrics (defined on hand-crafted heuristics) that encourage the diversity
and representativeness of labeled samples. Some rely on unsupervised superpixel-based over-
segmentation (Vezhnevets et al., 2012; Konyushkova et al., 2015) – and highly depend on the quality
of the super-pixel segmentation. Others focus on foreground-background segmentation of biomedical
images (Gorriz et al., 2017; Yang et al., 2017), also using hand-crafted heuristics. Settles et al. (2008);
Vijayanarasimhan & Grauman (2009); Mackowiak et al. (2018) focus on cost-effective approaches,
proposing manually-designed acquisition functions based on the cost of labeling images or regions of
images. However, this information is not always given, restricting their applicability.

Mackowiak et al. (2018) focus on cost-effective approaches, where the cost of labeling an image is
not considered equal for all images. Similar to our work, they use a region-based approach to cope
with the large number of samples on a segmentation dataset. Contrary to us, their labelling strategy is
based on manually defined heuristics, limiting the representability of the acquisition function. To the
best of our knowledge, our work is the first to apply data-driven RL-based approach to the problem
of active learning for semantic segmentation.

3 METHOD

We are interested in selecting a small number of regions2(cropped from images in the original dataset)
from a large unlabeled set to maximize the performance of a segmentation network f , parameterized

2We chose non-overlapping squares as regions (similar to (Mackowiak et al., 2018)). Other choices of regions
could also be valid, but we consider region design choice selection to be out of the scope of this work.
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Figure 2: The query network π is trained during several episodes e with MDP transitions {(st, at, rt+1, st+1)}.
1) The state st is computed as a function of segmentation network f and state set DS . 2) K unlabeled pools Pk

t

are sampled uniformly from the unlabeled set Ut. The representation of their possible sub-actions are computed
using f , labeled set Lt and unlabeled set Ut. 3) Query network π selects action at, composed of K sub-actions
akt . Each of them is chosen from its corresponding pool. 4) Selected regions are labeled and added to Lt (and
removed from Ut). 5) Segmentation network f is trained with those new labeled samples. 6) Reward rt+1 is
obtained from DR. This loop continues until a budget B of labeled regions is achieved.

by θ. This process is done iteratively until a given budget B of labeled samples is achieved. At each
iteration t, a query network π, parameterized by φ, selects K regions to be labeled by an oracle
from a large unlabeled set Ut. These samples are added to the labeled set Lt, that is used to train
the segmentation network f . The performance is measured with a standard semantic segmentation
metric, Intersection-over-Union (IoU).

We cast the AL problem within a Markov decision process (MDP) formulation, inspired by other
work such as (Padmakumar et al., 2018; Fang et al., 2017; Bachman et al., 2017; Pang et al., 2018;
Konyushkova et al., 2018). We model the query network π as a reinforcement learning agent,
specifically a deep Q-network (Mnih et al., 2013). This data-driven approach allows the model
to learn selection strategies based solely on prior AL experience. Our formulation differs from
other approaches by the task we address, the definitions of states, actions and rewards, and the
reinforcement learning algorithm we use to find the optimal policy.

3.1 ACTIVE LEARNING WITH REINFORCEMENT LEARNING FOR SEGMENTATION

In our setting, we use four different data splits. To train π, we define a subset of labeled data DT

to play the active learning game for several episodes and learn a good acquisition function that
maximizes performance with a budget of B regions. The query network is evaluated on a different
split DV . We use a separate subset DR to obtain the reward signal by evaluating the segmentation
network on it. The set DS (|DS | � |DT |) is used to construct the state representation.

The MDP is defined with the sequence of transitions {(st, at, rt+1, st+1)}. For every state st ∈ S
(function of the segmentation network at timestep t), the agent can perform actions at ∈ A to choose
which samples from Ut to annotate. The action at = {akt }Kk=1, composed of K sub-actions, is a
function of the segmentation network, the labeled and the unlabeled set. Each sub-action asks for
a specific region to be labeled. Then, it receives a reward rt+1 based on the improvement in mean
IoU per class after training the segmentation network with the selected samples. Note that states and
actions do not depend on the specific architecture of the segmentation network. We are interested
in finding a policy to select samples that maximize the segmentation performance. We use deep
Q-network (Mnih et al., 2013) and samples from an experience buffer E to train the query network π.

Each episode e elapses a total of T steps. We start by setting the segmentation network f to a set
of initial weights θ0 and with no annotated data, i.e., L0 = ∅ and U0 = DT . At each iteration t, the
following steps are done:

1. The state st is computed as function of ft and DS .
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2. A restricted action space is built with K pools Pk
t with N regions, sampled uniformly from

the unlabeled set Ut. For each region in each pool, we compute its sub-action representation
ak,nt .

3. The query agent selects K sub-actions {akt }Kk=1 with ε-greedy policy. Each sub-action akt is
defined as selecting one region xk (out of N ) to annotate from a pool Pk

t .
4. An oracle labels the regions and the sets are updated: Lt+1 = Lt ∪ {(xk, yk)}Kk=1 and
Ut+1 = Ut \ {xk}Kk=1.

5. The segmentation network ft+1 is trained one iteration on the recently added regions
{xk}Kk=1.

6. The agent receives the reward rt+1 as the difference of performance between ft+1 and ft
on DR.

Figure 2 depicts this training algorithm. We consider the termination of each episode when the budget
B of labeled regions is met, i.e., |Lt| = B. Once the episode is terminated, we restart the weights
of the segmentation network f to the initial weights θ0, set L0 = ∅ and U0 = DT , and restart the
episode. We train the query policy π by simulating several episodes and updating its weights at each
timestep by sampling transitions {(st, at, rt+1, st+1)} from the experience replay buffer E . More
details in Section 3.2.

State representation. We would like to use the state of the segmentation network f as the MPD
state. Unfortunately, it is not straightforward to embed f into a state representation. Follow-
ing Konyushkova et al. (2017), we represent the state space S with the help of a set-aside set DS . We
use a small subset of data from the train set, making sure it contains a significant representation of
all classes. We consider it to be a representative set of the dataset, and that any improvement in the
segmentation performance on subset DS will translate into an improvement over the full dataset3.
We use the predictions of the segmentation network ft on DS to create a global representation of
state st (step 1 in Figure 2). We need a compact representation to avoid intensive memory usage due
to the pixel-wise predictions. The samples in DS are split in patches, and compact feature vectors
are computed for all of them. Then, each region is encoded by the concatenation of two features:
one is based on class predictions of ft and the other on its prediction uncertainty, represented as the
Shannon entropy (Shannon, 1948).

Action representation. In our setting, taking an action means asking for the pixel-wise annota-
tion of an unlabeled region. Due to the large-scale nature of semantic segmentation, it would be
prohibitively expensive to compute features for each region in the unlabeled set at each step. For
this reason, instead, at each step t, we approximate the whole unlabeled set by sampling K pools of
unlabeled regions Pk

t , each containing N (uniformly) sampled regions. For each region, we compute
its sub-action representation ak,nt (step 2 in Figure 2).

Each sub-action ak,nt is a concatenation of four different features: the entropy and class distribution
features (as in the state representation), a measure of similarity between the region xk and the labeled
set and another between the region and the unlabeled set. The intuition is that the query network
could learn to build a more class-balanced labeled set while still taking representative samples from
the unlabeled set. This could help mitigate the hard imbalance of the segmentation datasets and
improve overall performance. We use Kullback-Leibler (KL) divergence to measure the similarity of
class distributions between a candidate region and regions in the labeled set, and unlabeled set.

Based on early experimentation, learning the state and action representations directly with a CNN
does not provide strong enough features for the reinforcement learning framework to converge to
a good solution. More details in how states and action representations are build can be found in
Appendix A, and an ablation study on the state and action components in Appendix E.1.

3.2 BATCH MODE DQN

The desired query agent should follow an optimal policy. This policy maps each state to an action that
maximizes the expected sum of future rewards. We rely on a DQN (Mnih et al., 2013), parameterized
by φ, to find an optimal policy.

3In practice, we found that the state set needs to have a similar class distribution as that of the train set.
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We train our DQN with a labeled set DT and compute the rewards in a held-out split DR. As
mentioned above, the query agent in our method selects K regions before transitioning to the next
state. We assume that each region is selected independently, as in the case where K annotators label
one region in parallel. In this case, the action at is composed of K independent sub-actions {akt }Kk=1,
each with a restricted action space, avoiding the combinatorial explosion of the action space. To ease
computation and avoid selecting repeated regions in the same time-step, we restrict each sub-action
akt to select a region xk in Pk

t defined as:

akt = argmax
ak,n
t ∈Pk

t

Q(st, a
k,n
t ;φ) , (1)

for each k ∈ {1, ...,K} action take in timestep t.

The network is trained by optimizing a loss based on temporal difference (TD) error (Sutton, 1988).
The loss is defined as the expectation over K decomposed transitions Tk = {(st, akt , rkt+1, st+1)},
obtained from the standard transitions {(st, at, rt+1, st+1)}, by approximating rkt+1 ≈ rt+1:

ETk∼E
[
(ykt −Q(st, a

k
t ;φ))

2
]
, (2)

where E is the experience replay buffer and ykt the TD target for each sub-action.

To stabilize the training, we used a target network with weights φ′ and the double DQN (Van Hasselt
et al., 2016) formulation. The action selection and evaluation is decoupled; the action is selected with
the target network and is evaluated with the query network. The TD target for each sub-action is
represented as:

ykt = rt+1 + γQ(st+1, argmax
ak,n
t+1∈Pk

t+1

Q(st+1, a
k,n
t+1;φ

′);φ) . (3)

where γ is a discount factor. 4

This formulation is valid under the approximation that the sub-actions are independent of each other,
conditioned on the state. We observed that increasing the number of sub-actions K per step eases
computation and does not hinder segmentation performance. We provide an ablation study on the
effect of K in Appendix E.3.

4 EXPERIMENTS

We start this section by describing the datasets that we use to evaluate our method, the experimental
setup, and the baselines. We evaluate the algorithm in Camvid as a proof of concept and we show
large-scale results on Cityscapes.

4.1 EXPERIMENTAL SETUP

Although we can apply active learning in a setting with unlabeled data with a human in the loop that
labels selected regions, we test our approach in fully labeled datasets, where it is easier to mask out
the labels of a part of the data and reveal them when the active learning algorithm selects them.

CamVid (Brostow et al., 2008). This dataset consists of street scene view images, with the reso-
lution of 360×480 and 11 categories. It has 370, 104 and 234 images for train, validation and test
set, respectively. We split the train set with uniform sampling in 110 labeled images (from where
we get 10 images to represent the state set DS and the rest for DT ), and 260 images to build DV ,
where we evaluate and compare our acquisition function to the baselines. The state set is chosen to
be representative of DT , by restricting the sampling of DS to have a similar class distribution to the
one of DT . Each image is split into 24 regions of dimension 80×90. We use the dataset’s validation
set for DR. We report the final segmentation results on the test set. In our experiments, we chose
K = 24 regions per step. Our model is quite robust to the number of regions selected at each time
step (see Appendix E.3).

4We also tried to optimize the network with an average of Q-values over all sub-actions as in y = rt+1 +
1
K

∑
kQ(st+1, a

k
t+1) and Q(st, at) =

1
K

∑
kQ(st, a

k
t ), but it performed worse.
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Cityscapes (Cordts et al., 2016). It is also composed of real street scene views, with image
resolution of 2048×1024 and 19 semantic categories. The train set with fine-grained segmentation
labels has 2975 images and the validation dataset of 500 images. We uniformly sampled 360 labeled
images from the train set. Out of these, 10 images represent DS , 150 build DT and 200, DR, where
we get our rewards. The remaining 2615 images of train set are used forDV , as if they were unlabeled.
We report the results in the validation set (test set not available). Each image is split in 128 regions of
dimension 128×128. We chose K = 256 regions per step.

Implementation details. The split DR is used to get the rewards for the DQN and also for hyper-
parameter selection, that are chosen according to the best setup for both baselines and our method.
We report the average and standard deviation of the 5 different runs (5 random seeds). As data
augmentation, we use random horizontal flips and random crops of 224 × 224. For more details,
please refer to Appendix B on supplementary material.

Evaluation. The query network π is trained on DT with a small, fixed budget (0.5k regions for
Camvid and 4k regions for Cityscapes) to encourage picking regions that will boost the performance
in an heavily scarce data regime. The learned acquisition function, as well as the baselines, is
evaluated on DV , where we ask for labels until the budget is met, for different budgets. Note that the
baselines do not have any learnable component.
Once the budget is reached, we train the segmentation network f with LT until convergence (with
early stopping inDR). For a fair comparison, all methods’ segmentation network has been pre-trained
(initial f weights θ0) on GTA dataset (Richter et al., 2016), a synthetic dataset where high amounts of
labeled data can be obtained without human effort, and DT (where we had labels to train the DQN).
We evaluate the final segmentation performance (measured in mean IoU) on the test set of CamVid
and on the validation set of Cityscapes.

4.2 RESULTS

Figure 3: En-
tropy of class
distributions ob-
tained from pix-
els of selected re-
gions.

Results in CamVid. We compare our results against three distinct baselines: (i) U
is the uniform random sampling of the regions to label at each step out of all possible
regions in the pool, (ii) H is an uncertainty sampling method that selects the regions
with maximum cumulative pixel-wise Shannon entropy, (iii) B picks regions with
maximum cumulative pixel-wise BALD (Houlsby et al., 2011b; Gal et al., 2017)
metric. We use 20 iterations of MC-Dropout (Gal & Ghahramani, 2016) (instead of
100, as in (Gal et al., 2017)) for computational reasons. In preliminary experiments,
we did not observe any improvement using over 20 iterations. In Camvid, we use
a pool size of 10 for our method, H, B and 50 for U. In Cityscapes, we have access
to more data so we use pool sizes of 500, 200, 200 and 100 respectively for U, H,
B and our method. Pool sizes were selected according to the best validation mean
IoU.

Figure 4a shows results on CamVid for different budget sizes. Our method out-
performs the baselines for every fixed budget, except for 1.5k regions, where we
achieve similar performance as H. We argue that the dataset has a small number
of images and selecting 1.5k regions already reaches past 98% of maximum performance, where
differences between our method and H are negligible. Surprisingly, B is worse than U, specially
for small budgets, where training with the newly acquired labels does not provide any additional
information. It overfits quickly to the training, getting a worst result that with the initial weights.
In general, all results have a high variance due to the low regime of data we are working in. In
Appendix E.2 we show the advantages of labeling small regions instead of full images.

Results in Cityscapes. Figure 4b shows results on Cityscapes for different budgets. Here, we also
observe that our method outperforms the baselines for all budgets points. Labelling 20k regions,
corresponding to only 6% of the total pixels (additional to the labeled data in DT ), we obtain a
performance of 64.5% mean IoU. This is 96% of the performance of the segmentation network
if it had access to all labeled pixels. To reach the same performance, H requires an additional 6k
labeled regions (around 30% more pixels, equivalent to an extra 45 images). In this larger dataset,
B performs better than random, showing that for the task of segmentation, B might start to show
its benefits only for considerably large budgets. Table 1 shows the per-class IoU for the evaluated

7



Under review as a conference paper at ICLR 2020

(a) Active learning in CamVid (b) Active learning in Cityscapes

Figure 4: Performance of several methods with increasing active learning budget, expressed as the number of
128×128 pixel regions labeled and the % of additional labeled data. All methods have been pretrained with
GTAV and a small subset of their target datasets. Budget indicates additional number of regions labeled (and
the percentage of unlabeled data used). The upper bound, dashed line, is the performance achieved by the
segmentation network trained with all labels. We report the mean and standard deviation of 5 runs.

Method Road Side-
Walk

Build-
ing Wall Fence Pole Traffic

Light
Traffic
Sign

Vege-
tation Terrain

U 96.67 76.63 88.48 33.89 36.00 52.80 54.27 60.84 90.27 52.34
H 95.60 72.08 88.06 35.30 44.59 52.43 53.70 61.38 90.08 51.87
B 95.25 69.37 88.75 32.28 44.36 53.81 58.84 64.79 90.27 50.51
Ours 96.19 74.24 88.46 33.56 42.28 53.28 57.18 63.61 90.20 51.84

Sky Person Rider Car Truck Bus Train Motor-
cycle Bicycle mIoU

U 92.57 69.66 31.82 90.13 27.04 43.41 23.30 32.98 63.64 58.78
H 88.27 72.69 40.85 90.46 42.40 58.88 33.63 43.17 68.08 62.29
B 93.33 71.16 39.08 88.38 34.23 43.41 30.35 37.37 66.67 60.64
Ours 91.32 73.30 45.22 90.91 42.14 58.84 35.97 45.14 69.35 63.32

Table 1: Per category IoU and mean IoU [%] on Cityscapes validation set, for a budget of 12k regions. For
clarity, only the mean of 5 runs is reported. Results with standard deviations in Table C.1.

methods (with a fixed budget). Our method works specially well for under-represented classes, such
as Person, Motorcycle or Bicycle, among others. Indeed, our method selects more pixels belonging
to under-represented classes than baselines. Note that this is a side effect of directly optimizing for
the mean IoU and defining class-aware representations for states and actions. Figure 3 shows the
entropy of the distribution of selected pixels of the final labeled set (for a budget of 12k regions) for
Cityscapes. The higher the entropy means closer to uniform distribution over classes, and our method
has the highest entropy. Appendix C shows the distribution from which the entropy is computed and
Appendix D presents some qualitative results, showing what each method decides to label for some
images.

5 CONCLUSION

We propose a data-driven, region-based method for active learning for semantic segmentation, based
on reinforcement learning. The goal is to alleviate the costly process of obtaining pixel-wise labels
with a human in the loop. We propose a new modification of DQN formulation to learn the acquisition
function, adapted to the large-scale nature of semantic segmentation. This provides a computationally
efficient solution that uses less labeled data than competitive baselines, while achieving the same
performance. Moreover, by directly optimizing for the per-class mean IoU and defining class-aware
representations for states and actions, our method asks for more labels of under-represented classes
compared to baselines. This improves the performance and helps to mitigate class imbalance. As
future work, we highlight the possibility of designing a better region definition, that could help
improve the overall results, and adding domain adaptation for the learnt policy, to transfer it between
datasets.
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A STATE AND ACTION REPRESENTATION DETAILS

In this section, we provide more details on how the state and action are built.

State representation. Each region is encoded by the concatenation of two features: one is based
on class predictions of ft and the other one on its prediction uncertainty, represented as the Shannon
entropy (Shannon, 1948). The first feature is simply a (normalized) count of the number of pixels that
are predicted to each category. This feature encodes the segmentation prediction on a given patch
while dismissing the spatial information, less important for small patches.

We measure the uncertainty of the predictor with the entropy over the probability of predicted classes.
For each region, we compute the entropy of each pixel location to obtain a spatial entropy map. To
compress this representation, we apply min, average and max-poolings to the entropy map to obtain
8×8 downsampled maps. The second feature is thus obtained by flattening these entropy features and
concatenating them.

Finally, the state st is represented by an ensemble of the feature representation of each region in DS .
Figure A.1a illustrates how st is computed from each region.

Action representation. For each candidate region, x in a pool Pk
t , we compute the KL divergence

between the class distributions of the prediction map of region x (estimated as normalized counts of
predicted pixels in each category) and the class distributions of each labeled and unlabeled regions
(using the ground-truth annotations and network predictions, respectively).

For the labeled set, we compute a KL divergence score between each of the labeled regions’ class
distribution and the one of region x. Summarizing all these KL divergences could be done by taking
the maximum or summing them. However, to obtain more informative features, we compute a
normalized histogram of KL divergence scores, resulting in a distribution of similarities. To give an
example, if we were to sum all the scores, having half of the labeled regions with a KL divergence
of zero and the other half with a value c, would be equivalent to have all labeled regions with a KL
divergence of c/2. Perhaps the latter is more interesting, since it means there are no labeled regions
with the same class distribution as x.

As for the unlabeled set, we take all pools {P1
t , ...,PK

t } of unlabeled regions instead of the entire
unlabeled set Ut to ease computation. We do the same as the previous case, resulting in another
distribution of KL divergences. Both of them are concatenated and added to the action representation.
Figure A.1b illustrates how we represent each possible action in a pool.

B EXTENDED EXPERIMENTAL SETUP

The segmentation network f is an adaptation of feature pyramid network (Lin et al., 2017) for
semantic segmentation (similar to the segmentation branch of (Kirillov et al., 2019)), with a ResNet-
50 backbone (He et al., 2016), pretrained on ImageNet (Deng et al., 2009). The network is pretrained
on the full train set of a large-scale synthetic dataset, GTAV (Richter et al., 2016), therefore not
requiring much human labelling effort. Moreover, this dataset has the advantage of possessing the
same categories as real datasets we experiment with.

The query network π, depicted in Figure B.1, is composed of two paths, one to compute state features
and another to compute action features, fusing them at the end. Each of the layers are composed of
Batch Normalization, ReLU activation and a fully-connected layer. The state path and action path
are composed of 4 and 3 layers, respectively, with a final layer that fuses them together to get the
global features; these are gated with a sigmoid, controlled by the KL distance distributions in the
action representation. The weights are updated at each step of the active learning loop, by sampling
batches of 16 experience tuples from an experience replay buffer, sized 600 and 3200 for Camvid
and Cityscapes, respectively.

We train both networks with stochastic gradient descent (SGD) with momentum. We use the same
learning rate for both the segmentation and query networks; 10−4 and 10−3 for Cityscapes and
Camvid respectively. Weight decay is set to 10−4 for the segmentation network and 10−3 for the
query network. We used a training batch size of 32 for Camvid and 16 for Cityscapes.
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Figure A.1: (a) Each region xi in DS is represented as a concatenation of two features, one based on entropy
and the other on class predictions. The final state st is the concatenation of the features for all regions. (b) Each
region xk in pool Pk is represented as a concatenation of four features: entropy-based features, class predictions
and two KL divergence distributions, comparing each region xk with the labeled and unlabeled set.
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Figure B.1: The DQN takes a state representation st and an action representation for a possible action (labeling
region xk in an unlabeled pool Pk

t ). NF are the number of state and action features (class distributions and
entropy-based features), and NSIM the number of features for the KL divergence distributions. Features are
computed for both representations separately with layers composed of Batch Normalization, ReLU activation
and fully connected layers. Both feature vectors are flattened and concatenated, to apply a final linear layer that
obtains a score as a single scalar. The Q-values are computed as the gated score, where the gate is controlled by
a feature representation from the KL distance distributions of the action representation.
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C CLASS FREQUENCIES AND PERFORMANCE PER CLASS

We show in Figure C.1 a more detailed plot for the class frequencies of regions that each of the
methods chooses for labeling. As the entropy of the class distributions in Figure 3 show, our method
picks more regions containing under-represented classes. Specially, it asks labels for more Person,
Rider, Train, Motorcycle and Bicycle pixels.

We observe that our B baseline picks more than 50% of pixels for only 3 classes that are over-
represented or have a medium representation: Building, Vegetation and Sky. This could explain why
the performance is worse than the H baseline.

Moreover, in table C.1, we extend Table 1 by adding the standard deviation for each result.

Figure C.1: Class frequencies [%] in Cityscapes for the selected regions to label after the active learning
acquisition for different methods. "Data split" frequencies refer to the proportion of classes in the unlabeled data
split, where we reveal the masks for the purpose of showing the underlying class frequencies. In this split is
where all methods perform active learning, in the setting where we mask out the labels (Dv). Budget used: 12k
regions. For ease of visualization, we only plot the mean of 5 runs. Void label represents all pixels for which we
do not assign any labels.

Method Road Sidewalk Building Wall Fence

U 96.67 ± 0.09 76.63 ± 0.51 88.48 ± 0.12 33.89 ± 1.11 36.00 ± 2.12
H (Shannon, 1948) 95.60 ± 0.33 72.08 ± 1.28 88.06 ± 0.42 35.30 ± 1.73 44.59 ± 1.62
B (Gal et al., 2017) 95.25 ± 0.28 69.37 ± 0.94 88.75 ± 0.18 32.28 ± 0.88 44.36 ± 1.12
Ours 96.19 ± 0.23 74.24 ± 1.50 88.46 ± 0.23 33.56 ± 2.30 42.28 ± 1.40

Pole Traffic Light Traffic Sign Vegetation Terrain

U 52.80 ± 0.41 54.27 ± 1.34 60.84 ± 0.99 90.27 ± 0.14 52.34 ± 1.38
H (Shannon, 1948) 52.43± 0.31 53.70 ± 1.48 61.38 ± 0.81 90.08 ± 0.16 51.87 ± 0.79
B (Gal et al., 2017) 53.81 ± 0.30 58.84 ± 0.50 64.79 ± 0.34 90.27 ± 0.15 50.51 ± 0.94
Ours 53.28 ± 0.51 57.18 ± 1.92 63.61 ± 1.47 90.20 ± 0.26 51.84 ± 1.62

Sky Person Rider Car Truck

U 92.57 ± 0.30 69.66 ± 0.62 31.82 ± 2.66 90.13 ± 0.01 27.04 ± 2.16
H (Shannon, 1948) 88.27 ± 3.26 72.69 ± 0.53 40.85 ± 1.85 90.46 ±0.38 42.40 ± 1.96
B (Gal et al., 2017) 93.33 ± 0.24 71.16 ± 0.47 39.08 ± 1.26 88.38 ± 0.29 34.23 ± 1.24
Ours 91.32 ± 1.06 73.30 ± 0.43 45.22 ± 2.75 90.91 ± 0.23 42.14 ± 1.41

Bus Train Motorcycle Bicycle mIoU

U 43.41 ± 2.80 23.30 ± 2.52 32.98 ± 3.81 63.64 ± 0.33 58.78 ± 0.29
H (Shannon, 1948) 58.88 ± 2.97 33.63 ± 4.76 43.17 ±1.37 68.08 ± 0.38 62.29 ± 0.55
B (Gal et al., 2017) 43.41 ±4.34 30.35 ± 3.18 37.37 ± 0.79 66.67 ± 0.67 60.64 ± 0.49
Ours 58.84 ± 4.15 35.97 ± 3.50 45.14 ± 2.34 69.35 ± 0.90 63.32 ± 0.93

Table C.1: Per category IoU and mean IoU [%], on Cityscapes validation set, for a budget of 12k regions. Both
the mean and standard deviation of 5 runs is reported.
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D QUALITATIVE RESULTS

We compare our method qualitatively with the baselines in Figure D.1. Baseline U asks for random
patches. Our method tends to pick more regions with the under-represented classes and small objects.
For instance, in the first image in the left, our method asks for several regions of a Train, that almost
has no samples in the training data. In the second image, it focuses on Person, Bicycle and Poles. In
the third image, it asks for labels of the traffic lights and a pedestrian on a bicycle. Baselines B and H
select some of those relevant regions, but miss a lot of them.

U

B

H

Ours

Figure D.1: Qualitative results in Cityscapes after running the active learning algorithm with a budget of 2k
regions. The first row consists on input images, the second shows the what U picks, the third, B, the fourth H,
and the last row shows what our method picks. Best viewed in color.

E ABLATION STUDIES

In this section, we provide an ablation study on the state and action representation, the effect of
labeling small regions versus full images, and the comparison of taking different regions per step.

E.1 STATE AND ACTION REPRESENTATION

Here, we analyze the incremental effect of our design choices for the state and action representation
on Cityscapes. We use 3 pooling operations – min, average, max – to compress the entropy map of
the region and use it in the state and action representation. Also, KL divergences are added to the
latter. As seen in Table E.1, using only the max-pooled entropy map (Ours - 1H), the performance
is slightly worse than H. When we combine the information of the 3 pooled entropy maps (Ours -
3H), we outperform H baseline. Moreover, when adding the two distribution of KL distances to our
action representation (Ours - 3H + KL): between possible regions to label and the labeled set and
between the region and the unlabeled set, we further increase the performance, getting our best state
and action representations.
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State Pool size

20 100 200

U 54.62 ± 0.60 54.92 ± 0.59 55.15 ± 0.64
H (Shannon, 1948) 57.41 ± 0.17 57.55 ± 0.60 57.48 ± 0.96
B (Gal et al., 2017) 56.73 ± 0.20 56.99 ± 0.32 56.44 ± 0.77

Ours - 1H 56.89 ± 1.22 57.29 ± 0.67 57.62 ± 0.96
Ours - 3H 57.65 ± 0.74 58.10 ± 1.16 57.65 ± 1.30
Ours - 3H+KL 57.67 ± 0.92 58.95 ± 0.59 59.18 ± 0.62

Table E.1: Contribution to the validation mean IoU performance [%] of Cityscapes dataset, for a budget of
4K and for each of the components of our state representation, compared to the baselines. Mean and standard
deviation of 5 runs is reported.

E.2 REGION VS. FULL IMAGE ANNOTATION

In this subsection, we analyze the effect of asking for labels in regions instead of full images and the
effect of the number of regions per step. We compare the validation IoU when asking for pixel-wise
labels for entire images versus pixel-wise labels for small regions. In the first case, we ask for one
image at each step and, for the latter, we ask for 24 regions per step (pixel-wise, equivalent to one
image). As it is shown in Table E.2, asking for entire image labels has similar performance for all
methods, that resemble Uniform performance when asking for region labels. This indicates that, in
order to select more informative samples, it is useful to split the images into patches (crops) and be
able to disregard regions that only contain over-represented classes of the dataset.

E.3 INFLUENCE OF STEP REGIONS

Empirically, our selector network is quite robust to the number of regions per step, as seen in Table E.3.
Therefore, we select 24 regions for CamVid, the one that yielded best results. This is more efficient
to train than taking one region per step.

U H B Ours

Full im. 69.64 ± 0.33 69.46 ± 0.15 69.66 ± 0.21 69.44 ± 0.22
24 R 70.35 ± 0.71 70.40 ± 0.65 70.63 ± 0.77 71.85 ± 0.68

Table E.2: Comparison between labeling a full image and 24 non-overlapping square regions (pixel-wise,
equivalent to a full image), for different methods. Performance is measured in terms of validation mean IoU
performance [%] in CamVid dataset, for a budget of 0.5k. In the first row, results for “full im.”, one entire image
is labeled at each step (region size equal to the size of the image). In the second row,“24 R” results for labeling
24 regions at each step. Pool size selected as the one that performed better, out of 10, 20, 50 and 100. Results
are reported with the mean and standard deviation of 5 runs.

Regions
per step Val IoU [%]

1 71.10 ± 0.75
12 70.93 ± 0.70
24 71.85 ± 0.68
36 71.24 ± 0.49
48 71.25 ± 1.17
72 71.20 ± 0.53

Table E.3: Results of varying the number of regions to be labeled at each step by our method. Performance is
measured in terms of validation mean IoU performance [%] in CamVid dataset, for a budget of 0.5k Results are
reported with the mean and standard deviation of 5 runs.
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