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ABSTRACT

Computer vision tasks such as image classification, image retrieval and few-shot
learning are currently dominated by Euclidean and spherical embeddings, so that
the final decisions about class belongings or the degree of similarity are made us-
ing linear hyperplanes, Euclidean distances, or spherical geodesic distances (co-
sine similarity). In this work, we demonstrate that in many practical scenarios
hyperbolic embeddings provide a better alternative.

1 INTRODUCTION

Figure 1: An example of two–dimensional
Poincaré embeddings computed by a hyperbolic
neural network trained on MNIST, and evaluated
additionally on Omniglot. Ambiguous and un-
clear images from MNIST, as well as most of
the images from Omniglot are embedded near the
center, while samples with clear class labels (or
characters from Omniglot similar to one of the
digits) lie near the boundary.

High-dimensional embeddings are ubiquitous
in modern computer vision. Many, perhaps
most, modern computer vision systems learn
non-linear mappings (in the form of deep con-
volutional networks) from the space of im-
ages or image fragments into high-dimensional
spaces. The operations at the end of deep net-
works imply a certain type of geometry of the
embedding spaces. For example, image clas-
sification networks (Krizhevsky et al., 2012;
LeCun et al., 1989) use linear operators (ma-
trix multiplication) to map embeddings in the
penultimate layer to class logits. The class
boundaries in the embedding space are thus
piecewise-linear, and pairs of classes are sep-
arated by Euclidean hyperplanes. The em-
beddings learned by the model in the penul-
timate layer, therefore, live in the Euclidean
space. The same can be said about systems
where Euclidean distances are used to perform
image retrieval (Oh Song et al., 2016; Sohn,
2016; Wu et al., 2017), face recognition (Parkhi
et al., 2015; Wen et al., 2016) or one-shot learn-
ing (Snell et al., 2017).

Alternatively, some few-shot learning (Vinyals
et al., 2016), face recognition (Schroff et al.,
2015) and person re-identification meth-
ods (Ustinova & Lempitsky, 2016; Yi et al.,
2014) learn spherical embeddings, so that
sphere projection operator is applied at the end of a network that computes the embeddings. Cosine
similarity (closely associated with sphere geodesic distance) is then used by such architectures to
match images.

Euclidean spaces with their zero curvature and spherical spaces with their positive curvature have
certain profound implications on the nature of embeddings that existing computer vision systems can
learn. In this work, we argue that hyperbolic spaces with negative curvature might often be more
appropriate for learning embedding of images. Towards this end, we add the recently-proposed
hyperbolic network layers (Ganea et al., 2018) to the end of several computer vision networks,
and present a number of experiments corresponding to image classification, one-shot, and few-shot
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learning and person re-identification. We show that in many cases, the use of hyperbolic geometry
improves the performance over Euclidean or spherical embeddings.

Motivation for hyperbolic image embeddings. The use of hyperbolic spaces in natural language
processing (Nickel & Kiela, 2017; Tifrea et al., 2018; Dhingra et al., 2018) is motivated by their nat-
ural ability to embed hierarchies (e.g., tree graphs) with low distortion (Sarkar, 2011). Hierarchies
are ubiquitous in natural language processing. First, there are natural hierarchies corresponding
to, e.g., biological taxonomies and linguistic ontologies. Likewise, a more generic short phrase
can have many plausible continuations and is therefore semantically-related to a multitude of long
phrases that are not necessarily closely related to each other (in the semantic sense). The innate
suitability of hyperbolic spaces to embedding hierarchies (Sala et al., 2018a; Sarkar, 2011) explains
the success of such spaces in natural language processing (Nickel & Kiela, 2017).

Figure 2: In many computer vision tasks, we want to learn image embeddings that obey the hierar-
chical constraints as shown above.

Here, we argue that similar hierarchical relations between images are common in computer vision
tasks (Figure 2). One can observe the following example cases:

• In image retrieval, an overview photograph is related to many images that correspond to
the close-ups of different distinct details. Likewise, for classification tasks in-the-wild, an
image containing the representatives of multiple classes is related to images that contain
representatives of the classes in isolation. Embedding a dataset that contains composite
images into continuous space is therefore similar to embedding a hierarchy.

• In some tasks, more generic images may correspond to images that contain less information
and are therefore more ambiguous. E.g., in face recognition, a blurry and/or low-resolution
face image taken from afar can be related to many high-resolution images of faces that
clearly belong to distinct people. Again natural embeddings for image datasets that have
widely varying image quality/ambiguity calls for retaining such hierarchical structure.

In order to build deep learning models which operate on the embeddings to hyperbolic spaces, we
capitalize on recent developments (Ganea et al., 2018), which construct the analogues of familiar
layers (such as a feed–forward layer, or a multinomial regression layer) in hyperbolic spaces. We
show that many standard architectures used for tasks of image classification, and in particular in
the few–shot learning setting can be easily modified to operate on hyperbolic embeddings, which in
many cases also leads to their improvement.

2 POINCARÉ BALL MODEL

Formally, n-dimensional hyperbolic space denoted as Hn is defined as the homogeneous, simply
connected n-dimensional Riemannian manifold of constant negative sectional curvature. The prop-
erty of constant negative curvature makes it analogous to the ordinary Euclidean sphere (which has
constant positive curvature), however, the geometrical properties of the hyperbolic space are very
different. It is known that hyperbolic space cannot be isometrically embedded into Euclidean space
(Krioukov et al., 2010; Linial et al., 1998), but there exist several well–studied models of hyperbolic
geometry. In every model a certain subset of Euclidean space is endowed with a hyperbolic metric,
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however, all these models are isomorphic to each other and we may easily move from one to another
base on where the formulas of interest are easier. We follow the majority of NLP works and use
the Poincaré ball model. Investigating the alternative models that might provide better numerical
stability remain future work (though already started in the NLP community (Nickel & Kiela, 2018;
Sala et al., 2018b)). Here, we provide a very short summary of the model.

The Poincaré ball model (Dn, gD) is defined by the manifold Dn = {x ∈ Rn : ‖x‖ < 1} endowed
with the Riemannian metric gD(x) = λ2xg

E , where λx = 2
1−‖x‖2 is the conformal factor and gE

is the Euclidean metric tensor gE = In. In this model the geodesic distance between two points is
given by the following expression:

dD(x,y) = arccosh
(
1 + 2

‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
. (1)

In order to define the hyperbolic average, we will make use of the Klein model of hyperbolic space.
Similarly to the Poincaré model, it is defined on the set Kn = {x ∈ Rn : ‖x‖ < 1}, however, with
a different metric, not relevant for further discussion. In Klein coordinates, the hyperbolic average
(generalizing the usual Euclidean mean) takes the most simple form, and we present the necessary
formulas in Section 4.

From the viewpoint of hyperbolic geometry, all points of Poincaré ball are equivalent. The mod-
els that we consider below are, however, hybrid in the sense that most layers use Euclidean op-
erators, such as standard generalized convolutions, while only the final layers operate within the
hyperbolic geometry framework. The hybrid nature of our setups makes the origin a special point,
since from the Euclidean viewpoint the local volumes in Poincare ball expand exponentially from
the origin to the boundary. This leads to the useful tendency of the learned embeddings to place
more generic/ambiguous objects closer to the origin, while moving more specific objects towards
the boundary. The distance to the origin in our models therefore provides a natural estimate of
uncertainty, that can be used in several ways, as we show below.

3 RELATED WORK

Hyperbolic language embeddings Hyperbolic embeddings in the natural language processing
field have recently been very successful (Nickel & Kiela, 2017; 2018). They are motivated by the
innate ability of hyperbolic spaces to embed hierarchies (e.g., tree graphs) with low distortion (Sala
et al., 2018b; Sarkar, 2011). The main result in this area states that any tree can be embedded into
(two dimensional) hyperbolic space with arbitrarily low distortion. Another direction of research,
more relevant to the present work is based on imposing hyperbolic structure on activations of neural
networks (Ganea et al., 2018; Gulcehre et al., 2019).

Few–shot learning The task of few–shot learning, which has recently attracted a lot of attention,
is concerned with the overall ability of the model to generalize to unseen data during training. A
body of papers devoted to few–shot classification that focuses on metric learning methods includes
Siamese Networks (Koch et al., 2015), Matching Networks (Vinyals et al., 2016), Prototypical
Networks (Snell et al., 2017), Relation Networks (Sung et al., 2018). In contrast, other models
apply meta-learning to few-shot learning: e.g., MAML by (Finn et al., 2017), Meta-Learner LSTM
by (Ravi & Larochelle, 2016), SNAIL by (Mishra et al., 2018). While these methods employ either
Euclidean or spherical geometries (like in (Vinyals et al., 2016)), there is no model extension to
hyperbolic space.

Person re-identification The task of person re-identification is to match pedestrian images cap-
tured by possibly non-overlapping surveillance cameras. Papers (Ahmed et al., 2015; Guo & Che-
ung, 2018; Wang et al., 2018) adopt the pairwise models that accept pairs of images and output their
similarity scores. The resulting similarity scores are used to classify the input pairs as being match-
ing or non-matching. Another popular direction of work includes approaches that aim at learning
a mapping of the pedestrian images to the Euclidean descriptor space. Several papers, e.g., (Suh
et al., 2018; Yi et al., 2014) use verification loss functions based on the Euclidean distance or cosine
similarity. A number of methods utilize a simple classification approach for training (Chang et al.,
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2018; Su et al., 2017; Kalayeh et al., 2018; Zhao et al., 2017), and Euclidean distance is used in test
time.

4 HYPERBOLIC NEURAL NETWORKS

In our work we strongly rely on the apparatus of hyperbolic neural networks developed in (Ganea
et al., 2018). Hyperbolic networks are extensions of conventional neural networks in a sense that
they generalize typical neural network operations to those in hyperbolic space using the formalism
of Möbius gyrovector spaces. In this paper, the authors present the hyperbolic versions of feed-
forward networks, multinomial logistic regression, and recurrent neural networks. In Appendix A
we discuss the hyperbolic functions and layers used in hyperbolic neural networks. Similarly to the
paper (Ganea et al., 2018), we use an additional hyperparameter c corresponding to the radius of the
Poincaré ball, which is then defined in the following manner: Dnc = {x ∈ Rn : c‖x‖2 < 1, c ≥ 0}.
The corresponding conformal factor is then modified as λcx = 2

1−c‖x‖2 . In practice, the choice of
c allows one to balance between hyperbolic and Euclidean geometries, which is made precise by
noting that with c→ 0 all the formulas discussed below take their usual Euclidean form.

Hyperbolic averaging One important operation common in image processing is averaging of fea-
ture vectors, used, e.g., in prototypical networks for few–shot learning (Snell et al., 2017). In the
Euclidean setting this operation takes the form (x1, . . . ,xN ) → 1

N

∑
i xi. Extension of this oper-

ation to hyperbolic spaces is called the Einstein midpoint and takes the most simple form in Klein
coordinates:

HypAve(x1, . . . ,xN ) =

N∑
i=1

γixi/

N∑
i=1

γi, (2)

where γi = 1√
1−c‖xi‖2

are the Lorentz factors. Recall from the discussion in Section 2 that the Klein

model is supported on the same space as the Poincaré ball, however the same point has different
coordinate representations in these models. Let xD and xK denote the coordinates of the same point
in the Poincaré and Klein models correspondingly. Then the following transition formulas hold.

xD =
xK

1 +
√

1− c‖xK‖2
, (3)

xK =
2xD

1 + c‖xD‖2
. (4)

Thus, given points in the Poincaré ball we can first map them to the Klein model, compute the
average using Equation (2), and then move it back to the Poincaré model.

Practical aspects of implementation While implementing most of the formulas described above
is straightforward, we employ some tricks to make the training more stable.

• To ensure numerical stability we perform clipping by norm after applying the exponential
map, which constrains the norm to not exceed 1√

c
(1− 10−3).

• Some of the parameters in the aforementioned layers are naturally elements of Dcn. While
in principle it is possible to apply Riemannian optimization techniques to them (e.g., previ-
ously proposed Riemannian Adam optimizer (Becigneul & Ganea, 2019)), we did not ob-
serve any significant improvement. Instead, we parametrized them via ordinary Euclidean
parameters which were mapped to their hyperbolic counterparts with the exponential map
and used the standard Adam optimizer.

Gromov’s δ-hyperbolicity A necessary parameter for embedding to Poincaré disk is its radius. In
hyperbolic neural networks, one has a curvature parameter c, which is inversed squared disk radius:
r = 1√

c
. For the Euclidean case, i.e., c = 0, the corresponding radius would be equal to infinity.

The disk radius is closely related to the notion of Gromov’s δ-hyperbolicity (Gromov, 1987), as we
will show later in this section. Intuitively, this δ value shows ‘how hyperbolic is a metric space’. For
example, for graphs, δ represents how ‘far’ the graph is from a tree, which is known to be hyperbolic
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(Fournier et al., 2015). Hence, we can compute the corresponding δ-hyperbolicity value to find the
right Poincaré disk radius for an accurate embedding.

Formally, δ-hyperbolicity is defined as follows; we emphasize that this notion is defined for any
metric space (X, d). First, we need to define Gromov product for points x, y, z ∈ X:

(y, z)x =
1

2
(d(x, y) + d(x, z)− d(y, z)). (5)

Then, the δ is the minimal value such that the following four-point condition holds for all points
x, y, z, w ∈ X:

(x, z)w ≥ min((x, y)w, (y, z)w)− δ. (6)

In practice, it suffice to find the δ for some fixed point w0.

A more computational friendly way to define δ is presented in (Fournier et al., 2015). Having a set
of points, we first compute the matrix A of pairwise Gromov products (5). After that, the δ value
is simply the largest coefficient in the matrix (A ⊗ A) − A, where ⊗ denotes the min-max matrix
product

A⊗B = max
k

min{Aik, Bkj}.

Relation between δ-hyperbolicity and Poincaré disk radius It is known (Tifrea et al., 2018) that
the standard Poincaré ball is δ-hyperbolic with δP = log(1 +

√
2) ∼ 0.88. Using this constant we

can estimate the radius of Poincaré disk suitable for an embedding of a specific dataset. Suppose
that for some dataset X we have found that its natural Gromov’s δ is equal to δX . Then we can
estimate c(X) as follows.

c(X) =
( δP
δX

)2
. (7)

Estimating hyperbolicity of a dataset In order to verify our hypothesis on hyperbolicity of visual
datasets we compute the scale-invariant metric, defined as δrel(X) = 2δ(X)

diam(X) , where diam(X)

denotes the set diameter (Borassi et al., 2015). By construction, δrel(X) ∈ [0, 1] and specifies how
close is the dataset to a perfect hyperbolic space. For instance, trees which are discrete analogues
of a hyperbolic space (under the natural shortest path metric) have δrel equal to 0. We computed
δrel for various datasets we used for experiments. As a natural distance between images we used the
standard Euclidean distance between the features extracted with VGG16 (Simonyan & Zisserman,
2014). Our results are summarized in Table 1. We observe that degree of hyperbolicity in image
datasets is quite high, as the obtained δrel are significantly closer to 0 than to 1 (which corresponds
to total non-hyperbolicity), which supports our hypothesis.

Table 1: The relative delta 2δ(X)/diam(X) and curvature parameter values calculated for different
datasets. For image datasets we measured the Euclidean distance between VGG16 features. S2 and
S2, z > 0 denote the two–dimensional unit sphere and upper hemisphere correspondingly (1700
points were sampled from each one).

Tree Omniglot CUB miniImageNet S2 S2, z > 0

2δ(X)/diam(X) 0 0.31 0.23 0.14 0.99 0.94
c - 0.036 0.005 0.007 - -

5 EXPERIMENTS

Experimental setup We start with a toy experiment supporting our hypothesis that the distance to
the center in Poincaré ball indicates a model uncertainty. To do so, we first train the MLR classifier
in hyperbolic space on the MNIST dataset (LeCun et al., 1998) and evaluate it on the Omniglot
dataset (Lake et al., 2013). We then investigate and compare the obtained distributions of distances
to the origin of hyperbolic embeddings of the MNIST and Omniglot test sets.

5



Under review as a conference paper at ICLR 2020

Figure 3: Distributions of the hyperbolic distance to the origin of the MNIST and Omniglot datasets
embedded into the Poincaré ball. Embeddings are computed by a hyperbolic neural network trained
for the MNIST classification task. We observe a significant difference between these distributions:
embeddings of the Omniglot images are much closer to the origin. Table 2 provides the KS distances
between the distributions.

In our further experiments, we concentrate on the few-shot classification and person re-identification
tasks. The experiments on the Omniglot dataset serve as a starting point, and then we move towards
more complex datasets. Afterwards, we consider two datasets, namely: MiniImageNet (Ravi &
Larochelle, 2016) and Caltech-UCSD Birds-200-2011 (CUB) (Wah et al., 2011). Here, for each
dataset, we train four models: for one-shot five-way and five-shot five-way classification tasks both
in the Euclidean and hyperbolic spaces. Finally, we provide the re-identification results for the two
popular datasets: Market-1501 (Zheng et al., 2015) and DukeMTMD (Ristani et al., 2016; Zheng
et al., 2017). Further in this section, we provide a thorough description of each experiment.

Our code is available at github1.

5.1 DISTANCE TO THE ORIGIN AS THE MEASURE OF UNCERTAINTY

In this subsection, we validate our hypothesis which claims that if one trains a hyperbolic classifier,
then a distance of the Poincaré ball embedding of an image can serve as a good measure of con-
fidence of a model. We start by training a simple hyperbolic convolutional neural network on the
MNIST dataset. The output of the last hidden layer was mapped to the Poincaré ball using the expo-
nential map (10) and was followed by the hyperbolic MLR layer. After training the model to∼ 99%
test accuracy, we evaluate it on the Omniglot dataset (by resizing images to 28×28 and normalizing
them to have the same background color as MNIST). We then evaluate the hyperbolic distance to
the origin of embeddings produced by the network on both datasets. The closest Euclidean analogue
to this approach would be comparing distributions of pmax, maximum class probability predicted by
the network. For the same range of dimensions we train ordinary Euclidean classifiers on MNIST,
and compare these distributions for the same sets. Our findings are summarized in Figure 3 and
Table 2. We observe that distances to the origin present a more statistically significant indicator of
the dataset dissimilarity in 3 cases.

We have visualized the learned MNIST and Omniglot embeddings on Figure 1. We observe that
more ‘unclear’ images are located near the center, while the images that are easy to classify are
located closer to the boundary.

Table 2: Kolmogorov-Smirnov distances between the distributions of distance to the origin of the
MNIST and Omniglot datasets embedded into the Poincaré ball with the hyperbolic classifier trained
on MNIST, and between the distributions of pmax (maximum probablity predicted for a class) for
the Euclidean classifier trained on MNIST and evaluated on the same sets. See further description in
Subsection 5.1 and visualization on Figure 3. We observe that distance to the origin mostly presents
a more statistically significant indicator of the dataset dissimilarity.

n = 2 n = 8 n = 16 n = 32

dD(x,0) 0.868 0.832 0.853 0.859
pmax(x) 0.834 0.835 0.840 0.846

1https://github.com/hyperbolic-embeddings/hyperbolic-image-embeddings
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5.2 OMNIGLOT FEW-SHOT CLASSIFICATION

We hypothesize that a certain class of problems – namely the few-shot classification task can benefit
from hyperbolic embeddings. The starting point for our analysis is the experiments on the Omniglot
dataset for few-shot classification. This dataset consists of the images of 1623 characters sampled
from 50 different alphabets; each character is supported by 20 examples. We test several few-
shot learning algorithms to see how hyperbolic embeddings affect them. In order to validate if
hyperbolic embeddings can improve models performing on the state-of-the-art level, for the baseline
architecture, we choose the prototype network (ProtoNet) introduced in the paper (Snell et al., 2017)
with four convolutional blocks in a backbone. The specifics of the experimental setup can be found
in B.

In ProtoNet, one uses a so-called prototype representation of a class, which is defined as a mean of
the embedded support set of a class. Generalizing this concept to hyperbolic space, we substitute
the Euclidean mean operation by HypAve, defined earlier in the Equation (2). Results are presented
in Table 3. We can see that in some scenarios, in particular for one–shot learning, hyperbolic em-
beddings are more beneficial, while in other cases results are slightly worse. Relative simplicity of
this dataset may explain why have not observed significant benefit of hyperbolic embeddings. We
further test our approach on more advanced datasets.

Table 3: Few-shot classification accuracy values on Omniglot.

ProtoNet Hyperbolic ProtoNet

1-shot 5-way 98.2 99.0
5-shot 5-way 99.4 99.4
1-shot 20-way 95.8 95.9
5-shot 20-way 98.6 98.15

5.3 MiniIMAGENET FEW-SHOT CLASSIFICATION

MiniImageNet dataset is the subset of ImageNet dataset (Russakovsky et al., 2015), which contains
of 100 classes represented by 600 examples per class. We use the following split provided in the
paper (Ravi & Larochelle, 2016): training dataset consists of 64 classes, validation dataset is rep-
resented by 16 classes, and the remaining 20 classes serve as a test dataset. As a baseline model,
we again use prototype network (ProtoNet). We test the models on tasks for one-shot and five-shot
classifications; the number of query points in each batch always equals to 15. All implementation
details can be found in Appendix B.

Table 4: Experimental results on two datasets: MiniImageNet and CUB averaged over 10, 000 test
episodes and are reported with 95% confidence intervals.

Dataset Model c 1-shot 5-way 5-shot 5-way

MiniImageNet

MatchNet (Vinyals et al., 2016) - 43.56± 0.84 55.31± 0.73
ProtoNet - 48.29± 0.19 66.11± 0.16
RelationNet (Sung et al., 2018) - 50.44± 0.82 65.32± 0.70
Hyperbolic ProtoNet 0.05 51.57± 0.2 66.27± 0.17
Hyperbolic ProtoNet 0.007 47.97± 0.19 68.92± 0.16

CUB
ProtoNet - 54.58± 0.24 68.04± 0.19
Hyperbolic ProtoNet 0.05 60.52± 0.25 72.22± 0.19
Hyperbolic ProtoNet 0.005 58.03± 0.24 75.80± 0.17

Table 4 illustrates the obtained results on MiniImageNet dataset. For MiniImageNet dataset, the
results of the other models are available for the same classification tasks (i.e., for one-shot and five-
shot learning). Therefore, we can compare our obtained results to those that were reported in the
original papers. From these experimental results, we may observe a slight gain in model accuracy.
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5.4 CALTECH-UCSD BIRDS FEW-SHOT CLASSIFICATION

The CUB dataset consists of 11, 788 images of 200 bird species and was designed for fine-grained
classification. We use the split introduced in (Triantafillou et al., 2017): 100 classes out of 200 were
used for training, 50 for validation and 50 for testing. Also, following (Triantafillou et al., 2017), we
make the same pre-processing step by resizing each image to the size of 64×64. The implementation
details can be found in B. Our findings on the experiments on the CUB dataset are summarized in
Table 4. Interestingly, for this dataset, the hyperbolic version significantly outperforms its Euclidean
counterpart.

5.5 PERSON RE-IDENTIFICATION

The DukeMTMC-reID dataset contains 16, 522 training images of 702 identities, 2228 query images
of 702 identities and 17, 661 gallery images. Market1501 contains 12936 training images of 751
identities, 3368 queries of 750 identities and 15913 gallery images respectively. We report Rank1 of
the Cumulative matching Characteristic Curve and Mean Average Precision for both datasets. We
refer the reader to B for a more detailed description of the experimental setting. The results are
reported after the 300 training epochs. As we can see in the Table 5, hyperbolic version generally
performs better than the baseline, while the gap between the baseline and hyperbolic versions’ results
is decreasing for larger dimensionalities.

Table 5: Person re-identification results for Market-1501 and DukeMTMC-reID for the classification
baseline (bs) and its hyperbolic counterpart (hyp). (See 5.5 for the details).

Market-1501 DukeMTMC-reID

bs hyp bs hyp
dim lr schedule r1 mAP r1 mAP r1 mAP r1 mAP

32 sch#1 71.4 49.7 69.8 45.9 56.1 35.6 56.5 34.9
sch#2 68.0 43.4 75.9 51.9 57.2 35.7 62.2 39.1

64 sch#1 80.3 60.3 83.1 60.1 69.9 48.5 70.8 48.6
sch#2 80.5 57.8 84.4 62.7 68.3 45.5 70.7 48.6

128 sch#1 86.0 67.3 87.8 68.4 74.1 53.3 76.5 55.4
sch#2 86.5 68.5 86.4 66.2 71.5 51.5 74.0 52.2

6 DISCUSSION AND CONCLUSION

We have investigated the use of hyperbolic spaces for image embeddings. The models that we have
considered use Euclidean operations in most layers, and use the exponential map to move from the
Euclidean to hyperbolic spaces at the end of the network (akin to the normalization layers that are
used to map from the Euclidean space to Euclidean spheres). The approach that we investigate here
is thus compatible with existing backbone networks trained in Euclidean geometry.

At the same time, we have shown that across a number of tasks, in particular in the few-shot im-
age classification, learning hyperbolic embeddings can result in a substantial boost in accuracy. We
speculate that the negative curvature of the hyperbolic spaces allows for embeddings that are bet-
ter conforming to the intrinsic geometry of at least some image manifolds with their hierarchical
structure.

Future work may include several potential modifications of the approach. We have observed that
the use of hyperbolic embeddings improves performance for some problems and datasets, while not
helping others. A better understanding of when and why the use of hyperbolic geometry is justified
is therefore needed. Also, we note that while all hyperbolic geometry models are equivalent in the
continuous setting, fixed-precision arithmetic used in real computers breaks this equivalence. In
practice, we observed that care should be taken about numeric precision effects (following (Ganea
et al., 2018), we clip the embeddings to minimize numerical errors during learning). Using other
models of hyperbolic geometry may result in more favourable floating point performance.
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A HYPERBOLIC NEURAL NETWORKS

Möbius addition For a pair x,y ∈ Dnc , the Möbius addition is defined as follows:

x⊕c y :=
(1 + 2c〈x,y〉+ c‖y‖2)x+ (1− c‖x‖2)y

1 + 2c〈x,y〉+ c2‖x‖2‖y‖2
. (8)

Distance The induced distance function is defined as

dc(x,y) :=
2√
c
arctanh(

√
c‖ − x⊕c y‖). (9)

Note that with c = 1 one recovers the geodesic distance (1), while with c → 0 we obtain the
Euclidean distance limc→0 dc(x,y) = 2‖x− y‖.

Exponential and logarithmic maps To perform operations in the hyperbolic space, one first needs
to define a bijective map from Rn to Dnc in order to map Euclidean vectors to the hyperbolic space,
and vice versa. The so–called exponential and (inverse to it) logarithmic map serve as such a bijec-
tion.

The exponential map expcx is a function from TxDnc ∼= Rn to Dnc , which is given by

expcx(v) := x⊕c
(
tanh

(√
c
λcx‖v‖

2

)
v√
c‖v‖

)
. (10)

The inverse logarithmic map is defined as

logcx(y) :=
2√
cλcx

arctanh(
√
c‖ − x⊕c y‖)

−x⊕c y
‖ − x⊕c y‖

. (11)

In practice, we use the maps expc0 and logc0 for transition between the Euclidean and Poincaré ball
representations of a vector.

Linear layer Assume we have a standard (Euclidean) linear layer x → Mx + b. In order to
generalize it, one needs to define the Möbius matrix by vector product:

M⊗c(x) :=
1√
c
tanh

(
‖Mx‖
‖x‖

arctanh(
√
c‖x‖)

)
Mx

‖Mx‖
, (12)

if Mx 6= 0, and M⊗c(x) := 0 otherwise. Finally, for a bias vector b ∈ Dnc the operation underlying
the hyperbolic linear layer is then given by M⊗c(x)⊕c b.

Concatenation of input vectors In several architectures (e.g., in siamese networks), it is needed
to concatenate two vectors; such operation is obvious in Euclidean space. However, straightforward
concatenation of two vectors from hyperbolic space does not necessarily remain in hyperbolic space.
Thus, we have to use a generalized version of the concatenation operation, which is then defined in
the following manner. For x ∈ Dn1

c , y ∈ Dn2
c we define the mapping Concat : Dn1

c × Dn2
c → Dn3

c
as follows.

Concat(x,y) = M⊗c
1 x⊕c M⊗c

2 y, (13)
where M1 and M2 are trainable matrices of sizes n3 × n1 and n3 × n2 correspondingly. The
motivation for this definition is simple: usually, the Euclidean concatenation layer is followed by a
linear map, which when written explicitly takes the (Euclidean) form of Equation (13).

Multiclass logistic regression (MLR) In our experiments, to perform the multiclass classifica-
tion, we take advantage of the generalization of multiclass logistic regression to hyperbolic spaces.
The idea of this generalization is based on the observation that in Euclidean space logits can be
represented as the distances to certain hyperplanes, where each hyperplane can be specified with a
point of origin and a normal vector. The same construction can be used in the Poincaré ball after
a suitable analogue for hyperplanes is introduced. Given p ∈ Dnc and a ∈ TpDnc \ {0}, such an
analogue would be the union of all geodesics passing through p and orthogonal to a.
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The resulting formula for hyperbolic MLR for K classes is written below; here pk ∈ Dnc and
ak ∈ Tpk

Dnc \ {0} are learnable parameters.

p(y = k|x) ∝

exp

(
λcpk
‖ak‖√
c

arcsinh

(
2
√
c〈−pk ⊕c x,ak〉

(1− c‖ − pk ⊕c x‖2)‖ak‖

))
.

For a more thorough discussion of hyperbolic neural networks, we refer the reader to the paper
(Ganea et al., 2018).

B IMPLEMENTATION DETAILS

Omniglot As a baseline model, we consider the prototype network (ProtoNet). Each convolutional
block consists of 3× 3 convolutional layer followed by batch normalization, ReLU nonlinearity and
2 × 2 max-pooling layer. The number of filters in the last convolutional layer corresponds to the
value of the embedding dimension, for which we choose 64. The hyperbolic model differs from
the baseline in the following aspects. First, the output of the last convolutional block is embedded
into the Poincaré ball of dimension 64 using the exponential map. The initial value of learning rate
equals to 10−3 and is multiplied by 0.5 every 20 epochs out of total 60 epochs.

miniImageNet For this task we again considered ProtoNet as a baseline model. Similarly, number
of filters the last convolutional layer corresponds to the varying value of the embedding dimension.
In our experiments we set this value to 1024. We test the models on tasks for one-shot and five-
shot classifications; the number of query points in each batch always equals to 15. We consider
the following learning rate decay scheme: the initial learning rate equals to 10−3 and is further
multiplied by 0.2 every 10 epochs (out of total 200 epochs).

The hyperbolic model differs from the baseline in the following aspects. First, the output of the last
convolutional block is embedded into Poincaré ball of dimension 1024 using the exponential map
defined in Equation (10). In ProtoNet, one uses a so-called prototype representation of a class, which
is defined as a mean of the embedded support set of a class. Generalizing this concept to hyperbolic
space, we substitute the Euclidean mean operation by HypAve, defined earlier in the Equation (2).
The initial learning rate equals to 10−3 and is further multiplied by 0.2 every 10 epochs (out of total
200 epochs).

Caltech-UCSD Birds Likewise, we use ProtoNet mentioned above with the following modifica-
tions. Here, we fix the embedding dimension to 512 and use a slightly different setup for learning
rate scheduler: the initial learning rate of value 10−3 is multiplied by 0.7 every 20 epochs out of
total 100 epochs. Remaining architecture and parameters both in baseline and hyperbolic models
are identical to those in the experiments on the MiniImageNet dataset.

Person re-identification We use ResNet-50 (He et al., 2016) architecture with one fully con-
nected embedding layer following the global average pooling. Three embedding dimensionalities
are used in our experiments: 32, 64 and 128. For the baseline experiments, we add the additional
classification linear layer, followed by the cross-entropy loss. For the hyperbolic version of the ex-
periments, we map the descriptors to the Poincaré ball and apply multiclass logistic regression as
described in Section 4. We found that in both cases the results are very sensitive to the learning rate
schedules. We tried four schedules for learning 32-dimensional descriptors for both baseline and
hyperbolic versions. Two best performing schedules were applied for the 64 and 128-dimensional
descriptors. In these experiments, we also found that smaller c values give better results. We finally
set c to 10−5. Therefore, based on the discussion in 4, our hyperbolic setting is quite close to Eu-
clidean. The results are compiled in Table 5. We set starting learning rates to 3 · 10−4 and 6 · 10−4
for sch#1 and sch#2 correspondingly and multiply them by 0.1 after each of the epochs 200 and
270.
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