
Under review as a conference paper at ICLR 2020

FAST SPARSE CONVNETS

Anonymous authors
Paper under double-blind review

ABSTRACT

Historically, the pursuit of efficient inference has been one of the driving forces be-
hind the research into new deep learning architectures and building blocks. Some
of the recent examples include: the squeeze-and-excitation module of (Hu et al.,
2018), depthwise separable convolutions in Xception (Chollet, 2017), and the in-
verted bottleneck in MobileNet v2 (Sandler et al., 2018). Notably, in all of these
cases, the resulting building blocks enabled not only higher efficiency, but also
higher accuracy, and found wide adoption in the field. In this work, we further ex-
pand the arsenal of efficient building blocks for neural network architectures; but
instead of combining standard primitives (such as convolution), we advocate for
the replacement of these dense primitives with their sparse counterparts. While
the idea of using sparsity to decrease the parameter count is not new (Mozer &
Smolensky, 1989), the conventional wisdom is that this reduction in theoretical
FLOPs does not translate into real-world efficiency gains. We aim to correct this
misconception by introducing a family of efficient sparse kernels for several hard-
ware platforms, which we plan to open-source for the benefit of the community.
Equipped with our efficient implementation of sparse primitives, we show that
sparse versions of MobileNet v1 and MobileNet v2 architectures substantially
outperform strong dense baselines on the efficiency-accuracy curve. On Snap-
dragon 835 our sparse networks outperform their dense equivalents by 1.1−2.2×
– equivalent to approximately one entire generation of improvement. We hope
that our findings will facilitate wider adoption of sparsity as a tool for creating
efficient and accurate deep learning architectures.

1 INTRODUCTION

Convolutional neural networks (CNNs) have proven to be excellent at solving a diverse range of
tasks (Bhandare et al., 2016). Standard network architectures are used in classification, segmenta-
tion, object detection and generation tasks (Pan et al., 2019; Long et al., 2015; Zhao et al., 2019).
Given their wide utility, there has been significant effort to design efficient architectures that are
capable of being run on mobile and other low power devices while still achieving high classifi-
cation accuracy on benchmarks such as ImageNet (Russakovsky et al., 2015). For example, Mo-
bileNets (Howard et al., 2017; Sandler et al., 2018) employ the depthwise separable convolutions
introduced in (Sifre & Mallat, 2014) to significantly reduce resource requirements over previous
architectures. Inference time and computational complexity in these architectures are dominated by
the 1×1 convolutions, which directly map to matrix-matrix multiplications.

Weight sparsity is generally known to lead (Cheng et al., 2017) to theoretically smaller and more
computationally efficient (in terms of number of floating-point operations) models, but it is often
disregarded as a practical means of accelerating models because of the misconception that sparse
operations cannot be fast enough to achieve actual speedups during inference. In this work we
introduce fast kernels for Sparse Matrix-Dense Matrix Multiplication (SpMM) specifically targeted
at the accceleration of sparse neural networks. The main distinction of our SpMM kernel from prior
art (Nagasaka et al., 2018; Yang et al., 2018) is that we focus on a different point in the design
space. While prior work focused on extremely sparse problems (typically >99%, found in scientific
and graph problems), we target the sparsity range of 70-95%, more common when inducing weight
sparsity in neural networks. As a result our kernels outperform both the Intel MKL (Intel, 2009) and
the TACO compiler (Kjolstad et al., 2017).

Using these kernels, we demonstrate the effectiveness of weight sparsity across three generations of
MobileNet (Howard et al., 2017; Sandler et al., 2018; Tan et al., 2018; Tan & Le, 2019) architectures.

1

Under review as a conference paper at ICLR 2020

102 103

MFlops

65

70

75

80
To

p1

MBv1 vs MBv2 vs EN

dense v1
90% v1
dense v2
80% v2
dense EN
80% EN

(a) Top-1 Accuracy vs. FLOPs

1 2 3 4 5 10 20
MParams

65

70

75

80

To
p1

MBv1 vs MBv2 vs EN

dense v1
90% v1
dense v2
80% v2
dense EN
80% EN

(b) Top-1 Accuracy vs. Parameter Count

Figure 1: MobileNet v1 and v2 and EfficientNet models. Sparse models: blue, dense models:
red. Sparse models include the cost of storing the location of non-zeros for sparse tensors as a
bitmask converted back into parameter count. That is every 32 values in the bitmask contributes one
“parameter”.

Sparsity leads to an approximately one generation improvement in each architecture, with a sparse
EfficientNet significantly more efficient than all previous models. These models represent a new
generation of efficient CNNs, which reduces inference times by 1.1 − 2.2×, parameter counts by
over 2× and number of floating-point operations (FLOPs) by up to 3× relative to the previous
generations.

2 RELATED WORK

Improvements in convolutional network architectures (Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2015; He et al., 2016; Huang et al., 2017), as measured by increased classification accuracy
on benchmark tasks such as ImageNet (Russakovsky et al., 2015), have generally been concomitant
with increases in model parameter counts, FLOPs and memory requirements. Recently this evo-
lution has led to networks found through neural architecture search (Zoph et al., 2017; Real et al.,
2019) which can achieve over 82% top-1 accuracy, but require nearly 25 GFLOPs for one inference.

Given these prohibitive inference costs, there have been many lines of work attempting to improve
CNN efficiency, which is often defined as one of three metrics:

1. Inference speedup on real hardware
2. Theoretical speedup through FLOPs reduction
3. Model size reduction

These axes are neither parallel nor orthogonal. The effect of (3) and (2) on (1) in particular can be
quite complicated and highly varied depending on the hardware in question.

The MobileNet family of architectures (Howard et al., 2017; Sandler et al., 2018) has focused on im-
proving efficiency by taking advantage of the depthwise separable convolutions introduced in (Sifre
& Mallat, 2014), which can be thought of as a hand-crafted sparsification of full convolutions with a
predefined sparse topology, and which are responsible for the parameter efficiency of these architec-
tures. MobileNet v1 (MBv1) used layers of 1×1 convolutions followed by depthwise convolutions.
MobileNet v2 (MBv2) introduced the inverted residual block which consists of a 1× 1 convolution
expanding the channel count, a depthwise convolution on the expanded channel count, and then a
1 × 1 convolution reducing the parameter count. Across MobileNet architectures, the depthwise
convolutions account for only a small fraction of the total FLOPs, parameters, and inference time of
these models. In MBv1, they account for less than 2% of the total FLOPs and in MBv2 less than
3%.

A different line of work attempted to make more efficient CNNs by directly pruning the weights
of full convolutional filters accompanied by the necessary inference kernels (Park et al., 2016; Liu

2

Under review as a conference paper at ICLR 2020

C
ha

nn
el

s
In

Channels In

Ch
an

ne
ls

 O
ut

Height x Width

Ch
an

ne
ls

 In

Channels In

Ch
an

ne
ls

 O
ut

Height x Width

Figure 2: Sparse 1x1 Convolution as SpMM. Left: Unstructured sparsity (or block size 1). Right:
Output channel block size of 4

et al., 2015). Park et al. (2016) was not able to accelerate 1 × 1 convolutions, Liu et al. (2015)
did not attempt it. The latter also required generating a new set of kernels for each instance of
a model, which is often impractical for deployment. Due to the difficultly of accelerating sparse
computation, channel pruning approaches have been preferred (Gordon et al., 2018; Dai et al., 2018;
Luo et al., 2017; Louizos et al., 2018; Theis et al., 2018; He et al., 2018). These approaches prune
away entire filters leaving the final model dense, and function more as an architecture search over
channel counts.

Full Neural Architecture Search has also been applied directly to architectures resembling MBv2
resulting in MobileNet v3 (Tan et al., 2018), FBNet (Wu et al., 2019), and EfficientNet (Tan & Le,
2019).

Alternatively, factorizations of the 1×1 convolutions have been considered in ShuffleNet (Zhang
et al., 2017) and Learnable Butterfly Factorizations (Dao et al., 2019). ShuffleNet factorizes the
weight matrix into a product of a permutation matrix and block diagonal matrix. Butterfly Factor-
izations factorize the weight matrix into a sequence of permutation matrices and weight matrices
with special structure that can represent many common O(NlogN) transforms such as Fast Fourier
Transforms.

Work in Text-to-Speech (TTS) (Kalchbrenner et al., 2018) demonstrated that increasing sparsity
and concomitant increase in state size in RNN models lead to increased model quality for a given
non-zero parameter count. They additionally demonstrated fast block-sparse matrix-vector (SpMV)
multiplication routines necessary for RNN inference.

3 METHODS

To understand how to design the most efficient convolutional models, we investigate both how to
construct and train sparse MBv1, MBv2 and EfficientNet models and also the performance of our
SpMM kernels.

3.1 SPARSIFYING NETWORKS

We train on the ImageNet (Russakovsky et al., 2015) dataset with standard augmentation and report
top-1 accuracies on the provided 50k example validation set. To make the networks sparse we use
the gradual magnitude pruning technique of (Zhu & Gupta, 2018).

We do not prune the first dense convolution at the beginning of all three networks. Its overall contri-
bution to the parameter count, FLOP count, and runtime is small and does not warrant introducing
a new sparse operator. Instead, we implement a dense convolutional kernel which takes as input the
image in the standard HWC layout and outputs the CHW layout consumed by the sparse operators
in the rest of the network. In HWC layout, the values for different channels corresponding to one
spatial location are adjacent in memory. In CHW layout, the values of all the spatial locations for
one channel are adjacent in memory.

We also do not prune the squeeze-excitation (Hu et al., 2018) blocks in EfficientNet as they con-
tribute <1% of the total FLOPs to the dense model. The last fully-connected layer in all models also
contributes insignificantly (<1%) to the total FLOP count, but does contribute a significant fraction
(20-50%) of total parameters, especially after the rest of the model is pruned. As we are concerned

3

Under review as a conference paper at ICLR 2020

=

=

=

=
1 3
2 4
Figure 3: Visualization of the memory reads and writes of our algorithm. In step 1, we load 8 spatial
locations simultaneously for each of the non-zero weights in the first row of the weight matrix. We
multiply each scalar weight by its corresponding row, accumulate the results, and in the end write
them out. Step 2 performs the same calculation for the next output channel. After steps 1 and 2, all
values for these spatial locations are in the cache, so future loads in steps 3 and 4 will be fast, despite
being random access.

with maximizing top-1 accuracy for a given runtime, we do not prune the final layer in MobileNet
v1 and v2 as doing so leads to a small decrease in top-1 accuracy. Standard EfficientNets do not
scale the number of filters in the last convolution by the width of the model, however we find that
when introducing sparsity it is beneficial to do this; in all sparse EfficientNet models we double the
units from 1280 to 2560. We also find that it is possible to make the fully-connected layer sparse
without loss of accuracy in EfficientNet, so we do so.

3.2 KERNEL IMPLEMENTATION

A diagram of the 1 × 1 convolution as a SpMM is seen in figure 2. Our scheme requires activation
tensors be stored in CHW format, in contrast to dense mobile inference libraries (Jacob, 2017;
Dukhan et al., 2019; Jacob, 2019) which favor HWC.

There are two key insights enabling the high performance of our kernels:

1. While the weight matrix is sparse, the activation matrix is dense. This means that we
can perform vector loads from the activation matrix and process multiple spatial locations
simultaneously.

2. By processing the matrix in the right order we can keep values that will be randomly ac-
cessed in the L1 cache, from which random access is fast and constant time.

Figure 3 shows the memory read and write patterns of a few steps of the kernel. The figure shows
8 elements being processed together but other values are possible and we also implement 4 and 16.
The outer loop is over columns and the inner loop is over rows; this allows each strip of 4, 8 or 16
spatial locations in the activations to remain in the L1 cache until it is no longer needed. In figure 3
steps 1 and 2 prime the cache, while subsequent steps 3 and 4 load all right hand side values from
the L1 cache.

In addition to the vectorization in the HW dimension, taking advantage of small amounts of struc-
ture in the weight matrix can offer significant performance boosts by increasing data reuse after
values are loaded into registers. Constraining the sparsity pattern so that multiple output or input
channels all share the same zero/non-zero pattern creates ‘blocks’ in the weight matrix (see figure 3
right). Blocks in the output channel dimension allow for more data reuse than blocks in the input
channel dimension. Experiments (see figure 6) show that either choice has the same effect on accu-
racy, so we implement output channel blocking with sizes of 2 and 4. Our nomenclature for kernels
is to give their spatial vectorization width followed by the output channel block size – 16x2 means
16 pixels and 2 output channels are processed in the inner loop.

We implement the ARM kernels in C with NEON intrinsics unlike current production libraries (Ja-
cob, 2017; Dukhan et al., 2019; Jacob, 2019) which rely on expert-optimized assembly. As refer-
ence, the code for the 4x1 inner loop is available in appendix A.

3.3 LIBRARY

We provide a library that can run sparse models trained with the model pruning library in Ten-
sorFlow (Abadi et al., 2015). This includes conversion from a dense representation to a Block
Compressed Sparse Row (BCSR)-like representation suitable for inference. In addition to the high
performance 1 × 1 convolutions, we also provide all supporting CHW kernels – depthwise convo-

4

Under review as a conference paper at ICLR 2020

11
2/

89
56

/1
76

28
/3

60
14

/7
20

7/
14

32

Spatial Extent / Channel Count

0

20

40

60

80

100
GF

LO
P/

se
c

16x1
16x4

ruy
taco

16x1 eff
16x4 eff

taco eff

(a) MB v1 ARM NEON

11
2/

22
56

/3
2

28
/4

8

14
/8

8

14
/1

36

7/
22

4

Spatial Extent / Channel Count

0

10

20

30

40

50

GF
LO

P/
se

c

16x1
16x4

ruy
taco

16x1 eff
16x4 eff

taco eff

(b) MB v2 ARM NEON

Figure 4: FLOPs with increasing layer depth. All measurements taken on a Snapdragon (SD) 835.

lutions, global average pooling and a 3 × 3 stride-2 dense convolution – necessary for running all
three generations of models. While we provide high performance versions of these kernels, we do
not detail them here. They are included in end-to-end measurements.

4 RESULTS

In the main text we mainly include results for MBv1 and MBv2 due to space limitations. Effi-
cientNets generally follow the same trends as MBv2 models, plots for EfficientNet can be found in
appendix C.

First we reveal performance results for our SpMM kernels, then we show how the networks respond
to sparsity and then finally we combine this information to find the models with the lowest inference
time.

4.1 ARM KERNEL PERFORMANCE

We use Ruy (Jacob, 2019), the current TensorFlow Lite ARM64 backend written largely in hand-
coded assembly, as the dense baseline. For a sparse baseline we use the kernel generated by the
TACO compiler (Kjolstad et al., 2017). We present results by plotting the FLOPs achieved at each
layer in the model, with increasing depth to the right in figure 4. For MBv1 we use a width multiplier
of 1.4 and 90% sparse and for MBV2 we use a width multiplier of 1.4 and 80% sparse as these
configurations approximately match the top-1 accuracy of the width 1 dense models. The kernel
variants that process 16 spatial locations at a time (e.g. 16x1, etc.) are the highest performing and
all reported numbers are from these kernel variants. TACO only supports unstructured sparsity and
should be compared with the 16x1 kernels.

The raw performance of the sparse kernels falls in the range of 40–90% of the dense kernels. And
as they must do much less work, when taking the sparsity of the layer into account, the effective
FLOPs are in the 2–7× range. In MBv1 performance falls significantly in the last two layers of
the model when the number of channels (1024) causes the size of one “strip” of spatial locations to
exceed the size of the L1 cache. In MBv2 the sawtooth pattern is caused by the alternating expand
and contract operations. The performance is higher for the expand kernels due to greater data reuse
of each “strip” that is brought into the L1 cache.

4.2 X86-64 KERNEL PERFORMANCE

We implement an AVX-512 version of our scheme with intrinsics to compare with the Intel MKL (In-
tel, 2009) SpMM. Results are in figure 5. In the majority of layers our scheme outperforms the MKL.
The geometric mean speedup over all layers is 1.20 in both MBv1 and MBv2.

5

Under review as a conference paper at ICLR 2020

11
2/

89
56

/1
76

28
/3

60
14

/7
20

7/
14

32

Spatial Extent / Channel Count

0

20

40

60

80

100

GF
LO

P/
se

c

16x1
mkl
taco

(a) MBv1

11
2/

22
56

/3
2

28
/4

8

14
/8

8

14
/1

36

7/
22

4

Spatial Extent / Channel Count

0

20

40

60

GF
LO

P/
se

c

16x1
mkl
taco

(b) MBv2

Figure 5: FLOPs with increasing layer depth. Measurements taken on an Intel Xeon W-2135.

102 103

MFlops
60.0

62.5

65.0

67.5

70.0

72.5

To
p1

baseline
90% 1x1
90% 1x2
90% 2x1
90% 2x2
1x4
4x1
4x4

(a) MBv1 90% Sparse

102 103

MFlops
65.0

67.5

70.0

72.5

75.0

77.5
To

p1 baseline
80% 1x1
80% 1x2
80% 2x1
80% 1x4
80% 4x1

(b) MBv2 80% Sparse

Figure 6: Effect of block size on top-1 accuracy. It only matters how many elements are in a block,
the configuration is unimportant.

4.3 MODEL PERFORMANCE

The hyper-parameters used to train MBv1 and MBv2 are listed in table 2, they were found with a
grid search on dense models with a width multiplier of 1.0 to reproduce the original results, which
used RMSProp, with SGD with momentum. The same hyper-parameters are used to train sparse
models. This change allows us to match or exceed the reported accuracies with only 45k iterations
of training.

The hyper-parameters used to train EfficientNet are largely unmodified from their code release, with
the exception of extending training from 350 to 550 epochs and increasing the learning rate decay
exponent to .985 from .97 so that the learning rate decays more slowly. These changes do not
improve the dense baseline.

We induce sparsity in MBv1 and MBv2 by starting the sparsification process at iteration 7,000 and
stopping at 28,000 with a pruning frequency of 2,000. For EfficientNet we start at iteration 23,000
and end at iteration 105,000, also with a pruning frequency of 2,000.

We train on the ImageNet (Russakovsky et al., 2015) dataset with standard data augmentation. Top-1
accuracies are reported on the validation set with center single-crops.

To understand the effect of block size, we plot in figure 6 accuracy against flops for different block
sizes. In these plots, every sparse tensor in the network uses the same output channel block size.
The tradeoff for block sparsity only appears to involve how many elements are in each block, and
not their configuration. For example, in MBv1, the 1×4, 4×1 and 2×2 curves all lie on top of one
another. The loss in accuracy due to blocking seems to decrease slightly for larger width models.

6

Under review as a conference paper at ICLR 2020

102 103

MFlops

65.0

67.5

70.0

72.5

75.0

77.5

To
p1

baseline
70% 1x1
80% 1x1
90% 1x1

(a) MBv1

102 103

MFlops

65.0

67.5

70.0

72.5

75.0

77.5

To
p1

baseline
70% 1x1
80% 1x1
90% 1x1

(b) MBv2

Figure 7: Effect of sparsity on top-1 accuracy. The sparser a model is, the fewer flops it requires to
achieve a given Top-1 accuracy.

0 4 8 12
Layer

5.0

5.5

6.0

6.5

Ti
m

e
re

du
ct

io
n(

m
s)

 /
To

p1
 lo

ss

(a) MBv1

0 5 10 15
Layer

7

8

9

10

Ti
m

e
re

du
ct

io
n(

m
s)

 /
To

p1
 lo

ss

(b) MBv2

Figure 8: The x-axis corresponds to turning that layer and all following layers to block size 4, the
prior layers are unstructured. The y-axis is the efficiency of making this change over an unstructured
model given as a ratio where the numerator is the speedup of changing the block(s) from unstructured
to block size 4 and the denominator is the decrease in top-1 accuracy that occurs by making this
change.

To understand how the sparsity level affects the efficiency of the models, we train models at 70%,
80% and 90% unstructured sparsity which is constant throughout the model. The results are plotted
in figure 7. MBv1 and MBv2 are more efficient the more sparse they become, confirming that the
results of Kalchbrenner et al. (2018) hold not just for RNNs, but also for convolutional models as
well.

In figure 1 we plot Top-1 accuracy vs. FLOPs for all three generations of sparse and dense models.
MobileNet v1 is 90% sparse, the other models are 80% sparse. A sparse MBv1 exceeds MBv2 in
terms of FLOP and parameter efficiency; a sparse MBv2 matches EfficientNet in terms of FLOP and
parameter efficiency; and a sparse EfficientNet exceeds all other models in both categories.

4.4 MODEL DESIGN

To design the models with the best top-1 accuracy vs. inference time frontiers we make the following
assumptions to reduce the search space:

1. We leave the models themselves unchanged.
2. We consider only block size 1 and block size 4 variants.
3. We induce the same level of sparsity in all 1× 1 convolutions.

7

Under review as a conference paper at ICLR 2020

Model Width Top-1 Mega-Params Time (ms) SD835 Time (ms) SD670

MBv1
Dense 1.0 70.9 4.24 125 106
Sparse 1.4 72.0 2.31 63 63

MBv1
Dense .75 68.4 2.59 73 64
Sparse 1.0 68.4 1.48 33 34

MBv1
Dense .5 63.3 1.34 36 33
Sparse .75 64.4 1.29 21 20

MBv2
Dense 1.4 75.0 6.06 150 129
Sparse 2.0 74.9 4.63 127 118

MBv2
Dense 1.0 71.8 3.47 83 74
Sparse 1.4 72.0 2.86 63 56

MBv2
Dense .75 69.8 2.61 64 57
Sparse 1.0 68.6 1.85 35 33

MBv2
Dense .5 65.4 2.61 33 30
Sparse .75 65.2 1.65 29 25

Table 1: All input image sizes are 224x224. Sparse MBv1 models are 90% sparse, Sparse MBv2
models are 80% sparse. In sparse MBv1 models, layer 12 uses a block size of 4. This is almost
as efficient as the models in 4.4 and matches the top-1 scores of the dense models more closely.
In sparse MBv2 width multiplier 2.0 model, layers 14-16 use block size of 4. In all other MBv2
models, layers 11-16 use a block size of 4.

Then we do a search at width multiplier 1.4 over N models when there are N residual blocks in
a model. An x-axis location of n corresponds to a model in which the first n residual blocks are
unstructured and the last N − n residual blocks have an output channel block size of 4. We train
each model, note its top-1 accuracy and then measure its inference time. From this we can calculate
the ratio of inference time reduction relative to a fully unstructured model and top-1 lost, which are
plotted in figure 9. We choose the model with the highest ratio and train models at all widths with
this choice. This amounts to making layers 6 and deeper block size 4 in MBv1 models and layers
11 and deeper block size 4 in MBv2.

A full Neural Architecture Search (Zoph & Le, 2017; Liu et al., 2019) will likely lead to even more
efficient models, but we leave this to future work.

Table 1 contains the timings for running our sparse models on a single big core of two different pro-
cessors, a Snapdragon 835 and a Snapdragon 670. We compare them with MBv1 and MBv2 models
from their official repositories (Google, 2018a;b) run on the dense-inference TF Lite framework
with the standard Ruy backend.

5 CONCLUSION

We demonstrate that for a constant computational budget, sparse convolutional networks are more
accurate than dense ones; this corroborates the findings of Kalchbrenner et al. (2018), which demon-
strated that for a set number of floating-point operations, sparse RNNs are more accurate than dense
RNNs. We enable the use of weight sparsity to accelerate state-of-the-art convolutional networks
by providing fast SpMM kernels along with all necessary supporting kernels for ARM processors.
On Snapdragon 835 the sparse networks we present in this paper outperform their dense equivalents
by 1.1 − 2.2× – equivalent to approximately one entire generation of improvement. By overturn-
ing the misconception that “sparsity is slow”, we hope to open new avenues of research that would
previously not be considered.

A CODE LISTING

We present the code for the 4x1 kernel here for reference. ARM intrinsics have been renamed for
clarity and casts have been removed for brevity.

8

Under review as a conference paper at ICLR 2020

Listing 1: 4x1 SpMM Kernel ARM Neon

size_t n = HW;
while (n != 0) { // Loop over spatial positions
float* w; // Weights, non-zeros are stored consecutively
int32_t* widx_dmap; // Deltas between columns in bytes
uint32_t* nnzmap; // Non-zeros per row
size_t k = OutputChannels;
do { // Loop over output channels
uint32_t nnz = *nnzmap++;
// This next line loads the bias
float32x4_t vacc = load_1_f32_value_and_broadcast(w++);
while (nnz-- != 0) { // Loop over non-zero input channels
intptr_t diff = *dmap++; // get delta in bytes and advance
float32x4_t vx = load_4_f32_values(x); // Load activations
x += diff; // advance the activations for the next non-zero
float32x4_t vw = load_1_f32_value_and_broadcast(w++);
vacc = multiply_add_4_f32(vacc, vx, vw); // vacc += vx * vw
}
store_4_f32_values(y, vacc);
y += HW; // advance down the output strip

} while (--k != 0);
// Reset pointers for the next strip of spatial locations
y -= OutputChannels * HW; y += 4; x += 4; n -= 4;

}

B HYPER PARAMETERS

MBv1 MBv2
learning rate .35 ∗ 16 = 5.6 .24 ∗ 16 = 3.84

momentum 0.9 0.92
l2 coefficient 5e-5 4e-5

Table 2: Hyper-parameters for MBv1 and MBv2 training. Learning rates are specified in a reduced
space and then multiplied by a factor of 16 due to the batch size.

C EFFICIENTNET PLOTS

Here we present the plots for EfficientNet corresponding to those in the main text for scaling with
sparsity and block size. The same trend for block size is observed - the configuration of the blocks
isn’t important, only the total size of the block. EfficientNet exhibits less improvement as sparsity
increases.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

9

http://tensorflow.org/

Under review as a conference paper at ICLR 2020

102 103

MFlops

74

76

78

80

To
p1

Sparse vs. Dense EfficientNet

baseline
70%
80%
90%

(a) Block Scaling

102 103

MFlops
74

76

78

80

82

To
p1

Sparse vs. Dense EfficientNet

baseline
70%
80%
85%

(b) Sparsity Scaling

Figure 9: (left) EfficientNet scaling with block size. (right) EfficientNet scaling with sparsity.

Ashwin Bhandare, Maithili Bhide, Pranav Gokhale, and Rohan Chandavarkar. Applications of con-
volutional neural networks. International Journal of Computer Science and Information Tech-
nologies, 7(5):2206–2215, 2016.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

F. Chollet. Xception: Deep learning with depthwise separable convolutions. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807, July 2017. doi:
10.1109/CVPR.2017.195.

Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Compressing neural networks using the varia-
tional information bottleneck. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1135–1144, Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/dai18d.html.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms
for linear transforms using butterfly factorizations. In Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp.
1517–1527, 2019. URL http://proceedings.mlr.press/v97/dao19a.html.

Marat Dukhan, Yiming Wu, and Hao Lu. Qnnpack: Open source library for optimized mo-
bile deep learning, 2019. URL https://engineering.fb.com/ml-applications/
qnnpack/.

Google, 2018a. URL https://github.com/tensorflow/models/blob/master/
research/slim/nets/mobilenet_v1.md.

Google, 2018b. URL https://github.com/tensorflow/models/tree/master/
research/slim/nets/mobilenet.

A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T. Yang, and E. Choi. Morphnet: Fast simple
resource-constrained structure learning of deep networks. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1586–1595, June 2018. doi: 10.1109/CVPR.2018.
00171.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778, 2016.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: automl for model com-
pression and acceleration on mobile devices. In Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VII, pp. 815–832, 2018.

10

http://proceedings.mlr.press/v80/dai18d.html
http://proceedings.mlr.press/v97/dao19a.html
https://engineering.fb.com/ml-applications/qnnpack/
https://engineering.fb.com/ml-applications/qnnpack/
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet

Under review as a conference paper at ICLR 2020

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, abs/1704.04861, 2017. URL http://arxiv.org/abs/
1704.04861.

J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7132–7141, June 2018. doi: 10.1109/CVPR.2018.
00745.

G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger. Densely connected convolutional net-
works. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2261–2269, July 2017. doi: 10.1109/CVPR.2017.243.

Intel. Intel Math Kernel Library. Reference Manual. Intel Corporation, Santa Clara, USA, 2009.
ISBN 630813-054US.

Benoit Jacob. gemmlowp: a small self-contained low-precision gemm library, 2017. URL https:
//github.com/google/gemmlowp.

Benoit Jacob. Ruy, 2019. URL https://github.com/tensorflow/tensorflow/
tree/master/tensorflow/lite/experimental/ruy.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lock-
hart, Florian Stimberg, Aäron van den Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient
Neural Audio Synthesis. In Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 2415–2424, 2018.

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. The tensor
algebra compiler. Proceedings of the ACM on Programming Languages, 1(OOPSLA):77, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger (eds.), Advances in Neural Information Processing Systems 25, pp. 1097–
1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall F. Tappen, and Marianna Pensky. Sparse con-
volutional neural networks. 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 806–814, 2015.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1eYHoC5FX.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
l0 regularization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=H1Y8hhg0b.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A Filter Level Pruning Method for Deep
Neural Network Compression. In IEEE International Conference on Computer Vision, ICCV
2017, Venice, Italy, October 22-29, 2017, pp. 5068–5076, 2017.

Michael C. Mozer and Paul Smolensky. Using relevance to reduce network size automatically.
Connection Science, 1(1):3–16, 1989. doi: 10.1080/09540098908915626. URL https://
doi.org/10.1080/09540098908915626.

Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. High-performance sparse
matrix-matrix products on intel knl and multicore architectures. In Proceedings of the 47th
International Conference on Parallel Processing Companion, ICPP ’18, pp. 34:1–34:10, New
York, NY, USA, 2018. ACM. ISBN 978-1-4503-6523-9. doi: 10.1145/3229710.3229720. URL
http://doi.acm.org/10.1145/3229710.3229720.

11

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://github.com/google/gemmlowp
https://github.com/google/gemmlowp
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/ruy
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/ruy
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://doi.org/10.1080/09540098908915626
https://doi.org/10.1080/09540098908915626
http://doi.acm.org/10.1145/3229710.3229720

Under review as a conference paper at ICLR 2020

Z. Pan, W. Yu, X. Yi, A. Khan, F. Yuan, and Y. Zheng. Recent progress on generative adversarial
networks (gans): A survey. IEEE Access, 7:36322–36333, 2019. doi: 10.1109/ACCESS.2019.
2905015.

Jongsoo Park, Sheng R. Li, Wei Wen, Hai Li, Yiran Chen, and Pradeep Dubey. Holistic sparsecnn:
Forging the trident of accuracy, speed, and size. CoRR, abs/1608.01409, 2016. URL http:
//arxiv.org/abs/1608.01409.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4780–4789, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. Int. J. Comput. Vision, 115(3):211–
252, December 2015. ISSN 0920-5691. doi: 10.1007/s11263-015-0816-y. URL http:
//dx.doi.org/10.1007/s11263-015-0816-y.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Mobilenetv2: Inverted residuals and
linear bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4510–4520, June 2018. doi: 10.1109/CVPR.2018.00474.

Laurent Sifre and Prof Stephane Mallat. Ecole polytechnique, CMAP phd thesis rigid-motion scat-
tering for image classification, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. CoRR, abs/1905.11946, 2019. URL http://arxiv.org/abs/1905.11946.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V. Le. Mnasnet: Platform-
aware neural architecture search for mobile. CoRR, abs/1807.11626, 2018. URL http://
arxiv.org/abs/1807.11626.

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction with
dense networks and Fisher pruning. CoRR, abs/1801.05787, 2018. URL http://arxiv.
org/abs/1801.05787.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

Carl Yang, Aydm Buluc, and John D. Owens. Design principles for sparse matrix multiplication
on the gpu. International European Conference on Parallel and Distributed Computing - EURO-
PAR, 8 2018.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient con-
volutional neural network for mobile devices. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6848–6856, 2017.

Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection with deep learning:
A review. IEEE transactions on neural networks and learning systems, 2019.

Michael Zhu and Suyog Gupta. To Prune, or Not to Prune: Exploring the Efficacy of Pruning for
Model Compression. In International Conference on Learning Representations, 2018.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th In-
ternational Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?
id=r1Ue8Hcxg.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8697–8710, 2017.

12

http://arxiv.org/abs/1608.01409
http://arxiv.org/abs/1608.01409
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1801.05787
http://arxiv.org/abs/1801.05787
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

	Introduction
	Related Work
	Methods
	Sparsifying Networks
	Kernel Implementation
	Library

	Results
	ARM Kernel Performance
	x86-64 Kernel Performance
	Model Performance
	Model Design

	Conclusion
	Code Listing
	Hyper Parameters
	EfficientNet Plots

