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Convolutional Neural Networks (CNNs) are composed of multiple convolution layers and show
elegant performance in vision tasks. The design of the regular convolution is based on the Receptive
Field (RF) where the information within a specific region is processed. In the view of the regular
convolution’s RF, the outputs of neurons in lower layers with smaller RF are bundled to create
neurons in higher layers with larger RF. As a result, the neurons in high layers are able to capture
the global context even though the neurons in low layers only see the local information. However,
in lower layers of the biological brain, the information outside of the RF changes the properties of
neurons. In this work, we extend the regular convolution and propose spatially shuffled convolution
(ss convolution). In ss convolution, the regular convolution is able to use the information outside
of its RF by spatial shuffling which is a simple and lightweight operation. We perform experiments
on CIFAR-10 and ImageNet-1k dataset, and show that ss convolution improves the classification
performance across various CNNs.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) and their convolution layers (Fukushima, 1980; Lecun
et al., 1998) are inspired by the finding in cat visual cortex (Hubel & Wiesel, 1959) and they show
the strong performance in various domains such as image recognition (Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2015; He et al., 2016), natural language processing (Gehring et al., 2017),
and speech recognition (Abdel-Hamid et al., 2014; Zhang et al., 2016). A notable characteristic of
the convolution layer is the Receptive Field (RF), which is the particular input region where a con-
volutional output is affected by. The units (or neurons) in higher layers have larger RF by bundling
the outputs of the units in lower layers with smaller RF. Thanks to the hierarchical architectures of
CNNs, the units in high layers are able to capture the global context even though the units in low
layers only see the local information.

It is known that neurons in the primary visual cortex (i.e., V1 which is low layers) change the self-
properties (e.g., the RF size (Pettet & Gilbert, 1992) and the facilitation effect (Nelson & Frost,
1985)) based on the information outside of the RF (D.Gilbert, 1992). The mechanism is believed
to originate from (1) feedbacks from the higher-order area (Iacaruso et al., 2017) and (2) intra-
cortical horizontal connections (D.Gilbert, 1992). The feedbacks from the higher-order area convey
broader-contextual information than the neurons in V1, which allows the neurons in V1 to use the
global context. For instance, Gilbert & Li (2013) argued that the feedback connections work as
attention. Horizontal connections allow the distanced neurons in the layer to communicate with
each other and are believed to play an important role in visual contour integration (Li & Gilbert,
2002) and object grouping (Schmidt et al., 2006).

Though both horizontal and feedback connections are believed to be important for visual processing
in the visual cortex, the regular convolution ignores the properties of these connections. In this
work, we particularly focus on algorithms to introduce the function of horizontal connections for
the regular convolution in CNNs. We propose spatially shuffled convolution (ss convolution), where
the information outside of the regular convolution’s RF is incorporated by spatial shuffling, which
is a simple and lightweight operation. Our ss convolution is the same operation as the regular
convolution except for spatial shuffling and requires no extra learnable parameters. The design of
ss convolution is highly inspired by the function of horizontal connections. To test the effectiveness
of the information outside of the regular convolution’s RF in CNNs, we perform experiments on
CIFAR-10 (Krizhevsky, 2009) and ImageNet 2012 dataset (Russakovsky et al., 2015) and show that
ss convolution improves the classification performance across various CNNs. These results indicate
that the information outside of the RF is useful when processing local information. In addition, we
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conduct several analyses to examine why ss convolution improves the classification performance in
CNNs and show that spatial shuffling allows the regular convolution to use the information outside
of its RF.

2 RELATED WORK

2.1 VARIANTS OF CONVOLUTION LAYERS AND NEURAL MODULES

There are two types of approaches to improve the Receptive Field (RF) of CNNs with the regu-
lar convolution: broadening kernel of convolution layer and modulating activation values by self-
attention.

Broadening Kernel:

The atrous convolution (Holschneider et al., 1989; Yu & Koltun, 2016) is the convolution with the
strided kernel. The stride is not learnable and given in advance. The atrous convolution can have
larger RF compared to the regular convolution with the same computational complexity and the
number of learnable parameters.

The deformable convolution (Dai et al., 2017) is the atrous convolution with learnable kernel stride
that depends on inputs and spatial locations. The stride of the deformable convolution is changed
flexibly unlike the atrous convolution, however, the deformable convolution requires extra compu-
tations to calculate strides.

Both atrous and deformable convolution contribute to broadening RF, however, it is not plausible to
use the pixel information at a distant location when processing local information. Let us consider
the case that the information of p pixels away is useful for processing local information at layer l.
In the simple case, it is known that the size of the RF grows with k

√
n where k is the size of the

convolution kernel and n is the number of layers (Luo et al., 2016). In this case, the size of kernel
needs to be p√

n
and k is around 45 when p = 100 and l = 5. If the kernel size is 3 × 3, then

the stride needs to be 21 across layers. Such large stride causes both the atrous and the deformable
convolution to have a sparse kernel and it is not suitable for processing local information.

Self-Attention:

Squeeze and Excitation module (SE module) (Hu et al., 2018) is proposed to modulate the activation
values by using the global context which is obtained by Global Average Pooling (GAP) (Lin et al.,
2014). SE module allows CNNs with the regular convolution to use the information outside of its
RF as our ss convolution does. In our experiments, ss convolution gives the marginal improvements
on SEResNet50 (Hu et al., 2018) that is ResNet50 (He et al., 2016) with SE module. This result
makes us wonder why ss convolution improves the performance of SEResNet50, thus we conduct
the analyses and find that the RF of SEResNet50 is location independent and the RF of ResNet with
ss convolution is the location-dependent. This result is reasonable since the spatial information of
activation values is not conserved by GAP in SE module. We conclude that such a difference may
be the reason why ss convolution improves the classification performance on SEResNet50.

Attention Branch Networks (ABN) (Fukui et al., 2019) is proposed for a top-down visual explanation
by using an attention mechanism. ABN uses the output of the side branch to modulate activation
values of the main branch. The outputs of the side branch have larger RF than the one of the main
branch, thus the main branch is able to modulate the activation values based on the information
outside of main branch’s RF. In our experiments, ss convolution improves the performance on ABN
and we assume that this is because ABN works as like feedbacks from higher-order areas, unlike ss
convolution that is inspired by the function of horizontal connections.

2.2 UTILIZATION OF SHUFFLING IN CNNS

ShuffleNet (Zhang et al., 2017) is designed for computation-efficient CNN architecture and the group
convolution (Krizhevsky et al., 2012) is heavily used. They shuffle the channel to make cross-group
information flow for multiple group convolution layers.

The motivation of using shuffling between ShuffleNet and our ss convolution is different. On the
one hand, our ss convolution uses spatial shuffling to use the information from outside of the regular
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(a) Spatial Shuffling for Convolution (Eqn. 2) (b) Spatial Shuffling for Group Convolution (Eqn. 3)

Figure 1: The overview of spatial shuffling operarion.

convolution’s RF. On the other hand, the channel shuffling in ShuffleNet does not broaden RF and
not contribute to use the information outside of the RF.

3 METHOD

In this section, we introduce spatially shuffled convolution (ss convolution).

3.1 SPATIALLY SHUFFLED CONVOLUTION

Horizontal connections are the mechanism to use information outside of the RF. We propose ss
convolution to incorporate this mechanism into the regular convolution, which consists of two com-
ponents: spatial shuffling and regular convolution. The shuffling is based on a permutation matrix
that is generated at the initialization. The permutation matrix is fixed while training and testing.

Our ss convolution is defined as follows:

yi,j =

C∑
c

∑
∆i,∆j∈R

wc,∆i,∆j · P (xc,i+∆i,j+∆j), (1)

P (xc,i,j) =

{
π(xc,i,j), c ≤ bαCc,
xc,i,j , otherwise. (2)

R represents the offset coordination of the kernel. For examples, the case of the 3 × 3 kernel is
R = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)}. x ∈ RC×I×J is the
input and w ∈ RCw×Iw×Jw is the kernel weights of the regular convolution. In Eqn. (2), the input
x is shuffled by P and then the regular convolution is applied. Fig. 1-(a) is the visualization of Eqn.
(2). α ∈ [0, 1] is the hyper-parameter to control how many channels are shuffled. If bαCc = 0, then
ss convolution is same as the regular convolution. At the initialization, we randomly generate the
permutation matrix π ∈ {0, 1}m×m where

∑m
i=1 πi,j = 1,

∑m
j=1 πi,j = 1 and m = I · J · bαCc1.

The generated π at the initialization is fixed for training and testing.

The result of CIFAR-10 across various α is shown in Fig. 2. The biggest improvement of the
classification performance is obtained when α is around 0.06.

3.2 SPATIALLY SHUFFLED GROUP CONVOLUTION

The group convolution (Krizhevsky et al., 2012) is the variants of the regular convolution. We
find that the shuffling operation of Eqn. 2 is not suitable for the group convolution. ResNeXt
(Xie et al., 2017) is CNN to use heavily group convolutions and Table 1 shows the test error of
ResNeXt in CIFAR-10 (Krizhevsky, 2009). As can be seen in Table 1, the improvement of the
classification performance is marginal with Eqn. 2. Thus, we propose the spatial shuffling for the

1We implement Eqn. 2 by indexing, thus we hold m long int instead of m × m binary matrix. The
implementation of ss convolution is shown in Appendix A.2.
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Figure 2: The result of CIFAR-10 across various α. WRN 16-4 (Zagoruyko & Komodakis, 2016)
and DenseNet-BC 12-100 (Huang et al., 2017) are used. The test error at the last epoch is used and
the reported results are averaged out of 5 runs.

model method test error (%)

ResNeXt-29 (2x64d) Conv 4.3
SS Conv w/ Eqn. (2) 4.2
SS Conv w/ Eqn. (3) 3.9

Table 1: The result of CIFAR-10. The test error at the last epoch is used and the reported results are
averaged out of 5 runs.

group convolution as follows:

P (xc,i,j)=

{
π(xc,i,j), 0 ≡ C mod b 1

αc,
xc,i,j , otherwise. (3)

Eqn. 3 represents that the shuffled parts are interleaved like the illustration in Fig. 1-(b). As can be
seen in Table 1, ss convolution with Eqn. 3 improves the classification performance of ResNeXt.

4 EXPERIMENTS

4.1 PREPARATIONS

We use CIFAR-10 (Krizhevsky, 2009) and ImageNet-1k (Russakovsky et al., 2015) for our experi-
ments.

CIFAR-10. CIFAR-10 is the image classification dataset. There are 50000 training images and
10000 validation images with 10 classes. As data augmentation and preprocessing, translation by
4 pixels, stochastic horizontal flipping, and global contrast normalization are applied onto images
with 32× 32 pixels. We use three types of models of WRN 16-4 (Zagoruyko & Komodakis, 2016),
DenseNet-BC 12-100 (Huang et al., 2017) and ResNeXt 2-64d (Xie et al., 2017).

ImageNet-1k. ImageNet-1k is the large scale dataset for the image classification. There are 1.28M
training images and 50k validation images with 1000 classes. As data augmentation and preprocess-
ing, resizing images with the scale and aspect ratio augmentation and stochastic horizontal flipping
are applied onto images. Then, global contrast normalization is applied to randomly cropped images
with 224× 224 pixels. In this work, we use ResNet50 (He et al., 2016), DenseNet121 (Huang et al.,
2017), SEResNet50 (Hu et al., 2018) and ResNet50 with ABN (Fukui et al., 2019) for ImageNet-1k
experiments.

Implementation Details. As the optimizer, we use Momentum SGD with momentum of 0.9 and
weight decay of 1.0 × 10−4. In CIFAR-10, we train models for 300 epochs with 64 batch size.
In ImageNet, we train models for 100 epochs with 256 batch size. In CIFAR-10 and ImageNet,
the learning rate starts from 0.1 and is divided by 10 at 150, 250 epochs and 30, 60, 90 epochs,
respectively.
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model method test error (%)

WRN 16-4 Conv 5.1
SS Conv 4.8

DenseNet-BC Conv 5.0
SS Conv 4.6

ResNeXt-29 (2x64d) Conv 4.3
SS Conv 3.9

Table 2: The result of CIFAR-10. The test error
at the last epoch is used and the reported results
are averaged out of 5 runs.

model method top-1 err (%)

ResNet50 Conv 23.5
SS Conv 23.0

ResNet50 w/ ABN Conv 22.9
SS Conv 22.6

SEResNet50 Conv 22.7
SS Conv 22.6

DenseNet121 Conv 24.5
SS Conv 24.1

ResNeXt-50 (32x4d) Conv 22.4
SS Conv 22.0

Table 3: Top-1 error on ImageNet-1k validation
dataset. The top-1 error at the last epoch is used
and the reported results are averaged out of 3
runs.

model method inference speed (ms)

ResNet50 Conv 1.44
SS Conv 1.66

SEResNet50 Conv 2.11

Table 4: The inference speed per image is shown. We evaluate models on single GeForce GTX
1080 Ti cards with CUDA 10.0 environment. The implementation is based on PyTorch (Paszke
et al., 2017) ver 1.0.1.post2. The results are averaged out of 1000 runs. The batch size is 256 and
the size of input is 224× 224× 3. α of ss convolution is 0.04 that is same α reported in Table 3.

In our experiments, we replace all regular convolutions with ss convolutions except for downsam-
pling layers, and use single α across all layers. We conduct grid search of α ∈ {0.02, 0.04, 0.06}
and α is decided according to the classification performance on validation dataset.

4.2 RESULTS

We replace all regular convolutions with ss convolutions to investigate whether the information
outside of the regular convolution’s RF contributes to improving the generalization ability. The
results are shown in Table 2 and 3. As can be seen in Table 2 and 3, ss convolution contributes
to improve the classification performance across various CNNs except for SEResNet50 that shows
marginal improvements. The detailed analysis of the reason why ss convolution gives the marginal
improvements in SEResNet50 is shonw in Sec. 5

Since α ∈ {0.02, 0.04, 0.06} is small, the small portion of the input are shuffled, thus ss convolution
improves the classification performance with small amount of extra shuffling operations and without
extra learnable parameters. The inference speed is shown in Table 4 and ss convolution make the
inference speed 1.15 times slower in exchange for 0.5% improvements in ImageNet-1k dataset. The
more efficient implementation2 may decrease the gap of the inference speed between the regular
convolution and ss convolution.

5 ANALYSIS

In this section, we demonstrate two analysis to understand why ss convolution improves the classi-
fication performance across various CNNs: the receptive field (RF) analysis and the layer ablation
experiment.

2Our implementation is shown in Appendix A.2.
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layer name output size blue box size structure

input 224× 224 32× 32

conv1 112× 112 16× 16 7× 7, 64, stride 2

56× 56 8× 8 3× 3 max pool, 64, stride 2

conv2 x 56× 56 8× 8

[
1× 1, 64
3× 3, 64
1× 1, 256

]
× 3

conv3 x 28× 28 4× 4

[
1× 1, 128
3× 3, 128
1× 1, 512

]
× 4

conv4 x 14× 14 2× 2

[
1× 1, 256
3× 3, 256
1× 1, 1024

]
× 6

conv5 x 7× 7 1× 1

[
1× 1, 512
3× 3, 512
1× 1, 2048

]
× 3

1× 1 average pool, 1000-d fc, softmax

Table 5: The structure of ResNet50 (He et al., 2016).

Receptive Field Analysis. We calculate the RF of SEResNet50, ResNet50 with ss convolution
and the regular convolution. The purpose of this analysis is to examine whether ss convolution
contributes to use the information outside of the regular convolution’s RF.

Layer Ablation Experiment. The layer ablation experiment is conducted to know which ss con-
volution influences the model prediction. In the primary visual cortex, the neurons change self-
properties based on the information outside of RF, thus we would like to investigate whether spatial
shuffling in low layers contribute to predictions or not.

Our analyses are based on ImageNet-1k pre-trained model and the structure of ResNet50 (i.e., the
base model for analysis) is shown in Table 5.

5.1 DOES SPATIAL SHUFFLING CONTRIBUTE TO USE THE INFORMATION FROM OUTSIDE OF
RECEPTIVE FIELD?

In our analysis, we calculate the RF to investigate whether ss convolution uses the information
outside of the regular convolution’s RF. The receptive field is obtained by optimization as follows:

R∗ = argmin
R

‖(M · φl(σ(R) · x)− φl(x)‖22 + β ‖σ(R)‖1 . (4)

x ∈ RC×I×J is input, and R ∈ RC×I×J is the RF to calculate and learnable. σ is sigmoid function,
thus 0 ≤ σ(R) ≤ 1. φl is the outpus of the trained model at the layer l.

We call the first term in Eqn. 4 as the local perceptual loss. It is similar to the perceptual loss
(Johnson et al., 2016), and the difference is the dot product of M ∈ {0, 1}C×I×J that works as
masking. M is the binary mask and Mcij = 1 if 96 ≤ i, j ≤ 128, otherwise Mcij = 0 in our
analysis. In other words, the values inside the blue box in Fig 3 are the part of Mcij = 1. The local
perceptual loss minimizes the distance of feature on the specific region between σ(R) ·x and x. The
2nd term is the penalty to evade the trivial case such as σ(R) = 1. In layerwise and channelwise RF
anlysis, we use β of 1.0× 10−6 and 1.0× 10−12, respectively.

We use Adam optimizer (Kingma & Ba, 2015) to calculate R∗. As the hyper-parameter,
lr, β1, and β2 are 0.1, 0.9, 0.99, respectively. The high lr is used since its slow convergence. The
batch size is 32 and we stop the optimization after 10000 iterations. x is randomly selected from
ImageNet-1k training images. The data augmentation and preprocessing are applied as the same
procedure in Sec. 4.1.
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Figure 3: The layerwise RF of ImageNet-1k pre-trained models. The layerwise RF images in the top
row are based on ResNet50 with the regular convolution, the ones in the middle row are calculated
from ResNet50 with ss convolutions and the ones in the bottom row are generated from SEResNet50.
The red color indicates that the pixel there changes features inside blue box, and the white color
represents that features are invariant. The name of the layer is described in Table 5. The rest of RFs
are shown in Appendix A.1.

Layerwise Receptive Field. We calculate the RF for each model and the results are shown in Fig.
3. The top row is the RF of ResNet with the regular convolution, the middle row is the one with ss
convolution and the bottom row is the one of SEResNet50. The red color indicates that the value
of the pixel there changes features inside the blue box, and the white color represents that features
inside the blue box are invariant even if the value of the pixel there is changed.

In the top row of Fig. 3, the RFs of ResNet50 with the regular convolution are shown. The size of
RF becomes larger as the layer becomes deeper. This result is reasonable and obtained RFs are in
the classical view. If the RF of ResNet50 with ss convolution is beyond the one with the regular
convolution, it indicates that ss convolution successfully uses the information outside of the regular
convolution’s RF.

In the middle and bottom row of Fig. 3 are the RF of ResNet50 with ss convolution and SEResNet50,
respevtively. The RFs covers the entire image unlike the RF with the regular convolution. These
results indicate that both SE module and ss convolution contributes to use the information outside
of the regular convolution’s RF.

Fig. 5-(a) shows the size of the RF across layers. The horizontal axis is the name of the layer and
the vertical axis represents the size of RF that is calculated as ‖σ(R)≥0.5‖1

|R| where ‖ ‖1 is the L1 norm

and | | is the total size of matrix. ‖σ(RF)≥0.5‖1
|RF| is in the range between 0 and 1 and represents the

ratio of σ(RF) that is bigger than 0.5. As can be seen in Fig. 5-(a), the size of RFs are consistently
almost 1 across layers in ResNet50 with ss convolution and SEResNet50. This result also shows
that SE module and the ss convolution contributes to use the information outside of the regular con-
volution’s RF. This may be the reason why ss convolution improves the classification performance
on various CNNs. However, these results make us wonder why ss convolution improves marginally
the performance of SEResNet50. Further analysis is conducted in channelwise RF analysis.
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(a) (b) (c) (d)

Figure 4: The channelwise RF of ImageNet-1k pre-trained model. The RF is calculated based on
the output of the channel 64 in conv2 1. (a)-(b) RF of ResNet50 with ss convolution. (c)-(d) RF of
SEResNet50. The red color indicates that the pixel there changes features inside the blue box, and
the white color represents that features are invariant. For clarity, we convert the values that satisfy
σ(R) ≥ 0.1 into 1.0.

(a) The size of RF for each layer. (b) The result of the ablation experiment.

Figure 5: The analysis for each layer in ImageNet-1k pretrained models. (a) The horizontal axis
is which block is used to calculate the layerwise RF and the vertical axis is the size of RF. (b) The
horizontal axis is which block is ablated in ResNet50 with ss convolutions and the vertical axis is
the top-1 error in ImageNet-1k validation dataset.

Channelwise Receptive Field. Since layerwise RF analysis is based on the RF of the layer, the
obtained results have rough directions. We calculate the channelwise RF for more fine-grained
analysis. Unlike layerwise RF analysis, M becomes different and we minimize the local perceptual
loss on the specific channel. The results are shown in Fig. 3. Fig. 4 (a) and (c) use Mcij = 1 if
64 ≤ i, j ≤ 96 and c = 64, otherwise Mcij = 0. Fig. 4 (b) and (d) use Mcij = 1 if 96 ≤ i, j ≤ 128
and c = 64, otherwise Mcij = 0. Fig. 4 (a)-(b) are the RF of ResNet50 with ss convolution
and (c)-(d) are tbe RF of SEResNet50. As can be seen in Fig. 3, the RFs of ResNet50 with ss
convolution (i.e., Fig. 4 (a)-(b)) are different when the blue box is shifted, however, the RFs of
SEResNet50 (i.e., Fig. 4 (c)-(d)) are similar even if the blue box is shifted. These results indicate
that the information outside of the regular convolution’s RF is location-independent in SEResNet 50
and location-dependent in ResNet50 with ss convolution. This is reasonable since SE module uses
the global average pooling and the spatial information is not conserved. This difference may be the
reason why ss convolution marginally improves the classification performance on SEResNet50.
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5.2 ABLATION STUDY

We conduct layer ablation study to investigate which ss convolutions contribute to the generalization
ability. The ablation is done as follows:

P (xc,i,j) =

{
0, c ≤ bαCc,
xc,i,j , otherwise. (5)

Eqn. 5 represents that the activation values of the shuffled parts become 0. The result of the ablation
experiment is shown in Fig. 5-(b). Eqn. 5 is applied to all ss convolutions in each block and the
biggest drop of the classification performance happens at the ablation of conv4 4. It indicates that it
is useful to use the information outside of the regular convolution’s RF between the middle and high
layers. The classification performance is degraded even if the ablation is applied to the first bottle-
neck (i.e., conv2 1). This result implies that the information outside of the regular convolution’s RF
is useful even at low layers.

6 CONCLUSION

In this work, we propose spatially shuffled convolution (ss convolution) to incorporate the function
of horizontal connections in the regular convolution. The spatial shuffling is simple, lightweight,
and requires no extra learnable parameters. The experimental results demonstrate that ss convolution
captures the information outside of the regular convolution’s RF even in lower layers. The results
and our analyses also suggest that using distant information (i.e., non-local) is effective for the
regular convolution and improves classification performance across various CNNs.
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A APPENDIX

A.1 RESULTS OF LAYERWISE RECEPTIVE FIELD

The receptive fields of all layers are shown in Fig. 6, 7 and 8.
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(a) conv2 1 (b) conv2 2 (c) conv2 3 (d) conv3 1

(e) conv3 2 (f) conv3 3 (g) conv3 4 (h) conv4 1

(i) conv4 2 (j) conv4 3 (k) conv4 4 (l) conv4 5

(m) conv4 6 (n) conv5 1 (o) conv5 2 (p) conv5 3

Figure 6: The receptive field of ImageNet-1k pre-trained ResNet50. The red color indicates that
the pixel there changes features inside the blue box, and the white color represents that features are
invariant even if the pixel there changes the value itself. Those images are the receptive field of all
layers and the name of the layer is described in Table 5
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(a) conv2 1 (b) conv2 2 (c) conv2 3 (d) conv3 1

(e) conv3 2 (f) conv3 3 (g) conv3 4 (h) conv4 1

(i) conv4 2 (j) conv4 3 (k) conv4 4 (l) conv4 5

(m) conv4 6 (n) conv5 1 (o) conv5 2 (p) conv5 3

Figure 7: The receptive field of ImageNet-1k pre-trained ResNet50 with ss convolutions. The red
color indicates that the pixel there changes features inside the blue box, and the white color repre-
sents that features are invariant even if the pixel there changes the value itself. Those images are the
receptive field of all layers and the name of the layer is described in Table 5
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(a) conv2 1 (b) conv2 2 (c) conv2 3 (d) conv3 1

(e) conv3 2 (f) conv3 3 (g) conv3 4 (h) conv4 1

(i) conv4 2 (j) conv4 3 (k) conv4 4 (l) conv4 5

(m) conv4 6 (n) conv5 1 (o) conv5 2 (p) conv5 3

Figure 8: The receptive field of ImageNet-1k pre-trained SEResNet50. The red color indicates that
the pixel there changes features inside the blue box, and the white color represents that features are
invariant even if the pixel there changes the value itself. Those images are the receptive field of all
layers and the name of the layer is described in Table 5
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A.2 EXAMPLE OF CODE

The code of spatially shuffled convolution is shown in Listing 1. It is written in python with Pytorch
(Paszke et al., 2017) of 1.0.1.post2 version. The training and model codes will be available online
after the review.

1 i m p o r t t o r c h
2
3
4 c l a s s SSConv2d ( t o r c h . nn . Module ) :
5
6 d e f i n i t ( s e l f , i n p l a n e s , o u t p l a n e s , k e r n e l s i z e =3 , s t r i d e =1 , padd ing =1 , b i a s =None ,

g r ou ps =1 , d i l a t i o n =1 , a l p h a = 0 . 0 4 ) :
7 s u p e r ( SSConv2d , s e l f ) . i n i t ( )
8 s e l f . conv = t o r c h . nn . Conv2d ( i n p l a n e s , o u t p l a n e s , k e r n e l s i z e = k e r n e l s i z e , s t r i d e =

s t r i d e , padd ing = padding , g ro up s = groups , d i l a t i o n = d i l a t i o n , b i a s = b i a s )
9 s e l f . a lpha , s e l f . g ro up s = a lpha , g ro up s

10
11 d e f c r e a t e s h u f f l e i n d i c e s ( s e l f , x ) :
12 , i n p l a n e s , h e i g h t , w id th = x . s i z e ( )
13 s e l f . s h u f f l e u n t i l h e r e = i n t ( i n p l a n e s ∗ s e l f . a l p h a )
14 # i f s e l f . s h u f f l e u n t i l h e r e = 0 , t h e n i t ’ s e x a c t l y same as r e g u l a r c o n v o l u t i o n
15 i f s e l f . s h u f f l e u n t i l h e r e >= 1 :
16 s e l f . r e g i s t e r b u f f e r ( ’ r a n d o m i n d i c e s ’ , t o r c h . randperm ( s e l f . s h u f f l e u n t i l h e r e ∗

h e i g h t ∗ wid th ) )
17
18 @ s t a t i c m e t h o d
19 d e f g r o u p ( s h u f f l e d x , n o n s h u f f l e d x ) :
20 ba tch , ch ns , h e i g h t , w id th = n o n s h u f f l e d x . shape
21 , ch s , , = s h u f f l e d x . shape
22 l e n g t h = i n t ( c h n s / c h s )
23 r e s i d u e = c h n s − l e n g t h ∗ c h s
24 # s h u f f l e d x i s i n t e r l e a v e d
25 i f r e s i d u e == 0 :
26 r e t u r n t o r c h . c a t ( ( s h u f f l e d x . unsqueeze ( 1 ) , n o n s h u f f l e d x . view ( ba tch , l e n g t h , ch s

, h e i g h t , w id th ) ) , 1 ) . view ( ba tch , c h n s + ch s , h e i g h t , w id th )
27 e l s e :
28 r e t u r n t o r c h . c a t ( ( t o r c h . c a t ( ( s h u f f l e d x . unsqueeze ( 1 ) , n o n s h u f f l e d x [ : , r e s i d u e : ] .

view ( ba tch , l e n g t h , ch s , h e i g h t , w id th ) ) , 1 ) . view ( ba tch , c h n s + c h s − r e s i d u e , h e i g h t ,
w id th ) , n o n s h u f f l e d x [ : , : r e s i d u e ] ) , 1 )

29
30 d e f s h u f f l e ( s e l f , x ) :
31 i f s e l f . s h u f f l e u n t i l h e r e >= 1 :
32 # s s c o n v o l u t i o n
33 s h u f f l e d x , n o n s h u f f l e d x = x [ : , : s e l f . s h u f f l e u n t i l h e r e ] , x [ : , s e l f .

s h u f f l e u n t i l h e r e : ]
34 ba tch , ch , h e i g h t , w id th = s h u f f l e d x . s i z e ( )
35 s h u f f l e d x = t o r c h . i n d e x s e l e c t ( s h u f f l e d x . view ( ba tch , −1) , 1 , s e l f . r a n d o m i n d i c e s

) . view ( ba tch , ch , h e i g h t , w id th )
36 i f s e l f . g ro ups >= 2 :
37 r e t u r n s e l f . g r o u p ( s h u f f l e d x , n o n s h u f f l e d x )
38 e l s e :
39 r e t u r n t o r c h . c a t ( ( s h u f f l e d x , n o n s h u f f l e d x ) , 1 )
40 e l s e :
41 # r e g u l a r c o n v o l u t i o n
42 r e t u r n x
43
44 d e f f o r w a r d ( s e l f , x ) :
45 i f h a s a t t r ( s e l f , ’ r a n d o m i n d i c e s ’ ) i s F a l s e :
46 # c r e a t e random p e r m u t a t i o n m a t r i x a t i n i t i a l i z a t i o n
47 s e l f . c r e a t e s h u f f l e i n d i c e s ( x )
48 # s p a t i a l s h u f f l i n g
49 x = s e l f . s h u f f l e ( x )
50 # r e g u l a r c o n v o l u t i o n
51 x = s e l f . conv ( x )
52 r e t u r n x

Listing 1: Implementation of Spatially Shuffled Convolution
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