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ABSTRACT

Relational reasoning methods based on graph networks are currently state-of-the-
art models for Visual Question Answering (VQA) tasks involving real images.
Although graph networks are used in these models to enrich visual representations
by encoding question-adaptive inter-object relations, these simple graph networks
is arguably insufficient to perform visual reasoning for VQA tasks. In this paper,
we propose a Reasoning-Aware Graph Convolutional Networks (RA-GCN) that
goes one step further towards visual reasoning for GCNs. Our first contribution
is the introduction of visual reasoning ability into conventional GCNs. Secondly,
we strengthen the expressive power of GCNs via introducing node-sensitive kernel
parameters based on edge features to address the limitation of shared transforma-
tion matrix for each node in GCNs. Finally, we provide a novel iterative reasoning
network architecture for solving VQA task via embedding the RA-GCN module
into an iterative process. We evaluate our model on the VQA-CP v2, GQA and
Clevr dataset. Our final RA-GCN network successfully achieves state-of-the-art
accuracy which is 42.3% on the VQA-CP v2, and highly competitive 62.4% ac-
curacy on the GQA, as well as 90.0% on val split of Clevr dataset.

1 INTRODUCTION

Since the Convolutional Neural Networks (CNNs) have successuflly tackled many classic computer
vision problems such as image classification (Krizhevsky et al., 2012) (Simonyan & Zisserman,
2014), object detection (He et al., 2017) (Ren et al., 2015a) and generation (Radford et al., 2015),
generalizing CNNs to inputs with graph-like structures is an important topic in the field of deep
learning. Graph Neural Networks (GNNs) were introduced in Kipf & Welling (2016) Scarselli
et al. (2008) as a common solution to handle arbitrary graph data. Beyond GNNs’ outstanding
performances when applied to 3D mesh deforamtion (Ranjan et al., 2018), image captioning (Yao
et al., 2018), scene understanding (Yang et al., 2018), GNNs have also been successfully used for
Visual Question Answering (VQA) task (Li et al., 2019) (Norcliffe-Brown et al., 2018b) (Hu et al.,
2019). VQA requires a high level understanding of images and questions and is often considered to
be a good proxy for visual reasoning. However, like the CNNs, it is not straightforward to use GNNs
in a situation where a high level of reasoning is required. In this paper, we investigate the usage of
GNNs for visual reasoning requried by VQA task, which is a core problem of comuter vision tasks
in a lot of real-world applications.

How should we build a model based on GNNs to perform reasoning in VQA task? Recently, most
state-of-the-art approaches based on graph networks to VQA (Cadene et al., 2019) (Li et al., 2019)
(Norcliffe-Brown et al., 2018b) (Hu et al., 2019), are focusing on encoding question-adaptive inter-
object relations to enrich visual representations via different graph networks. Figure 1 shows an
overview of the framwork of methods mentioned above. Hu et al. (2019) enhances each object fea-
tures in the scene with a relational contextualized feature collected by multiple iterations of meassage
passing between objects. Cadene et al. (2019) provides an iterative reasoning process of a MuRel
cell which is designed to encode interactions between question and image objects. Li et al. (2019)
adopts a graph attention network to learn multi-type question-adaptive relation representations, in
order to enrich visual representations. Norcliffe-Brown et al. (2018b) constructs question-adaptive
graph structure and uses a spatial GCN to learn the visual representaions. We stress that the enriched
visual features from above methods will then fuse with question embeddings via a multimodal fu-
sion module to produce a joint representation, which is used in the answer prediction. Without the
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Figure 1: Overview of the framwork of the current Relational reasoning networks based on graph
networks.

last multimodal fusion module, those methods will lost huge performance. To some extent, the
graph networks adopted by above approaches are mainly responsible for learning question-adaptive
inter-object relationships instead of visual reasoning.

In this work, we propose a novel Reasoning-Aware Graph Convolutional Network (RA-GCN) that
goes one step further towards visual reasoning for GCNs. Our first contribution is to introduce
the RA-GCN module which achieves visual reasoning capability to modulate visual representations
based on question information. Our second contribution is to introduce node-sensitive kernel pa-
rameters based on edge features to address the limitation of shared transformation matrix for each
node in GCNs. By building edge features to capture relationships between nodes and providing
node-specific kernel parameters, the expressive power of model visual feature patterns is enhanced.
Our last contribution is to provide a novel iterative reasoning network architecture for solving VQA
task via embedding the RA-GCN module into an iterative process.

In the experments, we provide various ablative studies to validate our RA-GCN module and the
iterative reasoning architecture. By evaluating our model on the VQA-CP v2 (Agrawal et al., 2018),
GQA (Hudson & Manning, 2019) and Clevr (Johnson et al., 2017) dataset, our model remarkably
achieves state-of-the-art accuracy which is 42.3% on the VQA-CP v2, and highly competitive 62.4%
accuracy on the GQA and 90.0% on val split of Clevr dataset.

2 RELATED WORK

2.1 VISUAL QUESTION ANSWERING

The current dominant framework for VQA systems contains an image encoder, a question encoder,
multimodal fusion, and an answer predictor. In,Ren2015FasterRTstead of using CNN-based feature
extractors to obtain features, Yang et al. (2015); Fan & Zhou (2018); Ren et al. (2015b); Malinowski
et al. (2018) apply various image attention machanism to locate regions that are relevant to the
question. Besides, Lu et al. (2016); Nam et al. (2016); Fan & Zhou (2018) carry out question-guided
image attention and image-guided question attention to merge knowledge from both visual and
textual modalities in the encoding stage, learning a better representation of the question. In addition,
some works Li et al. (2018; 2017); Wu et al. (2016) explored high-level semantic information in
the image, attributes, for example captions and visual relation facts. These methods applied VQA-
independent models to obtain semantic knowledge, while Lu et al. (2018) built a Relation-VQA
dataset and directly mined VQA-specific relation facts to feed additional semantic information to
the model.

2.2 GRAPH CONVOLUTIONAL NETWORKS

In the field of deep learning, generalizing CNNs to inputs with graph-like structures is an important
topic. The principle of constructing graph CNNs (GCNs) on graph generally follows two streams:
the spectral perspective Kipf & Welling (2016)Defferrard et al. (2016) and the spatial perspective
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Monti et al. (2017)Velickovic et al. (2018)Boscaini et al. (2016). Our work belongs to the second
stream, where the convolution filters are applied diretly on the graph nodes and their neighbors.

Spatial GCNs tend to be more engineered as they require the definition of a node ordering and a con-
volution filter. Several approaches have been proposed to learn graph structures via learning edge
weights based on nodes. Monti et al. Monti et al. (2017) provided a spatial GCNs which learns edge
weights based on a mixture of Gaussians of nodes’ spatial distance. Graph Attention Networks were
proposed in Velickovic et al. (2018), which performs an attention operation on node neighbours
to calculate attention weights as edge weights. The question-adaptive edge weights introduced in
Norcliffe-Brown et al. (2018a) is the most related work to ours but with following differences. The
work Norcliffe-Brown et al. (2018a) computes the similarities of two joint embedding vectors, ob-
tained by performing a non-linear function on the concatenation of question and node feature, as
their edge weights, while we use a simple neural network working on edge features to calculate
edge weights.

3 REASONING-AWARE GRAPH CONVOLUTIONAL NETWORKS

Our VQA approach is depicted in Figure 2. Given an image v ∈ I and a question q ∈ Q, we want
to predict an answer â ∈ A that matches the ground truth answer a∗. As common practice in the
VQA literature, this can be defined as a classification problem:

â = argmax
a∈A

pθ(a|v, q) (1)

where pθ is our trained model. In our system, the image is represented by a set of objects
V = {vi}Ki=1, where each object vi is associated with visual feature vector vi ∈ Rdv and a bounding-
box spatial coordinates bi. Each bi = [x, y, w, h] corresponds to 4-dimensional spatial coordinate,
where (x, y) denotes the coordinate of the top-left point and (h,w) is the height, width of the bound-
ing box. Note that x and w (respectively y and h) are normalized by the width (resp. height) of the
image. For the question, we adopt dynamic RNN with a GRU cell to provide a sentence embedding
q ∈ Rdq (dq = 1024 in our experiments) as suggested in Norcliffe-Brown et al. (2018b).

In Section 3.1, we provide the background of GCNs and a feature-wise linear modulation (FiLM)
transformation approach (Perez et al., 2017). Next, in Section 3.2, we present the RA-GCN module,
a novel graph convolution network that learns to perform visual reasoning operations by blending
conditional question information into the set of spatially grounded visual representations. Finally,
in Section 3.3, by leveraging the reasoning power of RA-GCN module, a novel architecture is es-
tablished by iterating through the RA-GCN module to reason about the visual representations with
respect to a question.

3.1 PRELIMINARIES

GCN. We will start by a brief recap of the ’vanilla’ as proposed in Kipf & Welling (2016). A graph
is represented as G = {V, E} where V is the set of K nodes and E are edges, while xli ∈ RDl

and xl+1
i ∈ RDl+1 are the feature of node xi before and after the l-th convolution respectively.

Generally, there has two steps to perform a graph convolutional filter on node xi. First, Node
representations are transformed by a learnable parameter matrix W ∈ RDl+1×Dl . Second, node xi
gathers these transformed node representations from its neighbour nodes j ∈ N (i), followed by a
non-linear function (ReLU). If node representations are collected into a matrix Xl ∈ RDl×K , the
convolutional operation can be written as:

Xl+1 = σ
(
WXlÃ

)
, (2)

where Ã is symmetrically normalized from A in conventional GCNs. A ∈ [0, 1]K×K is the adja-
cency maxtrix of G, and we have aij = 1 for node j ∈ N (i) and aii = 1.

FiLM. Feature-wise linear modulation (FiLM) transformation approach (Perez et al., 2017) is a
general-purpose conditioning method for granting neural networks the reasoning ability based on
conditioning information. Specifically, it modulate one feature via a simple, feature-wise transfor-
mation based on another domain feature. More formally, FiLM learns functions f and h which
output γi,c and βi,c as a function of condition encoding xi:

γi,c = fc(xi) βi,c = hc(xi), (3)
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Figure 2: RA-GCN network. The RA-GCN network performs visual reasoning by iterating through
several RA-GCN modules and concatenates all the global pooling information from each module as
the last vector feature for classification.

where γi,c and βi,c modulate features Fi,c, whose subscripts refer to the ith input’s cth feature, via
a feature-wise affine transformation:.

FiLM(Fi,c|γi,c, βi,c) = γi,cFi,c + βk,c. (4)

3.2 RA-GCN MODULE

The RA-GCN module takes as input a set of K visual features vi ∈ Rdv , along with their bound-
ing box coordinates bi. Before using a GCN filter to learn representation for each object, we need
construct a graph (adjacency matrix) of image objects based on those relationships among objects.
It is natural that graph convolutions should focus not only on the objects, but also on the object
ralationships that are the most relevant to the question. Hence, we first provide a graph learner mod-
ule to introduce a sparser graph, in which relationships are learned based on question-guided edge
features. With the learned question-specific sparse graph, we provide a novel GCN filter which not
only learns to capture semantic information between objects but is also able to perform conditional
visual reasoning.

Graph learner

The goal of this sub-module is to produce a sparse graphical representations of objects based on a
question. Specifically, we learn to define the most k-relevant nodes for each node as its neighbours
based on question. This sparsity constraint make sense as most VQA questions requires attending
only to a small subset of the graph nodes and it can also reduce the amount of computation. As the in-
teractive dynamics between different objects is very crucial for answering semantically-complicated
questions. Here, we try to exploit both geometric and semantic relationships between objects via
explictly constructing edge features concated by question-adaptive semantic edge features and geo-
metric edge features. Such edge features allows the storing of more specific information about what
precise characteristic of a particular relationship is important in a given question context.

We seek to construct a adjacency matrix A ∈ RK×K and each aij resprents the importance of edge
eij . For building semantic feature of each edge eij ∈ E , we first fuse the neighbour node features vi
and vj as Fuse(vi,vj). Then we choose the FiLM method to modulate these fused features based
on question feature q as, esij = FiLM(Fuse(vi,vj)|q). The reasoning ability of FiLM layer can
ensure that the semantic edge features is question-specific.

Zhuang et al. (2017) has shown that the relative spatial feature between two objects is a
strong representation to encode their relationship. Similarly, we model the geometric edge
features between node vi and vj based on their relative spatial information. Suppose the
top-left coordinate, bottom-right coordinate, width and height of node vi are represented
as [xtli , ytli , xbri , ybri , wi, hi], then the geomtric edge features are represented as, egij =

[
xtli
−xtlj

wi
,
ytli−ytlj

hi
,
xbri
−xbrj

wi
,
ybri−ybrj

hi
,
wj

wi
,
hj

hi
,
wj∗hj

wi∗hi
,
wj+hj

wi+hi
]. Finally, the edge features are rep-

resented as eij = [esij , e
g
ij ].
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After constructing edge features, we provide a simple discriminative network F e consisting of two
fully-connected layers and a softmax layer to measure its importance aij = F e(eij). Such definition
does not impose any constraints on the graph sparsity, and therefore yield a fully connected adja-
cency matrix. Like the works (Norcliffe-Brown et al., 2018b) (Gao & Ji, 2019), we adapt ranking
strategy for each node to learn a sparse heighbourhood system:

N (i) = topm(ai), (5)

where topm returns the indices of the m largest values of an input vector, and ai denotes the ith row
of the adjacency matrix. For each row ai, we choose a non-linear function to normalizes the subset
{aij , j ∈ N (i)}, have aii = 1 and aij = 0 for j ∈ N (i). In other words, the neighbourhood system
of a given node will correspond to the nodes which it has the strongest connections to.

Conditioned Graph Convolution

Given a question specific graph structure, we then exploit a novel graph convolution filter to learn
new object representations that are informed by performing visual reasoning among a neighbouhood
system tailored to answer the given question. Except for adding the reasoning ability, we enhance
the conventional GCN’s representation power by addressing the limitaion of shared transformation
matrix for each node.

First, motivated by Perez et al. (2017), we use the FiLM layer to update each node features in the
context of question as FiLM(Xl|q) ∈ RDl+1 . Although such FiLM transformation is still shared
for each node, the question specific way enables the learning of each node’s representation to explore
the most relevant information with question and fuse question information into node features. Then
the Eq. 2 is transformed to:

Xl+1 = σ
(
FiLM(Xl|q)Ã

)
. (6)

Second, in order to make the graph convolution work on nodes with arbitrary topologies, the learned
kernel matrix W is shared for all nodes. In contrast, CNN learns a different transformation matrix
for each position inside the kernel and owns expressive power to model feature patterns. By building
on the concept of CNN, we try to adapt node-specific kernels in our graph convolution filter. Su
et al. (2019) solves the limitation of spatially shared weights in CNN via multipling filter weights
with a spatially varying kernel. The spatially varying kernel is generated by learnable, locally pixel
features. Motivated by this, we use the edge features to genearate node-specific kernel parameters,
which are spatial sensitive.

Specifically, we use a simple neural network Fw to convert edge features into kernel parame-
ters as mij ∈ RDl+1 and then perform channel-wise multiplication with updated node feature
FiLM(xlj |q). The generated kernel parameters not only make the transformation of node features
node-adaptive, but also can fully explore semantic interaction as well as graph structures information
into node representation. The network Fw consists of two fully-connected layers and a tanh layer
which limits the element of weight vector to range [−1, 1] to avoid increasing the scale of output
features. All the kernel parameters can be collected into a tensor P ∈ RK×K×Dl+1 . Then Eq. 6 is
transformed to:

Xl+1 = ‖Dl+1

d=1 σ
(
FiLMd(X

l|q) ∗ (Pd � Ã)
)
, (7)

where ‖ represents channel-wise concatenation, FiLMd outputs the channel d of output features
and Md ∈ RK×K is the d-th slice across channel in M.

The learnable weighting matrix based on edge features introduced in Zhao et al. (2019) is the most
related work to ours but with following sharp difference. Our design is based on the concept of
CNN that has espressive power to model feature patterns because the kernal parameters can be both
positive and negative. So we use a tanh layer to generate the kernel paramters. However, Zhao
et al. (2019) use edge features to genearate a wighting mask which is always positive as they use a
sofamax layer. As a result, our model is more similar to CNN and owns better capability to fit the
data mapping, showed in Section.

3.3 NETWORK ARCHITECTURE

Our network architecture mimics a simple form of iterative reasoning by leverage the reasoning
power of our RA-GCN module to iteratively adjust visual features based on question information
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to answer questions. As we can see in Figure 2, the object features {vi} are updated by RA-GCN
module through multiple steps. More specifically, for each step t = 1..T where T is the total number
of steps, a RA-GCN module processes and updates the object features as follows:

{vti} = RAGCN({vt−1i }; {bi},q) (8)

At step t = T , the object representations {vti} are aggregated with a global pooling operation to
provide a single vector v ∈ Rdv . This vector contains information about all the objects, their spatial
and semantic relations conditioned on questions for current step T .

Like the CNN architecures, the information about the inputs or gradients can vanish when our archi-
tecture becomes increasingly deep. We opt to use dense-wise connections proposed in Huang et al.
(2017) to concatenate all the global pooled features from each RA-GCN module as the last vector
feature. Without fusing this vector feature with questin information, we directly use a classifier layer
consisting of 2-layers MLP with ReLU actiations to predict the answer.

We stress that our model relies solely on RA-GCN module to use question information to modulate
the object features. This method distinguishes itself from previous methods (Cadene et al., 2019)
(Hu et al., 2019) (Li et al., 2019) Norcliffe-Brown et al. (2018b) which fuse object features and
question information into a single embedding via element-wise produce, concatenation, attention,
and/or more advanced methods.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: We evaluate our proposed model on VQA-CP v2 (Agrawal et al., 2018), GQA (Hudson &
Manning, 2019) and Clevr (Johnson et al., 2017) datasets for question-conditioned visual reasoning.
Although VQA 2.0 (Goyal et al., 2017) dataset is the most used dataset, it still contains some kinds
of language bias. Here we adapt VQA-CP v2 dataset, a derivation of the VQA 2.0 (Goyal et al.,
2017) dataset, which was introduced to evaluate and reduce the question-oriented biases in the VQA
models. In particular, the distribution of answers differs between training and test splits. This dataset
can denonstrate the generalization ability of our model. We provide a fine grained analysis on the
test set. Then, we use the GQA dataset to further demonstrate our model’s visual reasoning capacity
as the VQA dataset pays less attetion to reasoning, since 19.5% of its questions have relations, 8%
have spatial reasoning questions and only 3% have compoistional questions. while, the GQA dataset
makes much effort on generating questions that need multi-step reasoning and balancing the answer
distributions to overcome the question-condition biases. Finally, we also use the Clevr dataset to
construct a more detailed analysis of our model’s performance on very complicated relational ques-
tions, such as what number of other objects are there of the same size as the brown shiny object. The
(Shrestha et al., 2019) appoints that a good VQA model should be capable of datasets across from
natural images to synthetic datasets that test reasoning and most methods do not generalize across
the two domains.

Hyper-parameters: No matter which dataset we use, we both adapt the same GRU based question
encoder provided in Norcliffe-Brown et al. (2018b). For the VQA-CP v2 dataset, we use the Bottom-
up features provided by Norcliffe-Brown et al. (2018b) to represent our image as a set of 36 localized
regions. We also use the same encoder from Norcliffe-Brown et al. (2018b) to embed the question
tokens. For the GQA dataset, we adopt the same preprocess operation to process dataset as the Hu
et al. (2019). We use the object detection features of size Ndet × 2048 (where Ndet is the number
of detected objects in each image with a maximum of 100 per image) and object bounding box
coordinates provided by GQA dataset itself. The embedding process of question tokens is same
as Hu et al. (2019). For the Clevr dataset, we use the 14 × 14 × 1024 convolutional grid features
extracted from the C4 block of an ImageNet-pretrained ResNet-101 network (He et al., 2016) as the
local features xloc (i.e. each xloc is a 1024-dimensional vector and K = 196). We adopt the same
embedding process as Perez et al. (2017) to embed question tokens. For all datasets, we both use
Adam as optimizer, set batchsize as 64 and learning rate as 3e− 4.
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Table 1: Ablation study of RA-GCN on the impacts of FiLM transformation and node-specific
kernel paramerters

FiLM transformation node-specific parameters VQA-CP v2 GQA Clevr

X X 42.3 62.4 90.0
X × 40.3 59.3 87.6
× X 32.5 43.2 65.6
× × 31.3 44.7 63.2

Table 2: Number of iterations. Impact of the number of steps in the iterative process on VQA-CP
v2 test split.

Model 1 step 2 steps 3 steps 4 steps

RA-GCN 39.8 41.0 42.3 41.6

4.2 MODEL VALIDATION

Ablation study

For all the ablation studies, we set iterative reasoning steps as three since such setting make us
achieve the state-of-the-art performance in VQA-CP v2 dataset.

In Table 1, we compare four ablated instances of RA-GCN module. First, we validate the benifits of
FiLM transformation. Removing it from RA-GCN module will lead huge loss of its accuray across-
ing all the datasets. As our network does not include multimodal fusion module, removing the FiLM
transformation will let our model lack question information. It make sense that the performance will
decreases a lot while lacking FiLM layer. Second, we validate the benifits of FiLM transformation.
When the FiLM transformation layer is added, using the node-specific kernel parameters will leads
to higher accuracy on every datasets.

Number of reasoning steps

In Table 2, we perform an analysis ot the iterative process. We train four different RA-GCN networks
on the VQA-CP v2 train split, each with a different number of iterations over the RA-GCN module.
Performance is reported on test split. Networks with two and three steps respectively provide a gain
of +1.2 and +2.5 in overall accuracy over the network with a single step. An intersting aspect of
the iteractive process of RA-GCN is that network with 4 steps reports a decrease in overall accuracy
over the network with 3 steps while the amount of parameters increase. The reason behinds this
maybe is a GCNs with multiple convolutional layers will suffer from an over-smoothing problem
(Luan et al., 2019).

4.3 STATE OF THE ART COMPARISON

VQA-CP v2 In Table 3, we compare our model to the most recent contributions on the VQA-CP
v2 dataset and our RA-GCN model achieves a new remarkably overall state-of-the-art performance.
We observe that RA-GCN provides a substantial gain over other methods. Given the different dis-
tribution between train and val splits, models that only focus on linguistic biases to answer the
question are systematically penalized on their test splits. This property of VQA-CP v2 implies that
our RA-GCN method is less prone to question-based overfitting.

Among these methods in the Table 3, LCGN and LCGS models are trained by ourself as they have
not been originly evaluated on the VQA-CP v2 dataset. The LCGN method surports realtional rea-
soning and improves performance across GQA and Clevr datasets. The LCGS approach combines
a graph learner and spatial graph convolutions, which is the mostly similar to our method. So we
train them using Bottom-up region representations to fully demonstrate our method’s effectivness.
Interestingly, our model surpasses MUREL, ReGAT and LCGN methods, which correspond to some
of the latest development in relational reasoning models for VQA. This tends to indicate our RA-
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Table 3: State-of-the-art comparison on the VQA-CP v2 dataset. Results on test split. All these
models were trained on the same training set.

Model Bottem up Accuracy

LCGS (Norcliffe-Brown et al., 2018b) X 39.4
MuRel (Cadene et al., 2019) X 39.54
ReGAT (Li et al., 2019) X 40.42
LCGN (Hu et al., 2019) X 40.21
RA-GCN (ours) X 42.3

Table 4: State-of-the-art comparison on the GQA dataset. Results on val split. All these models
were trained on the same training set.

Model object features from detection Accuracy

CNN+LSTM (Hudson & Manning, 2019) X 49.2
MAC (Hudson & Manning, 2018) × 57.5
LCGN (Hu et al., 2019) X 63.8
RA-GCN (ours) X 62.4

GCN model has better relational reasoning capability. Moreover, our model greatly improves over
LCGS model where the region features are refined with spatial graph convolutions. This show the
competitive advantages of our RA-GCN.

GQA In Table 4, we compare our model to the contributions on the GQA dataset. CNN+LSTM
and Bottom-Up are simple fusion approaches between the text and the image, using the released
GQA object detection features respectively. The MAC model is a multi-step attention and memory
model with specially designed control, reading and writing cells, and is trained on the same object
detection features as our model. Our approach outperforms the MAC model that performs multi-
step inference. This shows our RA-GCN provides much stronger visual reasoning ability on GQA
dataset. Finally, even though we did not extensively tune the hyperparameters of our model, our
overal score on the val split is highly competitive with state-of-the-art methods.

Clevr One of the core aspect of VQA models lies in their ability to handle different datasets, espe-
cially with cross datasets of natural images and synthetic images that many methods do not gener-
alize well. In Table 5, we compare our model to the contributions on the Clevr dataset. Although
our model only achieve 90.0 score which is much less than LCGN model’s 97.9, there may be two
factors in our model affecting our accuray. The first factor is our RA-GCN module is originly de-
signed to handle graph inputs, not the convolutional grid features provided in Clevr dataset. The
size of convolutional grid features is 14 ∗ 14 ∗ 1024, which leads to 196 objects if we treat the grid
features as object features. Due to the limitaion of our gpu resources, we can not train our model
to handle 196 objects per image at the same time. So we use a convolution filter with stride 2 to
downsample the grid features to size 7 ∗ 7. For above reasons, it is not fair to compare our result
with other methods. However, our model still achieves 90.0 scores, meaning our RA-GCN model is
able to perform visual reasoning well.

5 CONCLUSION

In this paper, we introduced RA-GCN, a resoning-aware graph convolutional network for Visual
Question Answering task. Our system is based on the concept that FiLM layer can infer neural
networks reasoning ability and node-sensitive transformation matrix can augments the expressive
power of GCNs. To the best of our knowledge, RA-GCN is the first GCN designed for visual
reasoning tasks.

We validated our approach on three challenging datasets: VQA-CP v2, GQA, and Clevr. We ex-
hibted various ablation studies to validate our RA-GCN model. Our final RA-GCN network achieves
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Table 5: State-of-the-art comparison on the Clevr dataset. Results on val split. All these models
were trained on the same training set.

Model convolutional grid features Accuracy

LCGN (Hu et al., 2019) X 97.9
MAC (Hudson & Manning, 2018) X 98.9
RA-GCN (ours) X 90.0

state-of-the-art performance in VQA-CP v2, and is very competitive with state-of-the-art perfor-
mance on GQA. Additonally, our model is capable of handling both datasets of natural images and
synthetic images.
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