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ABSTRACT

Canonical Correlation Analysis (CCA) is widely used for multimodal data analy-
sis and, more recently, for discriminative tasks such as multi-view learning; how-
ever, it makes no use of class labels. Recent CCA methods have started to ad-
dress this weakness but are limited in that they do not simultaneously optimize
the CCA projection for discrimination and the CCA projection itself, or they are
linear only. We address these deficiencies by simultaneously optimizing a CCA-
based and a task objective in an end-to-end manner. Together, these two objectives
learn a non-linear CCA projection to a shared latent space that is highly correlated
and discriminative. Our method shows a significant improvement over previous
state-of-the-art (including deep supervised approaches) for cross-view classifica-
tion (8.5% increase), regularization with a second view during training when only
one view is available at test time (2.2-3.2%), and semi-supervised learning (15%)
on real data.

1 INTRODUCTION

CCA is a popular data analysis technique that projects two data sources into a space in which they
are maximally correlated (Hotelling, 1936; Bie et al., 2005). It was initially used for unsupervised
data analysis to gain insights into components shared by the two sources (Andrew et al., 2013; Wang
et al., 2015a; 2016). CCA is also used to compute a shared latent space for cross-view classification
(Kan et al., 2015; Wang et al., 2015a; Chandar et al., 2016; Chang et al., 2018), for representation
learning on multiple views that are then joined for prediction (Sargin et al., 2007; Dorfer et al.,
2016b), and for classification from a single view when a second view is available during training
(Arora & Livescu, 2012). While some of the correlated CCA features are useful for discriminative
tasks, many represent properties that are of no use for classification and obscure correlated informa-
tion that is beneficial. This problem is magnified with recent non-linear extensions of CCA, imple-
mented via neural networks (NNs), that make significant strides in improving correlation (Andrew
et al., 2013; Wang et al., 2015a; 2016; Chang et al., 2018) but often at the expense of discriminative
capability (cf. §4.1). Therefore, we present a new deep learning technique to project the data from
two views to a shared space that is also discriminative.

Most prior work that boosts the discriminative capability of CCA is linear only (Lee et al., 2015;
Singanamalli et al., 2014; Duan et al., 2016). More recent work using NNs still remains limited
in that it optimizes discriminative capability for an intermediate representation rather than the final
CCA projection (Dorfer et al., 2016b), or optimizes the CCA objective only during pre-training, not
while training the task objective (Dorfer et al., 2018). We advocate to jointly optimize CCA and a
discriminative objective by computing the CCA projection within a network layer while applying a
task-driven operation such as classification. Experimental results show that our method significantly
improves upon previous work (Dorfer et al., 2016b; 2018) due to its focus on both the shared latent
space and a task-driven objective. The latter is particularly important on small training set sizes.

While alternative approaches to multi-view learning via CCA exist, they typically focus on a recon-
struction objective. That is, they transform the input into a shared space such that the input could be
reconstructed – either individually or reconstructing one view from the other. Variations of coupled
dictionary learning (Shekhar et al., 2014; Xu et al., 2015; Cha et al., 2015; Bahrampour et al., 2015)
and autoencoders (Wang et al., 2015a; Bhatt et al., 2017) have been used in this context. CCA-based
objectives, such as the model used in this work, instead learn a transformation to a shared space
without the need for reconstructing the input. This task may be easier and sufficient in producing a
representation for multi-view classification (Wang et al., 2015a).

1



Under review as a conference paper at ICLR 2020

Implementing a task-optimal variant of CCA required a fundamental change in formulation. We
show that the CCA objective can equivalently be expressed as an `2 distance minimization in the
shared space plus an orthogonality constraint. Orthogonality constraints help regularize NNs (Huang
et al., 2018); we present three techniques to accomplish this. While our method is derived from
CCA, by manipulating the orthogonality constraints, we obtain deep CCA approaches that compute
a shared latent space that is also discriminative.

Our family of solutions for supervised CCA required a crucial and non-trivial change in formulation.
We demonstrate the effectiveness and versatility of our model for three different tasks: 1) cross-
view classification on a variation of MNIST (LeCun, 1998), 2) regularization when two views are
available for training but only one at test time on a cancer imaging and genomic data set with
only 1,000 samples, and 3) semi-supervised representation learning to improve speech recognition.
All experiments showed a significant improvement in accuracy over previous state-of-the-art. In
addition, our approach is more robust in the small sample size regime than alternative methods.
Overall, our experiments on real data show the effectiveness of our method in learning a shared
space that is more discriminative than previous methods for a variety of practical problems.

2 BACKGROUND

We first introduce CCA and present our task-driven approach in §3. Linear and non-linear CCA
are unsupervised and find the shared signal between a pair of data sources, by maximizing the
sum correlation between corresponding projections. Let X1 ∈ Rd1×n and X2 ∈ Rd2×n be mean-
centered input data from two different views with n samples and d1, d2 features, respectively.

CCA. The objective is to maximize the correlation between a1 = w>1 X1 and a2 = w>2 X2, where
w1 and w2 are projection vectors (Hotelling, 1936). The first canonical directions are found via

arg max
w1,w2

corr
(
w>1 X1,w

>
2 X2

)
and subsequent projections are found by maximizing the same correlation but in orthogonal di-
rections. Combining the projection vectors into matrices W1 = [w

(1)
1 , . . . ,w

(k)
1 ] and W2 =

[w
(1)
2 , . . . ,w

(k)
2 ] (k ≤ min(d1, d2)), CCA can be reformulated as a trace maximization under or-

thonormality constraints on the projections, i.e.,

arg max
W1,W2

tr(W>
1 Σ12W2) s.t. W>

1 Σ1W1 = W>
2 Σ2W2 = I (1)

for covariance matrices Σ1 = X1X
T
1 , Σ2 = X2X

T
2 , and cross-covariance matrix Σ12 = X1X

T
2 .

Let T = Σ
−1/2
1 Σ12Σ

−1/2
2 and its singular value decomposition (SVD) be T = U1diag(σ)U>2

with singular values σ = [σ1, . . . , σmin(d1,d2)] in descending order. W1 and W2 are computed from
the top k singular vectors of T as W1 = Σ

−1/2
1 U

(1:k)
1 and W2 = Σ

−1/2
2 U

(1:k)
2 where U(1:k)

denotes the k first columns of matrix U. The sum correlation in the projection space is equivalent to

k∑
i=1

corr
((

w
(i)
1

)>
X1,

(
w

(i)
2 )>X2

)
=

k∑
i=1

σ2
i , (2)

i.e., the sum of the top k singular values. A regularized variation of CCA (RCCA) ensures
that the covariance matrices are positive definite by computing the covariance matrices as Σ̂1 =
1

n−1X1X
>
1 + rI and Σ̂2 = 1

n−1X2X
>
2 + rI, for regularization parameter r > 0 and identity matrix

I (Bilenko & Gallant, 2016).

DCCA. Deep CCA adds non-linear projections to CCA by non-linearly mapping the input via a mul-
tilayer perceptron (MLP). In particular, inputs X1 and X2 are mapped via non-linear functions f1
and f2, parameterized by θ1 and θ2, resulting in activations A1 = f1(X1; θ1) and A2 = f2(X2; θ2)
(assumed to be mean centered) (Andrew et al., 2013). When implemented by a NN, A1 and A2

are the output activations of the final layer with do features. Fig. 1(a) shows the network structure.
DCCA optimizes the same objective as CCA (equation 1) but using activations A1 and A2. Reg-
ularized covariance matrices are computed accordingly and the solution for W1 and W2 can be
computed using SVD just as with linear CCA. When k = do (i.e., the number of CCA components
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Figure 1: Deep CCA architectures: (a) DCCA maximizes the sum correlation in projection space by optimizing
an equivalent loss, the trace norm objective (TNO) (Andrew et al., 2013); (b) SoftCCA relaxes the orthogonality
constraints by regularizing with soft decorrelation (Decorr) and optimizes the `2 distance in the projection
space (equivalent to sum correlation with activations normalized to unit variance) (Chang et al., 2018). Our
TOCCA methods add a task loss and apply CCA orthogonality constraints by regularizing in two ways: (c)
TOCCA-W uses whitening and (d) TOCCA-SD uses Decorr. The third method that we propose, TOCCA-ND,
simply removes the Decorr components of TOCCA-SD.

is equal to the number of features in A1 and A2), optimizing the sum correlation in the projection
space (equation 2) is equivalent to optimizing the following matrix trace norm objective (TNO)

LTNO(A1,A2) = ‖T‖tr = tr
(
T>T

)1/2
,

where T = Σ
−1/2
1 Σ12Σ

−1/2
2 as in CCA (Andrew et al., 2013). DCCA optimizes this objective

directly, without a need to compute the CCA projection within the network. The TNO is optimized
first, followed by a linear CCA operation before downstream tasks like classification are performed.
This formulation does not allow for combining directly with a supervised term.

SoftCCA. While DCCA enforces orthogonality constraints on projections W>
1 A1 and W>

2 A2,
SoftCCA relaxes them using regularization (Chang et al., 2018). Final projection matrices W1

and W2 are integrated into f1 and f2 as the top network layer. The trace objective for DCCA in
equation 1 can be rewritten as minimizing the `2 distance between the projections when each feature
in A1 and A2 is normalized to a unit variance (Li et al., 2003), leading to1 L`2 dist(A1, A2) = ‖A1−
A2‖2F . Regularization in SoftCCA penalizes the off-diagonal elements of the covariance matrix
Σ, using a running average computed over batches as Σ̂ and a loss of LDecorr(A) =

∑do

i6=i |Σ̂i,j |.
Overall, the SoftCCA loss takes the form

L`2 dist(A1,A2) + λ
(
LDecorr(A1) + LDecorr(A2)

)
.

Supervised CCA methods. CCA, DCCA, and SoftCCA are all unsupervised methods to learn a
projection to a shared space in which the data is maximally correlated. Although these methods have
shown utility for discriminative tasks, a CCA decomposition may not be optimal for classification
because features that are correlated may not be discriminative. Our experiments will show that
maximizing the correlation objective too much can degrade performance on discriminative tasks.

CCA has previously been extended to supervised settings in three ways: 1) with methods that are
linear only (Singanamalli et al., 2014; Lee et al., 2015; Kan et al., 2015; Duan et al., 2016), 2) by
maximizing the total correlation between each view and the training labels in addition to each pair
of views (Lee et al., 2015; Singanamalli et al., 2014), and 3) with Linear Discriminant Analysis
(LDA)-style approaches to encourage class separation (Kan et al., 2015; Dorfer et al., 2016b; El-

1We use this `2 distance objective in our formulation.
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madany et al., 2016).2 LDA approaches to supervision are generative rather than discriminative.
Importantly, we will show in §4.3 that encouraging class separation with an LDA-style objective
performs significantly inferior to a softmax. Further, Dorfer et al. (2016b) did not apply LDA to
the shared space itself but to the NN layer below it, and Elmadany et al. (2016) did not validate the
shared space created, only its use in multi-view classification using both views for training and test.

Dorfer et. al’s CCA Layer (CCAL) is the closest to our method. It optimizes a task loss operating
on a CCA projection; however, the CCA objective itself is only optimized during pre-training, not
in an end-to-end manner (Dorfer et al., 2018). Further, their goal is retrieval with a pairwise rank
loss, not classification. Instead of computing the CCA projection explicitly within the network, we
optimize the non-linear mapping into the shared space together with the task objective, requiring
a fundamental change in formulation. We optimize for the shared space with the `2 distance be-
tween activations (similar to SoftCCA) and propose three different ways to apply the orthogonality
constraints of CCA.

3 TASK-OPTIMAL CCA (TOCCA)

To compute a shared latent space that is also discriminative, we reformulate DCCA to add a task-
driven term to the optimization objective. The CCA component finds features that are correlated
between views, while the task component ensures that they are also discriminative. This model can
be used for representation learning on multiple views before joining representations for prediction
(Sargin et al., 2007; Dorfer et al., 2016b) and for classification when two views are available for
training but only one at test time (Arora & Livescu, 2012). In §4, we demonstrate both use cases on
real data. Our methods and related NN models from the literature are summarized in Tab. A2; Fig. 1
shows schematic diagrams.

Challenges and solutions. While DCCA optimizes the sum correlation with an equivalent loss
function (TNO), the CCA projection itself is computed only after optimization. Hence, the projec-
tions cannot be used to optimize another task simultaneously. The main challenge in developing
a task-optimal form of deep CCA that discriminates based on the CCA projection is in computing
this projection within the network – a necessary step to enable simultaneous training of both objec-
tives. We tackle this by focusing on the two components of DCCA: maximizing the sum correlation
between activations A1 and A2 and enforcing orthonormality constraints within A1 and A2. We
achieve both by transforming the CCA objective and present three methods that progressively relax
the orthogonality constraints.

We further improve upon DCCA by enabling mini-batch computations for improved flexibility and
test performance. DCCA was developed for large batches because correlation is not separable across
batches. While large batch implementations of stochastic gradient optimization can increase com-
putational efficiency via parallelism, small batch training provides more up-to-date gradient calcu-
lations, allowing a wider range of learning rates and improving test accuracy (Masters & Luschi,
2018). We reformulate the correlation objective as the `2 distance (following SoftCCA), enabling
separability across batches. We ensure a normalization to one via batch normalization without the
scale and shift parameters (Ioffe & Szegedy, 2015). Wang et al. (2016) also developed a stochastic
mini-batch solution to DCCA but handled the orthonormality constraints in a different way (dis-
cussed below).

Task-driven objective. First, we apply non-linear functions f1 and f2 with parameters θ (via MLPs)
to each view X1 and X2, i.e., A1 = f1(X1; θ1) and A2 = f2(X2; θ2). Second, a task-specific
function ftask(A; θtask) operates on the outputs A1 and A2. In particular, f1 and f2 are optimized
so that the `2 distance between A1 and A2 is minimized; therefore, ftask can be trained to operate
on both inputs A1 and A2. We combine CCA and task-driven objectives as a weighted sum with
a hyperparameter for tuning. This model is flexible, in that the task-driven goal can be used for
classification (Krizhevsky et al., 2012; Dorfer et al., 2016a), regression (Katzman et al., 2016),
clustering (Caron et al., 2018), or any other task. Other prior attempts to integrate a classifier into
deep CCA only used LDA (Kan et al., 2015; Dorfer et al., 2016b; Elmadany et al., 2016). See
Tab. A2 for an overview.

2Gatto & Dos Santos (2017) use a similar technique with LDA but apply it as a convolutional filter on a
single view; it is not a multi-view method.
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Orthogonality constraints. The remaining complications for mini-batch optimization are the or-
thogonality constraints, for which we propose three solutions, each handling the orthogonality con-
straints of CCA in a different way: whitening, soft decorrelation, and no decorrelation.

1) Whitening (TOCCA-W). CCA applies orthogonality constraints to A1 and A2. We accomplish
this with a linear whitening transformation that transforms the activations such that their covari-
ance becomes the identity matrix, i.e., features are uncorrelated. Decorrelated Batch Normalization
(DBN) has previously been used to regularize deep models by decorrelating features (Huang et al.,
2018) and inspired our solution. In particular, we apply a transformation B = UA to make B
orthonormal, i.e., BB> = I.

We use a Zero-phase Component Analysis (ZCA) whitening transform composed of three steps:
rotate the data to decorrelate it, rescale each axis, and rotate back to the original space. Each trans-
formation is learned from the data. Any matrix UεRdo×do satisfying U>U = Σ−1 whitens the
data, where Σ denotes the covariance matrix of A. As U is only defined up to a rotation, it is
not unique. PCA whitening follows the first two steps and uses the eigendecomposition of Σ:
UPCA = Λ−1/2V> for Λ = diag(λ1, . . . , λdo

) and V = [v1, . . . ,vdo
], where (λi,vi) are the

eigenvalue, eigenvector pairs of Σ. As PCA whitening suffers from stochastic axis swapping, neu-
rons are not stable between batches (Huang et al., 2018). ZCA whitening uses the transformation
UZCA = VΛ−1/2VT in which PCA whitening is first applied, followed by a rotation back to the
original space. Adding the rotation V brings the whitened data B as close as possible to the original
data A (Kessy et al., 2015).

Computation of UZCA is clearly depend on Σ. While Huang et al. (2018) used a running average
of UZCA over batches, we apply this stochastic approximation to Σ for each view using the update
Σ(k) = αΣ(k−1)+(1−α)Σb for batch k where Σb is the covariance matrix for the current batch and
α ∈ (0, 1) is the momentum. We then compute the ZCA transformation from Σ(k) to do whitening
as B = fZCA(A) = U

(k)
ZCAA. At test time, U(k) from the last training batch is used. Algorithm A1

describes ZCA whitening in greater detail. In summary, TOCCA-W integrates both the correlation
and task-driven objectives, with decorrelation performed by whitening, into

Ltask(ftask(B1), Y ) + Ltask(ftask(B2), Y ) + λ L`2 dist(B1,B2) ,

where B1 and B2 are whitened outputs of A1 and A2, respectively, and Y is the class labels. This
is a novel approach to integrating the orthogonality constraints of CCA into a NN as it is the first
to use ZCA whitening in this manner. Wang et al. (2016)’s stochastic mini-batch solution to DCCA
used nonlinear orthogonal iterations and does not state what type of whitening operation was used.

2) Soft decorrelation (TOCCA-SD). While fully independent components may be beneficial in
regularizing NNs on some data sets, a softer decorrelation may be more suitable on others. In this
second formulation we relax the orthogonality constraints using regularization, following the Decorr
loss of SoftCCA (Chang et al., 2018). The loss function for this formulation is

Ltask(ftask(A1), Y )+Ltask(ftask(A2), Y )+λ1L`2 dist(A1,A2)+λ2
(
LDecorr(A1)+LDecorr(A2)

)
.

While this solution is based on SoftCCA, our experiments (§4) will demonstrate that the task com-
ponent is essential when using the model for classification.

3) No decorrelation (TOCCA-ND). When CCA is used in an unsupervised manner, some form of
orthogonality constraint or decorrelation is necessary to ensure that f1 and f2 do not simply produce
multiple copies of the same feature. While this result could maximize the sum correlation, it is not
helpful in capturing useful projections. In the task-driven setting, the discriminative term ensures
that the features in f1 and f2 are not replicates of the same information. TOCCA-ND therefore
removes the decorrelation term entirely, forming the simpler objective

Ltask(ftask(A1), Y ) + Ltask(ftask(A2), Y ) + λL`2 dist(A1,A2) .

These three models allow testing whether whitening or decorrelation benefit a task-driven model.

Computational complexity. Due to the eigendecomposition, TOCCA-W has a complexity of O(d3o)
compared to O(d2o) for TOCCA-SD, with respect to output dimension do. However, do is typically
small (≤ 100) and this extra computation is only performed once per batch. The difference in
runtime is less than 6.5% for a batch size of 100 or 9.4% for a batch size of 30 (Tab. A4).
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Summary. All three variants are motivated by adding a task-driven component to deep CCA.
TOCCA-ND is the most relaxed and directly attempts to obtain identical latent representations. Ex-
periments will show that whitening (TOCCA-W) and soft decorrelation (TOCCA-SD) provide a ben-
eficial regularization. Further, since the `2 distance that we optimize was shown to be equivalent
to the sum correlation (cf. §2 SoftCCA paragraph), all three TOCCA models maintain the goals of
CCA, just with different relaxations of the orthogonality constraints. Our method is the first to si-
multaneously optimize for CCA and a discriminative task with end-to-end training. See Tab. A2 for
an overview.

4 EXPERIMENTS

We validated our methods on three different data sets: MNIST handwritten digits, the Carolina
Breast Cancer Study (CBCS) using imaging and genomic features, and speech data from the Wis-
consin X-ray Microbeam Database (XRMB). Our experiments show the utility of our methods for 1)
cross-view classification, 2) regularization with a second view during training when only one view is
available at test time, and 3) representation learning on multiple views that are joined for prediction.

Implementation.3 Each layer of our network consists of a fully connected layer, followed by a
ReLU activation and batch normalization (Ioffe & Szegedy, 2015). Our implementations of DCCA,
SoftCCA, and Joint DCCA/DeepLDA (Dorfer et al., 2016b) also use ReLU activation and batch
normalization. We modified CCAL-Lrank (Dorfer et al., 2018) to use a softmax function and cross-
entropy loss for classification, instead of a pairwise ranking loss for retrieval, referring to this modi-
fication as CCAL-Lce. We used the Nadam optimizer and tuned hyperparameters on a validation set
via random search; settings and ranges are specified in Tab. A3. The same hyperparameter tuning
procedure was used for our methods and those we compare with. We used Keras with the Theano
backend and an Nvidia GeForce GTX 1080 Ti.

The following experiments compare our methods with two linear methods (CCA and RCCA),
two unsupervised deep methods (DCCA and SoftCCA), and two supervised deep methods (Joint
DCCA/DeepLDA and CCAL-Lce). Many other variants exist (§2), but the ones we selected are
the current state-of-the-art in each of these classes. We did not run a direct comparison with Wang
et al. (2015a) as Chang et al. (2018) already showed that SoftCCA is superior. We chose Joint
DCCA/DeepLDA to represent supervised LDA-style CCA methods rather than comparing with all
methods in this group (Kan et al., 2015; Elmadany et al., 2016)4.

4.1 CROSS-VIEW CLASSIFICATION ON MNIST DIGITS

We formed a multi-view data set from the MNIST handwritten digit data set (LeCun, 1998). Fol-
lowing Andrew et al. (2013), we split each 28× 28 image in half horizontally, creating left and right
views that are each 14 × 28 pixels. All images were flattened into a vector with 392 features. The
full data set consists of 60k training images and 10k test images. We used a random set of up to 50k
for training and the remaining training images for validation. We used the full 10k image test set.

In order to validate both the discriminativeness of the embedding and the success in finding a shared
space, we studied performance on cross-view classification. We evaluated cross-view classification
accuracy by first computing the projection for each view, then we trained a linear SVM on one
view’s projection, and finally we used the other view’s projection at test time. While the task-driven
methods presented in this work learn a classifier within the model, this test setup enables a fair
comparison with the unsupervised CCA variants and validates the discriminativity of the features
learned. It is also the standard method in the literature to test CCA methods for classification.
Notably, using the built-in softmax classifier (not shown) performed similarly to the SVM, as much
of the power of our methods comes from the representation learning part. We do not compare with
a simple supervised NN because this setup does not learn the shared space necessary for cross-view
classification. We report results averaged over five randomly selected training/validation sets; the
test set always remained the same.

3Code is submitted with this paper and will also be available publicly on GitHub after the review period.
4While Elmadany et al. (2016) ran experiments on MNIST, they used the embeddings from both views for

training and test; hence, their results are not directly comparable to our cross-view classification results. When
we did test multi-view classification on MNIST, we achieved 98.5% vs. their reported 97.2%.
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Figure 2: Left: Sum correlation vs. cross-view classification accuracy (on MNIST) across different hyper-
parameter settings on a training set size of 10,000 for DCCA (Andrew et al., 2013), SoftCCA (Chang et al.,
2018), TOCCA-W, and TOCCA-SD. For unsupervised methods (DCCA and SoftCCA), large correlations do
not necessarily imply good accuracy. Right: The effect of batch size on classification accuracy for each TOCCA
method on MNIST (training set size of 10,000), and the effect of training set size on classification accuracy for
each method. Our TOCCA variants out-performed all others across all training set sizes.

Correlation vs. classification accuracy We first demonstrate the importance of adding a task-
driven component to DCCA by showing that maximizing the sum correlation between views is not
sufficient. Fig. 2 (left) shows the sum correlation vs. cross-view classification accuracy across many
different hyperparameter settings for DCCA (Andrew et al., 2013), SoftCCA (Chang et al., 2018),
and TOCCA. We used 50 components for each; thus, the maximum sum correlation was 50. The
sum correlation was measured after applying linear CCA to ensure that components were indepen-
dent. With DCCA a larger correlation tended to produce a larger classification accuracy, but there
was still a large variance in classification accuracy amongst hyperparameter settings that produced
a similar sum correlation. For example, with the two farthest right points in the plot (colored red),
their classification accuracy differs by 10%, and they are not even the points with the best classi-
fication accuracy (colored purple). The pattern is different for SoftCCA. There was an increase in
classification accuracy as sum correlation increased but only up to a point. For higher sum corre-
lations, the classification accuracy varied even more from 20% to 80%. Further experiments (not
shown) have indicated that when the sole objective is correlation, some of the projection directions
are simply not discriminative, particularly when there are a large number of classes. Hence, optimiz-
ing for sum correlation alone does not guarantee a discriminative model. TOCCA-W and TOCCA-SD
show a much greater classification accuracy across a wide range of correlations and, overall, the best
accuracy when correlation is greatest.

Effect of batch size. Fig. 2 (right) plots the batch size vs. classification accuracy for a training set
size of 10, 000. We tested batch sizes from 10 to 10,000; a batch size of 10 or 30 was best for all
three variations of TOCCA. This is in line with previous work that found the best performance with a
batch size between 2 and 32 (Masters & Luschi, 2018). We used a batch size of 32 in the remaining
experiments on MNIST.

Effect of training set size. We manipulated the training set size in order to study the robustness of
our methods. In particular, Fig. 2 (right) shows the cross-view classification accuracy for training
set sizes from n = 300 to 50,000. While we expected that performance would decrease for smaller
training set sizes, some methods were more susceptible to this degradation than others. The clas-
sification accuracy with CCA dropped significantly for n = 300 and 1,000, due to overfitting and
instability issues related to the covariance and cross-covariance matrices. SoftCCA shows similar
behavior (prior work (Chang et al., 2018) on this method did not test such small training set sizes).

Across all training set sizes, our TOCCA variations consistently exhibited good performance, e.g.,
increasing classification accuracy from 78.3% to 86.7% for n = 1,000 and from 86.1% to 94.6% for
n = 50,000 with TOCCA-SD. Increases in accuracy over TOCCA-NDwere small, indicating that the
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Figure 3: t-SNE plots for CCA methods on our variation of MNIST. Each method was used to compute
projections for the two views (left and right sides of the images) using 10,000 training examples. The plots
show a visualization of the projection for the left view with each digit colored differently. TOCCA-SD and
TOCCA-ND (not shown) produced similar results to TOCCA-W.

Table 1: Classification accuracy for different methods of predicting Basal genomic subtype from images or
grade from gene expression. Linear SVM and DNN were trained on a single view, while all other methods were
trained with both views. By regularizing with the second view during training, all TOCCA variants improved
classification accuracy. The standard error is in parentheses.

Method Training data Test data Task Accuracy
Linear SVM Image only Image Basal 0.777 (0.003)
NN Image only Image Basal 0.808 (0.006)
CCAL-Lce Image+GE Image Basal 0.807 (0.008)
TOCCA-W Image+GE Image Basal 0.830 (0.006)
TOCCA-SD Image+GE Image Basal 0.818 (0.006)
TOCCA-ND Image+GE Image Basal 0.816 (0.004)

Method Training data Test data Task Accuracy
Linear SVM GE only GE Grade 0.832 (0.012)
NN GE only GE Grade 0.830 (0.012)
CCAL-Lce GE+image GE Grade 0.804 (0.022)
TOCCA-W GE+image GE Grade 0.862 (0.013)
TOCCA-SD GE+image GE Grade 0.856 (0.011)
TOCCA-ND GE+image GE Grade 0.856 (0.011)

different decorrelation schemes have only a small effect on this data set; the task-driven component
is the main reason for the success of our method. In particular, the classification accuracy with
n = 1,000 did better than the unsupervised DCCA method on n = 10,000. Further, TOCCA with
n = 300 did better than linear methods on n = 50,000, clearly showing the benefits of the proposed
formulation. We also examined the CCA projections qualitatively via a 2D t-SNE embedding (Van
Der Maaten & Hinton, 2008). Fig. 3 shows the CCA projection of the left view for each method. As
expected, the task-driven variant produced more clearly separated classes.

4.2 REGULARIZATION FOR CANCER CLASSIFICATION

In this experiment, we address the following question: Given two views available for training but
only one at test time, does the additional view help to regularize the model?

We study this question using 1,003 patient samples with image and genomic data from CBCS5

(Troester et al., 2018). Images consisted of four cores per patient from a tissue microarray that
was stained with hematoxylin and eosin. Image features were extracted using a VGG16 backbone
(Simonyan & Zisserman, 2015), pre-trained on ImageNet, by taking the mean of the 512D output
of the fourth set of conv. layers across the tissue region and further averaging across all core images
for the same patient. For gene expression (GE), we used the set of 50 genes in the PAM50 array
(Parker et al., 2009). The data set was randomly split into half for training and one quarter for
validation/testing; we report the mean over eight cross-validation runs. Classification tasks included
predicting 1) Basal vs. non-Basal genomic subtype using images, which is typically done from GE,
and 2) predicting grade 1 vs. 3 from GE, typically done from images. This is not a multi-task
classification setup; it is a means for one view to stabilize the representation of the other. The first
task is also a valuable clinical use case in which expensive and time-consuming genomic analysis
can help regularize during training even if it is not available for test patients.

We tested different classifier training methods when only one view was available at test time: a) a
linear SVM trained on one view, b) a deep NN trained on one view using the same architecture as
the lower layers of TOCCA, c) CCAL-Lce trained on both views, d) TOCCA trained on both views.
Tab. 1 lists the classification accuracy for each method and task. When predicting genomic subtype
Basal from images, all our methods showed an improvement in classification accuracy; the best
result was with TOCCA-W, which produced a 2.2% improvement. For predicting grade from GE,
all our methods again improved the accuracy – by up to 3.2% with TOCCA-W. These results show
that having additional information during training can boost performance at test time. Notably, this
experiment used a static set of pre-trained VGG16 image features in order to assess the utility of the

5http://cbcs.web.unc.edu/for-researchers/
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method. The network itself could be fine-tuned end-to-end with our TOCCA model, providing an
easy opportunity for data augmentation and likely further improvements in classification accuracy.

4.3 SEMI-SUPERVISED LEARNING FOR SPEECH RECOGNITION

Our final experiments use speech data from XRMB, consisting of simultaneously recorded acoustic
and articulatory measurements. Prior work has shown that CCA-based algorithms can improve
phonetic recognition (Wang et al., 2015b;a; 2016; Dorfer et al., 2016b). The 45 speakers were split
into 35 for training, 2 for validation, and 8 for testing – a total of 1,429,236 samples for training,
85,297 for validation, and 111,314 for testing.6 The acoustic features are 112D and the articulatory
ones are 273D. We removed the per-speaker mean & variance for both views. Samples are annotated
with one of 38 phonetic labels.

Table 4: XRMB classification results.

Method Task Accuracy

Baseline - 0.591
CCA - 0.589
RCCA - 0.588
DCCA - 0.620
SoftCCA - 0.635
Joint DCCA/DeepLDA LDA 0.633
CCAL-Lce Softmax 0.642
TOCCA-W LDA 0.710
TOCCA-SD LDA 0.677
TOCCA-ND LDA 0.677
TOCCA-W Softmax 0.795
TOCCA-SD Softmax 0.785
TOCCA-ND Softmax 0.785

Our task on this data set was representation learn-
ing for multi-view prediction – that is, using
both views of data to learn a shared discrimina-
tive representation. We trained each model us-
ing both views and their labels. To test each
CCA model, we followed prior work and concate-
nated the original input features from both views
with the projections from both views. Due to the
large training set size, we used a Linear Discrimi-
nant Analysis (LDA) classifier for efficiency. The
same construction was used at test time. This
setup was used to assess whether a task-optimal
DCCA model can improve discriminative power.
We tested TOCCA with a task-driven loss of LDA
(Dorfer et al., 2016a) or softmax to demonstrate
the flexibility of our model.

Table 5: Semi-supervised classi-
fication results on XRMB using
TOCCA-W.

Labeled data Accuracy

100% 0.795
30% 0.762
10% 0.745
3% 0.684
1% 0.637

We compared the discriminability of a variety of methods to learn
a shared latent representation. Tab. 4 lists the classification re-
sults with a baseline that used only the original input features for
LDA. Although deep methods, i.e., DCCA and SoftCCA, improved
upon the linear methods, all TOCCA variations significantly outper-
formed previous state-of-the-art techniques. Using softmax consis-
tently beat LDA by a large margin. TOCCA-SD and TOCCA-ND
produced equivalent results as a weight of 0 on the decorrelation
term performed best. However, TOCCA-W showed the best result
with an improvement of 15% over the best alternative method.

TOCCA can also be used in a semi-supervised manner when labels are available for only some
samples. Tab. 5 lists the results for TOCCA-W in this setting. With 0% labeled data, the result would
be similar to DCCA. Notably, a large improvement over the unsupervised results in Tab. 4 is seen
even with labels for only 10% of the training samples.

5 DISCUSSION

We proposed a method to find a shared latent space that is also discriminative by adding a task-
driven component to deep CCA while enabling end-to-end training. This required a fundamental
change in formulation because Deep CCA does not compute the embeddings directly as it optimizes
an equivalent objective; therefore, we could not simply add an additional term. Instead, we found an
alternative formulation by replacing the CCA projection with `2 distance minimization and orthogo-
nality constraints on the activations, and we implemented this in three different ways. TOCCA-W or
TOCCA-SD performed the best, dependent on the data set – both of which include some means of
decorrelation to provide a regularizing effect to the model and thereby outperforming TOCCA-ND.

6http://ttic.uchicago.edu/˜klivescu/XRMB_data/full/README
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TOCCA showed large improvements over state-of-the-art in cross-view classification accuracy on
MNIST and significantly increased robustness when the training set size was small. On CBCS,
TOCCA provided a regularizing effect when both views were available for training but only one at
test time. TOCCA also produced a large increase over state-of-the-art for multi-view representation
learning on a much larger data set, XRMB. On this data set we also demonstrated a semi-supervised
approach to get a large increase in classification accuracy with only a small proportion of the labels.
Using a similar technique, our method could be applied when some samples are missing a second
view.

Classification tasks using a softmax operation or LDA were explored in this work; however, the
formulation presented can also be used with other tasks such as regression or clustering. Another
possible avenue for future work entails extracting components shared by both views as well as
individual components. This approach has been developed for dictionary learning (Lock et al., 2013;
Ray et al., 2014; Feng et al., 2018) but could be extended to deep CCA-based methods. Finally, we
have yet to apply data augmentation to the proposed framework; this could provide a significant
benefit for small training sets.
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A APPENDIX

This appendix includes additional details on our TOCCA algorithm and experiments, including 1)
a comparison of our formulation with other related CCA approaches, 2) pseudocode for the ZCA
whitening algorithm used by TOCCA-W, 3) details on hyperparameter selection, and 4) training
runtime experiments.

A.1 COMPARISON OF TOCCA WITH RELATED ALGORITHMS

Our TOCCA methods finds a shared latent space that is also discriminative by changing the CCA for-
mulation in order to add a task-driven component. Tab. A2 compares our three TOCCA formulations
with other related methods (discussed in §2). CCA is the baseline linear method with a goal of max-
imizing the correlation between a set of orthogonal linear projections on two views of data. DCCA
and SoftCCA are unsupervised deep methods. DCCA optimizes an equivalent objective to CCA
but uses non-linear projections implemented with a NN; however, the projections are not computed
in the network, only after optimization is complete. SoftCCA changes the correlation objective to,
equivalently, minimize the `2 distance between projections and relaxes the orthogonality constraints
by using regularization. CCAL-Lrank does compute the CCA projections in the network but does
not optimize the final NN for correlation; it instead focuses on a pairwise ranking loss for use in
retrieval. Our family of TOCCA methods were detailed in §3. In this supervised formulation, we use
the same `2 distance as SoftCCA and simultaneously optimize a task-driven objective. We handle
the orthogonality constraints in three different ways: with whitening (TOCCA-W), with regulariza-
tion (TOCCA-SD) as was used in SoftCCA, and with no explicit decorrelation (TOCCA-ND).

Table A2: A comparison of our proposed task-optimal deep CCA methods with other related ones from the
literature: DCCA (Andrew et al., 2013), SoftCCA (Chang et al., 2018), CCAL-Lrank (Dorfer et al., 2018).
CCAL-Lrank uses a pairwise ranking loss with cosine similarity to identify matching and non-matching samples
for image retrieval – not classification. A1 and A2 are mean centered outputs from two feed-forward networks.
Σ = ATA is computed from a single (large) batch (used in DCCA); Σ̂ is computed as a running mean over
batches (for all other methods). ftask(A; θtask) is a task-specific function with parameters θtask, e.g., a softmax
operation for classification.

Method Objective

CCA −tr(WT
1 Σ12W2) s.t. WT

1 Σ1W1 = WT
2 Σ2W

2 = I

DCCA −||Σ−1/21 Σ12Σ
−1/2
2 ||tr where ||T ||tr = tr(TTT )1/2 (TNO, equivalent to CCA objective)

CCA(WT
1 A1,W

T
2 A2) computed after optimization complete

SoftCCA L`2 dist(A1, A2) + λ
(
LDecorr(A1) + LDecorr(A2)

)
CCAL-Lrank Lrank(B1, B2) where B1, B2 = CCA(A1, A2), Lrank is pairwise ranking loss
TOCCA-W Task(B1, B2, Y )+ λ L`2 dist(B1, B2) where B1 = U1A1, B2 = U2A2 s.t. BT

1 B1 = BT
2 B2 = I

TOCCA-SD Task(A1, A2, Y )+ λ1L`2 dist(A1, A2) + λ2

(
LDecorr(A1) + LDecorr(A2)

)
Whitening

TOCCA-ND Task(A1, A2, Y )+ λ L`2 dist(A1, A2)

Loss functions

`2 dist L`2 dist(A1, A2) = ||A1 −A2||2F
Decorr LDecorr(A) =

∑
i 6=j |Σ̂i,j | where Σ̂ is running mean across batches of Σ = ATA

Task Task(A1, A2, Y ) = Ltask(ftask(A1; θtask), Y ) + Ltask(ftask(A2; θtask), Y ) where Ltask can be cross-entropy or any other task-driven loss

A.2 ALGORITHM FOR WHITENING

TOCCA-W uses whitening to achieve orthogonality (see §3 for details). The goal is to transform the
activations such that their covariance becomes the identity matrix. We use ZCA whitening which
first applies PCA whitening to decorrelate the data and rescale each axis, followed by a rotation
back to the original space. The final rotation reduces the stochastic axis swapping problems of PCA
whitening (Huang et al., 2018). Pseudocode for ZCA whitening is shown in Algorithm A1.
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Algorithm A1 Whitening layer for orthogonality.

Input: activations AεRdo×n

Hyperparameters: batch size m, momentum α
Parameters of layer: mean µ, covariance Σ
if training then
µ← αµ+ (1− α) 1

mA 1n×1 {Update mean}
Ā = A− µ {Mean center data}
Σ← αΣ + (1− α) 1

m−1 Ā1Ā
T
2 {Update covariance}

Σ̂← Σ + εI {Add εI for numerical stability}
Λ, V ← eig(Σ̂) {Compute eigendecomposition}
U ← V Λ−1/2V T {Compute transformation matrix}

else
Ā← A− µ {Mean center data}

end if
B ← UĀ {Apply ZCA whitening transform}
return B

A.3 IMPLEMENTATION DETAILS: HYPERPARAMETERS

A random search over hyperparameters was used to train our methods and those that we compare
with. The hyperparameter settings and ranges for each data set are provided in Tab. A3. Random
search in these intervals was performed 100 times for MNIST and CBCS. Fewer tries were done for
XRMB because of the much greater runtime on this large data set. A larger batch size was used for
XRMB to improve runtime. The hyperparameter ranges were initially set as an educated guess and,
in some cases, were widened for a particular data set (for all methods) after observing results.

Table A3: Hyperparameter settings and search ranges for the experiments on each data set.

Hyperparameter MNIST CBCS XRMB
Hidden layers 4 [0,4] 4
Hidden layer size 500 200 1,000
Output layer size 50 50 112
Loss function weight λ [100, 10−4] [101, 10−5] [101, 10−5]
Momentum α 0.99 0.99 0.99
Weight decay [10−3, 10−6], 0 [10−2, 10−5], 0 [10−3, 10−7], 0
Soft decorrelation regularizer [100, 10−5] [100, 10−5] [100, 10−5]
Batch size 32 100 50,000
Learning rate [10−2, 10−4] [10−1, 10−3] [100, 10−4]
Epochs 200 400 100

A.4 RUNTIME EXPERIMENTS

The computational complexity of TOCCA-W is greater than that of TOCCA-SD due to the eigende-
composition operation (see the end of §3); however, this extra computation is only carried out once
per batch. A runtime comparison of the two methods on all three data sets is provided in Tab. A4.
The difference in runtime was less than 6.5% for a batch size of 100 or 9.4% for a batch size of 30.

Table A4: Training runtime for each data set.

Data set Batch size Epochs TOCCA-W TOCCA-SD

MNIST 100 200 488 s 418 s
MNIST 30 200 1071 s 1036 s
CBCS 100 400 103 s 104 s
XRMB 50,000 100 3056 s 3446 s
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