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ABSTRACT

Semantic sentence embedding models take natural language sentences and turn
them into vectors, such that similar vectors indicate similarity in the semantics
between the sentences. Bilingual data offers a useful signal for learning such
embeddings: properties shared by both sentences in a translation pair are likely
semantic, while divergent properties are likely stylistic or language-specific. We
propose a deep latent variable model that attempts to perform source separation
on parallel sentences, isolating what they have in common in a latent semantic
vector, and explaining what is left over with language-specific latent vectors. Our
proposed approach differs from past work on semantic sentence encoding in two
ways. First, by using a variational probabilistic framework, we introduce priors
that encourage source separation, and can use our model’s posterior to predict
sentence embeddings for monolingual data at test time. Second, we use high-
capacity transformers as both data generating distributions and inference networks
– contrasting with most past work on sentence embeddings. In experiments, our
approach substantially outperforms the state-of-the-art on a standard suite of se-
mantic similarity evaluations. Further, we demonstrate that our approach yields
the largest gains on more difficult subsets of test where simple word overlap is not
a good indicator of similarity.

1 INTRODUCTION

Learning useful representations of language has been a source of recent success in natural language
processing (NLP). Much work has been done on learning representations for words (Mikolov et al.,
2013; Pennington et al., 2014) and sentences (Kiros et al., 2015; Conneau et al., 2017). More re-
cently, deep neural architectures have been used to learn contextualized word embeddings (Peters
et al., 2018; Devlin et al., 2018) which have enabled state-of-the-art results on many tasks. We focus
on learning semantic sentence embeddings in this paper, which play an important role many down-
stream applications. Since they do not require any labelled data for fine-tuning, sentence embeddings
are useful for a variety of problems right out of the box. These include Semantic Textual Similarity
(STS; Agirre et al. (2012)), mining bitext (Zweigenbaum et al., 2018), and paraphrase identification
(Dolan et al., 2004). These tasks also have downstream uses like in fine-tuning machine translation
systems (Wieting et al., 2019a) and data augmentation .

Prior work on sentence embedding has largely used deep architectures. Some recent approaches
include Infersent (Conneau et al., 2017), the Universal Sentence Encoder (USE) (Cer et al., 2018),
and Gensen (Subramanian et al., 2018). Surprisingly, however, the best performing models for many
sentence embedding tasks relating to semantic similarity, in contrast, used simple architectures that
are agnostic to word order. For instance, some of the top performing techniques use word embedding
averaging (Wieting et al., 2016a), character n-gram averaging (Wieting et al., 2016b), and subword
embedding averaging (Wieting et al., 2019b) to create representations. These simple approaches
generalize well to unseen domains, but are fundamentally limited by their inability to capture word
order. Training for such approaches relies on discriminative objectives defined on paraphrase data
from bilingual pivoting (Ganitkevitch et al., 2013), back-translation of bilingual text (Wieting &
Gimpel, 2018), or, recently, bilingual text directly (Wieting et al., 2019b). Approaches using parallel
text and latent variable models have also been explored (Chen et al., 2019).
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Intuitively, bilingual data offers a useful signal for learning semantic embeddings of sentences.
Within a translation pair, properties shared by both sentences are likely semantic, while those that are
divergent are likely stylistic or language-specific. In contrast with previous work, we leverage bilin-
gual data directly to learn deep architectures for sentence embedding that are sensitive to word order
in a probabilistic framework. Specifically, we propose a deep generative model that is encouraged
to perform source separation on parallel sentences – isolating what they have in common in a latent
semantic embedding, and explaining what is left over with language-specific latent vectors – through
a variational objective. As a result, our approach is able to balance the high-capacity of deep trans-
former architectures (Vaswani et al., 2017) with the goal of generalizing to new domains. Further, by
using amortized inference (Kingma & Welling, 2013) and introducing factored transformer-based
inference networks for approximating the model’s posterior on source separation, our trained system
can effectively encode monolingual sentences at test time via posterior inference. Finally, since our
model and training objective are probabilistic, in contrast with discriminative systems, our approach
does not require knowledge of the distance metrics to be used during evaluation.

In experiments, our probabilistic source separation approach substantially outperforms the state-of-
the-art on a standard suite of STS evaluations, generalizing more effectively than both order-agnostic
baselines and previous deep architectures. Further, we conduct a thorough analysis by identifying
subsets of the STS evaluation where simple word overlap is not able to accurately assess semantic
similarity. On these most difficult instances we find that our approach yields the largest gains,
indicating that our system is modeling word order to good effect.

Lastly, we analyze our model to uncover what information was captured by the source separation
into semantic and language-specific variables. We find that the language-specific variables tend
to explain more superficial properties of observations like overall sentence length and amount and
location of punctuation, but not semantic information, matching our intuition.
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Figure 1: The generative process of our model. Latent
variables modeling the linguistic variation in French
and English, zfr and zen, as well as a latent variable
modeling the common semantics, zsem, are drawn
from a Gaussian distribution. The observed text in
each language is then conditioned its language vari-
able and zsem.

The generative process of our model, Bilin-
gual Generative Tranformer (BGT), is de-
picted in Figure 2. Given parallel text in
two languages (English (en) and French
(fr)) that form a pair (xen, xfr), we hy-
pothesis that we can learn separate rep-
resentations for shared semantic content
and language-specific variation. Further,
the by encouraging the model to perform
this source separation, the learned seman-
tic encoders will more crisply represent
the underlying semantics, increasing per-
formance on downstream semantic tasks.

More specifically, for each translation pair
consisting of English sentence xen and a
French sentence xfr, we sample language-
specific variation variables (language vari-
ables) zfr and zen respectively for each
side of the translation, as well as a shared
semantic variation variable (semantic vari-
able) zsem. These latent variables zi ∈ Rk
are each sampled from a multivariate Gaus-
sian prior N(0, Ik). In our decoder, xen will be sampled conditioned on zsem and zen, while xfr will
be sampled conditioned on zsem and zfr Thus, our model is encouraged to explain variation that is
shared by translations with the shared semantic variable, but must explain all language-specific vari-
ation with the corresponding language-specific variables. Our generative model is a type of source
separation model.

We define X as our training set of parallel text consisting of N examples,
X = {〈x1en, x1fr〉, . . . , 〈xNen, xNfr〉} and Z as our collection of latent variables Z =
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Figure 2: The computation graph for the variational lower bound used during training. The English
and French text are fed into their respective inference networks and the semantic inference network
to ultimately produce the language variables zfr and zen and semantic variable zsem. Each language
variable is then concatenated to zsem and used by the decoder to reconstruct the input sentence pair.

(〈z1en, z1fr, z1sem〉, . . . , 〈zNen, zNfr, zNsem〉). For simplicity of notation, we often describe a sin-
gle translation pair and corresponding latent variables with 〈xen, xfr〉 and 〈zen, zfr, zsem〉,
respectively.

Decoder Architecture. Most latent variable models for text use LSTMs (Hochreiter & Schmid-
huber, 1997) as their decoders. However, state-of-the-art models in neural machine translation have
seen increased performance and speed using deep Transformer architectures. We also found in
our experiments (see Section C for details) that these led to increased performance in our setting.
We use two decoders in our model, one for modelling p(xfr|zsem, zfr; θ) and one for modeling
p(xen|zsem, zen; θ).
Each decoder takes in two latent variables, a language variable and a semantic variable. These
variables are concatenated together prior to being used by the decoder for reconstruction. We explore
4 ways of using this latent vector: (1) Concatenate it to the word embeddings (Word) (2) Use it as
the initial hidden state (Hidden, LSTM only) (3) Use it as you would the attention context vector
in the traditional sequence-to-sequence framework (Attention) and (4) Concatenate it to the hidden
state immediately prior to computing the logits (Logit). We also experimented with combinations
of these four approaches. This analysis is in Appendix A. From these experiments, we see that
the closer the sentence embedding is to the softmax, the better the performance on downstream
tasks evaluating its semantic content. We hypothesise that this is due to better gradient propagation
because the sentence embedding is now closer to the error signal. This is similar to the mechanism
used by residual connections (He et al., 2016) to stabilize learning and improve performance. Since
Attention and Logit performed best, we used these in our Transformer experiments.

3 LEARNING AND INFERENCE

We wish to maximize the marginal probability of the observed X given the latent variables Z and
the parameters of the two decoders, θ. There is one decoder for each language, and each decoder
takes in its corresponding latent variable and zsem.

p(X; θ) =

∫
Z

p(X,Z; θ)dZ

Unfortunately, this integral is intractable due to the complex relationship between X and Z. How-
ever, related latent variable models like variational autoencoders (VAEs (Kingma & Welling, 2013))
learn by optimizing a variational lower bound on the log marginal likelihood. This surrogate objec-
tive is called the evidence lower bound (ELBO) and introduces a variational approximation, q to
the true posterior of the model p. The q distribution is parameterized by a neural network with
parameters φ. ELBO can be written for our model as follows:

3



Under review as a conference paper at ICLR 2020

ELBO =Eq(Z|X;φ)[log p(X|Z; θ)]−
KL(q(Z|X;φ)||p(Z; θ))

This lower bound on the marginal can be optimized by gradient ascent by using the reparame-
terization trick (Kingma & Welling, 2013). This trick allows for the expectation under q to be
approximated through sampling in a way that preserves backpropagation.

We make several independence assumptions for q(zsem, zen, zfr|xen, xfr;φ). Specifically,
to match our goal of source separation, we factor q as q(zsem, zen, zfr|xen, xfr;φ) =
q(zsem|xen, xfr;φ)q(zen|xen)q(zfr|xfr;φ), with φ being the parameters of the encoders that make
up the inference networks, defined in the next paragraph.

Encoder Architecture. We use three inference networks as shown in Figure 2. An English infer-
ence network to produce the English language variable, a French inference network to produce the
French language variable, and a semantic inference network to produce the semantic variable. Our
model uses 4 encoders in total, with the semantic inference network having 2 that work together,
one used to encode each language. Just as in the decoder architecture, we also use a Transformer for
the encoders. We experiment with four ways of merging the two semantic variables in the semantic
inference network: (1) Use just the English semantic variable, (2) Alternate between the English
and French semantic variables (3) Alternate between the English and French semantic variables and
include a regularization term to push these variables towards each other, and (4) Pool their represen-
tations together, dropping out one of them occasionally to avoid a training-testing discrepancy. We
experiment with mean, max, and min pooling .

The motivation for (3) and (4) was that since both semantic encoders are supposed to be capturing
the core semantic information of the sentence, their outputs should be similar since this information
should be language agnostic. Interestingly, we found that (3) had the best performance in our set-
ting, followed by (1) and (2) and (4) indicating that this regularization is helpful for learning these
semantic representations.

Finally, to obtain the sentence embeddings that we’ll use in downstream tasks, we use the mean of
the semantic inference network, where only the English semantic encoder contributes to the merge
operation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

The training data for BGT and our our non-probabilistic model ablation, BGT W/O PRIOR, is
a mixture of OpenSubtitles1 en-fr data and en-fr Gigaword2 data. To create our dataset, we
combined the complete corpora of each dataset and then randomly selected 1,000,000 sentence
pairs to be used for training with 10,000 used for validation. We use sentencepiece (Kudo &
Richardson, 2018) with a vocabulary size of 20,000 to segment the sentences, and we chose sentence
pairs whose sentences are at most 100 tokens each.

In designing the model architectures for the encoders and decoders, we experimented with Trans-
formers and LSTMs. Due to better performance, we use a 5 layer Transformer for each of the
encoders and a single layer decoder for each of the decoders. This design decision was empirically
motivated as we found using a larger decoder was slower and worsened performance, but conversely,
adding more encoder layers improved performance. More discussion of these trade-offs along with
ablations and comparisons to LSTMs are included in Appendix C.

For both models, we set the dimension of the embeddings and hidden states for the encoders and
decoders to 1024. Since we experiment with two different architectures,3 we follow two different
optimization strategies. For training models with Transformers, we use Adam (Kingma & Ba, 2014)

1http://opus.nlpl.eu/OpenSubtitles.php
2https://www.statmt.org/wmt10/training-giga-fren.tar
3We use LSTMS in our ablations.
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with β1 = 0.9, β2 = 0.98, and ε = 10−8. We use the same learning rate schedule as (Vaswani et al.,
2017), i.e., the learning rate increases linearly for 4,000 steps to 5× 10−4, after which it is decayed
proportionally to the inverse square root of the number of steps. For training the LSTM models, we
use Adam with a fixed learning rate of 0.001. We train the models for 20 epochs.

We used label smoothed cross entropy with ε = 0.1 as our objective function for machine translation.
For BGT, we pretrain the semantic encoders (for both French and English) on translation, and then
we freeze them for 10 epochs while updating all other parameters. We anneal the KL term so that it
increased linearly for 50,000 updates. We also found that including the translation objective during
training of BGT increased performance slightly, and so this loss was included in our experiments.
We regularize the semantic encoders for en and fr using an L2 loss with a weight of 2.

Lastly, in Section B, we illustrate how crucial it is to train the Transformers with large batch sizes.
Without this, the model can learn the goal task (such as translation) with reasonable accuracy, but
the learned semantic embeddings are of poor quality until batch sizes approximately reach 25,000
tokens. Therefore, we use a maximum batch size of 50,000 tokens in our experiments.

4.2 BASELINE MODELS

We experiment with four baseline models, covering the most effective approaches for learning para-
phrastic embeddings from the literature.

The first baseline is the sentence piece averaging model, SP, from (Wieting et al., 2019b), which
is the best of the averaging models (i.e. compared to averaging only words or character n-grams).
This model uses a contrastive loss with a margin. Following their setting, we fix the margin to 0.4
and tune the number of batches to pool for selecting negative examples from {80, 120}. We set the
dimension of the embeddings to 1024.

The second baseline is the LSTM model, BILSTM, from (Wieting & Gimpel, 2017). We apply it to
parallel text as was done in (Wieting et al., 2019b). We train a 1024 dimensional single layer LSTM,
where sentence embeddings are obtained by mean-pooling the hidden states. Following (Wieting
& Gimpel, 2017), we then shuffle the inputs with probability p, setting p to 0.3. BILSTM uses
the same contrastive loss function as SP, so we again fix the margin to 0.4 and tune the number of
batches to combine for selecting negative examples from {80, 120}.
We also compare to well known sentence embedding models (Conneau et al., 2017; Subramanian
et al., 2018; Cer et al., 2018), as well as BERT (Devlin et al., 2018). We used the pretrained BERT
model in two ways to create a sentence embedding. The first is to concatenate the hidden states for
the CLS token in the last four layers. The second way is to concatenate the hidden states of all word
tokens in the last four layers and mean pool these representations. Both methods result in a 4096
dimension embedding.

We also implicitly compare to previous machine translation approaches like (Espana-Bonet et al.,
2017; Schwenk & Douze, 2017; Artetxe & Schwenk, 2018) in Section A where we explore different
variations of training LSTM sequence-to-sequence models. We find our translation baseline (both
LSTM and Transformer) significantly outperforms the architectures from these works.

4.3 EVALUATION

Our primary evaluation is the 2012-2016 SemEval Semantic Textual Similarity (STS) shared
tasks (Agirre et al., 2012; 2013; 2014; 2015; 2016), which predict the degree to which sentences
have the same meaning as measured by human judges. The evaluation metric is Pearson’s r with the
gold labels.

Secondly, we evaluate on Hard STS, where we combine and filter the STS datasets in order to make
a more difficult evaluation. We hypothesize that these datasets contain many examples where their
gold scores are easy to predict by either having similar structure and word choice and a high score
or dissimilar structure and word choice and a low score. Therefore, we evaluate on these splits of
the data using symmetric word error rate (SWER),4 finding sentence pairs with low SWER and low

4We define symmetric word error rate for sentences s1 and s2 as 1
2
WER(s1, s2) + 1

2
WER(s2, s2), since

word error rate (WER) is an asymmetric measure.
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Data Sentence 1 Sentence 2 Gold Score
Hard+ Other ways are needed. It is necessary to find other means. 4.5
Hard- How long can you keep chocolate

in the freezer?
How long can I keep bread dough in
the refrigerator?

1.0

Negation It’s not a good idea. It’s a good idea to do both. 1.0

Table 1: Examples from our Hard STS dataset and our negation split. The sentence pair in the first
row has dissimilar structure and vocabulary yet a high gold score. The second sentence pair has
similar structure and vocabulary and a low gold score. The last sentence pair contains a negation,
not that causes otherwise similar sentences to have low semantic similarity.

Semantic Textual Similarity (STS) Machine Trans.
Model 2012 2013 2014 2015 2016 Hard+ Hard- MT15 MT16
BERT (CLS) 46.0 - 49.8 55.1 61.2 1.4 22.4 62.0 57.1
BERT (Mean) 48.8 - 54.0 59.2 63.3 3.1 24.1 58.3 54.4
Infersent 59.2 - 69.6 71.3 71.4 3.8 27.3 49.1 46.8
GenSen 60.6 - 65.8 74.2 66.4 6.4 24.7 59.9 53.7
USE 61.4 - 70.6 74.3 73.9 16.4 28.1 61.3 55.1
SP 67.6 59.6 75.1 78.2 76.6 18.6 25.5 53.0 49.4
BILSTM 63.3 53.9 71.4 74.0 75.3 15.4 23.1 56.4 52.6
BGT W/O PRIOR 66.4 59.7 73.5 77.9 77.5 20.9 40.7 56.9 54.5
BGT 68.2 61.4 75.3 78.8 77.6 23.2 42.8 58.7 55.4

Table 2: Results of our models and prior work. The first two rows are models from this paper, the
next 3 rows are models we trained on our training data, and the last 3 rows utilize pretrained models
from the literature. We show results, measured in Pearson’s r × 100, for each year of the STS tasks
2012-2016, results in Pearson’s r × 100 on our two Hard STS datasets, and results in Spearman’s
ρ× 100 on the two MT datasets.

gold scores as well as sentence pairs with high SWER and very high gold scores. This results in
two datasets, Hard+ which have SWERs in the bottom 20% of all STS pairs and whose gold label is
between 0 and 1,5 and Hard- where the SWERs are in the top 20% ad the gold scores are between 4
and 5. We also evaluate on a split focused on negation. Example are shown in Table 1.

Lastly, we evaluate on machine translation evaluation metric tasks.6 The purpose of these tasks is
to produce scores for a reference and a candidate translation that correlate well with human labels.
While similar to STS in that sentences with the same semantics will have higher scores, other vari-
ables are also accounted for like fluency. Recent work has shown that sentence similarity models
can improve the quality of translation (Wieting et al., 2019a), and so improvements on these datasets
might carry over to improvements in machine translation as well.

4.4 RESULTS

The results on the STS, Hard STS, and the MT metric evaluations are shown in Table 2.7 From
the results, we see that BGT has the highest performance for every year of the STS task. It does
especially well compared to prior work on the two Hard STS datasets. For the MT metric datasets,
BERT (CLS) has the best performance on both, but BGT outperforms the other 3 models with the
same experimental setup.8

5STS scores are between 0 and 5.
6We used the segment level data, where English is the target language, from newstest2015 and newstest2016

available at http://statmt.org/wmt18/metrics-task.html. The former contains 6 language
pairs and the latter 4.

7We obtained values for STS 2012-2016 from (Subramanian et al., 2018). We left off the 2013 results as we
include all 4 datasets from this year in our experiments but some of the prior work only used 3. Other results
were obtained using the SentEval (Conneau & Kiela, 2018) toolkit.

8We note that it is very difficult to compare sentence embeddings as there are numerous factors that make
comparisons uneven. These include different embeddings sizes, different sizes of architecture, different training
data, using pretrained word embeddings, etc.
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Data Split n BGT SP
Bottom 20% WER, label ∈ [0, 2] 421 60.6 53.6
Bottom 10% WER, label ∈ [0, 1] 72 34.0 17.1
Top 20% WER, label ∈ [3, 5] 942 21.1 15.4
Top 10% WER, label ∈ [4, 5] 165 16.8 9.7
Negation 780 70.9 67.4
Top 20% WER, label ∈ [0, 2] 1380 51.5 49.9
Bottom 20% WER, label ∈ [3, 5] 2079 43.0 42.2

Table 3: Results, measured in Pearson’s r × 100, for different data splits of the STS data. The
first four rows show difficult examples filtered symmetric word error rate (WER), the next row is a
negation split, and The last 4 rows show relatively easy examples according to WER.

In Table 3, we show further difficult splits beyond those used in Hard STS and compare the top two
performing models in the STS task from Table 2. We also show easier splits in the bottom of the
table and examples where negation was likely present in the example.9

From these results, we see that both positive examples that have little shared vocabulary and structure
and negative examples with significant shared vocabulary and structure benefit significantly from
using a deeper architecture. Similarly, examples where negation occurs also benefit from our deeper
model. These examples are difficult because more than just the identity of the words is needed to
determine the relationship of the two sentences, and this is something that SP is not equipped to do
since it is unable to model word order.

Lastly, the bottom four rows show easier examples where positive examples have high overlap and
low WER and vice versa for negative examples. Both models perform similarly on this data, with
the BGT model having a small edge consistent with the overall gap between these two models.

5 ANALYSIS

We next analyze BGT by examining the language and semantic variables to learn what elements
of syntax and semantics they capture relative to both each other and the sentence embeddings from
BGT W/O PRIOR.

5.1 LANGUAGE VARIABLES

The language-specific variables enable the semantic variables of the model to focus on capturing the
information that is shared by the translation pair.

We first show that the language variables are capturing little semantic information. We evaluate the
learned English language variable from our BGT model on our suite of semantic tasks. The results
in Table 4 show that these encoders perform closer to a random encoder than the semantic encoder
from BGT. This is consistent with what we would expect to see if they are capturing extraneous
language-specific information.

Semantic Textual Similarity (STS)
Model 2012 2013 2014 2015 2016
Random Encoder 47.5 34.0 51.1 52.4 43.8
English Language Encoder 49.8 45.3 58.3 65.2 64.5
English Semantic Encoder 68.2 61.4 75.3 78.8 77.6

Table 4: STS performance on the 2012-2016 datasets for a randomly initialized Transformer, the
trained English language encoder from BGT, and the trained English semantic encoder from BGT.
Performance is measured in Pearson’s r × 100.

Secondly, we use BGT to reconstruct sentences and analyze these reconstructions to determine what
the language and semantic encoders are learning. We also reconstruct outputs by adding Gaussian

9We selected examples for the negation split where one sentence contained not or n’t and the other did not.
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Model/Source Sentence
Source uh , do n’t worry , he ’s not gonna find out.
Language-Noise uh ... maybe she can n’t talk about it , there ’s not like this is out .
Semantic-Noise sem noise: no , does n’t n’t we never know ,
Recon. uh , do n’t worry , he ’s not gonna find out .
Source this places agents in a unique position to maintain strong , long-term

relationships with their customers .
Language-Noise this smart position to develop long term .
Semantic-Noise these sites in this body applies to they , they treat with no evidence .
Recon. this unique role in a long term , they operate to maintain strong

customers with their customers .

Table 5: Two reconstruction examples from our validation set. Notice that Language-Noise outputs
tend to be more topically related, while Semantic-Noise outputs tend to have similar structure.

noise, with a mean of 0 and a covariance of the identity, to the semantic encoders or the English and
French language variables to see what impact this has on the generated outputs. Our model with no
noise added is Recon., with noise on the language variables is Language-Noise, and with noise on
the semantic encoders is Semantic-Noise. We used 2,000 examples from our validation set as inputs,
filtered to be between 15 and 30 tokens in length. Examples of the outputs are shown in Table 5
that show that the Language-Noise outputs tend to be more topically related, while Semantic-Noise
outputs tend to have similar structure.

Length We analyzed how the length of sentences from Recon., Language-Noise, and Semantic-
Noise compare to the source sentences. To do so, we computed the mean and median of the absolute
difference of the lengths of the respective outputs of each model compared to the input. These results
are shown in Table 7.

From the table, we see that adding noise to the language variables causes the reconstructions to
deviate much more in length than when noise is added to the semantic encoder. This suggests that
length is mostly encoded in these language variables.

Model en fr
Recon. 12.0 17.4
Language-Noise 53.9 68.0
Semantic-Noise 25.6 22.5

Table 6: Word error rate on the gen-
erated sentences from Recon., Language-
Noise, and Semantic-Noise where all words
that are not punctuation marks are masked.

Model Mean Median
en fr en fr

Recon. 1.5 1.7 1.0 1.0
Language-Noise 9.6 68.0 7.0 5.0
Semantic-Noise 3.5 22.5 3.0 2.0

Table 7: Mean and median absolute length
difference between source sentences and Re-
con., Language-Noise, and Semantic-Noise.

Punctuation We also analyze the outputs to see if the language encoders better encode information
about punctuation. To do this, we mask out all words that aren’t punctuation10 and compute the WER
with the source sentences. The results are shown in Table 6. Since the WERs are much lower when
the language-specific latent variables are intact, we can surmise that this information is also mostly
captured in these variables.

Semantics Lastly, we hypothesize that the core meaning of the sentence pair are mostly en-
coded in the semantic variables. To test this, we computed sentence embeddings by mean pool-
ing the GloVe (Pennington et al., 2014) vectors for the nouns in the source and from the outputs
of Language-Noise and Semantic-Noise. We found the average cosine similarity to be higher for
Language-Noise at 58.0 than Semantic-Noise at 49.8, which suggests that even though the seman-
tic variables seem to be lacking structure, they do carry semantic information about the sentence
content.

10Punctuation were taken from the set { ’ ! ” # $ % & \’ ( ) ∗ + , − . / : ; < = > ? @ [ ] ˆ ‘ {— } ’̃ . }.
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6 CONCLUSION

We propose BGT, that attempts to perform source separation on parallel data to separate out the
common semantic information between the two languages from the language-specific information
which is stored in separate language variables. We find that our model bests all baselines on semantic
similarity tasks, with the largest gains coming from a new challenge we propose as Hard STS,
designed to foil methods approximating semantic similarity as word overlap. We also show that the
language-specific variables are capturing more superfluous information like punctuation, where the
common semantic variable contains most of the semantic information.
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A LOCATION OF SENTENCE EMBEDDING IN DECODER FOR LEARNING
REPRESENTATIONS

As mentioned in Section 2, we experimented with 4 ways to incorporate the sentence embedding
into the decoder: Word, Hidden, Attention, and Logit. We also experimented with combinations of
these 4 approaches. We evaluate these embeddings on the STS tasks and show the results, along
with the time to train the models 1 epoch in Table 9.

For these experiments, we train a single layer bidirectional LSTM (BiLSTM) translation model
with embedding size set to 1024 and hidden states set to 512 dimensions (in order to be roughly
equivalent to our Transformer models). To form the sentence embedding in this variant, we mean
pool the hidden states for each time step. The cell states of the decoder are initialized to the zero
vector.

Architecture STS Time (s)
BiLSTM (Hidden) 54.3 1226
BiLSTM (Word) 67.2 1341
BiLSTM (Attention) 68.8 1481
BiLSTM (Logit) 69.4 1603
BiLSTM (Word + Hidden) 67.3 1377
BiLSTM (Word + Hidden + Attention) 68.3 1669
BiLSTM (Word + Hidden + Logit) 69.1 1655
BiLSTM (Word + Hidden + Attention + Logit) 68.9 1856

Table 8: Results for different ways of incorporating the sentence embedding in the decoder for a
BiLSTM on the Semantic Textual Similarity (STS) datasets, along with the time taken to train the
model for 1 epoch. Performance is measured in Pearson’s r × 100.

From this analysis, we see that the best performance is achieved with Logit, when the sentence
embedding is place just prior to the softmax. The performance is much better than Hidden or Hid-
den+Word used in prior work. For instance, recently Artetxe & Schwenk (2018) used the Hid-
den+Word strategy in learning multilingual sentence embeddings.

A.1 VAE TRAINING

We also found that incorporating the latent code of a VAE into the decoder using the Logit strategy
increases the mutual information while having little affect on the log likelihood. We trained 2 LSTM
VAE models where one uses the Hidden strategy and one uses Hidden + Logit. We found that the
mutual information increased form 0.89 to 2.46, while the approximate negative log likelihood,
estimated by importance weighting, increased slightly form 53.3 to 54.0 when using Logit.
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Figure 3: The relationship between average performance for each year of the STS tasks 2012-2016
(Pearson’s r × 100) and batch size (maximum number of words per batch).

B RELATIONSHIP BETWEEN BATCH SIZE AND PERFORMANCE FOR
TRANSFORMER AND LSTM

It has been observed previously that the performance of Transformer models is sensitive to batch
size . We found this to be especially true when training sequence-to-sequence models to learn
sentence embeddings. Figure 3 shows plots of the average 2012-2016 STS performance of the
learned sentence embedding as batch size increases for both the BiLSTM and Transformer. Initially,
at a batch size of 2500 tokens, sentence embeddings learned are worse than random, even though
validation perplexity does decrease during this time. Performance rises as batch size increases up to
around 100,000 tokens. In contrast, the BiLSTM is more robust to batch size, peaking much earlier
around 25,000 tokens, and even degrading at higher batch sizes.

C MODEL ABLATIONS

Architecture STS Time (s)
Transformer (5L/1L) 70.3 1767
Transformer (3L/1L) 70.1 1548
Transformer (1L/1L) 70.0 1244
Transformer (5L/5L) 69.8 2799

Table 9: Results on the Semantic Textual Similarity (STS) datasets for different configurations of
BGT W/O PRIOR, along with the time taken to train the model for 1 epoch. (XL/YL) means X
layers were used in the encoder and Y layers in the decoder. Performance is measured in Pearson’s
r × 100.

In this section, we vary the number of layers in the encoder and decoder in BGT W/O PRIOR. We see
that performance increases as the number of encoder layers increases, and also that a large decoder
hurts performance, allowing us to save training time by using a single layer. These results can be
compared to those in Table 9 showing that Transformers outperform BiLSTMS in these experiments.
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