Under review as a conference paper at ICLR 2020

WHAT CAN LEARNED INTRINSIC REWARDS CAPTURE?

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning agents can include different components, such as policies,
value functions, state representations, and environment models. Any or all of these
can be the loci of knowledge, i.e., structures where knowledge, whether given or
learned, can be deposited and reused. Regardless of its composition, the objective
of an agent is behave so as to maximise the sum of suitable scalar functions of
state: the rewards. As far as the learning algorithm is concerned, these rewards
are typically given and immutable. In this paper we instead consider the propo-
sition that the reward function itself may be a good locus of knowledge. This is
consistent with a common use, in the literature, of hand-designed intrinsic rewards
to improve the learning dynamics of an agent. We adopt a multi-lifetime setting of
the Optimal Rewards Framework, and investigate how meta-learning can be used
to find good reward functions in a data-driven way. To this end, we propose to
meta-learn an intrinsic reward function that allows agents to maximise their extrin-
sic rewards accumulated until the end of their lifetimes. This long-term lifetime
objective allows our learned intrinsic reward to generate systematic multi-episode
exploratory behaviour. Through proof-of-concept experiments, we elucidate in-
teresting forms of knowledge that may be captured by a suitably trained intrinsic
reward such as the usefulness of exploring uncertain states and rewards.

Reinforcement learning agents can store knowledge in their policies, value functions, state represen-
tations, and models of the environment dynamics. These components can be the loci of knowledge in
the sense that they are structures in which knowledge, either learned from experience by the agent’s
algorithm or given by the agent-designer, can be deposited and reused. The objective of the agent is
defined by a reward function, and the goal is to learn to act so as to optimise cumulative rewards. In
this paper we consider the proposition that the reward function itself is a good locus of knowledge.
This is unusual in that most prior work treats the reward as given and immutable, at least as far as the
learning algorithm is concerned. At the same time, especially in challenging reinforcement-learning
problems, agent designers do find it convenient to modify the reward function given to the agent to
facilitate learning. It is therefore useful to distinguish between two kinds of reward functions (Singh
et al.,[2010): extrinsic rewards define the task and capture the designer’s preferences over agent be-
haviour, whereas intrinsic rewards serve as helpful signals to improve the learning dynamics of the
agent. Intrinsic rewards are typically hand-designed and then often added to the immutable extrinsic
rewards to form the reward optimised by the agent.

Most existing work on intrinsic rewards falls into two broad categories: task-dependent and task-
independent. Both are typically designed by hand. Hand-designing task-dependent rewards can
be fraught with difficulty as even minor misalignment between the actual reward and the intended
bias can lead to unintended and sometimes catastrophic consequences (Clark & Amodei, 2016)).
Task-independent intrinsic rewards are also typically hand-designed, often based on an intuitive
understanding of animal/human behaviour or on heuristics on desired exploratory behaviour. It
can, however, be hard to match such task-independent intrinsic rewards to the specific learning
dynamics induced by the interaction between agent and environment. The motivation for this paper
is our interest in the comparatively under-explored possibility of learned (not hand-designed) task-
dependent intrinsic rewards (see|[Zheng et al., 2018, for previous work).

We emphasise that it is not our objective to show that rewards are a better locus of learned knowledge
than others; the best locus likely depends on the kind of knowledge that is most useful in a given
task. Instead, the purpose of this paper is to show that it is feasible and useful to capture learned
knowledge in rewards and to study the kinds of knowledge that may be captured. How should
we measure the usefulness of a learned reward function? Ideally, we would like to measure the

Under review as a conference paper at ICLR 2020

effect the learned reward function has on the learning dynamics. Of course, learning happens over
multiple episodes, indeed it happens over an entire lifetime. Therefore, we choose lifetime return, the
cumulative extrinsic reward obtained by the agent over its entire lifetime, as the main objective. To
this end, we adopt the multi-lifetime setting of the Optimal Rewards Framework (Singh et al.| [2009)
in which an agent is initialised randomly at the start of each lifetime and then faces a stationary or
non-stationary task drawn from some distribution. In this setting, the only knowledge that transfers
across lifetimes is the reward instead of policy. The goal is to learn a single intrinsic reward that,
when used to adapt the agent’s policy using a standard episodic RL algorithm, ends up optimising
the cumulative extrinsic reward over its lifetime.

In previous work, good reward functions were found via exhaustive search, limiting the range of
applicability of the framework. Here, we develop a more scalable gradient-based method (Xu et al.,
2018b) for learning the intrinsic rewards by exploiting the fact the interaction between the pol-
icy update and the reward function is differentiable (Zheng et al., [2018). Since it is infeasible to
backpropgate through the full computation graph that spans across the entire lifetime, we truncate
the unrolled computation graph of learning updates up to some horizon. However, we handle the
long-term credit assignment by using a lifetime value function that estimates the remaining life-
time return, which needs to take into account changing policies. Our main scientific contributions
are a sequence of empirical studies on carefully designed environments that show how our learned
intrinsic rewards capture interesting regularities in the interaction between a learning agent and an
environment sampled from a distribution. Collectively, our contributions present an effective ap-
proach to the discovery of intrinsic rewards that can help an agent optimise the extrinsic rewards
collected in a lifetime.

1 RELATED WORK

Hand-designed Rewards There is a long history of work on designing rewards to accelerate learn-
ing in reinforcement learning (RL). Reward shaping aims to design task-specific rewards towards
known optimal behaviours, typically requiring domain knowledge. Both the benefits (Randlov &
Alstrml 1998} Ng et al.| [1999; Harutyunyan et al.l 2015)) and the difficulty (Clark & Amodei, [2016)
of task-specific reward shaping have been studied. On the other hand, many intrinsic rewards have
been proposed to encourage exploration, inspired by animal behaviours. Examples include predic-
tion error (Schmidhuber, 1991b;(Gordon & Ahissar, 201 1;Mirolli & Baldassarre, 2013};[Pathak et al.,
2017; |Schmidhuber, [1991a)), surprise (Itti & Baldil 2006), weight change (Linke et al.,|2019), and
state-visitation counts (Suttonl |1990; |Poupart et al., 20065 Strehl & Littman), |2008} |Bellemare et al.,
2016; |Ostrovski et al.l [2017). Although these kinds of intrinsic rewards are not domain-specific,
they are often not well-aligned with the task that the agent tries to solve, and ignores the effect on
the agent’s learning dynamics. In contrast, our work aims to learn intrinsic rewards from data that
take into account the agent’s learning dynamics without requiring prior knowledge from a human.

Rewards Learned from Data There have been a few attempts to learn useful intrinsic rewards
from data. The optimal reward framework (Singh et al.,2009) proposed to learn an optimal reward
function that allows agents to solve a distribution of tasks quickly using random search. We revisit
this problem in this paper and propose a more scalable gradient-based approach. Although there have
been follow-up works (Sorg et al.l |2010; |Guo et al.| 2016)) that uses a gradient-based method, they
consider a non-parameteric policy using Monte-Carlo Tree Search (MCTS). Our work is closely
related to LIRPG (Zheng et al., 2018)) which proposed a meta-gradient method to learn intrinsic
rewards. However, LIRPG uses a myopic episode return objective, which is fundamentally limited
in that it does not allow exploration across episodes, which we address in this paper.

Meta-learning for Exploration Meta-learning (Schmidhuber et al. |1996; [Thrun & Pratt, [1998))
has recently received considerable attention in RL. Recent advances include policy adaptation (Finn
et al.,[2017a)), few-shot imitation (Finn et al.,[2017b; Duan et al.l 2017), model adaptation (Clavera
et al.|[2018)), and inverse RL (Xu et al.,|2018a)). In particular, our work is closely related to the prior
work on meta-learning good exploration strategies (Wang et al.,[2016;|Duan et al,[2016; [Stadie et al.,
2018) in that both perform temporal credit assighment across episode boundaries by maximising
rewards accumulated beyond an episode. Unlike the prior work that aims to learn an exploratory
policy, our framework indirectly drives exploration via a reward function which can be used by
agents with different action spaces as we empirically show in this paper.

Under review as a conference paper at ICLR 2020

Lifetime with task 7 ~ p(T)

Imrmsw Reward | |) N T /N T (o \NT _,‘(- Glife

Episode 1 Episode 2

Figure 1: Illustration of the proposed intrinsic reward learning framework. The intrinsic reward 7 is used to
update the agent’s parameter 0; throughout its lifetime which consists of many eplsodes The goal is to find the
optimal intrinsic reward 7* across many lifetimes that maximises the lifetime return (G') given any randomly
initialised agents and possibly non-stationary tasks drawn from some distribution p(7).

Meta-learning of Agent Update There have been a few studies that directly meta-learn how to
update the agent’s parameters via meta-parameters including discount factor and returns (Xu et al.,
2018b), auxiliary tasks (Schlegel et al., 2018} |Veeriah et al., 2019), and RL objectives (Chebo-
tar et al., [2019). Our work also belongs to this category in that our meta-parameters are the re-
ward function used in the agent’s update. In particular, our multi-lifetime formulation is similar to
ML? (Chebotar et al.| [2019). However, we consider the long-term lifetime return as objective to
perform cross-episode temporal credit assignment as opposed to the episodic objective in ML?.

2 THE OPTIMAL REWARD PROBLEM
We first introduce some terminology.

e Agent: A learning system interacting with an environment. On each step ¢ the agent selects an
action a; and receives from the environment an observation s;y; and an extrinsic reward ryy;
defined by a task 7. The agent chooses actions based on a policy mg(a¢|s;) parameterised by 6.

e Episode: A finite sequence of agent-environment interactions until the end of the episode defined

. . Typ—1 . .
by the task. An episode return is defined as: G = >, %" y'r¢11, where + is a discount factor,
and the random variable T¢, gives the finite number of steps until the end of the episode.

o Lifetime: A finite sequence of agent-environment interactions until the end of training de-
fined by an agent-designer, which can include multiple episodes. The lifetime return is Gi¢ =

ZtT:_ol ~tryy1, where is a discount factor, and 7" is the number of steps in the lifetime.

o Intrinsic reward: A reward function 7,(7¢11) parameterised by 7, where 7, =
(s0,a0,71,d1, 81, .,7t,dz, $¢) is a lifetime history with (binary) episode terminations d;.

The Optimal Reward Problem (Singh et al., [2010), illustrated in Figure[T] aims to learn the param-
eters of the intrinsic reward such that the resulting rewards achieve a learning dynamic for an RL
agent that maximises the lifetime (extrinsic) return on tasks drawn from some distribution. Formally,
the optimal reward function is defined as:

n* = argmax J(n) = arg max Eg o 7~p(7) I:ETNPH(T‘QO) [Glife” , (1
n n

where O and p(7) are an initial policy distribution and a distribution over possibly non-stationary
tasks respectively, and G'if¢ = ZtT;Ol viryyq is a lifetime return. The likelihood of a lifetime history

T is p, (7160) = p(s0) HtT:_Ol 7o, (at|st)D(des1, Te41, St4+1|S¢t, at), where 0, = f(6:—1,n) is a policy
parameter as updated with update function f, which is policy gradient in this paperE] Note that the
optimisation of 7 spans multiple lifetimes, each of which can span multiple episodes.

Using the lifetime return G as objective instead of the conventional episodic return G allows
exploration across multiple episodes as long as the lifetime return is maximised in the long run.
In particular, when the lifetime is defined as a fixed number of episodes, we find that the lifetime
return objective is sometimes more beneficial than the episodic return objective even in terms of the
episodic return performance measure. However, different objectives (e.g., final episode return) can
be considered depending on the definition of what a good reward function is.

"We assume that the policy parameter is updated after each time-step throughout the paper for brevity.
However, the parameter can be updated less frequently in practice.

Under review as a conference paper at ICLR 2020

Algorithm 1 Learning intrinsic rewards across multiple lifetimes via meta-gradient

Input: p(7): Task distribution, ©: Randomly-initialised policy distribution
Initialise intrinsic reward function n and lifetime value function ¢
repeat
Initialise task 7 ~ p(7T) and policy § ~ ©
while lifetime not ended do
90 «— 0
fork=1,2,...,Ndo
Generate a trajectory using g,
Update policy 0, < 0x—1 + oV, _, J,(0,—1) using intrinsic rewards 7 (Eq.
end for
Update intrinsic reward function 7 using Eq. 3|
Update lifetime value function ¢ using Eq.]
0«0 N
end while
until 7 converges

3 META-LEARNING INTRINSIC REWARD

We propose a meta-gradient approach (Xu et al., 2018b; Zheng et al.| [2018) to solve the optimal
reward problem. At a high-level, we sample a new task 7 and a new random policy parameter 6
at each lifetime iteration. We then simulate an agent’s lifetime by updating the parameter 6 using
an intrinsic reward function r,, (Section with policy gradient (Section . In the meantime,
we compute the meta-gradient by taking into account the effect of the intrinsic rewards on the pol-
icy parameters to update the intrinsic reward function with a lifetime value function (Section [3.3).
Algorithm [T] gives an overview of our algorithm. The following sections describe the details.

3.1 INTRINSIC REWARD ARCHITECTURE

The intrinsic reward function is a recurrent neural network parameterised by 7, which produces
a scalar reward on arriving in state s; by taking into account the history of an agent’s lifetime
(including extrinsic rewards) 7; = (sg, @, 71, d1, S1, ---, I't, dt, St). We claim that giving the lifetime
history across episodes as input is crucial for balancing exploration and exploitation, for instance by
capturing how frequently a certain state is visited to determine an exploration bonus reward.

3.2 PoLICY UPDATE (6)

Each agent interacts with an environment and a task sampled from a distribution 7 ~ p(7). How-
ever, instead of directly maximising the extrinsic reward defined by the task, the agent maximises
the intrinsic rewards (77) by using policy gradient (Williams| |1992; [Sutton et al., [2000):

Tp—1
Jn(0) = Eq [> Ay (ria)] VoJy(0) = Eq|G;Y,Vologmg(als) |,)

t=0
where 7, (711) is the intrinsic reward at time ¢, and G}, = Ze:pt_l Ak =tr, (Tx41) is the return of

the intrinsic rewards accumulated over an episode with discount factor .

3.3 INTRINSIC REWARD (77) AND LIFETIME VALUE FUNCTION (¢) UPDATE

To update the intrinsic reward parameters 7, we directly take a meta-gradient ascent step using the
overall objective (Equation[I]). Specifically, the gradient is (see the Appendix for derivation):

Vo J (1) = Eggno, 7~p(T) {Enwmm,eo) [G}sifevet log 7o, (at|5t)Vn9t” ; 3)

where Glife = S™T—Lyk~tp,) is a lifetime return based on the extrinsic rewards of task 7~ with
discount factor . The chain rule is used to get the meta-gradient (V,,0;) as in previous work (Zheng
et al| [2018)). The computation graph of this procedure is illustrated in Figure[I]

Computing the true meta-gradient in Equation [3] requires backpropagation through the entire life-
time, which is infeasible as each lifetime can involve more than thousands of policy updates. To

Under review as a conference paper at ICLR 2020

(a) Empty Rooms (b) ABC (c) Key-Box

Figure 2: Illustration of domains. (a) The agent needs to find the goal location which gives a positive reward,
but the goal is not visible to the agent. (b) Each object (A, B, and C) gives rewards. (c) The agent is required to
first collect the key and visit one of the boxes (A, B, and C) to receive the corresponding reward.

Empty Rooms Random ABC Key-Box Non-stationary ABC

<10 0.6 0.4 1.5
5 82] . 1.0 4 — Learned (ours)
@ 0.8+ 03 Extrinsic-EP
—- S N 0.5 4
% 0.6 0.2 . 1 004 Extrinsic-LIFE
3044 8(1)] . R i _0'5 Count-based
Q02 -0.1 . = - - Near-Optimal
fm

0.2 -0.2 -1.0

T T T - — T T T T T T T T T
0 50 100 150 200 0 10 20 30 40 50 0 50 100 150 200 0 250 500 750 1000

Num episodes

Figure 3: Evaluation of different reward functions averaged over 30 seeds. The learning curves show agents
trained with our intrinsic reward (blue), with the extrinsic reward with the episodic return objective (orange)
and the lifetime return objective (brown), and with a count-based exploration reward (green). The dashed line
corresponds to a hand-designed near-optimal exploration strategy.

partially address this issue, we truncate the meta-gradient after /N policy updates but approximate

the lifetime return G ~ Gli* using a lifetime value function V() parameterised by ¢, which is
learned using a temporal difference learning from n-step trajectory:

n—1

G = " Y ik + 9" Vi (Tn) ¢ =0+ (G —Vy(m))VeVs(m). @)
k=0

Unlike conventional value functions in RL, the lifetime value function needs to take into account the
changing future policies when approximating the lifetime return. The lifetime value estimates are
crucial to allow the intrinsic reward to perform long-term credit assignments across episodes.

4 EMPIRICAL INVESTIGATIONS
The experiments and domains are designed to answer the following research questions:

e What kind of knowledge can be learned by the intrinsic reward?

e How does the distribution of tasks drive the form of intrinsic reward?

Does the learned intrinsic reward generalise to new dynamics or new action spaces?
e What is the benefit of the lifetime return objective over the episode return?

e When is it important to provide the lifetime history as input to the intrinsic reward?

We systematically investigate these research questions in various grid-world domains illustrated in
Figure[2] For each domain, we trained an intrinsic reward across many lifetimes and evaluated it by
training an agent using the learned reward. We implemented the following baselines.

o Extrinsic-EP: A policy is trained with extrinsic rewards to maximise the episode return.
o Extrinsic-LIFE: A policy is trained with extrinsic rewards to maximise the lifetime return.
e Count-based (Strehl & Littmanl, 2008): A policy is trained with extrinsic rewards with

count-based exploration bonus rewards to maximise the episode return.

Note that these baselines, unlike the learned intrinsic rewards, do not transfer any knowledge across
different lifetimes. Throughout Sections [d.1}{4.4] we focus on analysing what kind of knowledge is

Under review as a conference paper at ICLR 2020

(a) Room instance (b) Intrinsic (ours) (c) Extrinsic (d) Count-based

Figure 4: Visualisation of the first 3000 steps of an agent trained with different reward functions in Empty
Rooms. (a) The blue and yellow squares represent the agent and the hidden goal, respectively. (b) The learned
reward encourages the agent to visit many locations if the goal is not found (top). However, when the goal
is found early, the intrinsic reward makes the agent exploit it without further exploration (bottom). (c) An
agent trained only with extrinsic rewards explores poorly. (d) The count-based reward tends to encourage more
exploration (top) but hinders exploitation when the goal is found (bottom).

learned by the intrinsic reward depending on the nature of environments. In Section .3 we show
how the intrinsic reward generalises to unseen actions. We discuss the benefit of using the lifetime
return and considering the lifetime history when learning the intrinsic reward in Section 4.6 The
details of implementation and hyperparameters are described in the Appendix.

4.1 EXPLORING UNCERTAIN STATES

We designed ‘Empty Rooms’ (Figure [2a) to see whether the intrinsic reward can learn to encourage
exploration of uncertain states like novelty-based exploration methods. The goal is to visit an invisi-
ble goal location, which is fixed within each lifetime but varies across lifetimes. Episode terminates
when the goal is reached. Each lifetime consists of 200 episodes. From the agent’s perspective,
its policy should visit the locations suggested by the intrinsic reward. From the intrinsic reward’s
perspective, it should encourage the agent to go to unvisited locations to locate the goal, and once
the goal is located to exploit that knowledge for the rest of that lifetime.

Figure [3] shows our learned intrinsic reward was more efficient than extrinsic rewards and count-
based exploration when training a new agent. We observed that the intrinsic reward learned two
interesting strategies as visualised in Figure d] While the goal is not found, it encourages explo-
ration of unvisited locations, because it learned the prior that there exists a rewarding goal location
somewhere. Once the goal is found the intrinsic reward encourages the agent to exploit it without
further exploration, because it learned that there is only one goal. This result shows that curiosity
about uncertain states can naturally emerge when various states can be rewarding in a domain, even
when the rewarding states are fixed within an agent’s lifetime.

4.2 EXPLORING UNCERTAIN OBJECTS AND AVOIDING HARMFUL OBJECTS

In the previous domain, we considered uncertainty of where the reward (or goal location) is. We
now consider dealing with uncertainty about the value of different objects. In the ‘Random ABC’
environment (see Figure 2b), for each lifetime the rewards for objects A, B, and C are uniformly
sampled from [—1, 1], [-0.5, 0], and [0, 0.5] respectively but are held fixed within the lifetime. A
good intrinsic reward should learn that: 1) B should be avoided, 2) A and C have uncertain rewards,
hence require systematic exploration (first go to one and then the other), and 3) once it is determined
which of the two A or C is better, exploit that knowledge by encouraging the agent to repeatedly go
to that object for the rest of the lifetime.

Figure [3]shows that the agent learned a near-optimal exploration-and-then-exploitation method with
the learned intrinsic reward. Note that the agent cannot cannot pass information about the reward for
objects across episodes, as usual in reinforcement learning. The intrinsic reward can propagate such
information across episodes and help the agent explore or exploit appropriately. We visualised the
learned intrinsic reward for different actions sequences in Figure[5] The intrinsic rewards encourage
the agent to explore towards A and C in the first few episodes. Once A and C are explored, the

Under review as a conference paper at ICLR 2020

4
Visit C)
S —_—
2
1
Episode 2 Episode 3 lo
-1
Episode 1 M. =
A=0.2 B=-0.5 C-0.1
-3
-4
Episode 2 Episode 3

Figure 5: Visualisation of the learned intrinsic reward in Random ABC, where the extrinsic rewards for A, B,
and C are 0.2, -0.5, and 0.1 respectively. Each figure shows the sum of intrinsic rewards for a trajectory towards
each object (A, B, and C). In the first episode, the intrinsic reward encourages the agent to explore A. In the
second episode, the intrinsic reward encourages exploring C if A is visited (top) or vice versa (bottom). In
episode 3, after both A and C are explored, the intrinsic reward encourages to revisit A (both top and bottom).

1.4
1.2

1
1
2 |||I|||I||||u||||| ||| |||II||I|||I|||I||||I|| 1o
INnnnnnmnm ', HNInnnnmnm o 8-2
—2 - |mmm Intrinsic 0:4
—a W Extrinsic 0.2
T 1 0.0 1 T T T T T 1
470 480 49 10 520 530

T T 1 T T
470 480 490 500 510 520 530 0 500 5
Episodes Episodes

Episode Return
o
—
Entr

Figure 6: Visualisation of the agent’s intrinsic and extrinsic rewards (left) and the entropy of its policy (right)
on Non-stationary ABC. The task changes at 500th episode (dashed vertical line). The intrinsic reward gives
a negative reward even before the task changes (green rectangle) and makes the policy less peaky (entropy
increases). As a result, the agent quickly adapts to the change.

agent exploits the largest rewarding object. Throughout training, the agent is discouraged to visit B
through negative intrinsic rewards. These results show that avoidance and curiosity about uncertain
objects can potentially emerge if the environment has various or fixed rewarding objects.

4.3 EXPLOITING INVARIANT CAUSAL RELATIONSHIP

To see how the intrinsic reward deals with causal relationship between objects, we designed ‘Key-
Box’, which is similar to Random ABC except that there is a key in the top-left corner (see Fig-
ure [2c). The agent needs to collect the key first to open one of the boxes (A, B, and C) and receive
the corresponding reward. The rewards for the objects are sampled from the same distribution as
Random ABC. The key itself gives a small negative reward of —0.1. Figure [3| shows that learned
intrinsic reward leads to a near-optimal exploration. The agent trained with extrinsic rewards did
not learn to open any box. The intrinsic reward captures that the key is necessary to open any box,
which is true across many lifetimes of training. This demonstrates that the intrinsic reward can
capture causal relationships between objects when the domain has this kind of invariant dynamics.

4.4 DEALING WITH NON-STATIONARITY

We investigated how the intrinsic reward deals with non-stationarity of tasks within a lifetime in
our ‘Non-stationary ABC’ environment. Rewards are as follows: for A is either 1 or —1, for B is
—0.5, for C is the negative value of the reward for A. The rewards of A and C are swapped every
250 episodes. Each lifetime lasts 1000 episodes. Figure [3] shows that the agent with the learned
intrinsic reward quickly recovered its performance when the task changes, whereas the baselines
take more time to recover. Figure [f] shows how the learned intrinsic reward encourages the learning
agent to react to the changing rewards. Interestingly, the intrinsic reward has learned to prepare for
the change by giving negative rewards to the exploitation policy of the agent a few episodes before
the task changes. In other words, the intrinsic reward starts to discourage the agent to commit to the
current best rewarding object, thereby increasing entropy in the current policy in anticipation of the
change, eventually making it easier to adapt quickly. This shows that the intrinsic reward can cap-
ture the (regularly) repeated non-stationarity across many lifetimes and make the agent intrinsically
motivated not to commit too firmly to a policy, in anticipation of changes in the environment.

Under review as a conference paper at ICLR 2020

Empty Rooms 05 Random ABC 0.4 Key-Box 15 Non-stationary ABC
£ 1.0+ 0.4 0.3 1.0 4 — LSTM-Lifetime
@ 0.8+ 0.3 1 0.2 1 054 LSTM-Episode
@ 0.6 0.2 4 0.1+ ’ FF-Episode
B 044 0.1 0.0 e 0-0 1
3 00 0.0 - -0.1 —0.54
i 0.

-0.1 -0.2 -1.0

T T T
0 50 100 150 200
Num episodes

— T T 1 T T T T T T
0 10 20 30 40 50 0 50 100 150 200 0 250 500 7501000

Figure 8: Evaluation of different intrinsic reward architectures and objectives. For ‘LSTM’ the reward network
has an LSTM taking the lifetime history as input. For ‘FF’ a feed-forward reward network takes only the current
time-step. ‘Lifetime’ and ‘Episode’ means the lifetime and episodic return as objective respectively.

4.5 GENERALISING TO DIFFERENT ACTION SPACES

A benefit of storing knowledge in a reward function is that it can
potentially generalise to different agent-environment interfaces. To

verify this, we trained an intrinsic reward which does not take the 06
agent’s action as input on Random ABC and evaluated it by training o o —
new agents with different action spaces. Specifically, the learned in- 034

trinsic reward was used to train new agents with either: 1) perturbed 2
actions, where the semantics of left/right and up/down are reversed, 004 permuted (Unseer)
or 2) extended actions, with 4 additional actions that move diagonally. 01 Near-optimal
Note that transferring a policy is difficult if the action space changes. T 3% % 4 s

Random ABC

—— Original
Permuted (Unseen)

Episode Return

Figure 7: Evaluation of the

Figure [7| shows that the intrinsic rewards provided useful rewards to . 5.~
intrinsic reward on new ac-

new agents wiFh differe'nt'actions., even when these were not trained tion spaces. ‘Permuted’ agents
with those actions. This is possible because the learned reward as- | ,ve different action seman-
signs rewards to the agent’s state changes rather than its actions. In (ics. ‘Extended’ agents have
other words, the intrinsic reward captures ‘what to do’, whereas a additional actions. See text for
policy tends to capture ‘how to do’. Thus, the intrinsic reward can details.

generalise to new actions if the interface changes, as long as the goal remains the same.

4.6 ABLATION STUDY

To study relative benefits of the proposed technical ideas, we conducted an ablation study 1) by
replacing the long-term lifetime return objective (G'"®) with the episodic return (GP) and 2) by re-
stricting the input of the reward network to the current time-step instead of the entire lifetime history.
Figure[8]shows that the lifetime history was crucial to achieve good performance. This is reasonable
because all domains require some past information (e.g., current object rewards in Random ABC,
visited locations in Empty Rooms) to provide useful exploration strategies. It is also shown that
the lifetime return objective was beneficial on Random ABC, Non-stationary ABC, and Key-Box.
These domains require exploration across multiple episodes in order to find the optimal policy. For
example, collecting an uncertain object (e.g., object A in Random ABC) is necessary even if the
episode terminates with a negative reward. The episodic value function would directly penalise
such an under-performed exploratory episode when computing meta-gradient, which prevents the
intrinsic reward from learning to encourage exploration across episodes. On the other hand, such
behaviour can be encouraged by the lifetime value function as long as it provides useful information
to maximise the lifetime return in the long term.

5 CONCLUSION

We revisited the optimal reward problem (Singh et al.,2009) and proposed a more scalable gradient-
based method for learning intrinsic rewards. Through several proof-of-concept experiments, we
showed that the learned non-stationary intrinsic reward can capture regularities within a distribution
of environments or, over time, within a non-stationary environment. As a result, they were capable
of encouraging both exploratory and exploitative behaviour across multiple episodes. In addition,
some task-independent notions of intrinsic motivation such as curiosity emerged when they were
effective for the distribution over tasks across lifetimes the agent was trained on. The flexibility and
range of knowledge captured by intrinsic rewards in our proof-of-concept experiments encourage
further work towards combining different loci of knowledge to achieve greater practical benefits.

Under review as a conference paper at ICLR 2020

REFERENCES

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi
Munos. Unifying count-based exploration and intrinsic motivation. CoRR, abs/1606.01868, 2016.
URLhttp://arxiv.org/abs/1606.01868.

Yevgen Chebotar, Artem Molchanov, Sarah Bechtle, Ludovic Righetti, Franziska Meier, and Gau-
rav S. Sukhatme. Meta-learning via learned loss. CoRR, abs/1906.05374, 2019. URL http:
//arxiv.org/abs/1906.05374.

Jack Clark and Dario Amodei. Faulty reward functions in the wild. CoRR, 2016. URL https:
//blog.openai.com/.

Ignasi Clavera, Anusha Nagabandi, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Learning to adapt: Meta-learning for model-based control. ArXiv, abs/1803.11347, 2018.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RI2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAl Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In Advances
in neural information processing systems, pp. 1087-1098, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1126-1135. IMLR. org, 2017a.

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imita-
tion learning via meta-learning. arXiv preprint arXiv:1709.04905, 2017b.

G. Gordon and E. Ahissar. Reinforcement active learning hierarchical loops, 2011.

Xiaoxiao Guo, Satinder Singh, Richard Lewis, and Honglak Lee. Deep learning for reward design
to improve monte carlo tree search in atari games. arXiv preprint arXiv:1604.07095, 2016.

Anna Harutyunyan, Sam Devlin, Peter Vrancx, and Ann Nowé. Expressing arbitrary reward func-
tions as potential-based advice. In Tiventy-Ninth AAAI Conference on Artificial Intelligence, 2015.

Laurent Itti and Pierre F. Baldi. Bayesian surprise attracts human attention. In Y. Weiss,
B. Scholkopf, and J. C. Platt (eds.), Advances in Neural Information Processing Sys-
tems 18, pp. 547-554. MIT Press, 2006. URL http://papers.nips.cc/paper/
2822-bayesian—-surprise—attracts—human—-attention.pdfl

Cam Linke, Nadia M. Ady, Martha White, Thomas Degris, and Adam White. Adapting behaviour
via intrinsic reward: A survey and empirical study. CoRR, abs/1906.07865, 2019. URL http:
//arxiv.org/abs/1906.07865.

Marco Mirolli and Gianluca Baldassarre. Functions and Mechanisms of Intrinsic Motiva-
tions, pp. 49-72. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-
642-32375-1. doi: 10.1007/978-3-642-32375-1.3. URL https://doi.org/10.1007/
978-3-642-32375-1_3.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the Sixteenth International Confer-
ence on Machine Learning, ICML °99, pp. 278-287, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-612-2. URL http://dl.acm.org/citation.
cfm?id=645528.657613.

Georg Ostrovski, Marc G. Bellemare, Aédron van den Oord, and Rémi Munos. Count-based explo-
ration with neural density models. CoRR, abs/1703.01310, 2017. URL http://arxiv.org/
abs/1703.01310.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. CoRR, abs/1705.05363, 2017. URL http://arxiv.org/abs/
1705.05363l

http://arxiv.org/abs/1606.01868
http://arxiv.org/abs/1906.05374
http://arxiv.org/abs/1906.05374
https://blog.openai.com/
https://blog.openai.com/
http://papers.nips.cc/paper/2822-bayesian-surprise-attracts-human-attention.pdf
http://papers.nips.cc/paper/2822-bayesian-surprise-attracts-human-attention.pdf
http://arxiv.org/abs/1906.07865
http://arxiv.org/abs/1906.07865
https://doi.org/10.1007/978-3-642-32375-1_3
https://doi.org/10.1007/978-3-642-32375-1_3
http://dl.acm.org/citation.cfm?id=645528.657613
http://dl.acm.org/citation.cfm?id=645528.657613
http://arxiv.org/abs/1703.01310
http://arxiv.org/abs/1703.01310
http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1705.05363

Under review as a conference paper at ICLR 2020

Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution to discrete
bayesian reinforcement learning. In Proceedings of the 23rd International Conference on Ma-
chine Learning, ICML °06, pp. 697-704, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-
2. doi: 10.1145/1143844.1143932. URL http://doi.acm.org/10.1145/1143844.
1143932.

Jette Randlov and Preben Alstrm. Learning to drive a bicycle using reinforcement learning and
shaping. pp. 463471, 01 1998.

Matthew Schlegel, Andrew Patterson, Adam White, and Martha White. Discovery of predictive rep-
resentations with a network of general value functions, 2018. URL https://openreview.
net/forum?id=ryzE1GZ0Z.

Jiergen Schmidhuber, Jieyu Zhao, and MA Wiering. Simple principles of metalearning. Technical
report IDSIA, 69:1-23, 1996.

Jiirgen Schmidhuber. Curious model-building control systems. In In Proc. International Joint Con-
ference on Neural Networks, Singapore, pp. 1458-1463. IEEE, 1991a.

Jiirgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neu-
ral controllers, 1991b.

Satinder Singh, Richard L. Lewis, and Andrew G. Barto. Where do rewards come from?, 2009.

Satinder Singh, Richard L. Lewis, and Andrew G. Barto. Intrinsically motivated reinforcement
learning: An evolutionary perspective. In L. K. Saul, Y. Weiss, and L. Bottou (eds.), IEEE
TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT. 2010.

Jonathan Sorg, Richard L Lewis, and Satinder Singh. Reward design via online gra-
dient ascent. In J. D. Laffertyy, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta (eds.), Advances in Neural Information Processing Systems 23, pp.
2190-2198. Curran Associates, Inc., 2010. URL http://papers.nips.cc/paper/
4146-reward-design-via-online—-gradient—ascent.pdf.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some considerations on learning to explore via meta-reinforcement learning. arXiv
preprint arXiv:1803.01118, 2018.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309-1331, 2008.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approx-
imating dynamic programming. In In Proceedings of the Seventh International Conference on
Machine Learning, pp. 216-224. Morgan Kaufmann, 1990.

Richard S Sutton, David A McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, pp. 1057-1063, 2000.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to
learn, pp. 3—17. Springer, 1998.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Richard Lewis, Janarthanan Rajendran, Junhyuk Oh,
Hado van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as auxiliary
tasks. CoRR, abs/1909.04607, 2019. URL http://arxiv.org/abs/1909.04607.

Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos,
Charles Blundell, Dharshan Kumaran, and Matthew M Botvinick. Learning to reinforcement
learn. ArXiv, abs/1611.05763, 2016.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Mach. Learn., 8(3-4):229-256, May 1992. ISSN 0885-6125. doi: 10.1007/
BF00992696.

10

http://doi.acm.org/10.1145/1143844.1143932
http://doi.acm.org/10.1145/1143844.1143932
https://openreview.net/forum?id=ryZElGZ0Z
https://openreview.net/forum?id=ryZElGZ0Z
http://papers.nips.cc/paper/4146-reward-design-via-online-gradient-ascent.pdf
http://papers.nips.cc/paper/4146-reward-design-via-online-gradient-ascent.pdf
http://arxiv.org/abs/1909.04607

Under review as a conference paper at ICLR 2020

Kelvin Xu, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. Learning a prior over
intent via meta-inverse reinforcement learning. arXiv preprint arXiv:1805.12573, 2018a.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. In
Advances in Neural Information Processing Systems, pp. 23962407, 2018b.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In Advances in Neural Information Processing Systems, pp. 4644—4654, 2018.

11

Under review as a conference paper at ICLR 2020

A DERIVATION OF INTRINSIC REWARD UPDATE

Following the conventional notation in RL, we define v (7|7, 0y) as the state-value function that
estimates the expected future lifetime return given the lifetime history 7, the task 7, initial policy
parameters 6 and the intrinsic reward parameters 1. Specially, vy (9|7, 6o) denotes the expected
lifetime return at the starting state, i.e.,

o7 (10[n, 00) = Er o, (r100) [G™]

where GU® denotes the lifetime return in task 7. We also define the action-value function
g7 (7, at|n, 0p) accordingly as the expected future lifetime return given the lifetime history 7 and
an action a;.

The objective function of the optimal reward problem is defined as:

J(n) = Eoyno,7~p(T) [ETNPT,(TI%) [the]] o)
= Egyn0, 7~p(m) [v7 (707, 00)] , (6)
where © and p(7) are an initial policy distribution and a task distribution respectively.

Assuming the task 7 and the initial policy parameters 6, are given, we omit 7 and 6 for the rest of
equations for simplicity. Let 7, (-|7¢) = g, (-|s¢) be the probability distribution over actions at time
t given the history 74, where 0; = f, (7, 00) is the policy parameters at time ¢ in the lifetime. We
can derive the meta-gradient with respect to 7 by the following:

V,J(n)
= Vyo(7oln)

=V, Z”HO(GOVO)Q(TO, aoln)

ao

= > [Vyma, (aol70)a(70, ao|n) + e, (a0|70) Viya(7o, ao|n)]

ao

= | Ve, (a0l70)q(70, aoln) + 7o, (ao|70)Vy > p(71,70|70, ao)(ro + v(ﬁln))]
ag

71,70

= | Ve, (a0l70)q(70, aoln) + 7o, (ao|70) > p(r1]70, a0) Vv (1 77)]
aog

T1

=E, van(atITt)q(n, at|n)
Er, [Vylog m,(a:|m)q(Te, at|n)]
E;, [G¢V,log m,(at|m)]

En [GtVQt IOg 7Tgt (at|st)V,79t] 5

where Gy = Zf;tl 1, is the lifetime return given the history 7;, and we assume the discount factor
~ = 1 for brevity. Thus, the derivative of the overall objective is:

Vo d (1) = Eoyno, 7op(T) [Erimp(riin.b0) (Gt Vo, log o, (ar]s1) V0] - M

12

Under review as a conference paper at ICLR 2020

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

We used mini-batch update to reduce the variance of meta-gradient estimation. Specifically, we ran
64 lifetimes in parallel, each with a randomly sample task and randomly initialised policy param-
eters. We took the average of the meta-gradients from each lifetime to compute the update to the
intrinsic reward parameters(n). We ran 2 x 10° updates to 7 at training time. We used arctan activa-
tion on the output of the intrinsic reward. The hyperparameters used for each domain are described
in Table[Tl

Table 1: Hyperparameters.

Hyperparameters | Empty Rooms Random ABC ~ Key-Box Non-stationary ABC
Time limit per episode 100 10 50 10
Number of episodes per lifetime 200 50 200 1000
Inner unroll length 8 4 4 4
Entropy regularisation 0.01 0.01 0.01 0.05
Policy architecture Conv(16)-FC(64)

Policy optimiser SGD

Policy learning rate 0.1

Reward architecture Conv(16)-FC(64)-LSTM(64)

Reward optimiser Adam

Reward learning rate 0.001

Outer unroll length 5

Inner discount factor 0.9

Outer discounter factor 0.99

B.2 DOMAINS

We will consider five task distributions, instantiated within one of the three main gridworld domains
shown in Figure 2] In all cases the agent has four actions available, corresponding to moving up,
down, left and right. However the topology of the gridworld and the reward structure may vary.

B.2.1 EMPTY ROoOMS

Figure [2a shows the layout of the Empty Rooms domain. There are four rooms in this domain. The
agent always starts at the centre of the top-left room. One and only one cell is rewarding, which is
called the goal. The goal is invisible. The goal location is sampled uniformly from all cells at the
beginning of each lifetime. An episode terminates when the agent reaches the goal location or a time
limit of 100 steps is reached. Each lifetime consists of 200 episodes. The agent needs to explore all
rooms to find the goal and then goes to the goal afterwards.

B.2.2 ABC WORLD

Figure |2b| shows the layout of the ABC World domain. There is a single 5 by 5 room, with three
objects (denoted by A, B, C). All object provides reward upon reaching them. An episode terminates
when the agent reaches an object or a time limit of 10 steps is reached. We consider three different
versions of this environment: Fixed ABC, Random ABC and Non-stationary ABC. In the Fixed
ABC environment, each lifetime has 200 episodes. The reward associated with each object is fixed
across lifetimes. Specifically, the rewards for objects A, B, and C are 1, —0.5, and 0.5 respectively.
The optimal policy is to always collect A. In the Random ABC environment, each lifetime has 50
episodes. The reward associated with each object is randomly sampled for each lifetime and is
held fixed within a lifetime. Thus, the environment is stationary from an agent’s perspective but
non-stationary from the reward function’s perspective. Specifically, the rewards for A, B, and C
are uniformly sampled from [—1, 1], [-0.5, 0], and [0.0.5] respectively. The optimal behaviour is to
explore A and C at the beginning of a lifetime to assess which is the better, and then commits to
the better one for all subsequent episode. In the non-stationary ABC environment, each lifetime has

13

Under review as a conference paper at ICLR 2020

12— Fixed ABC

1.0 4 — Lear.nefi (ours)
- Extrinsic
§ 0.8 4 — Count-based
& 0.6
(]
o° 0.4+
o
wn
a 024
w

0.0

-0.2 T T T 1
0 50 100 150 200

Figure 9: Evaluation of different rewards in the Fixed ABC domain. The x-axis shows the number of episodes
within a single lifetime; the y-axis measures the episode return.

1000 episodes. The rewards for A, B, and C are 1, —0.5, and —1 respectively. The rewards for A
and C swap every 250 episodes.

B.2.3 KEY BOX WORLD

Figure shows the Key Box World domain. In this domain, there is a key and three boxes, A, B, and
C. In order to open any box, the agent must pick up the key first. The reward for the key is —0.1 and
the rewards for A, B, and C are uniformly sampled from [—1, 1], [—0.5, 0], and [0, 0.5] respectively
for each lifetime. An episode terminates when the agent opens a box or a time limit of 50 steps is
reached. Each lifetime consists of 200 episodes.

B.3 HAND-DESIGNED NEAR-OPTIMAL EXPLORATION STRATEGY FOR RANDOM ABC

We hand-designed a heuristic strategy for the Random ABC domain. We assume the agent has the
prior knowledge that B is always bad and A and C have uncertain rewards. Therefore, the heuristic
is to go to A in the first episode, go to C in the second episode, and then go to the better one in the
remaining episodes in the lifetime. We view this heuristic as an upper-bound because it always finds
the best object and can arbitrarily control the agent’s behaviour.

C ADDITIONAL EMPIRICAL RESULT

C.1 EXPLOITING OPTIMAL BEHAVIOUR ON A FIXED TASK

To investigate what the intrinsic reward learns in a fixed task, we designed the ‘Fixed ABC’ en-
vironment (see Figure 2b). The reward for each object (A, B, and C) is fixed within and across
lifetimes. When the agent collects an object, it receives the corresponding reward of 1, —0.5, or 0.5
for object A, B, or C respectively, and the episode terminates. Each lifetime contains 200 episodes.
The optimal policy is to always collect A. The optimal reward should capture the regularity of the
environment that object A has the highest reward and drive the agent towards object A.

Figure [0] shows that agents trained with the learned intrinsic reward learn optimal policies within a
few episodes. This indicates that the intrinsic reward memorises the fixed optimal behaviour during
training and assigns rewards accordingly to aid learning during evaluation. The result on Fixed ABC
is not particularly surprising. In a fixed task in a stationary environment, an optimal reward function
does not need to encourage exploration, and helps the agent to directly learn the optimal behaviour
as quickly as possible, similarly to reward shaping.

C.2 COUNT-BASED EXPLORATION BONUS IN KEY-BOX

The Key-Box domain is considered as a hard exploration domain because it requires the agent to
sacrifice short-term rewards by picking up the negative rewarding key for long-term rewards from
positive rewarding boxes. As shown in Figure[I0] the count-based exploration bonus baseline indeed
performs better than the extrinsic reward baseline in this domain. However, it requires a much longer
lifetime to show advantage. The reason is that count-based exploration bonus is task-independent so

14

Under review as a conference paper at ICLR 2020

Key-Box

0.6

0.4+

£
2 024
5]
-4
5
S 0.0 1 ikshaiuiath Gy xar
2 AN
g | W
—0.2
Extrinsic Reward
—0.41 Count-based Reward

0 1000 2000 3000 4000 5000

Figure 10: Evaluation of baseline methods on a longer lifetime in the Key-Box domain. The x-axis shows the
number of episodes within a single lifetime; the y-axis measures the episode return. The Key-Box domain is
considered as a hard exploration domain. The count-based exploration bonus baseline helps with exploration
and performs better than the extrinsic reward baseline on a longer lifetime. However, it does not explore
effectively in a relatively shorter lifetime, i.e. 200 episodes as the setting in our experiments.

it gradually explores the entire state space. While our method is task-specific so it is able to explore
the key and the boxes more efficiently.

15

	Related Work
	The Optimal Reward Problem
	Meta-Learning Intrinsic Reward
	Intrinsic Reward Architecture
	Policy Update ()
	Intrinsic Reward () and Lifetime Value Function () update

	Empirical Investigations
	Exploring Uncertain States
	Exploring Uncertain Objects and Avoiding Harmful Objects
	Exploiting Invariant Causal Relationship
	Dealing with Non-stationarity
	Generalising to Different Action Spaces
	Ablation Study

	Conclusion
	Derivation of intrinsic reward update
	Experimental Details
	Implementation Details
	Domains
	Empty Rooms
	ABC World
	Key Box World

	Hand-designed near-optimal exploration strategy for Random ABC

	Additional empirical result
	Exploiting optimal behaviour on a fixed task
	Count-based exploration bonus in Key-Box

