
Under review as a conference paper at ICLR 2020

SOFTADAM: UNIFYING SGD AND ADAM FOR BETTER
STOCHASTIC GRADIENT DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Stochastic gradient descent (SGD) and Adam are commonly used to optimize
deep neural networks, but choosing one usually means making tradeoffs between
speed, accuracy and stability. Here we present an intuition for why the tradeoffs
exist as well as a method for unifying the two in a continuous way. This makes
it possible to control the way models are trained in much greater detail. We show
that for default parameters, the new algorithm equals or outperforms SGD and
Adam across a range of models for image classification tasks and outperforms
SGD for language modeling tasks.

1 INTRODUCTION

One of the most common methods of training neural networks is stochastic gradient descent (SGD)
(Bottou et al. (2016)). SGD has strong theoretical guarantees, including convergence in locally
non-convex optimization problems (Lee et al. (2016)). It also shows improved generalization and
stability when compared to other optimization algorithms (Smith & Le (2018)).

There have been various efforts in improving the speed and generalization of SGD. One popular
modification is to use an adaptive gradient (Duchi et al. (2011)), which scales the gradient step size
to be larger in directions with consistently small gradients. Adam, an implementation that combines
SGD with momentum and an adaptive step size inversely proportional to the RMS gradient, has
been particularly successful at speeding up training and solving particular problems (Kingma &
Ba (2014)). However, at other problems it pays a penalty in worse generalization (Wilson et al.
(2017); Keskar & Socher (2017)), and it requires additional modifications to achieve a convergence
guarantee (Reddi et al. (2018)).

Here we develop an intuition for adaptive gradient methods that allows us to unify Adam with SGD
in a natural way. The new optimizer, SoftAdam, descends in a direction that mixes the SGD with
Adam update steps. As such, it should be able to achieve equal or better optimization results across
a variety of problems.

1.1 RELATED WORK

Several authors have recently tried to combine Adam and SGD to get the best of both worlds. How-
ever, none have achieved results that are consistently better than SGD in training on image classifi-
cation. In addition, these do not allow the implementor to mix the optimization direction between
the Adam and SGD continuously, and some require additional hyper-parameters to be set.

In one study, the optimization algorithm was switched from Adam to SGD during training based on
a scale-free criterion, preventing the addition of a new hyper-parameter (Keskar & Socher (2017)).
The result is that the longer the convolutional networks were trained on Adam, the worse their
generalization performance compared to SGD. The best performance came from switching to SGD
in this case as soon as possible.

Another recent algorithm takes the approach of clipping the large Adam updates to make them more
similar to SGD as the training nears the end (Luo et al. (2019)). However, this approach requires
two new hyper-parameters: the rate at which the training is switched over, and a learning rate for
both SGD and Adam.

1

Under review as a conference paper at ICLR 2020

Other algorithms have shown improvements on SGD by averaging weights over many steps (Polyak
& Juditsky (1992); Zhang et al. (2019); Izmailov et al. (2018)). These algorithms are complementary
to the algorithm developed here, as they require an underlying algorithm to choose the step direction
at any point.

2 SGD AND ADAM

The fundamental idea of gradient descent is to follow the path of steepest descent to an optimum.
Stochastic gradient descent enables us to optimize much larger problems by using randomly sub-
sampled training data. The stochastic gradient descent algorithm will minimize the loss function
J(θ;x), which is parameterized by θ and takes as input training data x,

gt ← [∇θJ(θ;xt)]θ=θt−1

θt ← θt−1 − αgt,

where α is a learning rate that may vary with t and xt is the training data selected for the batch at
step t. The convergence rate can be improved further by using a running average of the gradient,
initializing with m0 ← 0. This method, known as momentum (Goh (2017)), may be written as,

gt ← [∇θJ(θ;xt)]θ=θt−1

mt ← β1mt−1 + (1− β1) gt,

θt ← θt−1 − αmt,

A further development that has improved convergence, especially for LSTM and language modeling
tasks, involves the second gradient as well. This specific version is known as the Adam algorithm
(Kingma & Ba (2014)),

gt ← [∇θJ(θ;xt)]θ=θt−1

mt ← β1mt−1 + (1− β1) gt,

vt ← β2vt−1 + (1− β2) g2t ,

θt ← θt−1 −
αm̂t√
v̂t
,

where m̂t = mt/
√

1− βt1 and v̂t = vt/
√

1− βt2 are unbiased estimators of the first and second
moment respectively.

2.1 CONVERGENCE

In order to analyze the convergence of these algorithms, we can consider a second-order approxi-
mation of J on its combined argument z = (θ;x) in the region of (θt;xt),

J(z) =
1

2
zTHtz − bT z,

where Ht is the Hessian of J(z) around zt. This gives us the gradient,

gt = ∇J(zt) = Htzt − b,
which becomes the SGD update step,

zt+1 = zt − α (Htz − b) .

Unrolling this update step can be shown to lead to an expression for the distance from the optimal
value z?, in the basis of Hessian eigenvectors ξi:

zt − z? =
∑
i

(z0 · ξi) (1− αλi)t ξi.

2

Under review as a conference paper at ICLR 2020

We can see that the learning is stable if the learning rate α satisfies,

|1− αλi| < 1.

In addition, we find that the value for the learning rate that leads to the fastest overall convergence
is,

α =
2

λ1 + λn
, (1)

where λ1 and λn are the max and min eigenvalues of H , respectively.

2.2 ADAPTIVE MOMENT ESTIMATION

If rather than a single learning rate α, we were to use a diagonal matrix D such that the update is,

zt+1 = zt −Dgt,

we may be able to modify the diagonal entries [d0, d1, . . . , dn] such that faster overall convergence
is achieved. For example, in the special case that the Hessian is diagonal, the convergence rate for
the j-th element becomes,

rj = (1− djλj) ,

which has the solution dj = λ−1j . In this situation, if the eigenvalues λi are known, the algorithm
can converge to the minimum in exactly one step. This corresponds with some intuition behind
adaptive moment methods: that taking a step with a “constant” size in every direction toward the
target will reach convergence faster than taking a step proportional to the gradient size.

Because the eigenvalues and eigenvectors not known a priori, for a practical algorithm we must rely
on an approximation to find di. One technique named AdaGrad (Duchi et al. (2011)) prescribes the
diagonal elements:

di =
α

ε+
√∑

t g
2
ti

. (2)

For building our intuition, we consider the special case where the Hessian is diagonal,

g2ti = (λizti − bi)2 .
Combining this with Equation 2, we compare the AdaGrad coefficient to the optimal value for
dj = λ−1j , finding,

α

ε+
√∑

t (λizti − bi)2
∼ 1

λi
. (3)

As long as ε� αλi, this will be true when,

α2 ∼
∑
t

(
zti −

bi
λi

)2

∼ constant w.r.t. i, (4)

which is the sum squared distance of the parameter value zti to its optimum z?i = bi/λi. This reveals
some of the tradeoffs being made by AdaGrad. It will perform ideally when all parameters start the
same distance from their targets.

This may be true on average if the initializations z0i and optima z?i can be made over the same
subspaces. That is, if z?i is uncorrelated to λi, we can expect this to have good performance on
average.

However, there can be significant errors in both overestimating and underestimating the eigenvalue.
One would expect that for a typical problem bi and λi might be drawn from uncorrelated distribu-
tions. In this case, large values of z?i will be likely to correspond to small values of λi. Since z0 can

3

Under review as a conference paper at ICLR 2020

only be drawn from the average distribution (no information is known at this point), the estimated
λi is more likely to be large, as the initialization will be far from the optimum. Intuitively, the gradi-
ent is large because the optimum is far from the initialization, but the algorithm mistakes this large
gradient for a large eigenvalue.

On the other hand, when the parameter is initialized close to its optimum, the algorithm will mistak-
enly believe the eigenvalue is small, and so take relatively large steps. Although they do not affect
the overall convergence much on their own (since the parameter is near its optimum), these steps can
add significant noise to the process, making it difficult to accurately measure gradients and therefore
find the optimum in other parameters.

This problem will be significantly worse for Adam, which forgets its initialization with some decay
factor β2. In that case, as each parameter reaches its optimum, its estimated eigenvalue λi drops
and the step size gets correspondingly increased. In fact, the overall algorithm can be divergent as
each parameter reaches its optimum, as the step size will grow unbounded unless α is scheduled to
decline properly or a bounding method like AMSGrad is used (Reddi et al. (2018)).

In addition, reviewing our earlier assumption of small ε, these algorithms will perform worse for
small eigenvalues λi < ε/α. This might be especially bad in Adam where late in training when the

learning rate α ∼
∑
t

(
zti − bi

λi

)2
is small.

We finally note that the Hessians in deep learning problems are not diagonal (Sagun et al. (2016); Li
et al. (2019)). As such, each element might be better optimized by a learning rate that better serves
both its min and max eigenvalues.

3 SMOOTHED ADAPTIVE GRADIENT

Overall, this understanding of has led us to believe that adaptive moments might effectively estimate
λi when it is large, but might be less effective when it is small. In order to incorporate this infor-
mation about large eigenvalues, as well as optimize the learning rate to account for variation in the
eigenvalues contributing to convergence of a particular component, we consider the an update to Eq.
1,

di =
αλ̄ (1 + η)

λ̄+ ηλi
,

where λ̄ is an average eigenvalue and η is a new hyper-parameter that controls the weighting of the
eigenvalue estimation. Here we have added λ̄ to the numerator so that α does not need to absorb the
changes to the RMS error as it does in Eq. 4. This also recovers the SGD convergence guarantees,
since the step is always within a factor of η to an SGD step. In addition, this will allow us to recover
SGD with momentum exactly in the limit η → 0. We use the adaptive gradient estimation,

λ2i
λ̄2
≈ 〈g2i 〉
ε2 + 〈g2〉avg

=
vti

ε2 + v̄t
,

where v̄t is the mean value of vt, to write,

di =
α (1 + η)

1 + η
√
vti/ (ε2 + v̄t)

.

One issue with the above estimation is that its variance is very large at the beginning of training (Liu
et al. (2019)). It was suggested that this is the reason that warmup is needed for Adam and shown
that rectifying it can make warmup unnecessary. Where vt is the average of nt elements and v∞ the
average of n∞, we define rt =

√
nt/n∞ and:

di =
α (1 + η)

1 + η − ηrt + ηrt
√
vti/ (ε2 + v̄t)

.

4

Under review as a conference paper at ICLR 2020

Algorithm 1 The SoftAdam Algorithm

Input: θ0 ∈ F : initial parameters, {αt > 0}Tt=1: learning rate, αwd, β1, β2, η, ε: other hyperpa-
rameters, Jt(θ): loss function
Output: θT ∈ F
m0, v0 ← 0 . Initialize moments to 0
for t← 1 . . . T do

gt ← ∇θJ(z) . Find gradient
mt ← β1mt−1 + (1− β1) gt . Update first moment
β̂2t ← min (β2, 1− 1/t)

vt ← β̂2tvt−1 +
(

1− β̂2t
)
g2t . Update second moment

v̄t ← meanelem [vt] . Average over all elements
rt ← sqrt

[
(1− β2) /

(
1− β̂2t

)]
dt = 1 + η − ηrt + ηrt

√
vt/ (v̄t + ε2) . Calculate the denominator

θt = θt−1 − αwdαθt−1 − αgt/dt . Perform the update
end for
return θT

This finally forms the basis for our algorithm.

3.1 ALGORITHM

Our algorithm differs from Adam in a few other ways. First, the biased gradient estimate is used
rather than the unbiased one. This matches the SGD implementation of momentum, and also avoids
magnifying the large variance of early gradient estimates:

mt = β1mt−1 + (1− β1) gt.

In addition, instead of un-biasing the second moment, it is calculated using an effective β̂2(t), or by
abuse of notation β̂2t:

β̂2t = min

(
β2, 1−

1

t

)
,

vt = β̂2tvt−1 +
(

1− β̂2t
)
gt,

An advantage of this method is that after the warmup period, β̂2t = β2 exactly. We then calculate
the ratio:

rt =

√
nt
n∞

=

√
1− β2
1− β̂2t

.

We finally note that the weight decay will be calculated separately from this update as in AdamW
(Loshchilov & Hutter (2017)), so that for the standard update,

θt+1 = θt − αwdαθt −Dmt.

As an option, the algorithm can instead use the Nesterov momentum update following Dozat (2016),
so that,

θt+1 = θt − αwdαθt − β1Dmt − (1− β1)Dgt.

These steps are combined and summarized in Algorithm 1. A reference implementation for the
PyTorch package (Paszke et al. (2017)) is provided in Appendix A.

5

Under review as a conference paper at ICLR 2020

Table 1: Top-1 validation accuracy (%) on CIFAR-10 for different Adam, SGD and SoftAdam.
SoftAdam is restricted to η = 1.

ARCHITECTURE ADAM SGD SOFTADAM

AlexNet 77.00 77.10 ± 0.50 79.30 ± 0.25
VGG19 (BN) 92.58 93.52 ± 0.18 93.89 ± 0.12
PreResNet-56 92.19 94.01 ± 0.05 94.02 ± 0.03
ResNet-110 92.88 94.54 ± 0.29 94.75 ± 0.15
DenseNet-100 92.31 95.04 ± 0.08 95.00 ± 0.11

Table 2: LSTM validation perplexity, test perplexity, and test loss on the Penn Treebank dataset for
SoftAdam, Adam and SGD.

OPTIMIZER VAL. PPL.

SoftAdam 63.28
SGD 64.93
Adam 62.31

4 EMPIRICAL RESULTS

In order to test the ability of this algorithm to reach better optima, we performed testing on a variety
of different deep learning problems. In these problems we keep η at the default value of 1. Because
the algorithm is the same as SGDM if η = 0 and is comparable to Adam when η = ε−1, getting
results at least as good as those algorithms is just a matter of parameter tuning. These results are
intended to show that SoftAdam performs remarkably well with a common parameter choice. For
the best performance, the hyper-parameter η and learning rate schedule α should be optimized for a
particular problem.

4.1 CIFAR-10

We trained a variety of networks:1 AlexNet (Krizhevsky et al. (2012)), VGG19 with batch nor-
malization (Simonyan & Zisserman (2014)), ResNet-110 with bottleneck blocks (He et al. (2015)),
PreResNet-56 with bottleneck blocks (He et al. (2016)), DenseNet-BC with L=100 and k=12 (Huang
et al. (2016)) on the CIFAR-10 dataset (Krizhevsky (2012)) using SGD, Adam and SoftAdam. For
each model and optimization method, the weight decay was varied over [1e-4,2e-4,5e-4,1e-3,2e-
3,5e-3] and the best result was chosen. The learning schedule reduced the learning rate by a factor
of 10 at 50% and 75% through the total number of epochs. The results are summarized in Table 1.
We find that SoftAdam equals or outperforms SGD in training classifiers on this dataset. Due to the
larger optimal weight decay constant, SoftAdam achieves lower validation loss at a higher train loss
than SGD.

4.2 PENN TREEBANK

We trained a 3-layer LSTM with 1150 hidden units per layer on the Penn Treebank dataset (Mikolov
et al. (2010)) in the same manner as Merity et al. (2017). For SoftAdam the weight drop was
increased from 0.5 to 0.6. Results are shown in Figure 2 and are summarized in Table 2. For these
parameters, SoftAdam outperforms SGD significantly but does not quite achieve the same results as
Adam.

1Implementation was based on the public repository at https://github.com/bearpaw/
pytorch-classification

6

https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification

Under review as a conference paper at ICLR 2020

50 100 150

epoch
0.1

0.2

0.3

0.4
0.5
0.6
0.7
0.8
0.91

━ adam (Mean) ━ softadam (Mean) ━ sgd (Mean)

50 100 150

epoch
0.5

0.6

0.7

0.8

0.9

1

━ adam (Mean) ━ softadam (Mean) ━ sgd (Mean)

50 100 150

epoch
50

55

60

65

70

75

━ adam (Mean) ━ softadam (Mean) ━ sgd (Mean)

(a1) AlexNet Train Loss (a2) AlexNet Val. Loss (a3) AlexNet Val. Acc.

50 100 150

epoch

0.01

1

━ adam (Mean) ━ softadam (Mean) ━ sgd (Mean)

50 100 150

epoch
0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

━ adam (Mean) ━ softadam (Mean) ━ sgd (Mean)

50 100 150

epoch
70

75

80

85

90

━ adam (Mean) ━ softadam (Mean) ━ sgd (Mean)

(b1) VGG19 Train Loss (b2) VGG19 Val. Loss (b3) VGG19 Val. Acc.

50 100 150

epoch

0.01

1

━ adam (Mean) ━ sgd (Mean) ━ softadam (Mean)

50 100 150

epoch
0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

━ adam (Mean) ━ sgd (Mean) ━ softadam (Mean)

50 100 150

epoch
80

82

84

86

88

90

92

94

━ adam (Mean) ━ sgd (Mean) ━ softadam (Mean)

(c1) PreResNet Train Loss (c2) PreResNet Val. Loss (c3) PreResNet Val. Acc.

50 100 150

epoch

0.01

1

━ adam (Mean) ━ sgd (Mean) ━ softadam (Mean)

50 100 150

epoch

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1

━ adam (Mean) ━ sgd (Mean) ━ softadam (Mean)

50 100 150

epoch
80

82

84

86

88

90

92

94

━ adam (Mean) ━ sgd (Mean) ━ softadam (Mean)

(d1) ResNet Train Loss (d2) ResNet Val. Loss (d3) ResNet Val. Acc.

50 100 150 200 250

epoch

0.01

1

━ adam (Mean) ━ softadam (Mean) ━ sgd (Mean)

50 100 150 200 250

epoch

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1

━ adam (Mean) ━ softadam (Mean) ━ sgd (Mean)

50 100 150 200 250

epoch
86

88

90

92

94

━ adam (Mean) ━ softadam (Mean) ━ sgd (Mean)

(e1) DenseNet Train Loss (e2) DenseNet Val. Loss (e3) DenseNet Val. Acc.

Figure 1: Training results for CIFAR-10. Architectures are (a) AlexNet, (b) VGG19 (BN), (c)
PreResNet-56, (d) ResNet-110, (e) DenseNet-100 (BC) using SoftAdam, Adam and SGD. The SGD
and SoftAdam lines indicate the average of 3 training runs, with the standard deviation shaded in.

7

Under review as a conference paper at ICLR 2020

50 100 150 200 250

ep
60

65

70

75

80

━ Adam (Mean) ━ SoftAdam (Mean) ━ SGD (Mean)

Figure 2: LSTM validation perplexity during training for SoftAdam, Adam and SGD.

10k 20k 30k 40k 50k 60k

num_updates
4

5

6

7

8

9

10

━ adam (Mean) ━ sgd (Mean) ━ softadam (Mean)

Figure 3: Validation perplexity during training a transformer model for IWSLT’14 De-En using
SoftAdam, Adam and SGD.

4.3 IWSLT’14 GERMAN TO ENGLISH

We also trained a transformer using the fairseq package by Ott et al. (2019) on the IWSLT’14 Ger-
man to English dataset. Results are summarized in Table 3. Note that no warmup is used for training
SoftAdam, but warmup is used for Adam and SGD. Following Liu et al. (2019), we use a linear
learning rate schedule. For these parameters, we again find that SoftAdam outperforms SGD signif-
icantly.

5 CONCLUSIONS

In this paper, we have motivated and demonstrated a new optimization algorithm that naturally
unifies SGD and Adam.

We have focused our empirical results on the default hyper-parameter setting, η = 1, and predeter-
mined learning schedules. With these parameters, the algorithm was shown to produce optimization
that is better than or equal to SGD and Adam on image classification tasks. It also performed sig-
nificantly better than SGD on language modeling tasks.

Table 3: Best results for training IWSLT’14 De-En with different optimization algorithms.

OPTIMIZER VAL. PPL. BLEU SCORE

SGD 4.14 31.43
SoftAdam 4.02 32.76
Adam 3.87 34.44

8

Under review as a conference paper at ICLR 2020

Together with finding the optimal values for η, we expect a better understanding of the learning
schedule to bring light to the way in which the adaptive gradient methods improve convergence.
SoftAdam now also makes it possible to create a learning schedule on η, which may be another
fruitful avenue of research.

Better understanding of how adaptive gradients improve the convergence of practical machine learn-
ing models during training will enable larger models to be trained to more accurately in less time.
This paper provides a useful intuition for how that occurs and provides a new algorithm that can be
used to improve performance across a diverse set of problems.

REFERENCES

LÃ c©on Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. arXiv preprint arXiv:1606.04838, 2016. 1

Timothy Dozat. Incorporating nesterov momentum into adam. 2016. 3.1

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011. 1, 2.2

Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015. 4.1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. arXiv preprint arXiv:1603.05027, 2016. 4.1

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks, 2016. 4.1

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018. 1.1

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to sgd. arXiv preprint arXiv:1712.07628, 2017. 1, 1.1

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 1, 2

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05
2012. 4.1

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012. 4.1

Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent converges
to minimizers. arXiv preprint arXiv:1602.04915, 2016. 1

Xinyan Li, Qilong Gu, Yingxue Zhou, Tiancong Chen, and Arindam Banerjee. Hessian based
analysis of sgd for deep nets: Dynamics and generalization. arXiv preprint arXiv:1907.10732,
2019. 2.2

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019. 3, 4.3

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. 2017. 3.1

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019. 1.1

9

http://distill.pub/2017/momentum

Under review as a conference paper at ICLR 2020

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm lan-
guage models. 2017. 4.2

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Eleventh annual conference of the international speech
communication association, 2010. 4.2

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019. 4.3

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017. 3.1

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30(4):838–855, 1992. 1.1

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=ryQu7f-RZ. 1, 2.2

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
larity and beyond. arXiv preprint arXiv:1611.07476, 2016. 2.2

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014. 4.1

Samuel L. Smith and Quoc V. Le. A bayesian perspective on generalization and stochastic gradient
descent. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=BJij4yg0Z. 1

Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht.
The marginal value of adaptive gradient methods in machine learning. arXiv preprint
arXiv:1705.08292, 2017. 1

Michael R. Zhang, James Lucas, Geoffrey E. Hinton, and Jimmy Ba. Lookahead optimizer: k steps
forward, 1 step back. CoRR, abs/1907.08610, 2019. URL http://arxiv.org/abs/1907.
08610. 1.1

A REFERENCE PYTORCH IMPLEMENTATION

i m p o r t math
i m p o r t t o r c h
from t o r c h . opt im . o p t i m i z e r i m p o r t O p t i m i z e r
i m p o r t numpy as np

c l a s s SoftAdam (O p t i m i z e r) :
d e f i n i t (

s e l f ,
params ,
l r =1e−1,
b e t a s = (0 . 9 , 0 . 9 9 9) ,
eps =1e−8,
e t a = 1 . 0 ,
w e i g h t d e c a y =0 ,
n e s t e r o v = F a l s e ,

) :
d e f a u l t s = d i c t (

10

https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=BJij4yg0Z
https://openreview.net/forum?id=BJij4yg0Z
http://arxiv.org/abs/1907.08610
http://arxiv.org/abs/1907.08610

Under review as a conference paper at ICLR 2020

l r = l r ,
b e t a s = b e t a s ,
eps =eps ,
e t a = e t a ,
w e i g h t d e c a y = w e i g h t d e c a y ,
n e s t e r o v = n e s t e r o v ,

)
s u p e r (SoftAdam , s e l f) . i n i t (params , d e f a u l t s)

d e f s t e p (s e l f , c l o s u r e =None) :
l o s s = None
i f c l o s u r e i s n o t None :

l o s s = c l o s u r e ()

f o r group i n s e l f . pa r am groups :
f o r p i n group [” params ”] :

i f p . g r ad i s None :
c o n t i n u e

g rad = p . g rad . d a t a
i f g r ad . i s s p a r s e :

r a i s e R u n t i m e E r r o r (
” SoftAdam does n o t s u p p o r t s p a r s e g r a d i e n t s ”

)
n e s t e r o v = group [” n e s t e r o v ”]

s t a t e = s e l f . s t a t e [p]

S t a t e i n i t i a l i z a t i o n
i f l e n (s t a t e) == 0 :

s t a t e [” s t e p ”] = 0
E x p o n e n t i a l moving a v e r a g e o f g r a d i e n t v a l u e s
s t a t e [” exp avg ”] = t o r c h . z e r o s l i k e (

p . d a t a
)
E x p o n e n t i a l moving a v e r a g e o f
s q u a r e d g r a d i e n t v a l u e s
s t a t e [” e x p a v g s q ”] = t o r c h . z e r o s l i k e (

p . d a t a
)

exp avg , e x p a v g s q = (
s t a t e [” exp avg ”] ,
s t a t e [” e x p a v g s q ”] ,

)
be ta1 , b e t a 2 = group [” b e t a s ”]

s t a t e [” s t e p ”] += 1
b e t a 2 h a t = min (

be ta2 , 1 . 0 − 1 . 0 / (s t a t e [” s t e p ”])
)
r b e t a = (1 − b e t a 2) / (1 − b e t a 2 h a t)
e t a h a t 2 = (

group [” e t a ”] ∗ group [” e t a ”] ∗ r b e t a
)

Decay t h e f i r s t and second moment wi th t h e
r u n n i n g a v e r a g e c o e f f i c i e n t
exp avg . mul (b e t a 1) . add (1 − be ta1 , g r ad)
e x p a v g s q . mul (b e t a 2 h a t) . addcmul (

11

Under review as a conference paper at ICLR 2020

1 − b e t a 2 h a t , grad , g r ad
)

C r e a t e t e m p o r a r y t e n s o r f o r t h e d e n o m i n a t o r
denom = e x p a v g s q . mul (

e t a h a t 2
/ (

t o r c h . mean (e x p a v g s q)
+ group [” eps ”] ∗ group [” eps ”]

)
)
denom . s q r t () . add (

1 + group [” e t a ”] − np . s q r t (e t a h a t 2)
)

wd = group [” w e i g h t d e c a y ”] ∗ group [” l r ”]

p . d a t a . add (−wd , p . d a t a)

l r e f f = group [” l r ”] ∗ (1 + group [” e t a ”])

i f n e s t e r o v :
p . d a t a . a d d c d i v (

− l r e f f ∗ be ta1 , exp avg , denom
)
p . d a t a . a d d c d i v (

− l r e f f ∗ (1 − b e t a 1) , grad , denom
)

e l s e :
p . d a t a . a d d c d i v (− l r e f f , exp avg , denom)

r e t u r n l o s s

12

