
Learning to learn to communicate

Abhinav Gupta∗

MILA
abhinav.gupta@umontreal.ca

Ryan Lowe∗

Facebook AI Research
MILA

ryan.lowe@cs.mcgill.ca

Jakob Foerster
Facebook AI Research

Douwe Kiela
Facebook AI Research

Joelle Pineau
Facebook AI Research

MILA

Abstract

How can we teach artificial agents to use human language flexibly to solve problems in a real-world environment? We
have one example in nature of agents being able to solve this problem: human babies eventually learn to use human
language to solve problems, and they are taught with an adult human-in-the-loop. Unfortunately, current machine
learning methods (e.g. from deep reinforcement learning) are too data inefficient to learn language in this way [4]. An
outstanding goal is finding an algorithm with a suitable ‘language learning prior’ that allows it to learn human language,
while minimizing the number of required human interactions.

In this paper, we propose to learn such a prior in simulation, leveraging the increasing amount of available compute for
machine learning experiments [1]. We call our approach Learning to Learn to Communicate (L2C). Specifically, in L2C we
train a meta-learning agent in simulation to interact with populations of pre-trained agents, each with their own distinct
communication protocol. Once the meta-learning agent is able to quickly adapt to each population of agents, it can be
deployed in new populations unseen during training, including populations of humans. To show the promise of the L2C
framework, we conduct some preliminary experiments in a Lewis signaling game [5], where we show that agents trained
with L2C are able to learn a simple form of human language (represented by a hand-coded compositional language) in
fewer iterations than randomly initialized agents.

Keywords: Meta-learning, emergent communication, language learning

Acknowledgements

We’d like to thank Jean Harb, Liam Fedus, Cinjon Resnick, Amy Zhang and other at MILA and Facebook AI Montreal for
discussions related to the ideas in this paper. RL is funded in part by a Vanier Scholarship.

∗Equal contribution.

1 Introduction

Language is one of the most important aspects of human intelligence; it allows humans to coordinate and share knowledge
with each other. We will want artificial agents to understand language as it is a natural means for us to specify their goals.

So how can we train agents to understand language? We adopt the functional view of language [18] that has recently
gained popularity [9, 16]: agents understand language when they can use language to carry out tasks in the real
world. One approach to training agents that can use language in their environment is via emergent communication, where
researchers train randomly initialized agents to solve tasks requiring communication [8, 14]. An open question in emergent
communication is how the resulting communication protocols can be transferred to learning human language. Existing
approaches attempt to do this using auxiliary tasks, for example having agents predict the label of an image in English
while simultaneously playing an image-based referential game [14]. While this works for learning the names of objects,
it’s unclear if simply using an auxiliary loss will scale to learning the English names of complex concepts, or learning to
use English to interact in an grounded environment.

One approach that we know will work (eventually) for training language learning agents is using a human-in-the-loop, as
this is how human babies acquire language. In other words, if we had a good enough model architecture and learning
algorithm, the human-in-the-loop approach . However, recent work in this direction has concluded that current algorithms
are too sample inefficient to effectively learn a language with compositional properties from humans [4]. Human guidance
is expensive, and thus we would want such an algorithm to be as sample efficient as possible. An open problem is thus
to create an algorithm or training procedure that results in increased sample-efficiency for language learning with a
human-in-the-loop.

In this paper, we present the Learning to Learn to Communicate (L2C) framework, with the goal of training agents
to quickly learn new (human) languages. The core idea behind L2C is to leverage the increasing amount of available
compute for machine learning experiments [1] to learn a ‘language learning prior’ by training agents via meta-learning in
simulation. Specifically, we train a meta-learning agent in simulation to interact with populations of pre-trained agents,
each with their own distinct communication protocol. Once the meta-learning agent is able to quickly adapt to each
population of agents, it can be deployed in new populations unseen during training, including populations of humans.
The L2C framework has several advantages:

• The L2C framework permits for agents to learn language that is grounded in an environment, where agents can
interact with the environment to (i.e. it is not limited to referential games).

• In contrast with work from the instruction following literature [2], agents can be trained via L2C to both speak
(output language to help accomplish their goal) and listen (map from the language to a goal or sequence of
actions).

• L2C can be easily combined with other methods for ; for example, neural architectures that bias towards learning
compositional structure [3], or improved meta-learning algorithms.

To show the promise of the L2C framework, we provide some preliminary experiments in a Lewis signaling game [5].
Specifically, we show that agents trained with L2C are able to learn a simple form of human language (represented by
a hand-coded compositional language) in fewer iterations than randomly initialized agents. These preliminary results
suggest that L2C is a promising framework for training agents to learn human language from few human interactions.

2 Learning to learn to communicate

L2C is a training procedure that is composed of three main phases:

1. Training agent populations: Training populations of agents to solve some task (or set of tasks) in an environment,
via emergent communication.

2. Train meta-learner on agent populations: We train a meta-learning agent to ‘perform well’ (i.e. achieve a high
reward) on tasks in each of the training populations, after a small number of updates.

3. Testing the meta-learner: testing the meta-learning agent’s ability to learn new languages, which could be both
artificial (emerged languages unseen during training) or human.

A diagram giving an overview of the L2C framework is shown in Figure 1. Phase 1 can be achieved in any number of
ways, either through supervised learning (using stochastic gradients) or via reinforcement learning (RL). Phases 2 and 3
follow the typical meta-learning set-up: to conserve space, we do not replicate a formal description of the meta-learning
framework, but we direct interested readers to Section 2.1 of [7]. In our case, each ‘task’ involves a separate population of
agents with its own emergent language. While meta-training can also be performed via supervised learning or RL, Phase
3 must be done using RL, as it involves interacting with humans which cannot be differentiated through. See Section 5 for
a discussion of each of these phases in more detail.

1

Figure 1: Diagram of the L2C framework. An advantage of L2C is that agents can be trained in an external environment
(which grounds the language), where agents interact with the environment via actions and language. Thus, (in theory) L2C
could be scaled to learn complicated grounded tasks involving language.

3 Problem set-up

A speaker-listener game We construct a referential game similar to the Task & Talk game from [12], except with a single
turn. The game is cooperative and consists of 2 agents, a speaker and a listener. The speaker agent observes an object with
a certain set of properties, and must describe the object to the listener using a sequence of words (represented by one-hot
vectors). The listener then attempts to reconstruct the object. More specifically, the input space consists of p properties (e.g.
shape, color) and t types per property (e.g. triangle, square). The speaker observes a symbolic representation of the input x,
consisting of the concatenation of p one-hot vectors, each of length t. The number of possible inputs scales as tp. We also
define the vocabulary size (length of each one-hot vector sent from the speaker to the listener) as |V |, and fix the number
of words sent to be w.

Approximating human language To simulate a simplified form of human language on this task, we programatically
generate a perfectly compositional language, by assigning each ‘concept’ (each type of each property) a unique symbol.
In other words, to describe a blue shaded triangle, we create a language where the output description would be “blue,
triangle, shaded”, in some arbitrary order and without prepositions. By ‘unique symbol’, we mean that no two concepts
are assigned the same word, even if they describe different properties. By generating this language programmatically,
we avoid the need to have humans in the loop for testing, which allows us to iterate much more quickly. This is feasible
because of the simplicity of our speaker-listener environment; we do not expect that generating these programmatic
languages is practical when scaling to more complex environments.

Implementation details The speaker and listener are parameterized by recurrent policies, both using an embedding
layer of size 200 followed by an LSTM of size 200. The message produced by the speaker is a sequence of p categorical
random variables which are discretized using Gumbel-Softmax with an initial temperature τ = 1. We set the vocabulary
size to be equal to the total number of concepts p ∗ t. In our initial experiments, we train our agents using Cross Entropy
which is summed over each property p. We use the Adam optimizer [11] with a learning rate of 0.001. We first demonstrate
the results with a meta-learning listener (a meta-listener), that learns from the different speakers of each training population.

4 Experiments

Training agent populations We first train encoder-decoder pairs to solve the game described in Section 3. We experiment
with two different settings: a smaller game similar to [12] with p = 3, t = 5 (125 possible inputs), and a larger game
with p = 6, t = 10 (106 possible inputs). We show the performance of our agents in Table 1, when trained on 80% of the
available data, reserving 20% at random to test generalization. In both cases, agents trained with Gumbel-Softmax are able
to achieve a low error on the training set when passing discrete vectors (τ = 0). For the smaller game, the agents are able
to fully memorize the training set, and thus do not generalize well to the test set. Interestingly however, when trained on
a larger number of examples we find that the agents do learn a level of compositionality, and are able to generalize to
unseen examples, which seems to contradict some recent findings on emergent languages [12].

2

Game scenario # populations trained Avg. train % Avg. test % # populations test % > 90%
All p = 3, t = 5 20 44.2 2.5 0

All p = 6, t = 10 20 72.5 67.2 12
Select p = 6, t = 10 20 98.5 97.3 20

Table 1: Results from training speaker-listener pairs on the referential game. Performance is measured in terms of %
accuracy in reconstructing the correct input, when passing discrete words (τ = 0). The ‘select p = 6, t = 10’ refers to
populations that were manually curated for their generalization performance, which we use to train our meta-learner.

(a) Generalization to learning ‘human language’ (CB). (b) Generalization to learning unseen emerged languages (TP).

Figure 2: Performance of the meta-learner over the course of meta-training (horizontal axis) on 10 training populations.
CB stands for the ‘compositional bot’ approximation to human language, whereas TP indicates the ‘trained populations’
in Section 4. The vertical axis measures the number of updates required to achieve 95% reconstruction performance on the
test population. The agents trained with L2C (colored lines) perform better than a randomly initialized agent (black line).
95% confidence intervals shown, averaged over 5 seeds.

Training the meta-learner Our ultimate goal is to transfer to learning a human language in as few human interactions
as possible. Thus, we measure success based on the number of samples required for the meta-learner to reach a certain
performance level (95%) on a held-out test population, and we permit ourselves as much computation during pre-training
as necessary. We compare the performance of several algorithms: a randomly initialized agent, an agent pre-trained on
all populations that performs n = 1 update per population, the Reptile algorithm [17] that performs n > 1 updates per
population, and a first-order variant of MAML [7]. In Figure 2 we find that each of the algorithms that uses L2C perform
similarly, but significantly better than the randomly initialized baseline, which uses standard initialization schemes in
Pytorch. Interestingly, agents generalize much better to the ‘human’ languages than other pre-trained languages, likely
because the ‘human’ language is perfectly compositional.

5 Outstanding challenges, and moving forward

There are several immediate directions for future work: training the meta-agent via RL rather than supervised learning,
and training the meta-agent as a joint speaker-listener (i.e. taking turns speaking and listening), as opposed to only
speaking. We also want to scale L2C training to more complicated tasks involving grounded language learning, such as
the Talk the Walk dataset [6], which involves two agents learning to navigate New York using language.

More broadly, there are still many challenges that remain for the L2C framework. In fact, there are unique problems that
face each of the phases described in Section 2. In Phase 1, how do we know we can train agents to solve the tasks we want?
Recent work has shown that learning emergent communication protocols is very difficult, even for simple tasks [15]. This
is particularly true in the multi-agent reinforcement learning (RL) setting, where deciding on a communication protocol is
difficult due to the non-stationary and high variance of the gradients [15]. This could be addressed in at least two ways: (1)
by assuming the environment is differentiable, and backpropagating gradients using a stochastic differentiation procedure
[10, 16], or (2) by ‘seeding’ each population with a small number of human demonstrations. Point (1) is feasible because
we are training in simulation, and we have control over how we build that simulation — in short, it doesn’t really matter
how we get our trained agent populations, so long as they are useful for the meta-learner in Phase 2.

In Phase 2, the most pertinent question is: how can we be sure that a small number of updates is sufficient for a meta-agent
to learn a language it has never seen before? The short answer is that it doesn’t need to completely learn the language in
only a few updates; rather it just needs to perform better on the language-task in the host population after a few updates,

3

in order to provide a useful training signal to the meta-learner. For instance, it has been shown that the model agnostic
meta-learning (MAML) algorithm can perform well when multiple gradient steps are taken at test time, even if it is
only trained with a single inner gradient step. Another way to improve the meta-learner performance is to provide a
dataset of agent interactions for each population. In other words, rather than needing to meta-learner perform well after
interacting with a population a few times, we’d like it to perform well after doing some supervised learning on this dataset
of language, and after a few interactions. After all, we do have lots of available datasets of human language, and not
using this seems like a waste. While we do not experiment with this yet in this paper, we are excited by this possibility, as
algorithms have already been developed for combining meta-imitation learning and reinforcement learning in the robotics
setting [13]. When incorporating supervised language datasets, we will need to show that L2C can outperform the most
commonly used method for transfer learning, which is to simply pre-train via supervised learning on the dataset and
fine-tune using RL on the task with humans.

Finally, in Phase 3, how do we know that the meta-learner will be able to generalize to learn a human language? This
comes down to the similarity between the training populations and human language, and the diversity of the training
populations. For instance, we expect certain properties like compositionality to be important in the training populations
for transferring to human languages, which are inherently compositional. But the training languages may not need to be
very close to human language; as a comparison, significant progress has been made in transferring robots from simulation
the real world using domain randomization, i.e. by adding random image textures during training. Even though these
image textures look nothing like the real world, it helps improve robustness of the learner, which allows it to generalize.
Providing a detailed examination of the required properties of the trained population languages, such that a meta-learner
is able to generalize to human language, is an important direction for future work.

References

[1] D. Amodei and D. Hernandez. Ai and compute. https://blog. openai. com/aiand-compute, 2018.
[2] D. Bahdanau, F. Hill, J. Leike, E. Hughes, P. Kohli, and E. Grefenstette. Learning to follow language instructions with

adversarial reward induction. arXiv preprint arXiv:1806.01946, 2018.
[3] D. Bahdanau, S. Murty, M. Noukhovitch, T. H. Nguyen, H. de Vries, and A. Courville. Systematic generalization:

What is required and can it be learned? arXiv preprint arXiv:1811.12889, 2018.
[4] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and Y. Bengio. Babyai: First

steps towards grounded language learning with a human in the loop. arXiv preprint arXiv:1810.08272, 2018.
[5] L. David. Convention: a philosophical study, 1969.
[6] H. de Vries, K. Shuster, D. Batra, D. Parikh, J. Weston, and D. Kiela. Talk the walk: Navigating new york city through

grounded dialogue. arXiv preprint arXiv:1807.03367, 2018.
[7] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. arXiv preprint

arXiv:1703.03400, 2017.
[8] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson. Learning to communicate with deep multi-agent

reinforcement learning. CoRR, abs/1605.06676, 2016.
[9] J. Gauthier and I. Mordatch. A paradigm for situated and goal-driven language learning. arXiv preprint

arXiv:1610.03585, 2016.
[10] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144,

2016.
[11] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2015.
[12] S. Kottur, J. M. Moura, S. Lee, and D. Batra. Natural language does not emerge’naturally’in multi-agent dialog. arXiv

preprint arXiv:1706.08502, 2017.
[13] R. Kralev, R. Mendonca, A. Zhang, T. Yu, A. Gupta, P. Abbeel, S. Levine, and C. Finn. Learning to reinforcement learn

by imitation, 2019.
[14] A. Lazaridou, A. Peysakhovich, and M. Baroni. Multi-agent cooperation and the emergence of (natural) language.

arXiv preprint arXiv:1612.07182, 2016.
[15] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch. Multi-agent actor-critic for mixed cooperative-

competitive environments. In Advances in Neural Information Processing Systems, pages 6379–6390, 2017.
[16] I. Mordatch and P. Abbeel. Emergence of grounded compositional language in multi-agent populations. arXiv

preprint arXiv:1703.04908, 2017.
[17] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms. CoRR, abs/1803.02999, 2018.
[18] L. Wittgenstein. Philosophical investigations. 1953.

4

	Introduction
	Learning to learn to communicate
	Problem set-up
	Experiments
	Outstanding challenges, and moving forward

