
Under review as a conference paper at ICLR 2020

UNCERTAINTY-SENSITIVE LEARNING AND PLANNING
WITH ENSEMBLES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a reinforcement learning framework for discrete environments in
which an agent optimizes its behavior on two timescales. For the short one, it
uses tree search methods to perform tactical decisions. The long strategic level
is handled with an ensemble of value functions learned using TD-like backups.
Combining these two techniques brings synergies. The planning module performs
what-if analysis allowing to avoid short-term pitfalls and boost backups of the
value function. Notably, our method performs well in environments with sparse
rewards where standard TD(1) backups fail. On the other hand, the value func-
tions compensate for inherent short-sightedness of planning. Importantly, we use
ensembles to measure the epistemic uncertainty of value functions. This serves
two purposes: a) it stabilizes planning, b) it guides exploration.
We evaluate our methods on discrete environments with sparse rewards: the Deep
sea chain environment, toy Montezuma’s Revenge, and Sokoban. In all the cases,
we obtain speed-up of learning and boost to the final performance.

1 INTRODUCTION

The model-free and model-based approaches to reinforcement learning have a complementary set
of strengths and weaknesses. While the former offers good asymptotic performance, it suffers from
poor sample complexity. In contrast, the latter usually needs significantly less training samples,
but often fails to achieve state-of-the-art results on complex tasks (primarily attributed to models’
imperfection). In environments with sparse rewards the value estimation has large variance, which
may hinder the learning process, especially in its early stage.

In this work we propose a new approach blending model-based, model-free methods and utilizing
risk-sensitivity information. It enhances explorations and mitigates the problems of sparsity in two
ways, a) the planning module effectively shortens time horizon allowing to capture a denser learning
signal, b) both value estimation and its uncertainty is used for bootstrapping and guiding exploration.
We deal with environments where the optimal trajectory does not visit the same state twice, and we
assume access to the perfect model. Our planning module is a Monte-Carlo Tree Search (MCTS)-
like algorithm with several improvements utilizing this access to the model. Although they are not
crucial to our method, we think they might be of general interests. Using MCTS is not necessary, in
principle virtually any planning method could be used (e.g., Levin tree search, Orseau et al. (2018b)).

Handling and using the uncertainty of value functions is an important topic. We explore risk-
sensitivity measures based on moments and relative majority vote. Secondly, we test ideas inspired
by the Thompson sampling and Osband et al. (2016). Finally, in some experiments, we use Monte-
Carlo tree search methods, with their notions of exploration. We found the interaction of these
methods quite interesting and important.

The rest of the paper is organized as follows. In the next subsection we provide an overview of
related topics. In Section 2 we present and discuss our method. This is followed by a section with
experiments and passing to conclusions. We provide code to our work https://github.com/
learningandplanningICLR/learningandplanning and a dedicated website https:
//sites.google.com/view/learn-and-plan-with-ensembles with more details
and movies.

1

https://github.com/learningandplanningICLR/learningandplanning
https://github.com/learningandplanningICLR/learningandplanning
https://sites.google.com/view/learn-and-plan-with-ensembles
https://sites.google.com/view/learn-and-plan-with-ensembles

Under review as a conference paper at ICLR 2020

1.1 RELATED WORK

The ideas of mixing model-based and model-free learning were perhaps first stated explicitly in
Sutton (1990). Many approaches followed. For example in the groundbreaking series of papers
Silver et al. (2017), Silver et al. (2018) culminating in AlphaZero the authors have developed an
elaborated system that plans and performs model-free training to master the game of Go (and others).
Similar ideas were studied also in Anthony et al. (2017).

Constructing neural network models which would incorporate uncertainty in a principled Bayesian
way has proven to be challenging and still unresolved. A promising new results using ensembles
include Osband et al. (2018; 2017), Lakshminarayanan et al.. Ensembles of models were also suc-
cessfully used improve model-based RL training, see Kurutach et al. (2018), Chua et al. (2018), and
the references therein.

Perhaps, the work which is closest to ours is Lowrey et al. (2018). They argue, that an agent with
limited computational resources in complex environment, needs both to plan and learn from the
incoming stream of experience. They propose a system POLO, which plans using MPC Camacho &
Bordons (2007) method and learns value function. Importantly, their value function is modeled by
an ensemble of value functions which are aggregated using ’log-sum-exp formula’ (Lowrey et al.,
2018, 6), which roughly speaking corresponds a weighted sum of their mean and variance. They
show experimentally that this approach lead to improvements in various tasks, notably in training of
humanoid.

Another work similar to ours is Guo et al. (2014), in which the authors use MCTS in the role of ‘an
expert’ from which a neural policy is learn using the dagger algorithm. The basic difference is that
Guo et al. (2014) uses a classical MCTS without value function nor ensembles.

There are a number of works, which blend planning and learning into a end-to-end architectures,
including Value Prediction Networks (Oh et al. (2017)) or TreeQN (Farquhar et al. (2017)). A
recent work on model based Atari Kaiser et al. (2019) has showed possibility of sample efficient
reinforcement learning with an explicit visual model. Gu et al. (2016) uses model-based at the
beginning phase of training and model-free methods in ‘fine-tuning’, that is exactly where they
are expected to excel. There is a line of work which attempts to learn planning module, some of
them including ’imagination’ modules Pascanu et al. (2017), Racanière et al. (2017) or mimicking a
general scheme of MCTS-like algorithm into neural architecture Guez et al. (2019).

Our paper is also related to body of work related to exploration. Fundamental results in this area
concern the multi-arm bandits problem, see Lattimore & Szepesvári (2018). Methods developed
in this area have been successfully applied in planning algorithms, see Kocsis et al. (2006) and
Silver et al. (2017; 2018). Another set of methods have been developed in an attempt to solve
notoriously hard Montezuma’s Revenge, see for example Go-Explore Ecoffet et al. (2019) or self-
imitation learning techniques Guo et al. (2019). Another particularly interesting way of dealing with
exploration is Hindsight method, see Andrychowicz et al. (2017).

2 METHOD DESCRIPTION

From a high-level perspective, our method alternates between data collection, which uses a planner,
and learning, which optimizes a given architecture, see Algorithm 1. In this section we describe the
aforementioned key components: planner, learning and architecture.

The method does not rely on a particular form of a planner. Having said that, in this work we
focused on a version of MCTS similar to AlphaZero (Silver et al. (2018)). The method is novel in
the sense that it introduces a uncertainty-sensitive policy (for tree traversal and action choice), as
well as guided search which exploits the form of an optimal strategy (an idea which lies at the very
heart of dynamic programming).

2

Under review as a conference paper at ICLR 2020

Algorithm 1 Learning and planning with ensembles

1: Input: initial parameters of value function ensemble θi, i = 1, . . . ,K, empty replay buffer D
2: repeat
3: Reset environment and initialize starting state s.
4: while s is not terminal do . Planning stage
5: Initialize root . Possibly soft-penalize loop
6: while within computational budget do . dubbed MCTS steps, e.g. 10
7: Start from the root and move down the tree . Tree-policy
8: Expand leaf . Using ensemble value network
9: Backpropagate . Possibly penalize a dead-end

10: end while
11: Choose next action and next state s . Final policy, possibly penalize 1-cycles
12: end while
13: Evaluate episode . Use e.g. factual or bootstrapped rewards
14: Add the episode to replay buffer . Possibly assigning masks
15: for however many updates do . Learning stage
16: Randomly sample batch B of states and values . Possibly also masks
17: Use B to update ensemble value function with gradient descent (e.g. RMSProp)
18: end for
19: until convergence

The approach is inspired by Osband et al. (2018) and Lowrey et al. (2018). The former introduces a
way of modeling uncertainty via ensembles it was shown how ensembles can be viewed as samples
from approximate posterior distribution (given the data gathered so far). The latter introduced a
uncertainty-sensitive view into the planning. Consequently, we will consider the following strate-
gies:

a∗(s) := arg max
a

Eθ∼Θ

[
φa(Q̂θ)

]
, Q̂θ :=

(
Q̂θ(s, a

′) : a′ ∈ A
)
. (1)

where A is the action space, φa : R|A| → R is a uncertainty measure, and Q̂θ is an estimator
of Q-function. We take expectation over an ensemble of estimators using posterior distribution Θ.
Lowrey et al. (2018) considered φa(x) = eκxa for x ∈ R|A| and κ > 0. In this paper we consider
the following φa:

• φa(x) = xa + κx2
a, κ > 0. This includes second moments. This can be easily generalized

to include variance, standard deviation and exploration bonuses.
• we propose also

φa(x) = 1

(
arg max

a′
xa′ = a

)
(2)

Contrary to the other cases this φa depends not only on marginal values of its input, but
the whole input (i.e. the estimator vector Q̂θ). It leads to a rule resembling optimal Bayes
classifier form, i.e. the one which chooses a minimizing P(a∗θ(s) 6= a). Such a rule is also
known as the relative majority measure.

Apart for the above mechanisms in some experiment we also use the Thomson sampling in a similar
fashion to Osband et al. (2016). In the formulation of equation 1 this can be understood as ”sub-
sampling” from Θ.

In our MCTS planner we introduced model-based mechanism which enhances learning. Namely,
while planning for the next action we unroll several rollouts, during this process we avoid entering
perviously visited vertices. This might lead to a situation when no-vertex is available, which we
dubbed as dead-end and penalize. Another similar mechanism avoids entering the previously visited
states on the whole episode, which we call 1-loops. We found this mechanism to be beneficial and is
able to learn even in sparse rewards scenarios (see ”Learning solution for single boards” paragraph
in Section 3.3).

During the learning phase, a batch is drawn from a replay buffer and the ensemble are optimized to
minimize l2 distance from sampled targets. In this paper we consider two ways of calculating targets:

3

Under review as a conference paper at ICLR 2020

a) values accumulated in tree nodes during planning phase (called bootstrap), b) (discounted) values
of rewards collected in an episode (called factual). Our replay buffer also records for episodes,
whether they are solved (i.e. those, which ended with positive final reward) or not. In our typical
experiment batches are composed to contained a fixed ratio of transition from solved and unsolved
episodes. In some experiments in training we use mask similar to the on in Osband et al. (2018).

In this work we typically implement ensembles as a set of neural networks (we also experiment with
mult-headed architectures sharing some lower layers). We use both architectures with and without
random priors Osband et al. (2018), for details see Appendix A.

3 EXPERIMENTS

In this section we provided experimental evidence to show that using risks measures are useful. We
chose three environments, Deep-sea, toy Montezuma’s Revenge and Sokoban.

In each case we use an MCTS planner with the number of passes equal to 10 (see line 6 of Algorithm
1). We consider this number to be a rather small for MCTS-like planning methods, still we observed
that is is big enough to improve ensemble value functions.

We utilize various neural network architectures, see Appendix A. In most cases we measure un-
certainty using either variance or standard deviation with an exception of Sokoban wih randomly
generated board, where voting was used, see equation 2.

3.1 DEEP-SEA

Deep-sea environment was introduced in (Osband et al., 2018, Section 4) and later included in
Osband et al. (2019) as a benchmark for exploration under the name. The agent is located on a
N × N grid, N ∈ N starting at (0, 0). In each timestep its y-coordinate is increased, while x is

Figure 1: The heatmaps of standard deviations of values predicted by ensembles for states of the
Deep-sea environment. High values are marked in blue and low in white. At the beginning of
training, left picture, the standard deviation is high for all states. Gradually it is decreased in the
states that have been explored. Finally, in the right, the reward state is found. Note that the upper-
right part of the board is unreachable.

controlled. The agent issues actions {−1, 1}, which according to a prescribed mask are translated
to one step ”left” or one step ”right” (decreasing, if possible, or increasing x respectively). For each
step ”right” the agent is punished with 0.01/N . After N steps the game ends and the agent receives
reward +1 if and only if it reaches position (N,N). The aforementioned mask is randomized at
each field at the beginning of training (and kept fixed). Such a game is purposely constructed so that
naive random exploration schemes fail already for small N ’s. Indeed, a random agent has chance
(1/2)N of reaching the goal even is it disregards misleading rewards for ”right” steps. On Figure
1 one can observe how the exploration progresses. On Figure 2 one can see comparison of non-
ensemble models, ensemble model with Thomson sampling but without uncertainty benefit κ = 0
and our final ensemble model with exploration the bonus for uncertainty κ > 0.

3.2 TOY MONTEZUMAS REVENGE

Toy Montezuma’s Revenge is a navigation maze-like environment. It was introduced in Roder-
ick et al. (2018) to evaluate ideas of using higher-level abstractions in long-horizon problems.

4

Under review as a conference paper at ICLR 2020

Figure 2: Comparison of number of episodes needed to solve the deep-sea environment with given
grid size N . Orange dots marks trials which were unable to solve problem in 30000 episodes.

Figure 3: The biggest Montezuma’s Revenge map, consist-
ing of 24 room. The goal is to reach the room marked with
G. The agent needs to avoid traps (marked in red) and pass
through doors (marked in blue). Doors are open using keys
(marked in yellow). (best view in color)

While its visual layer is greatly re-
duced it retains much of the ex-
ploration problems of the original
Motemzuma’s Revenge. This makes
it a useful test environment for ex-
ploration algorithms, for example it
was used in a recent self-imitation ap-
proach of Guo et al. (2019). From
the presets of available rooms1, in
most of our experiments we work
with the biggest map with 24 rooms,
see Figure 3. In order to concen-
trate on the evaluation of exploration
we chose to work with sparse re-
wards. The agent gets reward 1
only if it reaches the treasure room , otherwise the episode is terminated after 300 steps.
Clearly, any simple exploration technique would fail in this case (we provide some baselines in Table
1). Guo et al. (2019) benchmarks PPO, PPO with self imitation learning (PPO+SIL), PPO with count
based exploration bonus (PPP+EXP) and their new technique (DTSIL). Only the last new technique
consistently is able to solve 24 room challenge, with PPO+EXP occasionally reaching this goal. Our
method based on ensembles solves this exploration challenge even in a harder sparse reward case.2
Our results are summarized in Table 1. We have three setups: ’no-ensemble’, ’ensemble, no std’,
’ensemble, std’. In the first case, we train using Algorithm 1 with single network, neural-network.
In the second case, for each episode we sample 10 ensembles to be used and the MCTS is guided but
their mean. In the final third case, we follow the same protocol but we add to the mean the standard
deviation of the ensembles. In our experiments we observe that ’no-ensemble’ often in 30 out of 43
cases does not leave behind the first room. Ensembles without explicit exploration bonus perform
slightly better. Finally we observe that the setup using ensembles behaves very well.

Setup win-ratio (no. seeds) av. visited rooms

no-ensemble 0 (43) 4.8
ensemble, no std 2 (40) 5.8

ensemble, std 35 (37) 17.1

Table 1: Result for toy Montezuma’s revenge. We report
the number of successful runs and the number of seeds of
network initialization. We also show the average number of
visited rooms, which is a proxy for the learning progress.

Further experimental details and the
network architecture are presented in
Appendix A and B.

3.3 SOKOBAN

Sokoban is an environment
known for its combinato-
rial complexity. The agent’s

1We use a slightly modified code from https://github.com/chrisgrimm/deep_abstract_
q_network

2DTSIL build on the intermediate partial solutions, which are ranked according to their reward, thus we
suspect it would fail in the sparse reward case.

5

https://github.com/chrisgrimm/deep_abstract_q_network
https://github.com/chrisgrimm/deep_abstract_q_network

Under review as a conference paper at ICLR 2020

goal is to push all boxes to
the designed spots, see Fig-
ure 4. Apart for the nav-
igational factor, the diffi-
culty of this game is greatly increased by the fact that some actions are irreversible.
An archetypal example is pushing a box into a corner, though there are multiple less obvious cases.
This is further confirmed by the fact that it is NP-hard, see e.g. Dor & Zwick (1999). Due to
these challenges the game has been considered as a testbed for reinforcement learning and planning
methods. The boards can be randomly procedurally generated and parameterized by their size and
number of boxes.3 Exploration problem in Sokoban can be understood at two levels: a) it appears
on one board, b) at meta-level exploration is needed to find a solution common to all boards.

Figure 4: Example (10, 10)
Sokoban board with 4 boxes.
Boxes (yellow) are to be
pushed by agent (green) to de-
signed spots (red). The opti-
mal solution has 37 steps.

In many RL approaches to Sokoban, it is used with intermediate re-
wards e.g. for pushing a box into a designed spot. In this work we
use sparse setting. The agent is rewarded only when all boxes are
in place. We conducted three lines of experiments using ensembles:
a) learning solution to randomly generated boards, b) learning so-
lution to single boards, c) transfer and learnable ensembles.

In our experiment we use Sokoban with board of size (10, 10) and
four boxes. We found that the maximal length of an episode influ-
ences the results significantly. We use 200 steps in the experiments
with learning generalized value function and 100 in others.

Learning solution to randomly generated boards In this exper-
iment we measure the ability of our approach to solve randomly
generated Sokoban boards. We measure the performance of the
agent by computing the win rate on last 1000 games. In this ex-
periment we use an ensemble value function using relative majority
voting as formalized in equation 2.

Relative majority voting takes into account the disagreement of ensembles when it comes to
the final outcome, not only the disagreement in assessment of particular action. After 80000
games it reaches 85% win rate compared to 76% of an agent not using ensembles, see Fig-
ure 5. As a proxy measure of ensemble disagreement, we also present the mean standard de-
viation of value function across episodes (red curve in Figure 5). It suggests that the better the
ensembles get, the more the agree on the values assigned to Sokoban states. It also indicates
that ensembles reduce the amount of exploration the better they get (measured via win rate).

Figure 5: Learning curve (left axis) and standard deviation
of ensemble values (right axis) in Sokoban. The plots are
functions of the number of games. (best view in color)

Learning solution to single boards
In this experiment we measure the ex-
tent in which our methods can plan
and learn on single board of Sokoban.
We note that this setting differs sub-
stantially from the one in the previ-
ous paragraph. While learning a gen-
eralized value function is typically a
harder task, in our case it has also
positive impact on the training pro-
cess. There are significantly many
boards which can be easily solved
even at the starts (we tested that in our
setting MCTS with randomly initial-
ized network solves ≈ 0.7% of boards), which can be used as positive examples. This leads to
emergent implicit curriculum. In our experiments with single boards, we used setups similar to the
one in Montezuma’s Revenge. We observes that the setup with ensembles solves≈ 65% compare to

3There is a subtlety, as the difficulty of board is heavily influenced by the generation protocol. We follow
the one from Racanière et al. (2017).

6

Under review as a conference paper at ICLR 2020

≈ 50% the standard one network scenario. To ensure statistical significance in both of the cases we
performed≥ 250 experiments thus obtaining standard deviations≤ 2.5%. The result of the standard
setup might seem surprisingly good, taking into account the sparse reward. This follow by the loop
avoidance described in Section 2. In this experiment if during planning the agent finds itself in a
situation from which it cannot find a novel state it is punished (with −2). This value is propagated
to the learning process creating another form of exploration.

Transfer and learnable ensembles Generating any new board can be seen as a cost di-
mension along with sample complexity. This quite naturally happens in meta-learning prob-
lems. We tested how value functions learned on small number of boards perform on
new previously unseen ones. We used the following protocol, we trained value func-
tion on fixed number of 10 games. To ease the training we used relabeling akin to ??4.

Architecture Random Trans. 1 Trans. 2 Trans. 3

5-layers 0.7% 4.9% 7.1% 8.5 %
4-layers 0.7% 4.3% 5.6% 7.3%

Table 2: Results of transfer experiments. We test transfers
from one value function (Trans 1) and transfer from ensem-
bles of 2 and 3 value functions (Trans 2 and Trans 3). In
the later two cases the aggregation of values is learned. The
results are averaged over 20 seeds.

We evaluate these models on other
boards. It turns out that they are typ-
ically quite weak, arguably it is not
very surprising as solving 10 boards
does not give much chance to infer
’the general’ solutions. In the second
phase we use ensembles of the mod-
els. More precisely, we calculate the
values of n = 2, 3 models and ag-
gregate it using a small neural net-
works with one fully connected hid-
den layer. This network is learnable and trained using the standard setup. We observe that the
quality of such ensemble increases with the number of components as summarized in Table 2. We
observed high variability of the results over seeds, this is to be expected as board in Sokoban signifi-
cantly vary in difficulty. We also observe that maximal results for transfer increase with the number
of value function, being approximately 10%, 11% and 12%. This further supports the claim that
ensembling may lead to improved performance. In 5-layer experiment we use a network with 5
hidden cnn layers, see details in Appendix A, we compare this with an analogous 4 layers network.
In the latter case, we obtain weaker result. We speculate this might be due to the fact that smaller
architecture is easier to overfit.

CONCLUSIONS AND FURTHER WORK

In this paper, we introduced a reinforcement learning method that blends planning, learning, and
using information about uncertainty to boost exploration. We verified experimentally that such a
setup is useful enabling deep exploration for time horizons spanning for even hundreds of steps.

We believe that this opens promising future research directions. There are many choices for ensem-
bles designs some of which we tested, but there are still many others. At the moment, selecting a
proper aggregation method seems somewhat problem-specific. The ultimate goal should be finding
more general methods. Such developments would be a step towards deep Bayesian learning.

In our work, we used MCTS with a perfect model of deterministic environments. It would be inter-
esting to consider problems requiring the use of learned, imperfect models. This is more demanding,
though uncertainty methods might be of use, this time to avoid model imperfections. Equally im-
portant would be tackling stochastic environments. This might be considerably more difficult as
such a task requires disentangling epistemic (studied in this work) and aleatoric (coming from the
environment) uncertainties.

We focused our attention on the Monte-Carlo tree search, there are many other known planning
algorithms, which could benefit from utilizing the information about uncertainty. In some initial
experiments we obtained promising but yet inconclusive result using the Levine tree search (see
Orseau et al. (2018a)). Another tempting direction is training both value and policy, akin to methods
of Silver et al. (2017).

4More precisely, for a failing trajectory we choose a random time-step and shift the target spots so that they
match the current location of boxes. We note that although this operation requires the knowledge of the game
mechanics (i.e. its perfect model) it is used only in this phase

7

Under review as a conference paper at ICLR 2020

The case of Sokoban cast a problem into meta-learning and continual learning grounds. Using
measures of uncertainty might enable a learning system to adapt to a changing environment. In
an archetypical case, this might be obtained by choosing from ensemble a model (a skill) which is
useful at the moment and understanding situations that such a model is not yet present.

REFERENCES

Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 5048–5058, 2017.
URL http://papers.nips.cc/paper/7090-hindsight-experience-replay.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and
tree search. In NIPS, 2017.

E. F. Camacho and C. Bordons. Model Predictive control. Advanced Textbooks in Control and
Signal Processing. Springer London, London, 2007. ISBN 978-1-85233-694-3. doi: 10.1007/
978-0-85729-398-5.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In NeurIPS 2018, pp. 4759–
4770, 2018.

Dorit Dor and Uri Zwick. Sokoban and other motion planning problems. Computational Geometry,
13(4):215–228, 1999.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Go-explore:
a new approach for hard-exploration problems. CoRR, abs/1901.10995, 2019. URL http:
//arxiv.org/abs/1901.10995.

Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. Treeqn and atreec:
Differentiable tree planning for deep reinforcement learning. CoRR, abs/1710.11417, 2017.

Shixiang Gu, Timothy P. Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration. In ICML, 2016.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Theophane We-
ber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver, and
Timothy P. Lillicrap. An investigation of model-free planning. In Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, pp. 2464–2473, 2019. URL http://proceedings.mlr.press/v97/guez19a.
html.

Xiaoxiao Guo, Satinder P. Singh, Honglak Lee, Richard L. Lewis, and Xiaoshi Wang. Deep learning
for real-time atari game play using offline monte-carlo tree search planning. In NIPS, 2014.

Yijie Guo, Jongwook Choi, Marcin Moczulski, Samy Bengio, Mohammad Norouzi, and Honglak
Lee. Efficient exploration with self-imitation learning via trajectory-conditioned policy. CoRR,
abs/1907.10247, 2019. URL http://arxiv.org/abs/1907.10247.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Ryan Sepassi,
George Tucker, and Henryk Michalewski. Model-based reinforcement learning for atari. CoRR,
abs/1903.00374, 2019. URL http://arxiv.org/abs/1903.00374.

Levente Kocsis, Csaba Szepesvári, and Jan Willemson. Improved monte-carlo search. Univ. Tartu,
Estonia, Tech. Rep, 1, 2006.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. CoRR, abs/1802.10592, 2018.

8

http://papers.nips.cc/paper/7090-hindsight-experience-replay
http://arxiv.org/abs/1901.10995
http://arxiv.org/abs/1901.10995
http://proceedings.mlr.press/v97/guez19a.html
http://proceedings.mlr.press/v97/guez19a.html
http://arxiv.org/abs/1907.10247
http://arxiv.org/abs/1903.00374

Under review as a conference paper at ICLR 2020

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In NIPS 2017.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. preprint, 2018.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch.
Plan online, learn offline: Efficient learning and exploration via model-based control. CoRR,
abs/1811.01848, 2018.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In NIPS, 2017.

Laurent Orseau, Levi Lelis, Tor Lattimore, and Theophane Weber. Single-agent policy tree search
with guarantees. In Advances in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada., pp. 3205–3215, 2018a. URL http://papers.nips.cc/paper/
7582-single-agent-policy-tree-search-with-guarantees.

Laurent Orseau, Levi Lelis, Tor Lattimore, and Théophane Weber. Single-agent policy tree search
with guarantees. In Advances in Neural Information Processing Systems, pp. 3205–3215, 2018b.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. In NIPS, 2016.

Ian Osband, Daniel Russo, Zheng Wen, and Benjamin Van Roy. Deep exploration via randomized
value functions. CoRR, abs/1703.07608, 2017.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. In NeurIPS, 2018.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepezvári, Satinder Singh, Benjamin Van Roy, Richard S.
Sutton, David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning. CoRR,
abs/1908.03568, 2019. URL http://arxiv.org/abs/1908.03568.

Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sébastien Racanière,
David P. Reichert, Theophane Weber, Daan Wierstra, and Peter Battaglia. Learning model-based
planning from scratch. CoRR, abs/1707.06170, 2017.

Sébastien Racanière, Theophane Weber, David P. Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-
augmented agents for deep reinforcement learning. In NIPS, 2017.

Melrose Roderick, Christopher Grimm, and Stefanie Tellex. Deep abstract q-networks. In Pro-
ceedings of the 17th International Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, pp. 131–138, 2018. URL http:
//dl.acm.org/citation.cfm?id=3237409.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George Van Den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of Go without human knowledge. Nature, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Science, 1144:1140–1144, 2018.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In ML, pp. 216–224. Morgan Kaufmann, 1990.

9

http://papers.nips.cc/paper/7582-single-agent-policy-tree-search-with-guarantees
http://papers.nips.cc/paper/7582-single-agent-policy-tree-search-with-guarantees
http://arxiv.org/abs/1908.03568
http://dl.acm.org/citation.cfm?id=3237409
http://dl.acm.org/citation.cfm?id=3237409

Under review as a conference paper at ICLR 2020

A ARCHITECTURES

Deep-sea For Deep-see environment we encode state as one hot vector of size N2, and learn
simple linear transformation for value estimation.

Toy Montezuma Revenge Observation is represented as tuple containing current room location,
agent position within the room and status of all keys and doors on the board. To estimate value we
use fully-connected neural networks with two hidden layers consisting 50 neurons each.

Single-board Sokoban Observation has shape (10, 10, 7) where first two coordinates are spatial
and last one encodes type of field (e.g. box, target, agent, wall). To estimate value we flatten the
observation and apply fully-connected neural networks with two hidden layers consisting 50 neurons
each.

Multiple-boards Sokoban Here we use same observation as in single-board problem. To gener-
alize between different Sokoban levels we use convolutional neural network with 5 hidden layers
consisting 64 channels each.

B TRAINING DETAILS

We considered two objectives when training value function from recorded episodes.

Bootstap method was used in our Deep-see, Toy-Montezuma-Revenge and single-board Sokoban
experiments.

Parameter Value

Number of MCTS passes 10
Ensemble size 20
Learning rate 0.00025
Optimizer RMSProp
Discounting γ 0.99
κ 3

Table 3: Hiperparameters Default values used for our experiments. Exceptions is κ = 50 for
Deep-see environment.

.

10

	Introduction
	Related work

	Method description
	Experiments
	Deep-sea
	Toy Montezumaâ•Žs Revenge
	Sokoban

	Architectures
	Training details

