
Under review as a conference paper at ICLR 2020

PICKING WINNING TICKETS BEFORE TRAINING
BY PRESERVING GRADIENT FLOW

Anonymous authors
Paper under double-blind review

ABSTRACT

Overparameterization has been shown to benefit both the optimization and general-
ization of neural networks, but large networks are resource hungry at both training
and test time. Network pruning can reduce test-time resource requirements, but is
typically applied to trained networks and therefore cannot avoid the expensive train-
ing process. We aim to prune networks at initialization, thereby saving resources
at training time as well. Specifically, we argue that efficient training requires pre-
serving the gradient flow through the network. This leads to a simple but effective
pruning criterion we term Gradient Signal Preservation (GraSP). We empirically
investigate the effectiveness of the proposed method with extensive experiments on
CIFAR-10, CIFAR-100, Tiny-ImageNet and ImageNet, using VGGNet and ResNet
architectures. Our method can prune 80% of the weights of a VGG-16 network
on ImageNet at initialization, with only a 1.6% drop in top-1 accuracy. Moreover,
our method achieves significantly better performance than the baseline at extreme
sparsity levels.

1 INTRODUCTION

Deep neural networks exhibit good optimization and generalization performance in the overpa-
rameterized regime (Zhang et al., 2016; Neyshabur et al., 2019; Arora et al., 2019; Zhang et al.,
2019b), but both training and inference for large networks are computationally expensive. Network
pruning (LeCun et al., 1990; Hassibi et al., 1993; Han et al., 2015b; Dong et al., 2017; Zeng &
Urtasun, 2019; Wang et al., 2019) has been shown to reduce the test-time resource requirements with
minimal performance degradation. However, as the pruning is typically done to a trained network,
these methods don’t save resources at training time. Moreover, it has been argued that it is hard to
train sparse architectures from scratch while maintaining comparable performance to their dense
counterparts (Han et al., 2015a; Li et al., 2016). Therefore, we ask: can we prune a network prior to
training, so that we can improve computational efficiency at training time?

Recently, Frankle & Carbin (2019) shed light on this problem by proposing the Lottery Ticket
Hypothesis (LTH), namely that there exist sparse, trainable sub-networks (called “winning tickets”)
within the larger network. They identify the winning tickets by taking a pre-trained network
and removing connections with weights smaller than a pre-specificed threshold. They then reset
the remaining weights to their initial values, and retrain the sub-network from scratch. Hence,
they showed that the pre-trained weights are not necessary, only the pruned architecture and the
corresponding initial weight values. Nevertheless, like traditional pruning methods, the LTH approach
still requires training the full-sized network for identifying the sparse sub-networks.

Can we identify sparse, trainable sub-networks at initialization? This would allow us to exploit sparse
computation with specified hardware for saving computation cost. As shown in Dey et al. (2019) that
with pre-specified sparsity, they can achieve 5x efficiency for both training and testing. At the first
glance, a randomly initialized network seems to provide little information that we can use to judge
the importance of individual connections, since the choice would seem to depend on complicated
training dynamics. However, recent work suggests this goal is attainable. Lee et al. (2018) proposed
the first algorithm for pruning at initialization time: Single-shot Network Pruning (SNIP), which uses
a connection sensitivity criterion to prune weights with both small magnitude and small gradients.
Their empirical results are promising in the sense that they can find sparse, trainable sub-networks at
the initialization. However, connection sensitivity is sub-optimal as a criterion because the gradient of

1

Under review as a conference paper at ICLR 2020

Figure 1: A high-level abstraction of the pruning choice (one weight) of GraSP (left) and SNIP (right) with a
linear network, when assuming the output of red neuron is 0. SNIP will choose to prune the weight that takes0
as input, which will block the entire information �ow or gradient �ow after pruning. GraSP will choose not to
prune that weight, since the pruning of it will result in a signi�cant decrease of the gradient �ow.

each weight might change dramatically after pruning due to complicated interactions between weights.
Since SNIP only considers the gradient for one weight in isolation, it could remove connections that
are important to the �ow of information through the network. This effect is illustrated in Figure 1.
Practically, we �nd that this blocking of information �ow manifests as a reduction in the norm of the
gradient (e.g.In Figure 1, the network pruned by SNIP has a zero gradient).

Therefore, we aim to prune connections in a way that accounts for their role in the network's
gradient �ow. Speci�cally, we take the gradient normafter pruningas our criterion, and prune those
weights whose removal will result in least decrease in the gradient norm after pruning. Because we
rely on preserving the gradient �ow to prune the network, we name our method Gradient Signal
Preservation (GraSP). Our approach is easy to implement and conceptually simple. Moreover, the
recently introduced Neural Tangent Kernel (NTK) (Jacot et al., 2018) provides tools for studying
the learning dynamics in the output space. Building on the analysis of Arora et al. (2019), we show
that our pruning criterion tends to keep those weights which will be bene�cial for optimization. We
evaluate GraSP on CIFAR-10, CIFAR-100 (Krizhevsky, 2009), Tiny-ImageNet and ImageNet (Deng
et al., 2009) with modern neural networks, such as VGGNet (Simonyan & Zisserman, 2014) and
ResNet (He et al., 2016). GraSP signi�cantly outperforms SNIP in the extreme sparsity regime.

2 RELATED WORK AND BACKGROUND

In this section, we review the literature on neural network pruning including pruning after training,
during training and before training. Lastly, we also review the Neural Tangent Kernel (NTK) (Jacot
et al., 2018), which builds up the foundation for justifying our method in Section 4.

2.1 NETWORK PRUNING

After training. Most pruning algorithms (LeCun et al., 1990; Hassibi et al., 1993; Dong et al., 2017;
Han et al., 2015b; Li et al., 2016) operate on a pre-trained network. The main idea is to identify those
weights which are most redundant, and whose removal will therefore least degrade the performance.
Magnitude based pruning algorithms (Han et al., 2015b;a) remove those weights which are smaller
than a threshold, which may incorrectly measure the importance of each weight. In contrast, Hessian-
based pruning algorithms (LeCun et al., 1990; Hassibi et al., 1993) compute the importance of each
weight by measuring how its removal will affect the loss. More recently, Wang et al. (2019) proposed
a novel network reparameterization based on the Kronecker-factored Eigenbasis for further boosting
the performance of Hessian-based methods. However, all the aforementioned methods require a
pre-trained network, and therefore aren't applicable at initialization.

During training. There are also some works which attempt to incorporate pruning into the training
procedure itself. Srinivas & Babu (2016) proposed generalized dropout, allowing for tuning the
individual dropout rates during training, which can result in a sparse network after training. Louizos
et al. (2018) proposed a method for dealing with discontinuity in trainingL 0 norm regularized
networks in order to obtain sparse networks. Both methods require roughly the same computational
cost as training the full network. Dettmers & Zettlemoyer (2019) proposed sparse momentum
algorithm, which dynamically determines the sparse mask based on the mean momentum magnitude

2

Under review as a conference paper at ICLR 2020

during training. However, their method requires to maintain the momentum ofall the weights during
training, and thus does not save the memory.

Before training. Pruning at initialization is more challenging because we need to account for
the effect on the training dynamics when removing each weight. There have been several attempts
to conduct pruning before training. Frankle & Carbin (2019); Frankle et al. (2019) proposed and
validated the Lottery Ticket Hypothesis (LTH) that the network structure found by traditional pruning
algorithms and the corresponding initialization are enough for training the sub-network from scratch.
Lee et al. (2018) proposed the SNIP algorithm, which was the �rst attempt to directly identify trainable
and sparse sub-networks at initialization time. Their method was based onconnection sensitivity,
which aims to preserve the loss after pruning, and achieved impressive results. Concurrently to our
work, Lee et al. (2019b) studied the pruning problem from a signal propagation perspective, and
proposed to use an orthogonal initialization for ensuring faithful signal propagations. Though sharing
the same spirit as our GraSP algorithm, they focus on initialization scheme which is orthogonal to
speci�c pruning method.

2.2 NEURAL TANGENT KERNEL AND CONVERGENCEANALYSIS

Jacot et al. (2018) analyzed the dynamics of neural net training by directly analyzing the evolution of
the network's predictions in output space. LetL denote the cost function,X the set of all training
samples,Z = f (X ; �) 2 Rnk � 1 the outputs of the neural network, andk andn the output space
dimension and the number of training examples. For a step of gradient descent, the change to the
network's predictions can be approximated with a �rst-order Taylor approximation:

f (X ; � t +1) = f (X ; � t) � � � t (X ; X)r Z L ; (1)

where the matrix� t (X ; X) is theNeural Tangent Kernel (NTK):

� t (X ; X) = r � f (X ; � t)r � f (X ; � t)> 2 Rnk � nk (2)

wherer � f (X ; �) denotes the network Jacobian over the whole training set. Jacot et al. (2018)
showed that for in�nitely wide networks, with proper initialization, the NTK exactly captures the
output space dynamics throughout training, which means NTK reveals the �nal state of the network
at initialization without any training. In particular,� t (X ; X) is constant. Arora et al. (2019) used
the NTK to analyze optimization and generalization phenomena, showing that under the assumptions
of constant NTK and squared error loss, the training dynamics can be analyzed in closed form:

kY � f (X ; � t)k2 =

vu
u
t

nX

i =1

(1 � �� i)2t (u>
i Y)2 � � (3)

whereY 2 Rnk � 1 is all the targets,� = U�U > =
P n

i =1 � i u i u>
i is the eigendecomposition, and�

is a bounded error term. Although the constant NTK assumption holds only in the in�nite width limit,
Lee et al. (2019a) found close empirical agreement between the NTK dynamics and the true dynamics
for wide but practical networks, such as wide ResNet architectures (Zagoruyko & Komodakis, 2016).
Therefore, if running the training procedure itself is too expensive (as in our setting), one ought to
instead be able to achieve a rough approximation to the training dynamics using the NTK.

3 REVISITING SINGLE-SHOT NETWORK PRUNING (SNIP)

Single-shot network pruning was introduced by Lee et al. (2018), who used the term to refer both
to the general problem setting and to their speci�c algorithm. To avoid ambiguity, we refer to the
general problem of pruning before training asforesight pruning. For completeness, we �rst revisit
the formulation of foresight pruning, and then point out issues of SNIP for motivating our method.

Problem Formulation. Suppose we have a neural networkf parameterized by� 2 Rd, and our
objective is to minimize the empirical riskL (�) = 1

N

P
(x ;y) �D [`(f (x ; �); y)] given a training set

D = f (x i ; yi)gn
i =1 . Then, the foresight pruning problem can be formulated as:

min
m 2f 0;1gd

E(x ;y) �D [` (f (x ; A (m; � 0)) ; y)] s:t : kmk0=d = 1 � p (4)

3

Under review as a conference paper at ICLR 2020

Algorithm 1 Algorithm for GraSP: Foresight Pruning through Gradient Signal Preservation.

Require: pruning ratiop, training dataD, networkf with initial parameters� 0
1: Dmini = f (x i ; y i)gb

i =1 � D . Sample a mini-batch from the training setD
2: Compute the Hessian and gradient product asHg
3: S(� � 0) = � � 0 � Hg . Compute the importance of each weight
4: Computepth percentile ofS(� � 0) as�
5: m = S(� � 0) < � . Remove the weight if larger than the threshold
6: Train the networkf m � � onD until convergence.

wheredp� deis the number of weights to be removed, andA is a known training algorithm (e.g. SGD),
which takes the maskm (here we marginalize out the initial weights� 0 for simplicity), and returns
the trained weights. Since globally minimizing Eqn. 4 is intractable, we are instead interested in
heuristics that result in good practical performance.

Revisiting SNIP. SNIP (Lee et al., 2018) was the �rst algorithm proposed for foresight pruning,
and it leverages the notion ofconnection sensitivityto remove unimportant connections (weights).
They de�ne this in terms of how removing a single weight� q in isolation will affect the loss:

S(� q) = lim
� ! 0

�
�
�
�
L (� 0) � L (� 0 + � � q)

�

�
�
�
� =

�
�
�
� � q

@L
@�q

�
�
�
� (5)

where� q is theqth element of� 0, and� q is a one-hot vector with onlyqth element equals to� q.
Essentially, SNIP aims at preserving the loss of the pruned network almost the same as that of the
original network.

Preserving the loss value motivated several classic methods for pruning atrained network, such as
optimal brain damage (LeCun et al., 1990) and optimal brain surgery (Hassibi et al., 1993). While
the motivation for loss preservation of a trained network is clear, it is less clear why this is a good
criterion for foresight pruning. After all, at initialization, the loss is no better than chance. We argue
that at thebeginningof training, it is more important to preserve the training dynamics than the loss
itself. SNIP does not do this automatically, because even if removing a particular connection doesn't
affect the loss, it could still block the �ow of information through the network. For instance, we
noticed in our experiments that SNIP with a high pruning ratio (e.g. 99%) tends to eliminate nearly
all the weights in a particular layer, creating a bottleneck in the network. Therefore, we would prefer
a pruning criterion which accounts for how the presence or absence of one connection in�uences the
training of the rest of the network.

4 GRADIENT SIGNAL PRESERVATION

We now introduce and motivate our foresight pruning criterion, Gradient Signal Preservation (GraSP).
To understand the problem we are trying to address, observe that the network after pruning will have
fewer parameters and sparse connectivity, hindering the �ow of gradients through the network and
potentially slowing the optimization. This is re�ected in Figure 3, which shows the reduction in
gradient norm for random pruning with various pruning ratios. Moreover, the performance of the
pruned networks is correspondingly worse (see Table 1).

Mathematically, a larger gradient norm indicates that, to the �rst order, each gradient update achieves
a greater loss reduction, as characterized by the following directional derivative:

� L (�) = lim
� ! 0

L (� + � rL (�)) � L (�)
�

= rL (�)> rL (�) (6)

Since we only care about the performance of the pruned network, and thus our goal is to preserve
or even increase (if possible) the gradient �owafter pruning(i.e., the gradient �ow of the pruned
network). In order to achieve this, as adopted in LeCun et al. (1990), we cast the pruning operation as
adding a perturbation� on the initial weights for characterizing how removing one weight will affect

4

Under review as a conference paper at ICLR 2020

Table 1: Comparisons with Random Pruning with VGG19 and ResNet32 on CIFAR-10/100.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 95% 98% 99% 99.5% 95% 98% 99% 99.5%

Random Pruning (VGG19) 89.47(0.5) 86.71(0.7) 82.21(0.5) 72.89(1.6) 66.36(0.3) 61.33(0.1) 55.18(0.6) 36.88(6.8)
GraSP (VGG19) 93.04(0.2) 92.19(0.1) 91.33(0.1) 88.61(0.7) 71.23(0.1) 68.90(0.5) 66.15(0.2) 60.21(0.1)

Random Pruning (ResNet32) 89.75(0.1) 85.90(0.4) 71.78(9.9) 50.08(7.0) 64.72(0.2) 50.92(0.9) 34.62(2.8) 18.51(0.43)
GraSP (ResNet32) 91.39(0.3) 88.81(0.1) 85.43(0.5) 80.50(0.3) 66.50(0.1) 58.43(0.4) 48.73(0.3) 35.55(2.4)

the gradient �owafter pruning:

S (�) = � L (� 0 + �) � � L (� 0)
| {z }

Const

= 2 � > r 2L (� 0)rL (� 0) + O(k� k2
2)

= 2 � > Hg + O(k� k2
2)

(7)

whereS(�) is a function of� , and it denotes the change in(6) to a� -perturbation on the initial weight
� 0. The Hessian matrixH captures the correlations between each weight, and thus modulates the
effect of pruning on the remained weights. WhenH is identity, the above criteria recovers SNIP up to
the absolute value (recall the criteria of SNIP isj� > gj). However, it has been observed that different
weights are highly coupled (Wang et al., 2019), indicating that the HessianH is far from identity.

In practice, we adopt the equation de�ned above (i.e., eqn.(7)) as the measure of the importance of
each weight. Speci�cally, ifS(�) is negative, then removing the corresponding weights will reduce
the gradient �ow, otherwise it will not. Hence, we will prefer removing those weights whose removal
will not decrease the gradient �ow �rst. For each weight, the importance can be computed in the
following way:

S(� � q) = � � q � [Hg]q (8)

For a given pruning ratiop, we can obtain the resulting pruning mask by computing the pruning
criteria in a single pass, sort them accordingly and then remove the topp% of the weights (see
Algorithm 1). Roughly speaking, GraSP takes change in gradient �ow after pruning into account,
whereas SNIP only tries to preserve the loss after pruning, which may not perserve the gradient �ow.
Intuitively speaking, GraSP is accounting for how removing one weight will affect the gradient of
each other weight. Moreover, our criteria is easy to implement, and can be computed by backward
twice without explicitly computing the Hessian (Pearlmutter, 1994; Schraudolph, 2002).

4.1 UNDERSTANDING GRASPTHROUGH L INEARIZED TRAINING DYNAMICS

The above discussion concerns only the training dynamics at initialization time. To understand the
longer-term dynamics, we leverage the recently proposed Neural Tangent Kernel (NTK), which has
been shown to be able to capture the training dynamics throughout training for practical networks (Lee
et al., 2019a). Speci�cally, as we introduced in section 2.2, eqn.(3) characterizes how the training
error changes throughout the training process, which only depends on time stept, training targetsY
and the NTK� . Since the NTK stays almost constant for wide but practical networks (Lee et al.,
2019a),e.g., wide ResNet (Zagoruyko & Komodakis, 2016), and thus we can regard that eqn. 3 only
depends ont once the network is initialized. This shows that NTK captures the training dynamics
throughout the training process. Therefore, if we decompose eqn. (6) in the following form:

rL (�)> rL (�) = r Z L > � (X ; X)r Z L = (U > r Z L)> � (U > r Z L) =
nX

i =1

� i (u>
i Y)2 (9)

By relating it to eqn.(3), we can see that our objective is implicitly encouraging the eigenspace of�
align well with the targetY by pruning, which controls how each gradient step changes the training
error. Formally speaking, when we are able to maximize eqn.(9), it will encourage the eigenspace
of the NTK distributing large eigenvalues in the direction ofY, which will in turn accelerates the
decrease of the loss (Arora et al., 2019) and bene�ts to the optimization inA .

5 EXPERIMENTS

In this section, we conducted various experiments to validate the effectiveness of our proposed pruning
algorithm in terms of the test accuracy vs. pruning ratios. We also included two traditional pruning

5

Under review as a conference paper at ICLR 2020

Table 2: Test accuracy of pruned VGG19 and ResNet32 on CIFAR-10 and CIFAR-100 datasets. The bold
number is the higher one between the accuracy of GraSP and that of SNIP.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 98% 90% 95% 98%

VGG19 (Baseline) 94.23 - - 74.16 - -
OBD (LeCun et al., 1990) 93.74 93.58 93.49 73.83 71.98 67.79
MLPrune (Zeng & Urtasun, 2019) 93.83 93.69 93.49 73.79 73.07 71.69
LT (original initialization) 93.51 92.92 92.34 72.78 71.44 68.95
LT (reset to epoch 5) 93.82 93.61 93.09 74.06 72.87 70.55

SNIP (Lee et al., 2018) 93.63� 0.06 93.43� 0.20 92.05� 0.28 72.84� 0.22 71.83� 0.23 58.46� 1.10
GraSP 93.30� 0.14 93.04� 0.18 92.19� 0.12 71.95� 0.18 71.23� 0.12 68.90� 0.47

ResNet32(Baseline) 94.80 - - 74.64 - -
OBD (LeCun et al., 1990) 94.17 93.29 90.31 71.96 68.73 60.65
MLPrune (Zeng & Urtasun, 2019) 94.21 93.02 89.65 72.34 67.58 59.02
LT (original initialization) 92.31 91.06 88.78 68.99 65.02 57.37
LT (reset to epoch 5) 93.97 92.46 89.18 71.43 67.28 58.95

SNIP (Lee et al., 2018) 92.59� 0.10 91.01� 0.21 87.51� 0.31 68.89� 0.45 65.22� 0.69 54.81� 1.43
GraSP 92.38� 0.21 91.39� 0.25 88.81� 0.14 69.24� 0.24 66.50� 0.11 58.43� 0.43

algorithms (LeCun et al., 1990; Zeng & Urtasun, 2019), which operate on the pre-trained networks, for
serving as an upper bound for foresight pruning. Besides, we studied the the convergence performance
of the sub-networks obtained by different pruning methods for investigating the relationship between
gradient norm and �nal performance. Lastly, we studied the role of initialization and batch sizes in
terms of the performance of GraSP for ablation study.

5.1 PRUNING RESULTS ONMODERN CONVNETS

To evaluate the effectiveness of GraSP on real world tasks, we tested GraSP on four image classi�ca-
tion datasets, CIFAR-10/100, Tiny-ImageNet and ImageNet, with two modern network architectures,
VGGNet and ResNet1. For the experiments on CIFAR-10/100 and Tiny-ImageNet, we used a mini-
batch with ten times of the number of classes for both GraSP and SNIP2 according to Lee et al.
(2018). The pruned network is trained with Kaiming initialization (He et al., 2015) using SGD for
160 epochs for CIFAR-10/100, and300epochs for Tiny-ImageNet, with an initial learning rate of
0:1 and batch size128. The learning rate is decayed by a factor of0:1 at 1=2 and3=4 of the total
number of epochs. Moreover, we ran each experiment for 3 trials for obtaining more stable results.
For ImageNet, we adopted the Pytorch (Paszke et al., 2017) of�cial implementation, but we used
more epochs for training according to Liu et al. (2019). Speci�cally, we trained the pruned networks
with SGD for 150 epochs, and decayed the learning rate by a factor of 0.1 every50epochs.

We �rst compared GraSP against random pruning, which generates the mask randomly for a given
pruning ratio. The results are reported in Table 1. We can observe GraSP outperform random pruning
clearly, and the performance gap can be up to more than30%in terms of test accuracy. In the next,
we further compared GraSP with more competitive baselines on CIFAR-10/100 and Tiny-ImageNet
for pruning ratiosf 85%; 90%; 95%; 98%g, and the results can be referred in Table 2 and 4. When
the pruning ratio is low, i.e.85%; 90%, both SNIP and GraSP can achieve very close results to the
baselines, though still do not outperform pruning algorithms that operate on trained networks, as
expected. However, GraSP achieves signi�cant better results for higher pruning ratios with more
complicated networks (e.g. ResNet) and datasets (e.g. CIFAR-100 and Tiny-ImageNet), showing the
advantages of directly relating the pruning criteria with the gradient �ow after pruning. Moreover,
in most cases, we notice that either SNIP or GraSP can match or even slightly outperform LT with
original initialization, which indicates that both methods can identify meaningful structures. Besides,
we further experimented with the late resetting as suggested in Frankle et al. (2019) by resetting the
weights of the winning tickets to their values at 5 epoch. By doing so, we observe a boost in the
performance of the LT across all the settings, which is consistent with (Frankle et al., 2019).

1For experiments on CIFAR-10/100 and Tiny-ImageNet, we adopt ResNet32 and double the number of �lters
in each convolutional layer for making it able to over�t CIFAR-100.

2For SNIP, we adopt the implementation public at https://github.com/mi-lad/snip

6

Under review as a conference paper at ICLR 2020

Table 4: Test accuracy of pruned VGG19 and ResNet32 on Tiny-ImageNet dataset. The bold number is the
higher one between the accuracy of GraSP and that of SNIP.

Network VGG19 ResNet32

Pruning ratio 90% 95% 98% 85% 90% 95%

VGG19/ResNet32(Baseline) 61.38 - - 62.89 - -
OBD (LeCun et al., 1990) 61.21 60.49 54.98 58.55 56.80 51.00
MLPrune (Zeng & Urtasun, 2019) 60.23 59.23 55.55 58.86 57.62 51.70
LT (original initialization) 60.32 59.48 55.12 56.52 54.27 49.47
LT (reset to epoch 5) 61.19 60.57 56.18 60.31 57.77 51.21

SNIP (Lee et al., 2018) 61.02� 0.41 59.27� 0.39 48.95� 1.73 56.33� 0.24 55.43� 0.14 49.57� 0.44
GraSP 60.76� 0.23 59.50� 0.33 57.28� 0.34 57.25� 0.11 55.53� 0.11 51.34� 0.29

Figure 2: The training and testing loss on CIFAR-100
of SNIP and GraSP with ResNet32 and a pruning ratio
of 98%.

Figure 3: The gradient norm of ResNet32 after pruning
on CIFAR-100 of various pruning ratios. Shaded area
is the 95% con�dence interval calculated with 10 trials.

Table 3: Test accuracy of ResNet-50 and VGG16 on Ima-
geNet with pruning ratios 60%, 80% and 90%.

Pruning ratios 60% 80% 90%

Accuracy top-1 top-5 top-1 top5 top-1 top5

ResNet-50(Baseline) 75.70 92.81 - - - -
SNIP (Lee et al., 2018) 73.95 91.97 69.67 89.24 61.97 82.90
GraSP 74.02 91.86 72.06 90.82 68.14 88.67

VGG16 (Baseline) 73.37 91.47 - - - -
SNIP (Lee et al., 2018) 72.95 91.39 69.96 89.71 65.27 86.14
GraSP 72.91 91.18 71.65 90.58 69.94 89.48

However, the above three datasets are
overly simple and small-scale for reach-
ing robust conclusions, and thus we con-
duct further experiments on ImageNet us-
ing ResNet-50 and VGG16 with pruning
ratiosf 60%; 80%; 90%g to further validate
the effectiveness of GraSP. The results are
shown in Table 3, we can see that when the
pruning ratio is60%, both SNIP and GraSP

can achieve very close performance to the original one, and these two methods perform almost the
same. However, as we increase the pruning ratio, we observe that GraSP surpassing SNIP more and
more. When the pruning ratio is90%, GraSP can beat SNIP by6:2% for ResNet-50 and4:7% for
VGG16 in top-1 accuracy, showing the advantages of GraSP at larger pruning ratios. We seek to
investigate the reasons behind in Section 5.2 for promoting better understanding on GraSP.

5.2 ANALYSIS ON CONVERGENCEPERFORMANCE ANDGRADIENT NORM

Based on our analysis in Section 4.1 and the observations in the previous subsection, we conducted
further experiments on CIFAR-100 with ResNet32 to investigate where the performance gains come
from in the high sparsity regions. We presented the training statistics in terms of the training and test
loss in Figure 2. We observed that, the main bottleneck of pruned neural networks is under�tting,
and thus support our optimization considerations when deriving the pruning criteria. As a result,
the network pruned with GraSP can achieve much lower loss for both training and testing and the
decrease in training loss is also much faster than SNIP.

Besides, we also plotted the the gradient norm of the pruned network at initialization for a ResNet32
on CIFAR-100. The gradient norm is computed as the average of the gradients of the entire dataset,
and we normalize the gradient of the original network to be1. We run each experiment for10 trials in
order to obtain more stable results. We observe that both SNIP and GraSP result in a lower gradient
norm at high sparsity (e.g. 98%), but GraSP can better preserve the gradient norm after pruning,
and also yield better results than SNIP at the high sparsity regions. Moreover, in these high sparsity
regions, the pruned network usually under�ts the training data, and thus the optimization will be a
problem. The randomly pruned network has a much lower gradient norm and performs the worst. In
contrast, the network pruned by GraSP can start with a higher gradient norm and thus hopefully more
training progress can make as evidenced by our results in Figure 2.

7

Under review as a conference paper at ICLR 2020

�0 �1�0 �2�0 �3�0
�L�a�y�e�r� �i�n�d�e�x

�0

�2�0

�4�0

�6�0

�8�0

�1�0�0

�R
�e

�m
�a

�i�
n�

i�n
�g

� �
w

�e
�i�

g�
h�

t�s
� �

(�
%

�)

�C�I�F�A�R�-�1�0�,� �R�e�s�N�e�t�-�3�2

�G�r�a�s�p
�S�N�I�P

�0 �5 �1�0 �1�5
�L�a�y�e�r� �i�n�d�e�x

�0

�2�0

�4�0

�6�0

�8�0

�1�0�0
�C�I�F�A�R�-�1�0�,� �V�G�G�1�9

�0 �1�0 �2�0 �3�0
�L�a�y�e�r� �i�n�d�e�x

�0

�2�0

�4�0

�6�0

�8�0

�1�0�0
�C�I�F�A�R�-�1�0�0�,� �R�e�s�N�e�t�-�3�2

�0 �5 �1�0 �1�5
�L�a�y�e�r� �i�n�d�e�x

�0

�2�0

�4�0

�6�0

�8�0

�1�0�0
�C�I�F�A�R�-�1�0�0�,� �V�G�G�1�9

Figure 4: The portion of remaining weights at each layer after pruning with a pruning ratio of 95%.

5.3 VISUALIZE THE NETWORK AFTER PRUNING

In order to probe the difference of the network pruned by SNIP and GraSP. We present the portion of
the remaining weights at each layer of the sparse network obtained by SNIP and GraSP in Figure. 4.
We observe that these two pruning methods result in different pruning strategies. Specifically, GraSP
aims for preserving the gradient flow after pruning, and thus will not prune too aggressively for each
layer. Moreover, it has been known that those convolutional layers at the top usually learn highly
sparse features and thus more weights can be pruned (Zhang et al., 2019a). As a result, both methods
prune most of the weights at the top layers, but GraSP will preserve more weights than SNIP due to
the consideration of preserving the gradient flow. In contrast, SNIP are more likely to prune nearly
all the weights in top layers, and thus those layers will be the bottleneck of blocking the information
flow from the output layer to the input layer.

5.4 EFFECT OF BATCH SIZE AND INITIALIZATION

Table 5: Mean and standard variance of the test accuracy
on CIFAR-10 and CIFAR-100 with ResNet32.

Dataset CIFAR-10 CIFAR-100
60% 90% 60% 90%

Kaiming 93.42 � 0.39 92.12 � 0.39 71.60 � 0.65 68.93 � 0.36
Normal 93.31 � 0.36 92.13 � 0.36 71.48 � 0.60 67.98 � 0.83
Xavier 93.32 � 0.25 92.22 � 0.50 71.10 � 1.27 68.11 � 0.93

We also studied how the batch size and ini-
tialization will affect GraSP on CIFAR-10 and
CIFAR-100 with ResNet32 for ablation study.
Specifically, we tested GraSP with three differ-
ent initialization methods, Kaiming normal (He
et al., 2015), Normal N (0; 0:1), and Xavier nor-
mal (Glorot & Bengio, 2010), as well as differ-
ent mini-batch sizes. We presented the mean and standard variance of the test accuracy obtained with
different initialization methods and by varying the batch sizes in Table 5. For CIFAR-10 and CIFAR-
100, we use batch sizes f100; 400; � � � ; 25600; 50000g and f1000; 4000; 16000; 32000; 50000g re-
spectively. We observe that GraSP can achieve reasonable performance with different initialization
methods, and also the effect of batch size is minimal for networks pruned with Kaiming initialization,
which is one of the most commonly adopted initialization techniques in training neural networks.

6 DISCUSSION AND CONCLUSION

We proposed Gradient Signal Preservation (GraSP), a pruning criterion motivated by preserving
the gradient flow through the network after pruning. It can also be interpreted as aligning the large
eigenvalues of the Neural Tangent Kernel with the targets. Empirically, GraSP is able to prune the
weights of a network at initialization, while still performing competitively to traditional pruning
algorithms, which requires first training the network. More broadly, foresight pruning can be a
way for enabling training super large models that no existing GPUs can fit in, and also reduce the
training cost by adopting sparse matrices operations. Besides, readers may notice that there is still
a performance gap between GraSP and traditional pruning algorithms, and also the LT with late
resetting performs better than LT with original initialization. However, this does not negate the
possibility that foresight pruning can match the performance of traditional pruning algorithms while
still enjoy the cheaper training cost. As an evidence, Evci et al. (2019) show that there exists a linear
and monotonically decreasing path from the sparse initialization to the solution found by pruning
the fully-trained dense network, but current optimizers fail to achieve this. Therefore, apart from
developing more advanced foresight pruning algorithms, designing better gradient-based optimizers
that can exploit such paths will also be a good direction to explore.

8

	Introduction
	Related Work and Background
	Network Pruning
	Neural Tangent Kernel and Convergence Analysis

	Revisiting Single-Shot Network Pruning (SNIP)
	Gradient Signal Preservation
	Understanding GraSP through Linearized Training Dynamics

	Experiments
	Pruning Results on Modern ConvNets
	Analysis on Convergence Performance and Gradient Norm
	Visualize the Network after Pruning
	Effect of Batch Size and Initialization

	Discussion and Conclusion

